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AR6 WGI Report — List of corrigenda to be implemented

The corrigenda listed below will be implemented in the Chapter during copy-editing.

CHAPTER 10
Document Section | Page :Line Detailed info on correction to make
(Chapter, (based on
Annex, Supp. the final
Mat...) pdf FGD
version)

10 ES 8.8 Replace “low probability high-impact” by “low likelihood high-impact”

10 10.1.1 10:36 Replace “Li et al., 2020b” by “Q. Li et al., 2020”

10 10.1.1 10:24 Add often in “smalll spatial scales have an influence”: “small spatial scales often
have an influence”; add the reference (Sandu et al., 2016) after (Palmer, 2013)
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015MS000564

10 10.1.2 | 11:20-36 Change the caption of Fig.10.3 to “Schematic diagram to display interacting
spatial and temporal scales relevant to regional climate change information.
Adapted from Orlanski (1975). The process included in the different models and
model components considered in Chapter 10 are indicated as a function of these
scales. The various types of models (including global and regional climate
models) for constructing regional climate information are assessed in Section
10.3.1and Box 10.3. ”

10 10.1.2.2 122 Replace “Brown et al., 2012a” by “A. Brown et al., 2012”

10 10.1.2.2 12:34-35 | Replace “Dong-feng et al., 2017” by “Zhang et al., 2017”

Replace “Cai et al., 2018a” by “L. Cai et al., 2018”

10 10.1.2.2 12:47 Replace “Sylla et al., 2018a” by “Sylla et al., 2018”

10 10.1.31 13:28-30 Remove “Over the ocean, the increased radiative forcing leads to an increase in
latent heat flux and a decrease in sensible heat flux, while over land, water
availability is limited and increased radiative energy is therefore converted mostly
into sensible heat (Sutton et al., 2007).” as it is considered unnecessary and could
be controversial.

10 10.1.3.1 14:5 Replace “Li et al., 2016¢, 2016a” by “. Li et al., 2016; K. Li et al., 2016”

10 10.1.3.1 14 :8-9 Replace “Li et al., 2016d” by “Z. Li et al., 2016”

Replace “Liu et al., 2018¢” by “L. Liu et al., 2018”

10 10.1.3.1 14 .12 Replace “Zhang et al., 2018” by “H. Zhang et al., 2018”

10 10.1.3.1 14:20 Replace “Wang et al., 2015a” by “W. Wang et al., 2015”

10 10.1.3.1 14: 44 Replace “Michel et al., 2018” by “Michel et al., 2020

10 10.1.3.1 15:14 Replace “Li et al., 2018¢” by “X. Li et al., 2018"

10 10.1.3.3 16:11-12 Remove “Smith and Matthews, 2015”. Remove also the reference in 182:60-61.

10 Box 10.1 18:29 Replace “Hewitson et al., 2014b” by “B. Hewitson et al., 2014™

10 Box10.1 | 19:24-25 Remove “very likely”, it's redundant when confidence is already provided.

10 Box10.1 | 19:42 Change “The sensitivity of small islands and coastal areas to” to “The impact on
small islands and coastal areas of’.

10 CCB10.1 | 20:34 Replace “Wang et al., 2018a” by “K. Wang et al., 2018”

10 CCB10.1 | 21:14 Replace “Sun et al. (2016a)” by “L. Sun et al. (2016)”

10 CCB10.1 | 21:2 add reference at the end of sentence: “Zhang and Luo, 2020"

10 CCB10.1 | 21:33 Replace “Zhang et al., 2020b” by “R. Zhang et al., 2020”

10 Box10.1 21:9 Era se the two last sentences of the paragraph: “Urban areas stimulate storm
occurrence and heavy precipitations in part due to the presence of aerosols.
Urbanization also increases the risk of flooding during heavy rain events.”

10 CCB101 | 22:2 Replace “Mori et al., 2019a” by “Mori et al., 2019”

10 CCB10.1 | 22:12 Replace “Chen et al., 2016a” by “H.W. Chen et al., 2016”

10 CCB10.1 | 22:13 Add before “although” “or that a very large multi-model ensemble is needed
(Liang et al., 2020),”

10 CCB10.1 | 26:22 Replace “Shepherd, 2016” by “Shepherd, 2016b”
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10 CCB10.1 | 22:42 Replace “Li et al., 2018a” by “F. Li et al., 2018"

10 CCB10.1 | 22:47 Replace “Haarsma et al., 2013b” by “Haarsma et al., 2013a”

10 CCB10.1 | 22:48 Replace “Wang et al., 2018” by “K. Wang et al., 2018”

10 CCB10.1 | 22:45 add reference at the end of sentence: “ Parding et al., 2019”

10 CCB10.1 | 22:36 add after "moisture": “and snow-cover (Nakamura et al., 2019; Sato and
Nakamura, 2019)”

10 CCB10.1 | 22:22 delete “such as the link with Barents-Kara Sea ice loss in winter and weakened
storm tracks in summer”

10 CCB10.1 | 22:46 add “decrease” after “gradient”

10 23:29 Change “Several” into “Many”.

10.2.1.1

10 10.2.1.1 24 : 30 Replace “Chen et al., 2012b” by “H. Chen et al., 2012”

10 10.2.1.1 25:50 Replace “Liu et al., 2016b” by “L. Liu et al., 2016”

10 10.2.2.1 26:29 Replace “Cao et al., 2016” by “Cao et al., 2016b”

10 10.2.2.2 27:3 Replace “Sun et al., 2016b” by “Y. Sun et al., 2016”

10 27 33, A dd new reference Zhou et al., 2021 after Trewin 2013. Zhou et al. 2021 is

10.2.2.2 already added in mendeley . At the time when replying to the SOD comment
the suggested paper was still under-review but when working on the FGD the
paper got published and the author (RH) forgot to check again the replies to SOD
comment before submitting the FGD. The suggested paper is published before
the deadline and after checking it is worth to be cited. The reference is
https://doi.org/10.1175/JCLI-D-20-0352.1

10 10.2.2.3 28:40 R eplace “and West Africa (WACA&D,” with “, Latin America and West Africa
(ICA&D,"

10 10.2.26 |30:48 Replace “Kim et al., 2015b” by “J. Kim et al., 2015”

10 10.2.4 32:32 Replace “Langendiik et al., 2019a” by “Langendijk et al., 2019b”

10 10.3.1.1 35:3 add "(Chapter 3)" after "some models"

10 10.3.2.1 38:18 Replace “Zhang et al., 2016¢” by “T. Zhang et al., 2016”

10 10.3.2.1 38:18 Replace “Haarsma et al., 2013a” by “Haarsma et al., 2013b”

10 10.3.2.1 38 : 41 Replace “Zhang et al., 2016a” by “C. Zhang et al., 2016”

10 10.3.2.1 38:43 Replace “Brogli et al., 2019a” by “Brogli et al., 2019b”

10 10.3.2.1 38:51 Replace “Chen et al., 2020a” by “J. Chen et al., 2020

10 10.3.2.1 38:54 Replace “Otto et al., 2016a” by “F.E.L. Otto et al., 2016”

10 10.3.2.3 39:37 Replace “Wang et al., 2017a” by “J. Wang et al., 2017"

10 10.3.24 39:47 Add “Chapter 3" inside the brackets before “Section 10.3.4.3"

10 10.3.2.4 39:54 Replace “Wang et al., 2015b” by “Z. Wang et al., 2015”

10 10.3.3 41:5 Replace “Hewitson et al., 2014a” by “B.C. Hewitson et al., 2014”

10 10.3.3.1 41:32 Replace “Kim et al., 2015” by “D. Kim et al., 2015”

10 10.3.3.1 41 : 41 Replace “Zscheischler et al., 2018b” by “Zscheischler et al., 2018”

10 10.3.3.1 42:6 Replace “Chen et al., 2012b” by “H. Chen et al., 2012”

10 10.3.32 [42:33 Replace “Prein et al., 2016a” by “Prein et al., 2016b”

10 10.3.3.3.2 | 45:36 Replace “Deser et al., 2017 by “Deser et al., 2017¢”

10 10.3.36 | 50:42-43 | Replace “Liu etal., 2016a” by “F. Liu et al., 2016”

10 10.3.36 [ 50:44 Replace “Michel et al., 2018” by “Michel et al., 2020”

10 10.3.36 | 50:54 Replace “Liu et al., 2018a” by “F. Liu et al., 2018a”

10 10.3.3.6 | 50:54-55 | Replace “Lim et al., 2016b” by “Lim et al., 2016b”

Replace “Liu et al., 2018b” by “F. Liu et al., 2018b”

10 10.3.3.6 50:46 Complete the sentence with “but this influence is not well reproduced in climate
models AND REQUIRES VERY LARGE ENSEMBLES’ (the text to be added is
capitalized).

10 10.3.36 | 51:6 Replace “Wang et al., 2017b” by “Q. Wang et al., 2017”

10 10.3.3.7 51:48 Replace “Maraun et al., 2019b” by “Maraun et al., 2019a”

51:49-50
10 10.3.3.7 52:15 Replace “Maraun et al., 2019a” by “Maraun et al., 2019b”
10 10.3.3.7.1 | 53:12 Replace “Maraun et al., 2019a” by “Maraun et al., 2019b”



https://doi.org/10.1175/JCLI-D-20-0352.1

10 10.3.3.7.2 | 53:29 Replace “Maraun et al., 2019a” by “Maraun et al., 2019b”
53:33
53:34

10 10.3.3.7.3 | 54:2 Replace “Maraun et al., 2019a” by “Maraun et al., 2019b”

10 10.3.3.8 54:36 Replace "sensible" by "informative".

10 10.3.3.8 54:36 Replace "Maraun et al. (2017)" by "Maraun et al. (2019b)".

10 10.3.3.10 | 58:40 Add "(Casanueva et al., 2016)” after "calibration". The reference, which was
suggested by an SOD reviewer, was missing in the FGD by mistake. The
reference https://doi.org/10.1007/s10584-016-1683-4 needs to be added to the list
of references.

10 10.3.3.9 58:15 Replace “Boé et al., 2020” by “Boé et al., 2020a”

58:25
10 10.3.3.10 | 58:41-42 Replace “Maraun et al., 2019b” by “Maraun et al., 2019a”
58 : 44-45

10 10.34.2 59:47 Replace “low probability high-impact” by “low likelihood high-impact”

10 10.34.2 60:15 Replace “Hewitson et al., 2014a” by “B.C. Hewitson et al., 2014”

10 10342 [60:29 Replace “Li et al. (2017)" by “G. Li et al. (2017)"

10 10.3.4.3 60 : 50 Replace “von Trentini et al., 2019b” by “von Trentini et al., 2019”

10 10343 |61:4 Replace “Cai et al., 2018b” by “W. Cai et al., 2018”

10 10.343 |61:50 Replace “Maraun, 2013 by “Maraun, 2013b”

10 10.3.44 63: 1 Replace “Collins et al., 2013” by “Collins et al., 2013b”

10 CCB10.2 | 64:52 Replace “Maraun et al., 2017b” by “Maraun et al., 2017”

65 :40
10 CCB10.2 | 65:28 Replace “Maraun and Widmann (2018)” by “Maraun and Widmann (2018a)”
10 10.4.1.1 66 :49-50 | Replace “Lietal., 2017a” by “C. Liet al., 2017”
Replace “Wang et al., 2018b” by “Y. Wang et al., 2018”
10 10.4.1.1 66 : 55 Replace “Li et al., 2016b, 2017a” by “C. Li et al., 2016, 2017”
10 10.4.1.1 67:2 Replace “Li et al., 2017a” by “C. Li et al., 2017”
67:8

10 10.4.1.1 67:9 Replace “Ma et al. (2017)” by “Ma et al. (2017b)”

10 10.4.1.1 67 :13 Replace “Zhou et al., 2017" by “Zhou et al., 2017b”

10 10.4.1.2 68:19 Replace “Guo et al. (2019)” by “R. Guo et al. (2019)"

68 : 31

10 10.4.1.3 69:24 Replace “Huang et al. (2020)” by “Huang et al. (2020b)”

10 10422 | 72:27 Replace “Zhang et al., 2016” by “H. Zhang et al., 2016”

10 10422 | 73:39 Replace “Zhang et al., 2016b” by “H. Zhang et al., 2016”

10 10.4.2.3 75:19 Replace “Prein et al. (2016)” by “Prein et al. (2016a)”

10 10.4.3.1 77:30 Replace “Liu et al., 2018” by “W. Liu et al., 2018”

10 10432 | 79:17 Replace “Maraun, 2013” by “Maraun, 2013b”

10 10432 [80:28 Replace “Guo et al., 2019b” by “R. Guo et al., 2019”

10 10.5.1 82:43 Replace “global climate models” by “global models”

10 10.5.1 82:43 Replace “GCMs” with “GCMs and ESMs”

10 10.5.1 83:2 Replace “Cao et al., 2016” by “Cao et al., 2016a”

10 10.5.1 83:5 Add "Convention" after "Framework"

10 10.5.3.1 87:6 Replace “Hewitson et al., 2014b” by “Hewitson et al., 2014”

10 10.5.3.3 88:18 Replace “Brown et al., 2012a, 2012b” by “A. Brown et al., 2012: C. Brown et al.,
2012

10 10534 | 88:42 Replace “Otto et al., 2016b” by “J. Otto et al., 2016”

88 :50
10 Box 10.2 | 90:9-10 Replace “Meredith et al., 2015” by “Meredith et al., 2015b”
90:15

10 Box10.2 |90:15 Replace “Shepherd, 2016” by “Shepherd, 2016a”

10 10.6.2.4 ar:47 Replace “Southern Annual Mode” with “Southern Annular Mode”

10 10.6.24 | 97:55 Replace “Lim et al., 2016b” by “E.-P. Lim et al., 2016”

10 10.6.2.5 99:23 Replace “Lim et al., 2016a” by “E.-P. Lim et al., 2016”

10 10.6.2.6 99:30 Replace “Almazroui et al., 2020a” by “Almazroui et al., 2020¢”

3



https://doi.org/10.1007/s10584-016-1683-4

10 10.6.2.6 99:39 Replace “Lim et al., 2016a” by “E.-P. Lim et al., 2016”
10 10.6.2.6 99:30 Replace “Almazroui et al., 2020a” with “Almazroui et al., 2020c” [correct reference
should point to doi:10.1007/s41748-020-00161-x]
10 10.6.3.3 101:55 Replace “Colliins et al. (2013)” by “Colliins et al. (2013a)”
10 10.6.3.6 103 : 46 Replace “Chen et al., 2020b” by “Z. Chen et al. 2020”
10 10.6.3.6 104 : 13 Replace “Almazroui et al., 2020¢” by “Almazroui et al., 2020b"
10 10.6.3.6 104 : 24-25 | Replace “Zhang et al., 2020a” by “J. Zhang et al., 2020
10 10.6.3.6 104 : 30 Replace “Chen et al., 2020b” by “Z. Chen et al. 2020”
10 10.6.3.6 104 : 46 Replace “Li et al. (2017)" by “G. Li et al. (2017)"
10 10.6.3.6 104:13 Replace “Almazroui et al., 2020c” with “Almazroui et al., 2020b” [correct reference
should point to doi:10.1007/s41748-020-00157-7]
10 10.6.4.5 109:29 Replace “Brogli et al., 2019a” by “Brogli et al., 2019b”
10 10.6.4.6 110:29 Replace “Coppola et al., 2020b” by “Coppola et al., 2020”
10 10.6.4.7 112:45 Replace “Boé et al. (2020)" by “Boé et al. (2020a)”
10 113 Replace “East Asia” with “East Asia and TIB (Cross-chapter Box 10.4)”
10 10.6.4.9 113:55- | Replace “Lietal., 2019, 2020d" by “Li et al., 2019; Y. Li et al., 2020a”
114 :1
10 Box10.3 | 114:19 Replace “Chen et al., 2012a” by “F. Chen et al., 2012”
10 Box10.3 | 114:24 Replace “Langendijk et al., 2019a” by “Langendijk et al., 2019b”
10 Box 10.3 | 114:44 Replace “Chen et al., 2016b” by “H. Chen et al., 2016”
10 Box10.3 | 114:45 Replace “Kusaka et al., 2012b” by “Kusaka et al., 2012a”
10 Box10.3 | 114:47 Replace “Langendijk et al., 2019b” by “Langendijk et al., 2019a”
10 Box10.3 | 114:52 Replace “Kusaka et al., 2012a” by “Kusaka et al., 2012b”
10 Box10.3 | 115:2 Replace “Chen et al., 2016b” by “H. Chen et al., 2016”
10 Box10.3 | 115: 31 Replace “Wang et al., 2017a” by “J. Wang et al., 2017”
10 Box 10.3 | 115:37 Replace “Li et al., 2020c” by “Y. Li et al., 2020b”
10 Box 10.3 | 115:53 Replace “Li et al., 2018¢” by “X. Li et al., 2018"
10 Box10.3 | 116:47-48 | Replace “Guo et al., 2019a” by “D. Guo et al., 2019b”
Replace “Li al., 2020a” by “Li et al., 2020”
10 Box 10.3 | 116:51 Replace “Zhang et al., 2018b” by “Y. Zhang et al., 2018”
10 Box10.3 | 117:34 Replace “Yao et al., 2012b” by “Yao et al., 2012a”
10 Box 10.3 | 117:36 Replace “Li et al., 2018b” by “H. Li et al., 2018b”
10 Box10.3 | 118:14 Replace “Almazroui et a., 2020¢” by “Almazroui et al., 2020b”
118:24
10 CCB10.4 | 118:14 Replace “Almazroui et al., 2020c” with “Almazroui et al., 2020b” [correct reference
should point to doi:10.1007/s41748-020-00157-7]
10 CCB10.4 | 118:24 Replace “Almazroui et al., 2020¢” with “Almazroui et al., 2020b” [correct reference
should point to doi:10.1007/s41748-020-00157-7]
10 Figure 197:9 Within figure in the middle hexagon of the top row, replace “Litterature” with
10.1 “Literature”
10 Figure 197:11 Within figure in the leftmost hexagon of the top row, replace "In situ and remote
10.1 Observations" with "In situ and remote observations"
10 Figure 197:50 Add at the end of the caption “Literature refers to scientific and technical literature,
10.1 and climate experts to climate scientists, practitioners and local communities, as
defined in section 10.5.” to clarify what is meant in the corresponding hexagons.
10 Figure 198 | replace with updated visual roadmap, as all visual roadmaps have been
10.2 harmonised (to have a set with a consistent visual identity. This does not alter the
content of the chapter.)
10 Figure 222:19 and | Replace “out to the near term (2016—2045)" with “for the period 2016—2045
10.19 105:25
caption
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Executive Summary

Although climate change is a global phenomenon, its manifestations and consequences are different in
different regions, and therefore climate information on spatial scales ranging from sub-continental to local is
used for impact and risk assessments. Chapter 10 assesses the foundations of how regional climate
information is distilled from multiple, sometimes contrasting, lines of evidence. Starting from the assessment
of global-scale observations in Chapter 2, Chapter 10 assesses the challenges and requirements associated
with observations relevant at the regional scale. Chapter 10 also assesses the fitness of modelling tools
available for attributing and projecting anthropogenic climate change in a regional context starting from the
methodologies assessed in Chapters 3 and 4. Regional climate change is the result of the interplay between
regional responses to both natural forcings and human influence (considered in Chapters 2, 5, 6 and 7),
responses to large-scale climate phenomena characterizing internal variability (considered in Chapters 1-9),
and processes and feedbacks of a regional nature.

Chapter 10 is the first of four chapters that assess regional-scale information in this.report. The region-by-
region assessment of past and future changes in extremes (Chapter 11), climatic impact-drivers (Chapter 12)
and mean climate (Atlas) relies on the sources and methodologies used for constructing regional climate
change information assessed in Chapter 10. Building on the assessmeft of ebservations and modelling tools
of Chapter 10, Chapter 11 assesses the observation and modelling.of extremes. Chapter 10 assesses
methodologies to attribute multi-decadal regional trends to the interplay between external forcing and
internal variability, while Chapter 11 assesses the attribution‘of extreme events: The assessment of climate
services in Chapter 12 builds on the assessment of distillation.of regional climate information from multiple
lines of evidence in Chapter 10.

Distilling regional climate information from multiple lines of evidence and taking the user context into
account will increase the fitness, usefulnessand relevance for decision-making and enhances the trust
users will have in applying it (high confidence). This distillationprocess can draw upon multiple
observational datasets, ensembles of different model types; process understanding, expert judgement and
indigenous knowledge. Important elements of distillation include attribution studies, the characterization of
possible outcomes associated with.internal variability and a comprehensive assessment of observational,
model and forcing uncertainties‘and possible contradictions using different analysis methods. Taking the
values of the relevant actors.into account when co-producing climate information, and translating this
information into the broader user context, improves.the usefulness and uptake of this information (high
confidence). {10.5}

Observations and Models as Sources of Regional Information

The use of multiple sources of observations and tailored diagnostics to evaluate climate model
performance increases trust in future projections of regional climate (high confidence). The availability
of multiple observational records; including reanalyses, that are fit for evaluating the phenomena of interest
and account for observational uncertainty, are fundamental for both understanding past regional climate
change and assessing climate model performance at regional scales (high confidence). Employing tailored,
process-oriented and potentially multivariate diagnostics to evaluate whether a climate model realistically
simulates relevant.aspects of present-day regional climate increases trust in future projections of these
aspects (high confidence). {10.2.2, 10.3.3}

Currently, scarcity and reduced availability of adequate observations increase the uncertainty of long-
term temperature and precipitation estimates (virtually certain). Precipitation measurements in
mountainous areas, especially of solid precipitation, are strongly affected by gauge location and setup (very
high confidence). Over data-scarce regions or over complex orography, gridded temperature and
precipitation products are strongly affected by interpolation methods. Lack of access to the raw station data
used to create gridded products compromises the trustworthiness of these products since the influence of the
gridding process on the product cannot be assessed. The use of statistical homogenization methods reduces
uncertainties related to long-term warming estimates at regional scales (virtually certain) {10.2.2, 10.6.2,
10.6.3, 10.6.4, Box 10.3}.
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Regional reanalyses provide surrogates of observed climate variables that are highly relevant in areas
with scarce surface observations. Regional reanalyses represent the distributions of precipitation, surface
air temperature, and surface wind, including the frequency of extremes, better than global reanalyses (high
confidence). However, their usefulness is limited by their short length, the typical regional model errors, and
the relatively simple data assimilation algorithms. {Section 10.2.1}

Global and regional climate models are important sources of climate information at the regional scale.
Global models by themselves provide a useful line of evidence for the construction of regional climate
information through the attribution or projection of forced changes or the quantification of the role of the
internal variability (high confidence). Dynamical downscaling using regional climate models adds value in
representing many regional weather and climate phenomena, especially over regions of complex orography
or with heterogeneous surface characteristics (very high confidence). Increasing climate:model resolution
improves some aspects of model performance (high confidence). Some local-scale phenomena such.as land-
sea breezes and mountain wind systems can only be realistically represented by simulations at a‘tesolution of
the order of 10 km or finer (high confidence). Simulations at kilometre-scale resolution add value in
particular to the representation of convection, sub-daily precipitation extremes (#igh confidence).and soil-
moisture precipitation feedbacks (medium confidence). Sensitivity experiments-aid the understanding of
regional processes and can provide additional user-relevant information. {10.3.3, 104, 10.5, 10.6}.

The performance of global and regional climate models and_their fitness for future projections depend
on their representation of relevant processes, forcings and‘drivers and on the specific context.
Improving global model performance for regional scales 1s fundamental for increasing their usefulness as
regional information sources. It is also key for improving.the boundary conditions for dynamical
downscaling and the input for statistical approaches, in particular when regional climate change is strongly
influenced by large-scale circulation changes.{Increasing resolution per se does not solve all performance
limitations. Including the relevant forcings«(e.g., aerosols, land-use'change and stratospheric ozone
concentrations) and representing the relevant feedbacks (e/g., snow—albedo, soil-moisture-temperature, soil-
moisture—precipitation) in global andregional. models is a prerequisite for reproducing historical regional
trends and ensuring fitness for future projections (high confidence). The sign of projected regional changes
of variables such as precipitation and wind speed-is in.some cases only simulated in a trustworthy manner if
relevant regional processes are represented (medium confidence). {10.3.3, 10.4.1, 10.4.2, 10.6.2, Cross-
Chapter Box 10.2}.

Statistical downscaling, bias adjustment and weather generators are useful approaches for improving
the representation of regional climate from dynamical climate models. Statistical downscaling methods
with carefully chosen predictors and an appropriate model structure for a given application realistically
represent many.statistical aspects of present-day daily temperature and precipitation (high confidence). Bias
adjustment has proven beneficial as'an interface between climate model projections and impact modelling in
many different contexts'(high confidence). Weather generators realistically simulate many statistical
characteristics of present-day daily temperature and precipitation, such as extreme temperatures and wet- and
dry-day transition‘probabilities (high confidence). {10.3.3}

The performance of statistical downscaling, bias adjustment and weather generators in climate change
applications depends on the specific model and on the dynamical climate model driving it. Knowledge
is still limited about suitable predictors for statistical downscaling of regional climate change, particularly for
precipitation: Bias adjustment cannot overcome all consequences of unresolved or strongly misrepresented
physical processes, such as large-scale circulation biases or local feedbacks, and may instead introduce other
biases and implausible climate change signals (medium confidence). Using bias adjustment as a method for
statistical downscaling, particularly for coarse-resolution global models, may lead to substantial
misrepresentations of regional climate and climate change (medium confidence). Instead, dynamical
downscaling may resolve relevant local processes prior to bias adjustment, thereby improving the
representation of regional changes. The performance of statistical approaches and their fitness for future
projections depends on predictors and change factors taken from the driving dynamical models (high
confidence) {10.3.3, Cross-Chapter Box 10.2}.
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Different types of climate model ensembles allow for the assessment of regional climate projection
uncertainties, although ensemble spread is not a full measure of the uncertainty (very high confidence).
Multi-model ensembles enable the assessment of regional climate response uncertainty (very high
confidence). Discarding models that fundamentally misrepresent processes relevant for a given purpose
improves the fitness of multi-model ensembles for generating regional climate information (high
confidence). At the regional scale, multi-model mean and ensemble spread are not sufficient to characterize
low-probability, high-impact changes or situations where different models simulate substantially different or
even opposing changes (high confidence). In such cases, storylines aid the interpretation of projection
uncertainties. Since ARS, the availability of multiple single-model initial-condition large ensembles
(SMILEs) allows for a more robust separation of model uncertainty and internal variability in regional-scale
projections and provides a more comprehensive spectrum of possible changes associated with internal
variability (high confidence). {10.3.4}

Interplay between Human Influence and Internal Variability at Regional Scales

Human influence has been a major driver of regional mean temperature change since 1950 in many
sub-continental regions of the world (virtually certain). Regional-scale detection and attribution studies as
well as observed emergence analysis provide robust evidence supporting the dominant contribution of
human influence to regional temperature changes over multidecadalperiods. {10.4.1;10.4.3}

While human influence has contributed to multi-decadal mean precipitation changes in several
regions, internal variability can delay emergence of the anthropogenic signal in long-term
precipitation changes in many land regions (high confidence). Multiple attribution approaches, including
optimal fingerprinting, grid-point detection, pattern recognition and dynamical adjustment methods, as well
as multi-model, single-forcing large ensembles and multi-centennial paleoclimate records, support the
contribution of human influence to several regional multi-decadal'mean precipitation changes (high
confidence). At regional scale, internal variability is stronger and uncertainties in observations, models and
human influence are all larger than at'the global scale, precluding a robust assessment of the relative
contributions of greenhouse gases, stratospheric ozone, different aerosol species and land use/land cover
changes. Multiple lines of evidence, combining multi=model ensemble global projections with those coming
from SMILEs, show that internal variability is largely contributing to the delayed or absent emergence of the
anthropogenic signal in long-term regional mean precipitation changes (high confidence). {10.4.1, 10.4.2,
10.4.3,10.6.3, 10.6.4}

Various mechanisms operating at different time scales can modify the amplitude of the regional-scale
response of temperature, and both the amplitude and sign of the response of precipitation, to human
influence (figh confidence). These mechanisms include non-linear temperature, precipitation and soil
moisture feedbacks, slow and fast responses of sea surface temperature patterns and atmospheric circulation
changes to increasing greenhouse’gases. {10.4.3}

Urban Climate

Many types of urban parameterizations simulate radiation and energy exchanges in a realistic way
(very high.confidence). For urban climate studies focusing on the interplay between the urban heat island
and regional climate change, a simple single-layer parameterization is fit for purpose (medium confidence).
New networks of monitoring stations in urban areas provide key information to enhance the understanding of
urban microclimates and improve urban parameterizations. {Box 10.3}

The difference in observed warming trends between cities and their surroundings can partly be
attributed to urbanization (very high confidence). Annual-mean daily minimum temperature is more
affected by urbanization than annual-mean daily maximum temperature (very high confidence). The global
annual-mean surface air temperature response to urbanization is, however, negligible (very high confidence).
{Box 10.3}
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Future urbanization will amplify the projected air temperature change in cities regardless of the
characteristics of the background climate, resulting in a warming signal on minimum temperatures
that could be as large as the global warming signal (very high confidence). A large effect is expected
from the combination of future urban development and more frequent occurrence of extreme climatic events,
such as heatwaves (very high confidence). {Box 10.3}

Distillation of Regional Climate Information

The process of distilling regional climate information from multiple lines of evidence can vary
substantially from one case to another. Although methodologies for distillation have been established, the
process is in practice conditioned by the sources available, the actors involved and the context, which depend
heavily on the regions considered, and framed by the question being addressed. To make the most
appropriate decisions and responses to changing climate, it is necessary to consider all physically plausible
outcomes from multiple lines of evidence, especially in the case when they are contrasting. {10.5,.10.6,
Cross-Chapter Box 10.1, Cross-Chapter Box 10.3}

Confidence in the distilled regional climate information is enhanced-when there is agreement across
multiple lines of evidence. For example, the apparent contradiction between the observed decrease in Indian
monsoon rainfall over the second half of the 20th century and the projectedlong-term increase is explained
by attribution of the trends to different forcings, with aerosols dominating recently and greenhouse gases in
the future (high confidence). For the Mediterranean region, the agreement between different lines of
evidence, such as observations, projections by regional and global.models, and understanding of the
underlying mechanisms, provides high confidence in summer warming that exceeds the global average.
{10.5.3, 10.6, 10.6.3, 10.6.4, Cross-Chapter Box 10.3}

The outcome of distilling regional climate information can be limited by inconsistent or contradictory
information. Initial observational analyses of the.Cape Town drying showed a strong, post-1979 association
between increasing greenhouse gases, changes ina key mode of variability (the Southern Annular Mode) and
drought in the Cape Town region. However, not all global models show this association, and subsequent
analysis extending farther back in.time, when human influence was weaker, showed no strong association in
observations between the Southern Annular Mode and Cape Town drought. Thus, despite the consistency
among global-model future projections, there is medium confidence in a projected future drier climate for
Cape Town. Likewise, the distillation process resultsin Jow confidence in the influence of Arctic warming
on mid-latitude climate because©f contrasting lines of evidence. {10.5.3, 10.6.2, Cross-Chapter Box 10.1,
Cross-Chapter Box 10.3}
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10.1 Foundations for regional climate change information
10.1.1 Introduction

This chapter assesses the foundations for the distillation of regional climate change information from
multiple lines of evidence. The AR5, SR1.5 and SRCCL reports underlined the relevance of assessing
regional climate information that is useful and relevant to the decision scale (Box 10.1). To respond to this
need, the WGI report of AR6 includes four regional chapters of which this is the first one. Chapter 10
assesses the sources and methodologies used by the Chapters 11, 12 and Atlas to construct regional
information. Chapter 10 builds on the assessment of methodologies considered to contruct global climate
change information in Chapters 2—4 and on the processes assessed in Chapters 5-9. Additionally, this
chapter assesses the methodologies for the co-production of regional climate information, the role of the
different actors involved in the process and the relevance of the user context and values:.

Regional climate change refers to a change in climate in a given region (Section 10:1.2.1) identified by
changes in the mean or higher moments of the probability distribution of a climate variable and persisting for
a few decades or longer. It can also refer to a change in temporal properties suchas persistence and
frequency of occurrence of weather and climate extreme events. Regional.climate change may be caused by
natural internal processes such as atmospheric internal variability and local climate résponse to low-
frequency modes of climate variability (Technical Annex I'V), as well.as by changes in.external forcings
such as modulations of the solar cycle, orbital forcing, volcanic eruptions, and persistent anthropogenic
changes in the composition of the atmosphere or in land use and land cover (Cross-Chapter Box 3.2; IPCC,
2018a), in addition to the interactions and feedbacks between them. Process interaction in space is pervasive,
which means that small spatial scales have an influencewon the larger scales\(Palmer, 2013). Depending on
the context, a region may refer to a large area such.as a monsoon region, but may also be confined to smaller
areas such as coastlines, mountain ranges or human settlements like cities. Users (understood as anyone
incorporating climate information into their‘activity) often request-climate information for these range of
scales since their operating and adaptation deCision scales range from the local to the sub-continental level.

Given the many types of regional climates, the broad range of spatial and temporal scales (Section 10.1.2),
and the diversity of user needs,a variety of methodologies and approaches have been developed to construct
regional climate change information. The sources include global and regional climate model simulations,
statistical downscaling and bias adjustment methods..A commonly used source is long-term (end-of century)
model projections of regional climate change, as well as near-term (next 10 years) climate predictions
(Kushnir et al., 2019; Réssler et al., 2019a). Regional observations, with their associated challenges, are a
key source for the regional Climate information construction process (Li et al., 2020b). High-quality
observations that enable monitoring of the'regional aspects of climate are used to adjust inherent model
biases and are the basis for assessing model performance. Process understanding and attribution of observed
changes to large- and regional-scale-anthropogenic and natural drivers and forcings are also important
sources.

All these sources are used, when available, to distil regional climate information from multiple lines of
evidence (Figure 10:1). The resulting climate information can then be integrated, following a co-production
process involving both the user and the producer, into a user context that often is already taken into account
when constructing the regional climate information. In fact, the distillation process leading to the climate
information-can consider the specific context of the question at stake, the values of both the user and the
producer, and the challenge of communicating across different communities (Section 10.5).

The chapter (Figure 10.2) starts with an introduction of the concepts used in the distillation of regional
climate information (Section 10.1). Section 10.2 addresses the aspects associated with the access to and use
of observations, while different modelling approaches are introduced and assessed in Section 10.3. Section
10.3 also addresses the performance of models in simulating relevant climate characteristics as needed to
estimate the credibility of future projections. Section 10.4 assesses the interplay between anthropogenic
causes and internal variability at regional scales, and its relevance for the attribution of regional climate
changes and the emergence of regional climate change signals. Section 10.5 tackles the issue of how regional
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climate information is distilled from different sources taking into account the context and the values of both
the producer and the user. Section 10.6 illustrates the distillation approach using three comprehensive
examples. Finally, Section 10.7 lists some limitations to the assessment of regional climate information.

[START FIGURE 10.1 HERE]

Figure 10.1: Diagram of the processes leading to the construction of regional climate information (green) and
user-relevant regional climate information (orange). The chapter sections and the other chapters of the
report involved in each step are indicated in rectangles. WGII stands for Working Group I1.

[END FIGURE 10.1 HERE]

[START FIGURE 10.2 HERE]
Figure 10.2: Visual abstract of the chapter, with its key elements.

[END FIGURE 10.2 HERE]

10.1.2 Regional Climate Change and the Relevant Spatial and Temporal Scales

The global coupled atmosphere-ocean-land-cryosphere system, including its feedbacks, shows variability
over a wide spectrum of spatial and temporal scales (Hurrell et al., 2009). This section discusses concepts
and definitions of what can be considered a region, the relevant temporal scales and region-specific aspects
of the baselines used.

[START FIGURE 10.3 HERE]

Figure 10.3: Schematic diagram to display interacting spatial and temporal scales relevant to regional climate
change information. Adapted from Orlanski (1975). The processes included in the different models and
model components considered in‘Chapter 10 are indicated as a function of these scales.

[END FIGURE 10.3 HERE]

10.1.2.1 Spatial scales and definition of regions

Large-scale climate and the associated phenomena have been defined in Chapter 2 (e.g., Cross-Chapter Box
2.2) as ranging from global.and hemispheric, to ocean-basin and continental scales. The definition of the
regional scale is case specific in the WGI ARG report. Section 1.4.5 provides definitions of the different
regional types adopted by the different Chapters. In this chapter, regional scales are defined as ranging from
the size of sub-continental areas (e.g., the Mediterranean basin) to local scales (e.g., coastlines, mountain
ranges and cities) without prescribing any formal regional boundaries. These spatial length scales range from
a few thousand down to a few kilometres and the relevant driving modes and processes at regional scales are
summarized.n Figure 10.3. In contrast to Chapters 11, 12 and Atlas, which make a region-by-region
assessment of climate change, this chapter does not necessarily restrict itself to the use of the AR6 regions
(Sections 1.4.5, Atlas.1.3). Different regional definitions have been used in sections 10.4 and 10.6, selected
for their adequacy to illustrate methodological aspects (e.g., for the attribution of long-term regional trends,
regions that display such trends have been selected). Typological regions (Sections 1.4.5, Atlas.1.3) are used
in Box 10.3 and Cross-Chapter Box 10.4.

10.1.2.2 Temporal scales, baselines and dimensions of integration
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The concept of a unified and seamless framework for weather and climate prediction (Brown et al., 2012a;
Hoskins, 2013) provides the context for understanding and simulating regional climate across multiple
spatial and temporal scales. This concept is embodied in the subseasonal-to-seasonal (Vitart et al., 2017) and
the seasonal-to-multiannual (Smith et al., 2020) prediction activities that generate regional climate
information across temporal scales. The seamless framework benefits from the convergence of methods
traditionally used in weather forecasting and climate projections, in particular the role of the initialization in
climate models and the strategies for the evaluation of physical processes relevant at different temporal
scales.

The relatively short observational record (Section 10.2, Chapter 2) is a primary challenge to estimate the
forced signal and to isolate low-frequency, multi-decadal and longer term internal variability (Frankcombe et
al., 2015; Overland et al., 2016; Bathiany et al., 2018). Because only one realization of the actual climate
exists, it is nontrivial to extract estimates of internal and forced variability from the available data
(Frankcombe et al., 2015). As an alternative, approaches that use large observational ensembles can be
applied (Section 10.4; McKinnon and Deser, 2018).

There is a close relationship between spatial and temporal scales (Figure 10.3).. For example, an individual
convective storm may exhibit scales of variability ranging from metres and seconds to0 kilometres and hours,
while for El Nifio-Southern Oscillation (ENSO) the scales of variability are regional to. hemispheric in extent
and multi-year in length. These scales interact and the interactions are represented in climate models,
although the ability of current models to simulate regional phenomena and even large<scale climate drivers
still leaves room for improvement (Section 10.3) and limits theirCapability to represent the interactions
across spatial and temporal scales.

It is important to note that in this chapter and subsequent regional chapters, including the Interactive Atlas,
the baselines and reference periods used for'climate change estimates from regional models may vary from
those used in Chapters 1-9. In these chapters.three main time baselines are defined for the past, i.e., pre-
industrial (1750), early-industrial (1850-1900).and recent (1995-2014), while the future reference periods
are 2021-2040 (near term), 2041-2060 (mid-century) and 2081-2100 (long term) (Section 1.4.1, Cross-
Chapter Box 1.2). Regional climate simulations used.in the recent literature have been performed with
different baselines. The differences are often due to the availability of the boundary conditions from global
simulations, leading to periods-chosen for those simulations like 1950-2005, in line with the CMIP5
historical simulations foellowed by projections from 2005 onwards (Vaittinada Ayar et al., 2016; Dong-feng
et al., 2017; Cai et al.; 2018a). For simulations that use CMIP3 boundary conditions other periods have been
used. As a consequence; these regional simulations mix for the recent period historical simulations with
projections. The mismatch needstorbe considered when assessing results obtained from both global and
regional models in.the context of the climate information distillation process, or when linking the regional
chapters to the assessments‘performed in previous chapters. The choice of baseline provides a source of
uncertainty for the assessment of climate impacts (e.g., for the response of bird species in Africa; Baker et
al., 2016). Besides, a range of different baselines may need to be considered to satisfy a variety of users,
since this choice affects the perceived result (Dobor and Hlasny, 2018). The influence of the different
baseline periods ‘can'be explored using the Interactive Atlas where different baselines are available, for
example, 1986-2005:(according to ARS), 1995-2014 (AR6), and both 1961-1990 and 1981-2010 (WMO).

One way of overcoming the baseline uncertainty is to define the results for a given model based on specific
global-mean temperature changes from the pre-industrial period (e.g., Sylla et al., 2018a for West Africa;
Kjellstrom et al., 2018 for Europe; Taylor et al., 2018 for the Caribbean; Montroull et al., 2018 for South
America). The specific global-mean temperature is known as global warming level (GWL; Sections 1.6.2
and 10.6.4, Cross-Chapter Box 11.1). The GWL is a useful dimension of integration because important
changes in regional climate, including many types of extremes, scale quasi-linearly with the GWLs, often
independently of the underlying emissions scenarios (e.g., Hoegh-Guldberg et al., 2018; Beusch et al., 2020;
Seneviratne and Hauser, 2020), taking always into account caveats described in Cross-Chapter Box 11.1. In
addition, GWLs allow a separated analysis of the global and regional climate responses associated with a
warming level (Seneviratne and Hauser, 2020; Section 10.6.4). The choice of global temperature goal in the
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context of the 2015 Paris Agreement means that there is an increasing desire for the regional climate
information to be expressed as a function of GWLs.

10.1.3 Sources of Regional Climate Variability and Change

Variability in regional climate arises from natural and anthropogenic forcings, internal variability including
the local expression of large-scale remote drivers (also known as teleconnections), and the feedbacks
between them. Due to the many possible drivers of variability and change (Figure 10.3), quantifying the
interplay between internal modes of decadal variability and any externally forced component is crucial in
attempts to attribute causes of regional climate changes (e.g., Hoell et al., 2017; Nath et al., 2018). A
regional climate signal could arise purely due to some anthropogenic influence or conversely, entirely due to
internal variability, but it is most likely the result of a combination of both (Section 10.4). This section
briefly introduces these sources of regional variability and should be read along with corresponding sections
in Chapters 3, 6 and 7. Section 10.3 assesses their representation in climate models; Section 10.4.discusses
their relevance for the attribution of multi-decadal trends and Section 10.6.refers to them as sources:in
specific examples where regional climate information is built. Section 8.2 offers-a’companion discussion
focussing on changes in the water cycle. An example of how changes(in one region could act as a source for
changes in a neighbouring one is assessed in the Cross-Chapter Box:10.1 for the linkages between polar and
mid-latitude regions, an interaction that has led to substantial recent research. This'section also introduces
the sources of uncertainty in model-derived regional climatedinformation and how the quantification of the
uncertainties influences the confidence of the regional climateinformation.

10.1.3.1 Forcings controlling regional climate

There are important differences in the processes affected by greenhouse gases (GHGs) over land and ocean.
Over the ocean, the increased radiative forcing leads to an.increase in latent heat flux and a decrease in
sensible heat flux, while over land, water availability isdimited and increased radiative energy is therefore
converted mostly into sensible heat (Sutton et al., 2007). Notably, this leads to preferential warming of the
land regions, which are themselves skewed towards the Northern Hemisphere.

Variations in solar forcing(Section 2.2.1) could influence regional climate through its modulation of
circulation patterns, although this research field is still hampered by large observational and modelling
uncertainties. The 11-+year solar cycle has been suggested to affect the leading atmospheric circulation modes
of the North Atlantic region in model based studies (Gray et al., 2013; Thiéblemont et al., 2015; Sjolte et al.,
2018). In particular the solar cycle has been suggested as an important source of near-term predictability of
the North Atlantic:Oscillation (NAO; Kushnir et al., 2019), while other studies have not found evidence for
links between the'solar cycle and NAO in observational records (Ortega et al., 2015; Sjolte et al., 2018;
Chiodo et al., 2019). On centénnial time scales, solar fluctuations were found to be correlated with the
Eastern Atlantic Pattern (Sjolte‘et al., 2018). Possible influences on winter circulation and temperature over
Eurasia (Chen et al., 2015) and North America (Liu et al., 2014; Li and Xiao, 2018) have also been
identified.

An updated assessment of past changes in stratospheric ozone can be found in Section 2.2.5.2. AR6 assesses
that both GHG and stratospheric ozone depletion have contributed to the expansion of the zonal mean
Hadley cell in the Southern Hemisphere for the period 1981-2000 with medium confidence (Section 3.3.3)
(Garfinkel et al., 2015; Waugh et al., 2015; Grise et al., 2019). There is medium confidence that stratospheric
ozone depletion contributed to the strengthening trend of the summer SAM for the period 1970-1990, but
this influence has been weaker since 2000 (Section 3.7.2). The poleward shift of the Southern Hemisphere
westerlies has also been explained by stratospheric ozone depletion (Solman and Orlanski, 2016). Section
10.4 assesses its role in the multi decadal increase of rainfall in Southeastern South America and Section
10.6.2 does so for the occurrence of the Cape Town drought.

Both natural and anthropogenic aerosols are often emitted at a regional scale, have a short atmospheric
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lifetime (from a few hours to several days; Section 6.1), are dispersed regionally and affect climate at a
regional scale through radiative cooling/heating and cloud microphysical effects (Rotstayn et al., 2015;
Sherwood et al., 2015; Chapter 8). The majority of aerosols scatter solar radiation, but with strong regional
variations (Shindell and Faluvegi, 2009) that lead to regional radiative effects of up to two orders of
magnitude larger than the global average (Li et al., 2016¢, 2016a; Mallet et al., 2016). Black carbon, instead,
is known to absorb solar radiation, leading to regional atmospheric warming patterns due to its
inhomogeneous spatial distribution (Gustafsson and Ramanathan, 2016). Patterns of forcing generally follow
those of aerosol burden. However, temperature and precipitation responses are both local and remote (Li et
al., 2016d; Kasoar et al., 2018; Liu et al., 2018c; Samset et al., 2018; Thornhill et al., 2018; Westervelt et al.,
2018). For instance, changes in aerosol concentrations in the Northern Hemisphere have been reported to
modulate monsoon precipitation in West Africa and the Sahel (Undorf et al., 2018; Section 10.4.2.1) and in
Asia (Zhang et al., 2018; Section 10.6.3).

Natural aerosols include mineral dust, volcanic aerosol and sea salt. The feedback processes between climate
and mineral dust as well as sea salt are assessed in Section 6.4, while the volcanic aerosol is dealt with in
Cross-Chapter Box 4.1. Mineral dust created by wind erosion of arid and semi-arid surfaces dominates'the
aerosol load over some areas. The major sources of contemporary dust are located in the arid topographic
basins of Northern Africa, Middle East, Central and Southwest Asia, the Indian subcontinent, and East

Asia (Prospero et al., 2002; Ginoux et al., 2012) and emissions are-controlled by changes in surface winds,
precipitation, and vegetation (Ridley et al., 2014; Wang et al., 2015a; DeFlorio etal., 2016; Evan et al.,
2016; Pu and Ginoux, 2018). Dust both scatters and absorbs radiation and serves asmuclei of warm and cold
clouds (Chapter 6). The surface direct radiative effect is likelyfiegative over land and/ocean, especially when
the assumed solar absorption by dust is large (Miller et al.; 2014;'Strong et al., 2015). Surface temperature
and precipitation adjust to the direct radiative effect with both sign and magnitude depending on the dust
absorptive properties. Dust often cools the surface, but in regions such asthe Sahara surface air temperature
increases as the shortwave absorption by dust is increased, leading to increases of surface temperature over
the major reflective dust sources (Miller et al., 2014;/Solmon et-al;.2015; Strong et al., 2015; Jin et al., 2016;
Sharma and Miller, 2017).

Volcanic eruptions load the atmosphere with large amounts of sulphur, which is transformed through
chemical reactions and micro-physics processes intorsulphate aerosols (Cross-Chapter Box 4.1; Stoffel et al.,
2015; LeGrande et al., 2016).If the plume reaches the stratosphere, sulphate aerosols can remain there for
months or years (about two to three for large‘eruptions) and can then be transported to other areas by the
Brewer-Dobson circulation. If the eruption occurs in the tropics, its plume is dispersed across the Earth in a
few years, while if the eruption occurs-in the high latitudes, aerosols mainly remain in the same hemisphere
(Pausata et al., 2015). The global temperature response observed after the last five major eruptions of the last
two centuries is estimated to be around -0.2°C (Swingedouw et al., 2017), in association with a general
decrease of precipitation (Iles and Hegerl, 2017). Nevertheless, the statistical significance of the regional
response remains difficult to evaluate’over the historical era (Bittner et al., 2016; Swingedouw et al., 2017)
due to the small sampling of large volcanic eruptions over this period and the fact that the signal is
superimposed upon relatively large internal variability (Gao and Gao, 2018; Dogar and Sato, 2019).
Evidence from paleoclimate observations is therefore crucial to obtain a sufficient signal-to-noise ratio (Sigl
et al., 2015). Reconstructed modes of climate variability based on proxy records allow evaluation of the
influence on those modes (Zanchettin et al., 2013; Ortega et al., 2015; Michel et al., 2018; Sjolte et al.,
2018).

Anthropogenic aerosols play a key role in climate change (Chapter 6). Although the global mean optical
depth caused by anthropogenic aerosols did not change from 1975 to 2005 (Chapter 6), the regional pattern
changed dramatically between Europe and eastern Asia (Fiedler et al., 2017, 2019; Stevens et al., 2017).
Large regional differences in present-day aerosol forcing exist with consequences for regional temperature,
hydrological cycle and modes of variability (Chapter 8, Section 10.6). Examples of regions with a notable
role for anthropogenic aerosol forcing are the Indian monsoon region (Section 10.6.3) and the Mediterranean
basin (Section 10.6.4). Anthropogenic aerosols are also very relevant in many urban areas (Box 10.3; Gao et
al., 2016; Kajino et al., 2017).
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SRCCL assessed that nearly three-quarters of the land surface is under some form of land use, particularly in
agriculture and forest management (Jia et al., 2019). The effects of land management on climate are much
less studied than land cover effects although net cropland has changed little over the past 50 years, while
land management has continuously changed (Jia et al., 2019). Section 7.3.4.1 assesses the global influence of
both land use and irrigation on the effective radiative forcings. Land cover changes and land management
can influence climate locally, such as the urban heat island and non-locally as in the case of increased
rainfall downwind of a city (Jia et al., 2019, Box 10.3) or the monsoon circulation affected by irrigation
(Section 10.6.3). The influence of land cover changes and land management on regional climate extremes is
assessed in Section 11.1.6.

It is very likely that the global land surface air temperature response to urbanization is negligible (Chapter 2,
Section 2.3.1.1.3). However, there is evidence that urbanization may regionally amplify the air temperature
response to climate change in different climatic zones (Mahmood et al., 2014), either under present (Doan et
al., 2016; Kaplan et al., 2017; Li et al., 2018c) or future climate conditions (Argiieso et-al.; 2014; Kim etaal.,
2016; Kusaka et al., 2016; Grossman-Clarke et al., 2017; Krayenhoff et al., 2018).'For instance,n northern
Belgium, (Berckmans et al., 2019) found that including urbanization scenarios for the near future (up to
2035) have a comparable influence on minimum temperature (increasing it by 0:6°C) to that of the GHG-
induced warming under RCP8.5.

10.1.3.2 Internal drivers of regional climate variability

Internal climate variability on seasonal to multi-decadal temporal scales is substantial at regional scales. This
variability arises from internal modes of atmospheric and oceanic variability, intrinsically coupled climate
modes, and may additionally be driven by processes other than those originating the modes. It also interacts
with the response of the climate system to external forcing. The teleconnections associated with the modes
are useful to understand the relationship between large and regional scales (Annex IV). A description of
various large-scale modes of variability can be found in Chapters:2, 3 and 8, and in Annex IV, while their
future projections are assessed in Chapter 4. The specificities of their regional influence are briefly discussed
here. More details of their typical temporal scales and regional influences can be found in Annex IV.

Atmospheric modes of variability.may have seasonally-dependent regional effects like the North Atlantic
Oscillation (NAO) in Eurepean‘winter (Tsanis and. Tapoglou, 2019) and summer (Bladé et al., 2012; Dong et
al., 2013). Even though-these modes are internal to the climate system, their variability can be affected by
anthropogenic forcings. Forvinstance, the Southern Annular Mode (SAM; Hendon et al., 2014) is both
internally driven (Smith.and Polvani, 2017), but also affected by recent stratospheric ozone changes
(Bandoro et al., 2014): The teleconnections between these modes of variability and surface weather often
exhibit considerable non-stationarity (Hertig et al., 2015).

Due to the large ocean heat capacity and their long temporal scales, multiannual to multi-decadal modes of
ocean variability such as the Pacific Decadal Variability (PDV; Newman et al., 2016) and the Atlantic
Multidecadal Variability (AMV; Buckley and Marshall, 2016) are key drivers of regional climate change. In
the case of the AMV both natural (volcanic) and anthropogenic (aerosol) external forcings are thought to be
involved in its timing and intensity (Section 3.7.7). These modes not only affect nearby regions but also
remote parts.of the globe through atmospheric teleconnections (Meehl et al., 2013; Dong and Dai, 2015) and
can act'to modulate the influence of natural and anthropogenic forcings (Davini et al., 2015; Ghosh et al.,
2017; Ménégoz et al., 2018b). The dynamics of the ocean modes is simultaneously affected by other modes
of variability spanning the full range of spatial and temporal scales due to non-linear interactions (Kucharski
et al., 2010; Dong et al., 2018) (Figure 10.3). This mutual interdependence can result in changing
characteristics of the connection over time (Gallant et al., 2013; Brands, 2017; Dong and McPhaden, 2017),
and of their regional climate impact (Martin-Gomez and Barreiro, 2016, 2017). As with atmospheric modes
of variability, the regional influence of ocean modes of variability on regional climates can be seasonally
dependent (Haarsma et al., 2015).
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10.1.3.3 Uncertainty and confidence

Uncertainty and confidence are treated in the same way in regional climate change information as in larger-
scale (continental and global) climate problems (Chapter 1, Section 10.3.4). The degree of confidence in
climate simulations and in the resulting climate information typically depends on the identification of the
role of the uncertainties (Section 10.3.4). Since the direct verification of simulations of future climate
changes is not possible, model performance and reliable (i.e., trustworthy) uncertainty estimates need to be
assessed indirectly through process understanding and a systematic comparison with observations of past and
current climate (Section 10.3.3; Eyring et al., 2019; Knutti et al., 2010). The observational uncertainty,
which is particularly large at regional scales, also has to be taken into account (Section 10.2). These
uncertainty estimates are then propagated in the distillation process to generate climate information (Smith
and Matthews, 2015).

Uncertainties in model-based future regional climate information arise from different sources and are
introduced at various stages in the process (Lehner et al., 2020): 1) forcing uncertainties associated with the
future scenario or pathway that is assumed, 2) internal variability, and 3) uncertainties related to
imperfections in climate models, also referred to as structural or model uncertainty. However, the relative
role of each of these sources of uncertainty differs between the global‘and the regional scales as well as
between variables and also between different regions (Lehner et al;;:2020). One way.to address the internal
variability and model uncertainties is to consider results from both multiple models and multiple realizations
of the same model (Eyring et al., 2016a; Diaz et al., 2020; Lehner et al., 2020)..These models are at times
also combined with different weights that are a function of their performance and independence to increase
the confidence of the multi-model ensemble (Abramowitz et al.,2019; Brunner et al., 2019).

Other elements that play a role are the inconsistency between the global and regional models in dynamical
downscaling or the observational and methodological uncertainty in bias-adjustment methods (Serland et al.,
2018). These elements, in addition to those typical of the uncettainty in global and large-scale phenomena
(Chapters 1-9), affect the overall confidence.of regional climate information. This complex scene with
different sources of uncertainty makes the collection of results available from multi-model, multi-member
simulations most useful when synthesized through a distillation process (Section 10.5.3).

10.1.4 Distillation of Regional Climate Information

Regional climate information is synthesized from different lines of evidence from a number of sources
(Sections 10.2—-10:4) taking into account the context of a user vulnerable to climate variability and change at
regional scales (Baztan et al., 2017) and the values of all relevant actors (Corner et al., 2014; Bessette et al.,
2017) in a process'called distillation (Section 10.5). Distillation, understood as the process of synthesizing
information about elimate change from different lines of evidence obtained from a variety of sources and
taking into account the user context and the values of all relevant actors, allows the connection of global
climate change to the local andregional scales, where adaptation responses and policy decisions take place.
Climate information'is translated into the user context in a co-production process that introduces further
user-relevant elements leading to user-relevant climate information (Figure 10.1; Pettenger, 2016; Verrax,
2017) for a specific demand like, for instance, guiding climate-resilient development (Kruk et al., 2017;
Parker and Lusk, 2019).

The approaches adopted in the distillation of regional climate information are diverse and range from the
simple delivery of data as information to co-production with the user using as many lines of evidence as
possible (Lourenco et al., 2016). The availability and selection of the sources and the approach followed has
implications for the usefulness of the information. For instance, it is well established that it is invalid to take
a time series from a grid cell of a model simulation as equivalent to an observational estimate of a point
within the cell, due to the lack of representativeness (Section 10.3), and consequently the information
building solely on this type of data source is of limited use. Relevant decisions are made during the
distillation process such as what method is most suitable to a specific user context and the question being
addressed. The information may be provided in the form of summarised raw data, a set of user-oriented
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indicators, a set of figures and maps with either a brief description, in the form of a storyline, or formulated
as rich and complex climate adaptation plans. The information typically includes a description of the sources
and assumptions, estimates of the associated uncertainty and its sources, and guidance to prevent possible
misunderstandings in its communication.

The choices made for the distillation have typically been part of a linear supply chain, starting from the
access to climate data that are transformed into maps or derived climate data products, and finally
formulating statements that are communicated and delivered to a broad range of users (Hewitt et al., 2012;
Hewitson et al., 2017). This methodology has proven to be valuable in many cases, but it is equally fraught
with dangers of not communicating important assumptions, not estimating the impact of relevant
uncertainties, and possibly causing misunderstandings in the hand-over to the user community. This has led
to the emergence of new pathways to generate user-oriented climate information, many in the context of
emerging climate services (Buontempo et al., 2018; Hewitt et al., 2020), which are assessed in Section 10.5
and in Chapter 12.

10.1.5 Regional Climate Information in the WGI AR6

This chapter is part of a cluster devoted to regional climate (10, 115712 and Atlas). Itintroduces many of the
aspects relevant to the generation of regional climate information that are dealt with in.detail elsewhere.
Figure 10.4 summarizes how these chapters relate to one another and to the rest of the report.

Chapter 11 assesses observed, attributed and projected changes in weather and climate extremes, provides a
mechanistic understanding on how changes in extremes.are related to human-induced climate change and
provides regional, continental and global-scale assessments on changes in-extremes, including compound
events. Chapter 12 identifies elements of the climate system relevant for sectoral impacts referred to as
climatic impact-drivers (CIDs), assesses past and future evolutions.of sector-relevant CIDs for each AR6
region, synthesizes such evolutions for different time periods.and:by GWL, and assesses how CIDs are used
in climate services. The Atlas assesses observed, attributed and projected changes in mean climate, performs
a comparison of CMIP5, CMIP6 and CORDEX simulations, evaluates downscaling performance and
assesses approaches to communicate climate information. The Interactive Atlas facilitates the exploration of
datasets assessed in all chapters through a wide range of maps, graphs and tables generated in an interactive
manner. This allows for the comparison of changes.at-warming levels and scenario/time-period
combinations, display ofiindices for extremes and CIDs, and serves all chapters in the report to facilitate
synthesis information and support the Technical Summary and the Summary for Policymakers.

Other chapters also include a strong regional component and provide context for the assessment of regional
climate. Chapter luintroduces the different types of climatic regions used in WGI AR6 and the main types of
climatic models. Chapter 2/describes‘the recent and current state of the climate from observations, most of
which are key for the production of regional information. Chapter 3 assesses human influences on the
climate system and Chapter 4 assesses climate-change projections, with a global focus. These three chapters
include phenomena that are important for shaping regional climate such as general circulation, jets, storm
tracks, blocking and‘modes of variability. At the same time, the visualization of information in global maps
in these chapters provides valuable information for the sub-continental scale. Chapter 5 assesses the
knowledge about the carbon and biogoechemical cycles, whose fluxes and responses show variability that is
strongly regionalin nature. Chapter 6 assesses the regional evolution of short-lived climate forcers as well as
their influence on regional climate and air quality. Chapter 8 assesses observed and projected changes in the
variability of the regional water cycle, including monsoons, while changes of the regional oceans, changes in
cryosphere and regional sea level change are assessed in Chapter 9.

[START FIGURE 10.4 HERE]

Figure 10.4: Schematic diagram that illustrates the treatment of regional climate change in the different parts of the
WGI report and how the chapters relate to each other.
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[END FIGURE 10.4 HERE]

[START BOX 10.1 HERE]

BOX 10.1: Regional climate in ARS and the Special Reports SRCCL, SROCC and SR1.5

This box summarizes the information on linking global and regional climate change information in the Fifth
Assessment Report (AR5) and the three Special Reports of the Sixth Assessment Cycle. This information
frames the treatment of the production of regional climate information in previous reports and identifies
some of the gaps that AR6 needs to address.

ARS

In the WGI Chapter 9 (Flato et al., 2014), regional downscaling methods werg addressed as tools.to provide
climate information at the scales needed for many climate impact studies. The assessment found sigh
confidence that downscaling adds value both in regions with highly variable topography and for.various
small-scale phenomena. Regional models necessarily inherit biases from the global models used to provide
boundary conditions. Furthermore, the ability of ARS to systematically evaluate RCMs, and statistical
downscaling schemes, were hampered because coordinated inter-comparison studies were still emerging.
However, several studies demonstrated that added value arises from higher resolution in regions where
stationary small-scale features like topography and compléx coastlines are present, and from improved
representation of small-scale processes like convective precipitation.

WGTI Chapter 14 (Christensen et al., 2013) stressed that credibility in regional climate change projections
increases when key drivers of the change are known to be well-simulated and well-projected by climate
models.

The Working Group II (WGII) Chapter 21 (Hewitson et'al.,2014b) addressed the regional climate change
context from the perspective of impacts, vulnerability and adaptation. This chapter emphasized that a good
understanding of decision-making contexts is essential to define the type and scale of information required
from physical climate. Further, the chapter identified that the regional climate information was limited by the
paucity of comprehensive©bservations and their analysis along with the different levels of confidence in
projections (high confidence). Notably, at the time of the ARS, many studies still relied on global datasets,
models, and assessment methods to inform regional decisions, which were not considered as effective as
tailored regional approaches. The regional scale was not defined but instead it was emphasised that climate
change responses play out on a range of scales, and the relevance and limitations of information differ
strongly from. global.to local scales, and from one region to another.

Chapter 21 noted that the production of downscaled datasets (by both dynamical and statistical methods)
remains weakly coordinated, and that results indicate that high-resolution downscaled reconstructions of the
current climate can'have significant errors. Key in this was that the increase in downscaled data sets has not
narrowed the uncertainty range, and that integrating these data with historical change and process-based
understanding remains an important challenge.

The chapter.identified the common perception that higher resolution (i.e., more spatial detail) equates to
more usable and robust information, which is not necessarily true. Instead, it is through the integration of
multiple sources of information that robust understanding of change is developed.

WGII Chapter 21 highlighted that the different contexts of an impact study are defining features for how
climate risk is perceived. Perspectives were characterized as top-down (physical vulnerability) and bottom-
up perspectives (social vulnerability). The top-down perspective uses climate change impacts as the starting
point of how people and/or ecosystems are vulnerable to climate change, and commonly applies global-scale
scenario information or refine this to the region of interest through downscaling procedures. Conversely, in
the “bottom-up” approach the development context is the starting point, focusing on local scales, and layers
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climate change on top of this. An impact focus tends to look to the future to see how to adjust to expected
changes, whereas a vulnerability-focused approach is centred on addressing the drivers of current
vulnerability.

Special Report on Climate Change and Land (SRCCL; IPCC, 2019a)

The SRCCL (Jia et al., 2019) assessed that there is robust evidence and high agreement that land cover and
land use or management exert significant influence on atmospheric states (e.g., temperature, rainfall, wind
intensity) and phenomena (e.g., monsoons), at various spatial and temporal scales, through their biophysical
influences on climate. There is robust evidence that dry soil moisture anomalies favour summer heat waves.
Part of the projected increase in heat waves and droughts can be attributed to soil moisture feedbacks in
regions where evapotranspiration is limited by moisture availability (medium confidence). Vegetation
changes can also amplify or dampen extreme events through changes in albedo and evapotranspiration,
which will influence future trends in extreme events (medium confidence).

The influence of different changes in land use (e.g., afforestation, urbanization), on the local climate depends
on the background climate (robust evidence, high agreement). There is high confidence that regional climate
change can be dampened or enhanced by changes in local land cover and land use; with sign and magnitude
depending on region and season.

Water management and irrigation were generally not accounted:for by CMIP5 global models available at the
time of the SRCCL. Additional water can modify regional energy and moisturebalance particularly in areas
with highly productive agricultural crops with high rate of evapotranspiration. Urbanization increases the
risks associated with extreme events (high confidence). Urbanization suppresses evaporative cooling and
amplifies heatwave intensity (high confidence) with a'strong influence on minimum temperatures (very
likely, high confidence). Urban areas enhance storm occurrence and heavy.precipitation in part due to the
presence of aerosols. Urbanization also increases the risk of flooding during heavy rain events.

Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC; IPCC, 2019b)

The SROCC (IPCC, 2019b) stated that observations and models:for assessing changes in the ocean and the
cryosphere have been developed considerably during the past century but observations in some key regions
remain under-sampled and were very short relativeto.the time scales of natural variability and anthropogenic
changes. Retreat of mountain'glaciers and thawing of mountain permafrost continues and will continue due
to significant warming in thoseregions, where it is./ikely to exceed global temperature increase.

SROCC assessed that it is virtually certain that Antarctica and Greenland have lost mass over the past
decade and observed glacier mass loss over the last decades is attributable to anthropogenic climate change
(high confidence). 1t is virtually certain that projected warming will result in continued loss in Arctic sea ice
in summer, but there is low confidence in climate model projections of Antarctic sea ice change because of
model biases and disagreement with.observed trends. Knowledge and observations of the polar regions were
sparse compared to many other regions, due to remoteness and challenges of operating in them.

The sensitivity of small islands and coastal areas to increased sea level differs between emission scenarios
and regionally and a‘consideration of local processes is critical for projections of sea level influences at local
scales.

Special Reporton Global Warming of 1.5°C (SR1.5; IPCC, 2018b)

The SRT:5 (Hoegh-Guldberg et al., 2018) assessed that most land regions were experiencing greater warming
than the global average, with annual average warming already exceeding 1.5°C in many regions. Over one
quarter of the global population live in regions that have already experienced more than 1.5°C of warming in
at least one season. Land regions will warm more than ocean regions over the coming decades (transient
climate conditions).

Transient climate projections reveal observable differences between 1.5°C and 2°C global warming in terms

of mean temperature and extremes, both at a global scale and for most land regions. Such studies also reveal
detectable differences between 1.5°C and 2°C precipitation extremes in many land regions. For mean
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precipitation and various drought measures there is substantially lower risk for human systems and
ecosystems in the Mediterranean region at 1.5°C compared to 2°C.

The different pathways to a 1.5°C warmer world may involve a transition through 1.5°C, with both short and
long-term stabilization (without overshoot), or a temporary rise and fall over decades and centuries
(overshoot). The influence of these pathways is small for some climate variables at the regional scale (e.g.,
regional temperature and precipitation extremes) but can be very large for others (e.g., sea level).

[END BOX 10.1 HERE]

[START CROSS-CHAPTER BOX 10.1 HERE]
Cross-Chapter Box 10.1: Influence of the Arctic on mid-latitude climate

Coordinator: Rein Haarsma (Netherlands)

Contributors: Francisco Doblas-Reyes (Spain), Hervé Douville (France), Nathan Gillett (Canada), Gerhard
Krinner (France), Dirk Notz (Germany), Krishnan Raghavan (India), Alexander C. Ruane (USA), Sonia [.
Seneviratne (Switzerland), Laurent Terray (France), Cunde Xiao (China)

The Arctic has very likely warmed more than twice the global rate over the past 50 years with the greatest
increase during the cold season (Atlas 11.2). Several mechanisms are responsible for the enhanced lower
troposphere warming of the Arctic, including ice-albedo, lapse rate, Planck and.cloud feedbacks (Section
7.4.4.1). The rapid Arctic warming strongly affects the ocean, atmosphere;.and cryosphere in that region
(Atlas 11.2, Section 2.3.2.1). Averaged over the decade 2010-2019;, monthly-average sea ice area in August,
September and October has been about 25% smaller than that‘during 1979-1988 (high confidence, Section
9.3.1.1). It is very likely that anthropogenic forcings mainly due to greenhouse gas increases have contributed
substantially to Arctic sea ice loss since 1979, explaining at least half of the observed long-term decrease in
summer sea-ice extent (Section 3.4.1.1).

In this box, the possible influences of the Arctic warming on the lower latitudes is assesed. This linkage was
also the topic of the Box 3:2 of'the Special Report.on the Ocean and Cryosphere in a Changing Climate
(SROCC; IPCC, 2019b)-lIt is a topic that has been strongly debated (Ogawa et al., 2018; Wang et al., 2018a).
Separate hypotheses have emerged for-winter and summer that describe possible mechanisms of how the
Arctic can influence the weather and climate at lower latitudes. They involve changes in the polar vortex,
storm tracks, jet stream, planetary waves, stratosphere-troposphere coupling, and eddy-mean flow
interactions; thereby affecting the mid-latitude atmospheric circulation, and the frequency, intensity,
duration, seasonality and spatial extent of extremes and climatic impact-drivers like cold spells, heat waves,
and floods (Cross-Chapter Box 10.1, Figure 1). However, we note that a decrease in the intensity of cold
extremes has been observed inthe Northern Hemisphere mid-latitudes in winter since 1950 (van Oldenborgh
et al., 2019; Section"11.3.2). Since SROCC new literature has appeared, and the mechanisms and their
criticisms are assessed here as an update and extension to the SROCC box.

[START CROSS-CHAPTER BOX 10.1, FIGURE 1 HERE]

Cross-Chapter Box 10.1, Figure 1: Mechanisms of potential influences of recent and future Arctic warming on
mid-latitude climate and variability. Mechanisms are different for winter and
summer with different associated influences on mid-latitudes. The mechanisms
involve changes in the polar vortex, storm tracks, planetary waves and jet stream.

[END CROSS-CHAPTER BOX 10.1, FIGURE 1 HERE]

Mechanisms for a potential influence in winter
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It has been proposed that Arctic amplification, by reducing the equator-pole temperature contrast, could
result in a weaker and more meandering jet with Rossby waves of larger amplitude (Francis et al., 2017).
This may cause weather systems to travel eastward more slowly and thus, all other things being equal, Arctic
amplification could lead to more persistent weather patterns over the mid-latitudes (Francis and Vavrus,
2012). The persistent large meandering flow may increase the likelihood of connected patterns of
temperature and precipitation climatic impact-drivers because they frequently occur when atmospheric
circulation patterns are persistent, which tends to occur with a strong meridional wind component. Another
possible consequence of Arctic warming is on the NAO/AO that shows a negative trend over the past two
decades (Robson et al., 2016; Iles and Hegerl, 2017), and has been linked to the reduction of sea ice in the
Barents and Kara seas, and the increase in Eurasian snow cover (Cohen et al., 2012; Nakamura et al., 2015;
Yang et al., 2016). During negative NAO/AO the storm tracks shift equatorward and winters are
predominantly more severe across northern Eurasia and the eastern United States, but relatively mild in the
Arctic. This temperature pattern is sometimes referred to as the “warm Arctic—cold continents (WACC)”
pattern (Chen et al., 2018). However, Sun et al. (2016a) noticed that the WACC is a manifestation of natural
variability. Enhanced sea-ice loss in the Barents-Kara Sea has also been related toa weakening of the
stratospheric polar vortex (Kretschmer et al., 2020) and its increased variability (Kretschmer ¢t al., 2016)
that would induce a negative NAO/AO (Kim et al., 2014), the WACC pattern (Kim et al., 2014), and an
increase in cold-air outbreaks in mid-latitudes (Kretschmer et al., 2018). Arctic-warming might also increase
Eurasian snow cover in autumn caused by the moister air that is advected into Eurasia from the Arctic with
reduced sea-ice cover (Cohen et al., 2014; Jaiser et al., 2016), although Peings (2019) suggests a possible
influence of Ural blockings on both the autumn snow cover and the early winter polar stratosphere. The
circulation changes over the Ural-Siberian region are also suggested to provide a link-between Barents-Kara
sea ice and the NAO (Santolaria-Otin et al., 2021).

Mechanisms for a potential influence in summer

As in winter, Arctic summer warming may result in @ weakening of the westerly jet and mid-latitude storm
tracks, as suggested for the recent period of ‘Arctic warming (Coumou et al., 2015; Petrie et al., 2015; Chang
et al., 2016). Additional proposed consequences are a southward shift of the jet (Butler et al., 2010) and a
double jet structure associated with an‘increase ©f the land-ocean thermal gradient at the coastal boundary
(Coumou et al., 2018). It is hypothesized that weaker jets, diminished meridional temperature contrast, and
reduced baroclinicity might induce a larger amplitude in stationary wave response to stationary forcings
(Zappa et al., 2011; Petoukhowv et.al., 2013; Hoskins and Woollings, 2015; Coumou et al., 2018; Mann et al.,
2018; Zhang et al., 2020b), and'alsorthat a double jet structure would favour wave resonance (Kornhuber et
al., 2017; Mann et al., 2017). Some studies suggest that this is corroborated by an observed increase of quasi-
stationary waves (Di Capuaand Coumou, 2016; Vavrus et al., 2017; Coumou et al., 2018).

Assessment

The above proposed hypotheses are based on concepts of geophysical fluid dynamics and surface coupling
and can, in principle, help explain.the existence of a link between the Arctic changes and the mid-latitudes
with the potential to affect many impact sectors (Barnes and Screen, 2015). However, the validity of some
dynamical underlying mechanisms, such as a reduced meridional temperature contrast inducing enhanced
wave amplitude, has'been questioned (Hassanzadeh et al., 2014; Hoskins and Woollings, 2015). On the
contrary, the reduced meridional temperature contrast has been related to reduced meridional temperature
advection and thereby.reduced winter temperature variability (Collow et al., 2019).

Studies that support the Arctic influence are mostly based on observational relationships between the Arctic
temperature or sea-ice extent and mid-latitude anomalies or extremes (Cohen et al., 2012; Francis and
Vavrus, 2012, 2015; Budikova et al., 2017). They are often criticised for the lack of statistical significance
and the inability to disentangle cause and effect (Barnes, 2013; Barnes and Polvani, 2013; Screen and
Simmonds, 2013; Barnes et al., 2014; Hassanzadeh et al., 2014; Barnes and Screen, 2015; Sorokina et al.,
2016; Douville et al., 2017; Gastineau et al., 2017; Blackport and Screen, 2020a; Oudar et al., 2020; Riboldi
et al., 2020). The role of the Barents-Kara Sea ice loss is challenged by Blackport et al. (2019) who find a
minimal influence of reduced sea ice on severe mid-latitude winters, and by Warner et al. (2019) who
suggest that the apparent winter NAO response to the Barents-Kara sea-ice variability is mainly an artefact
of the Aleutian Low internal variability and of the co-variability between sea ice and the Aleutian Low
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originating from tropical-extratropical teleconnections. Also Gong et al. (2020) do not find a link between
Rossby wave propagation into the midlatitudes and Arctic sea ice loss. Mori et al. (2019a) argue that models
underestimate the influence of the Barents-Kara Sea ice loss on the atmosphere, which is disputed by Screen
and Blackport (2019). Other studies have stressed the importance of atmospheric variability as a driver of
Arctic variability (Lee, 2014; Woods and Caballero, 2016; Praetorius et al., 2018; Olonscheck et al., 2019).
Analysing observed key variables of mid-latitude climate for 1980-2020, Blackport and Screen (2020b) and
Riboldi et al. (2020) argue that the Arctic influence on mid-latitudes is small compared to other aspects of
climate variability, and that observed periods of strong correlation are an artefact of internal variability or
intermittency (Kolstad and Screen, 2019; Siew et al., 2020; Warner et al., 2020).

An additional argument in the criticism is the inability of climate models to simulate a significant response to
Arctic sea-ice loss, larger than the natural variability (Screen et al., 2014; Walsh, 2014; Chen et al., 2016a;
Peings et al., 2017; Dai and Song, 2020), although some studies find a significant response in summer,
because then the internal variability is weaker (Petrie et al., 2015).

Finally, a warmer Arctic climate can, without any additional changes in atmospheri¢ dynamics, reduce cold
extremes in winter due to advection of increasingly warmer air from the Arctic into the mid-latitudes
(Screen, 2014; Ayarzagiiena and Screen, 2016; Ayarzagiiena et al., 2018).

Summarizing, different hypotheses have been developed about the influence of recent Arctic warming on the
mid-latitudes in both winter and summer. Although some of the proposed mechanisms seem to be supported
by various studies, such as the link with Barents-Kara Sea ‘ice loss in winter and weakeéned storm tracks in
summer, the underlying mechanisms and relative strength compared to internal climate variability have been
questioned. A recent review (Cohen et al., 2020) states:that divergent conclusions between model and
observational studies, and also between different model studies, continue to obfuscate a clear understanding
of how Arctic warming is influencing mid-latitude weather. In this.context, Shepherd (2016) stresses the
need for collaboration between scientists with different viewpoints.for further understanding that could be
achived by carefully designed, multi-investigator, coordinated, multi-model simulations, data analyses and
diagnostics (Overland et al., 2016). In‘agreement with Box 3.2 of SROCC, there is hence low to medium
confidence in the exact role and quantitative effect of historical Arctic warming and sea-ice loss on mid-
latitude atmospheric variability.

Regarding future climate, it is important to note that mid-latitude variability is also affected by many drivers
other than the Arctic changes and'that those drivers as well as the linkages to mid-latitude variability might
change in a warmer world. The AMV,PDV, ENSO (see Annex V), upper tropospheric tropical heating,
polar stratospherievortex, and land-Surface processes associated with soil moisture (Miralles et al., 2014;
Hauser et al., 2016) ar¢ a few examples. A considerable body of literature has shown that changes to the
NAO/AO on.seasonal‘and climate change time scales can be driven by variations in the wavelength and
amplitude of Rossby waves; mainly.of tropical origin (Fletcher and Kushner, 2011; Cattiaux and Cassou,
2013; Ding et al., 2014; Goss et al., 2016). The influence of future Arctic warming on mid-latitude
circulation is difficult to disentangle from the effect of such a plethora of drivers (Blackport and Kushner,
2017; Li et al., 2018a). One of the consequences of climate change is a poleward shift of the jet induced by
the tropical warming (Barnes and Polvani, 2013), which is less obvious in winter especially over the North
Atlantic (Peings et al.;,2018; Oudar et al., 2020), and the increase of the meridional temperature gradient in
the upper troposphere, which increases storm track activity (Barnes and Screen, 2015). Although climate
models indicatethat future Arctic warming and the associated equator-pole temperature gradient could affect
mid-latitude climate and variability (Haarsma et al., 2013b; McCusker et al., 2017; Zappa et al., 2018), and
even the tropics and sub-tropics (Deser et al., 2015; Cvijanovic et al., 2017; Wang et al., 2018; England et
al., 2020; Kennel and Yulaeva, 2020), they do not reveal a strong influence on extreme weather (Woollings
et al., 2014).

In conclusion, there is low confidence in the relative contribution of Arctic warming to mid-latitude
atmospheric changes compared to other drivers. Future climate change could affect mid-latitude variability
in a number of ways that are still to be clarified, and which may also include the influence of Arctic
warming. The linkages between the Arctic warming and the mid-latitude circulation is an example of
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contrasting lines of evidence that cannot yet be reconciled (Section 10.5).

[END CROSS-CHAPTER BOX 10.1 HERE]

10.2 Using Observations for Constructing Regional Climate Information

Considerable challenges (and opportunities) remain in using observations for climate monitoring, for
evaluating and improving climate models (Section 10.3.1), for constructing reanalyses and post-processing
model outputs, and therefore, ultimately, for increasing our confidence in the attribution of past climate
changes and in future climate projections at the regional scale. While an assessment of large-scale
observations can be found in Chapter 2 (Cross-Chapter-Box 2.2, Section 2.3), this section discusses the
specific aspects of the observations at regional scale and over the typological regions considered in the
regional chapters (Section 10.1.5). This section focuses on land regions and does not consider the specific
requirements of ocean observations (see Chapter 9 and the SROCC for more information on thisiaspect).

10.2.1 Observation Types and Their Use at Regional Scale
10.2.1.1 In situ and remote-sensing data

Surface or in situ observations can come from a variety of networks: climate reference networks, mesoscale
weather and supersite observation networks, citizen science networks, among others, all with their strengths
and weaknesses (McPherson, 2013; Thorne et al., 2018)..Supersite observatories are surface and atmospheric
boundary layer observing networks that measure a large number of atmospheric and soil variables at least
hourly over a decade or more, ideally located in rural areas (Ackerman and Stokes, 2003; Haeffelin et al.,
2005; Xie et al., 2010; Chiriaco et al., 2018). Adequate calibration-of instruments, quality control and
homogenization are essential in these sités. They produce valuable data needed to diagnose processes and
changes in regional and local climate: Several climate datasets have been developed from in situ station
observations, at different spatial scales and temporal frequencies (Annex I). These include sub-daily
(Dumitrescu et al., 2016; Blenkinsop et al., 2017),/daily (Aalto et al., 2016; Funk et al., 2015; Beck et al.,
2017a, 2017b; Camera et al.;2014; Chen et al., 2008; Journée et al., 2015; Schneider et al., 2017), or
monthly time scales (Aryee etal., 2018; Cuervo-Rebayo et al., 2014). Sub-daily data is useful for estimating
storm surge (Mori et al;;2014) ot river discharge (Shrestha et al., 2015), daily data for carbon-stock
dynamics (Haga et al:, 2020) or tourism (Watanabe et al., 2018), and monthly data for beach morphology
(Bennett et al., 2019).

Satellite products provide a valuable complement to in situ measurements, particularly over regions where in
situ measurements-are unavailablexThey have been discussed in earlier chapters (e.g., Chapters 2 and 8) for
large-scale assessment. Currently 54 essential climate variables (ECVs; Bojinski et al., 2014) are defined by
the Global Climate Observing System (GCOS) program, and passed on, for example, to NASA programmes
through the Decadal Survey, to the Copernicus Climate Change Service of the European Union, to the ESA
Climate Change Initiative ESA-CCI, as well as to the international collaborations with geostationary Earth-
orbit (GEO) satellites. Their observations are valuable (high confidence) for regional applications since they
provide multi-channel images at very high spatiotemporal resolutions, typically 16 channels, 1-2 km, every
10 to 15 minutes. The advanced geostationary satellites are: Himawari-8 and 9 (Kurihara et al., 2016),
GOES-East and GOES-17 (Goodman et al., 2018), Meteosat-10 and 11 (Schmetz et al., 2002) and FY-4
(Cao et al., 2014). Geostationary satellite networks or constellations form an essential component of the
Global Observation System (https://www.wmo.int/pages/prog/www/OSY/GOS.html), providing
measurements not only for various cloud properties and moisture but also for air quality, land and ocean
surface conditions, and lightning.

Low Earth-orbit (LEO) satellites, with orbits typically at 400-700 km, provide advanced measurements of
the Earth’s surface. Sun-synchronous polar orbiters can also cover the polar regions, which cannot be
observed with GEO satellites. Examples of LEO observations for land-surface monitoring are NASA’s
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Landsat (Wulder et al., 2016), ESA’s Soil Moisture Ocean Salinity Earth Explorer (SMOS) mission (Kerr et
al., 2012), the Sentinel missions of the Copernicus programme, and JAXA’s ALOS-2 (Ohki et al., 2019),
providing high spatial resolution land-surface images. Many kinds of data are accumulated for land use and
land cover studies, targeting aspects like urban footprint (Florczyk et al., 2019), land-cover data (Global
Land 30; CCI-LC: https://www.esa-landcover-cci.org; Chen and Chen,2018), land-surface temperature data
(LANDSAT, Parastatidis et al., 2017), and surface albedo (Chrysoulakis et al., 2019).

Availability of active sensors on LEO satellites enables measurement of microphysical properties of aerosol,
cloud and precipitation, which can advance regional climate studies and process evaluation studies to
improve regional climate models (high confidence). An example is the polar-orbiting “afternoon-train”
satellite constellation (known as the A-train), incorporating Aqua, CALIPSO, Cloudsat, PARASOL, Glory
and Aura satellites. Vertical profiling observations from Cloudsat (with a W-band cloud radar) and
CALIPSO (with a cloud lidar) led to considerable advances in measurements of cloud microphysics
(Stephens et al., 2018). Precipitation and its extremes are essential concerns of regional-climate studies. The
GPM (65°N-65°S, 2014—present) and the preceding TRMM (36.5°N-36.5°S,1997—2015) with Ku-/Ka-band
precipitation radars have provided three-dimensional measurements of precipitation with ~5 kim resolution
and sub-daily sampling (Skofronick-Jackson et al., 2017). Their non-sun synchrenous observation works to
cross-calibrate the constellation satellites to produce global high-resolution-mapped products of precipitation,
such as Integrated Multi-satellitE Retrievals for GPM (IMERG; Huffman et'al., 2007) and the Global
Satellite Mapping of Precipitation ( GSMaP; Kubota et al., 2007), with hourly sampling at ~11 km
resolution. The CPC MORPHing technique (CMORPH) has provided 30 min interval global precipitation
with ~8 km coverage since 2002 (Joyce et al., 2004). Precipitation estimations from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN) is.a-sub-daily to daily rainfall product that
covers 50°S to 50°N globally with 25 km resolution from 2000 to the present (Nguyen et al., 2019), and is
used for semi-global scale precipitation coverage (Benestad, 2018). TRMM/GPM observations have enabled
estimates to be obtained for global four-dimensional convective heating (Shige et al., 2009; Tao et al., 2016;
Takayabu and Tao, 2020).

The use of these data has enhanced out understanding of precipitation processes at regional scale (high
confidence), such as diurnal cycles in a large river valley (Chen et al., 2012b), and in coastal (Hassim et al.,
2016; Yokoi et al., 2017) and mountainous regions-(Hirose et al., 2017). Three-dimensional observations
revealed the contrasts in regional.characteristics of rainfall extremes in monsoon regions and continental dry
regions (Sohn et al., 2013; Hamada and Takayabu; 2018). Satellite measurements are also used to evaluate
climate model performance, as well as to develop new parameterizations. As a demonstration of the utility of
these products in studying model bias,a subtropical cumulus congestus regime has been identified that may
be implicated in theunrealistic double ITCZ found in some climate models (Takayabu et al., 2010; Hirota et
al., 2011, 2014). Another exampleis a parameterization of a land-surface model that was developed
specifically for a certain soil type. By‘assimilating satellite brightness temperature observations with their
LDAS-UT scheme; Yang et al., (2007) successfully optimized a land-surface model for the Tibetan Plateau.

For application at a regional seale, it is important to consider variations in the spatiotemporal resolution of
the satellite produets: A simple concatenation of data in time can show artificial jumps that are artefacts of
changes in calibration and processing algorithms, or related to satellite orbital stability or changing
performance of the instruments (Wielicki et al., 2013; Barrett et al., 2014). Recalibration and cross-
calibration are then prerequisites for obtaining homogeneous time series of measurements across different or
successive satellites that can then be used to produce long series that are valid as climate data records
(Kanemaru et al., 2017; Merchant et al., 2017). Scale representativeness is also an issue in utilizing soil
observations (Taylor et al., 2012, 2013). Although a variety of technologies to measure soil moisture at the
point scale exist (Dobriyal et al., 2012), its spatial representativeness is less than 1 m* (Ochsner et al., 2013;
Liu et al., 2016b). Therefore, to be able to use in situ soil moisture for validating coarser-scale data from
satellites or models, networks of point-scale measurements are used (Crow et al., 2015; Polcher et al., 2016).
Smaller networks are typically of the size of a single climate model grid cell or a satellite pixel and are
suitable for monitoring watersheds, while small numbers of those representing larger areas (>100 km?) are
emerging (Ochsner et al., 2013).
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10.2.1.2 Derived products

Derived observational products are created from raw datasets collected from surface stations, remote-sensing
instruments, or research vessels, which are converted into meaningful physical quantities by applying a
suitable measurement theory, using either statistical interpolation techniques (Section 10.2.2.4) or numerical
atmospheric and land-surface models (Bosilovich et al., 2015).

Most global observational datasets are available at coarse temporal and spatial resolution, and do not include
all available station data from a particular region, due to data availability problems. Therefore, efforts have
been made to develop regional or country-scale datasets (Annex I). Radar and satellite remote sensing are
resources that can provide a valuable complement to direct measurements at regional scale. Examples for
precipitation have been described already, some of which have been released to the community (Bliznak ‘et
al., 2018; Dietzsch et al., 2017; Dinku et al., 2014; Krdhenmann et al., 2018; Manz et al;; 2016; Oyler etal.,
2015; Panziera et al., 2018; Shen et al., 2018; Yang et al., 2017). However, some of these datasets are limited
by their short record, varying between one (Shen et al., 2018) and 64 years (Oyler et al., 2015).

Reanalysis products are numerical climate simulations that use data agsimilation to incorporate as many
irregular observations as possible. These products encompass many:physical and dynamical processes. They
generate a coherent estimate of the state of the climate system on uniform grids either at global (Balsamo et
al., 2015; Chaudhuri et al., 2013), regional (Chaney et al., 2014; Dahlgren et al:,; 2016; Maidment et al.,
2014; Mahmood et al., 2018; Attada et al., 2018; Langodan et.al., 2017) or country scales (Krdahenmann et
al., 2018; Mahmood et al., 2018; Rostkier-Edelstein et al.; 2014):

Reanalyses incorporate an increasing volume of observations from a growing number of sources over time,
which sometimes presents a difficulty for trend analysis. However; regional reanalyses are valuable for
regional climate assessments, since they can'employ high-resolution model simulations due to their limited
spatial domain. Their accuracy is also better than global reanalyses since they are often developed over
regions with a high density of observational data (sometimes not.freely available for all regions) to be
assimilated into the model (e.g., Yamada et al., 2012). Regional reanalyses can assimilate locally dense and
high-frequency observations, such as from local observation networks (Mahmood et al., 2018; Su et al.,
2019) and radar precipitation/(Wahl et al., 2017) in addition to the observations assimilated by global
reanalyses. In some regional reanalyses, satellite-derived high-resolution sea ice (Bromwich et al., 2016,
2018) and sea surface temperature (Su et al., 2019) are also applied as lower boundary conditions. The
periods of regional reanalyses are limited by the availability of the observations for assimilation and by the
global reanalysesneeded as'lateral boundary conditions. Most regional reanalyses cover the past 10 to 30
years. There are also régional reanalysis activities that use conventional observations only, which produce
consistent datasets.over 60 years to capture precipitation trends, extremes and changes (Fukui et al., 2018).
Existing regional reanalyses cover.North America (Mesinger et al., 2006), Europe (Dahlgren et al., 2016;
Jermey and Renshaw, 2016; Kaspar et al., 2020), the Arctic (Bromwich et al., 2016, 2018), South Asia
(Mahmood et al., 2018), and Australia (Su et al., 2019). A project for regional reanalysis covering Japan has
also started (Fukuicetal., 2018), where grid spacing is between 5 and 32 km, although cumulus
parameterizations.are still needed to compute sub-grid scale cumulus convection. Recently, reanalyses using
convection-permitting regional models have been published (e.g., Wahl et al., 2017, for central Europe).

The data assimilation schemes used in regional reanalyses are often relatively simple methods, specifically
nudging(Kaspar et al., 2020) and 3DVAR (Mesinger et al., 2006; Bromwich et al., 2016; Dahlgren et al.,
2016), rather than the more complex schemes implemented in state-of-the-art global reanalysis systems. This
is partly due to limitations of computational resources. Recently, a number of regional reanalyses using more
sophisticated methods, such as 4DVAR and Ensemble Kalman filter, have been published (Jermey and
Renshaw, 2016; Fukui et al., 2018; Mahmood et al., 2018; Su et al., 2019). The regional reanalyses also
incorporate uncertainties due to deficiencies of the models, data assimilation schemes and observations. To
estimate uncertainties, some regional reanalyses apply data assimilation using ensemble forecasts (Bach et
al., 2016). Another approach compares multiple regional reanalyses produced with different systems
covering the same domain, which represents the uncertainties better than single reanalysis systems with

Do Not Cite, Quote or Distribute 10-25 Total pages: 228



[c-BRN o) NIV, IRV S

LN BABABEEAEDDSEDBRSDASDWOLWLLWLWLWLWLWLWLWLWLWWWWNNDNDNDNDDNDNDDNDDNDDN = = R
NP WD, OOVWHOOTIANNPAEWNNFRLR OOV NPEKHEWNNRL,OOVONIANNE WD, OWOVOIDN NP WND—O O

Final Government Distribution Chapter 10 IPCC AR6 WQI

ensemble data assimilation schemes (Kaiser-Weiss et al., 2019).

The regional reanalyses represent the frequencies of extremes and the distributions of precipitation, surface
air temperature, and surface wind better than global reanalyses (high confidence). This is due to the use of
high-resolution regional climate models (RCMs), as indicated by different regional climate modelling studies
(Mesinger et al., 2006; Bollmeyer et al., 2015; Bromwich et al., 2016, 2018; Dahlgren et al., 2016; Jermey
and Renshaw, 2016; Fukui et al., 2018; Su et al., 2019). Regional reanalyses, however, retain uncertainties
due to deficiencies in the physical parametrization used in RCMs and by the use of relatively simple data
assimilation algorithms (Bromwich et al., 2016; Jermey and Renshaw, 2016; Su et al., 2019). Regional
reanalyses can provide estimates that are more consistent with observations than dynamical downscaling
approaches, due to the assimilation of additional local observations (high confidence) (Bollmeyer et al.,
2015; Fukui et al., 2018).

10.2.2 Challenges for Regional Climate Change Assessment
10.2.2.1 Quality control

The usefulness of any observational dataset is conditioned by the availability and outcome of a quality
control (QC) process. The objective of the QC is to verify that data are representative of the measured
variable and to what degree the value could be contaminated:by unrelated or conflicting factors (WMO,
2017a). Data quality assessment is key for ensuring that the data are credible and to establish trusted
relationships between the data provider and the users (Nightingale et al.,.2019). QC 1s performed for all
relevant global climate datasets (e.g., Menne et al., 2018). For instance, QC.informs users that old reanalysis
datasets can be inconsistent in the long term because they assimilated inhemogeneous observations over the
reanalyses period (Kobayashi et al., 2015). As‘a consequence, the evaluation against independent
observations suggests that reanalyses should not be automatically-regarded as climate-quality products for
monitoring long-term trends at the regional level (Manzanas et al:; 2014; Torralba et al., 2017). QC needs to
be systematically carried out by the institutions tesponsible for handling the data (e.g. Cao et al., 2016).

The QC procedure depends strongly on the specificnature of the dataset. It focuses on aspects such as the
correct identification of sensor, time and location, detection of unfeasible or inconsistent data, error
estimation, assessment of the adequacy of the uncertainty information and the adequacy of the
documentation (e.g., Heaney et al., 2016)."QC principles also apply to model data (Tapiador et al., 2017). An
important piece of information provided is the representativeness error (Section 10.2.1.1; Gervais et al.,
2014). When problems in the data representativeness are identified, observational datasets are provided with
a quality mask (Contractor et al.;2020), or the problematic data are either removed or corrected (Ashcroft et
al., 2018). These are factors often taken into account in constructing regional climate information (Kotlarski
etal., 2019).

Quality-controlled data are now produced widely at the regional level, as in the case of sub-daily
precipitation records in the United Kingdom (Blenkinsop et al., 2017) and the USA (Nelson et al., 2016).
However, many more datasets and variables lack the same level of scrutiny (Alexander, 2016). Quality-
controlled, high-resolution observational datasets are especially needed at regional and local scales to assess
models as their resolution increases (Di Luca et al., 2016; Zittis and Hadjinicolaou, 2017), although the
awareness and appropriate use of the QC information is challenging (Tapiador et al., 2017) when generating
regional climate information (high confidence).

10.2.2.2 Homogenization
Homogenization aims to make data spatially and temporally “homogeneous”. Changes in a homogeneous
time series are solely due to large-scale climatic changes (whether forced or due to internal variability).

Station data are influenced by factors that act at regional scales, from the mesoscale and local scale down to
the microscale (WMO, 2019). Station time series contain inhomogeneities such as artificial jumps or trends,
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which hamper assessments of regional long-term trends. Typical reasons for this are the urbanization of a
station’s surroundings, which can lead to warming (Hamdi, 2010; Hansen et al., 2010; Adachi et al., 2012;
Jones, 2016; Sun et al., 2016b), or relocations outside of the urban area, which could lead to cooling
(Tuomenvirta, 2001; Yan et al., 2010; Xu et al., 2013; Dienst et al., 2017, 2019). Another potential source of
inhomogeneity is a change in measurement methods that affect most instruments of an observational network
over a limited time span, such as the transition to Stevenson screens (Parker, 1994; Béhm et al., 2010; Brunet
et al., 2011; Auchmann and Bronnimann, 2012) or to automatic weather stations (WMO, 2017b).

The above examples have been selected as they are present in many stations and without going through
homogenization they could potentially have influenced global land warming estimates (Section 1.5.1).
Single-break inhomogeneities tend to have a magnitude comparable to global climate change (Tuomenvirta,
2001; Venema et al., 2012) and are thus important for analyses of small regions. Also station records in
national networks often have similar changes, making them important for national climate change estimates,
but many of these influences are averaged out at the global scale (Jones, 2016).

The main approach to reduce the influence of inhomogeneities in station observations is statistical
homogenization by comparing the data from a candidate station with those of neighbouring reference
stations in conjunction with the use of metadata (Trewin, 2010). This is a challenging task because both
reference and candidate records normally have multiple inhomogeneities. Three challenges should be
considered. First, most of our understanding of statistical homogenization stems from the homogenization of
temperature observations from dense networks. Recent studies suggest that our-ability to.remove biases
quickly diminishes for sparse networks (Gubler et al., 2017; Lindau and Venema, 2018a). This affects early
instrumental data and observations that are not strongly correlated between stations, such as wind and
humidity (Chimani et al., 2018).

Second, in addition to systematic errors, homogenized data also suffer from random errors, introduced by the
homogenization process. These errors are largest at the stationilevel but are also present in network-averaged
signals (Lindau and Venema, 2018b). These efrors‘are determined by the break time series, as well as the
noise series and the performance of the homogenization-method; are spatially correlated, and have an impact
on activities such as interpolation and statistical post-processing of climate simulations (Section 10.2.3.1).
Third, the above discussion pertains to thehomogenization of monthly and annual means. Homogenization
of daily variability around the mean is more difficult. For daily data, specific correction methods are used
(Della-Marta and Wanner,2006; Mestre et al:, 2011; Trewin, 2013) that are able to improve the homogeneity
of test cases, although recent independent validation efforts were not able to show much improvement
(Chimani et al., 2018). The difference with homogenization methods of monthly and annual means may stem
from assumptions-on the nature of inhomogeneities for daily data, which are not yet well understood
(Chimani et al., 2018):

It is virtually certain that statistical homogenization methods reduce the uncertainties of long-term estimates.
Considering a decomposition/of the long-term warming error into a bias and a noise uncertainty around the
bias, the (trend) bias especially will be reduced, but also most of the noise uncertainty. This conclusion is
based on our understanding of the causes of inhomogeneities and their statistical nature combined with the
design principles of statistical homogenization methods, as well as on analytical (Lindau and Venema,
2018b), numerical (Venema et al., 2012; Williams et al., 2012) and empirical validation studies (Hausfather
et al., 2016; Gubler et al., 2017; Killick et al., 2020).

The above section is about the homogenization of land stations. Satellite data has its own issues and methods
for homogenization (Brinckmann et al., 2013; Huang et al., 2015; Brogniez et al., 2016). The
homogenization of radiosonde data and land station data use similar methods (Haimberger et al., 2012;
Jovanovic et al., 2017).

10.2.2.3 Data scarcity

Data scarcity arises largely due to the lack of maintenance of observing stations, inaccessibility of the data
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held in national networks, and uneven spatial distribution of stations that lead to a low density in many
regions. This is particularly problematic when trying to assess regional climate change, for which a high
density of observational data is desirable. Although in several regions numerous stations provide (monthly)
data covering more than 100 years for both temperature and precipitation (GCOS, 2015), large areas of the
world remain sparsely covered. The post-1990 decline in the total number of stations contributing to the
Global Precipitation Climatology Centre (GPCC) monthly product may be related to delays in data
acquisition and not paucity of data (GCOS, 2015). This is because GPCC is the result of a single time scale,
single Essential Climate Variable and single data collection centre. There is no similar drop-off of the
rainfall reports in the Global Historical Climatology Network - Daily database (GHCND, Menne et al., 2012)
or the Integrated Surface Database at the sub-daily time scale.

Kidd et al. (2017) made some assumptions about GPCC-available gauges and indicated that only 1.6% of
Earth’s surface lies within 10 km of a rain gauge, and many areas of the world are beyond 100 km from the
nearest rain gauge. Data scarcity is especially critical over Africa (Nikulin et al. 2012;"Dike et al., 2018) but
the apparent data scarcity could be due to reasons other than actual paucity of data; as stated earlier. For
instance, over South Africa, the number of weather stations collecting daily temperature used«in the fourth
version of the Climatic Research Unit Temperature dataset (CRUTEM4, Osborn-and Jones; 2014) has
significantly declined since 1980 (Archer et al., 2018). Although CRUTEM4 has now been replaced by
CRUTEMS (Osborn et al., 2021) it has yet to take advantage of the-significant international efforts to curate
and make available improved global holdings (Rennie et al., 2014) which increased the global available
station count for monthly mean temperatures. This includes additional stations from'many African countries.
The apparent decline in stations since the 1980s could also'be due to countries not contributing their data to
the SYNOP/CLIMAT networks for reasons other than having non-operational stations.

Even in Europe, precipitation station density in the widely used E-OBS gridded dataset varies largely in
space and time across regions (Prein and Gobiet, 2017). This variability is partly due to the reluctance of
some data owners to share their data with an international effort.--Regardless of the reason, low station
density is a major source of uncertainty (Isotta et al., 2015). Kirchengast et al. (2014) and O and Foelsche
(2018) found that at least 2 to 5 (12) stations.are required for capturing the area-averaged precipitation
amount of heavy summertime precipitation events on a daily (hourly) basis with a normalised root-mean-
square error of less than 20%. Similar to the E-OBS-dataset, gridded daily temperature and precipitation
datasets are being developed. for other regions of the world. Examples include Southeast Asia (SA-OBS, Van
den Besselaar et al., 2017); and'West Africa(WACA&D, Van Den Besselaar et al., 2015). Despite the
uneven distribution of stations in'Space and time, the value in these initiatives is illustrated by the large
number of studies in which the data product is used. This is the case, for instance, the work of Condom et al.,
(2020) over the Andes, a region with prominent data scarcity, and the African Monsoon Multidisciplinary
Analysis Project over West Africa‘(e.g., Lebel and Ali, 2009). There have been efforts to reduce data scarcity
through initiatives:such as the International Surface Temperature Initiative (ISTI, Thorne et al., 2011),
GHCND, and the Expanding Met Office Hadley Centre ISD with quality-controlled, sub-daily station data
from 1931 (HadISD, Dunn.et'al.,2016).

Data scarcity arising from changing coverage in observation station networks results in substantial problems
for climate monitoring (e.g., trend analysis of extreme events requires high temporal and spatial resolutions)
or model evaluation (Section 10.3.3.1). It is virtually certain that the scarcity and decline of observational
availability in some regions (but not necessarily globally), increase the uncertainty of the long-term global
temperature and-precipitation estimates. As an example, Lin and Huybers (2019) found that changes in the
number of rain gauges after 1975 resulted in spurious trends in extremes of Indian rainfall in a 0.25°-gridded
dataset spanning the 20" century. In fact, the number of stations used to construct the gridded dataset
dropped by half after 1990, leading to inhomogeneity and spurious trends (Section 10.6.3). Over the southern
part of the Mediterranean, which is an area sparsely covered by meteorological stations, data scarcity can
lead to large uncertainties in the different gridded datasets and strongly affect model evaluation (Section
10.6.4). Perpetual data sparsity results in some climate characteristics not being observed (Yokoyama et al.,
2019).

There are techniques for estimating and reconstructing missing data. The methods depend on the variable of
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interest, the temporal resolution (e.g., daily or monthly), and the type of climate (wet or dry), among others.
There has been very little evaluation of the performance of classical and data mining methods (e.g., Sattari et
al., 2017). The classical methods include the arithmetic mean, inverse-distance weighting method, multiple-
regression analysis, multiple imputation, and single-best estimator, while the data-mining methods include
multiple-perceptron artificial neural network, support-vector machine, adaptive neuro-fuzzy inference
system, gene-expression programming method, and K-nearest neighbour. Crowd-sourced data (individuals
contribute their own data points to create a dataset for others to use) could play a role in minimizing data
scarcity (Section 10.2.4).

10.2.2.4 Gridding

Derived gridded datasets require merging data from different sources of observations and/or reanalysis data
on a regular grid (e.g., Xie and Arkin, 1997; Section 10.2.1.2). However, in situ observations are distributed
irregularly, especially over sparsely populated areas. This leads to an interpolation'challenge. Gridded
products of climate variables, including temperature and precipitation, are strongly affected (high
confidence) by the interpolation method over complex orography and data scarceregions (Hofstra et al.,
2008; Herrera et al., 2016).

There are two main approaches to produce gridded datasets: (1)based on in situ observations only, and (2)
combining in situ observations with remote-sensing data and/or reanalysis data: The'first'approach has been
widely employed in regions with high station density using interpolation techniques (such as inverse-
distance weighting, optimal interpolation, and kriging) (Chen et al., 2008; Haylock et al., 2008; Frei, 2014;
Isotta et al., 2014; Masson and Frei, 2014; Hiebl and Frei, 2016; Inoue et al., 2016). The second approach
has been mainly applied in data-sparse regions with low station density, using simple bias adjustment,
quantile mapping, and kriging techniques with/in situ observations; remote-sensing and reanalysis data
(Cheema and Bastiaanssen, 2012; Dinku et.al., 2014; Abera et'al;:2016; Erdin et al., 2012; Krdhenmann et
al., 2018).

Gridding of station data is affected by uncertainties stemming from measurement errors, inhomogeneities,
the distribution of the underlying stations and the interpolation error, with station density being the dominant
factor (Herrera et al., 2019). Uncertainty due to interpolation is typically small for temperature but
substantial for precipitation and'its derivatives, such as drought indices (Chubb et al., 2015; Hellwig et al.,
2018). The largest uncertainties typically occur.in sparsely sampled mountain areas (Section 10.2.2.5).
Interpolation generally giverise to smoothing effects, such as low variability of the derived dataset with
respect to the in siturobservations (Chen et al., 2019). As a result, the effective resolution of gridded data is
typically much lower than its nominal resolution. For instance, a 5 km gridded precipitation dataset for the
European Alps has.an‘effective resolution of about 10 to 25 km (Isotta et al., 2014). In an example for
precipitation in Spain, the effective resolution converged to the nominal resolution only when at least 6 to 7
stations were inside the grid cell (Herrera et al., 2019). To account for the smoothing errors, new stochastic
ensemble observation datasets have been introduced (Von Clarmann, 2014).

10.2.2.5 Observations in mountain areas

Spatiotemporal variability of meteorological parameters observed over mountainous areas is often large,
indicating strong control exerted by local topography on meteorological parameters (Gultepe et al., 2014).
Difficult access, harsh climatic conditions as well as instrumental issues make meteorological measurements
extremely challenging at higher elevations (Azam et al., 2018; Beniston et al., 2018). Measurements of wind
speed, temperature, relative humidity and radiative fluxes are critical for climate model evaluation, but
difficult to handle due to their point-scale representativeness and small-scale spatiotemporal variability over
mountainous terrain, and often need adjustment (Gultepe, 2015). High-altitude (>3000 metres) permanent
meteorological stations are limited and current knowledge is mainly based on valley-bottom or low-elevation
meteorological stations (Qin et al., 2009; Lawrimore et al., 2011; Gultepe, 2015; Condom et al., 2020),
which, generally do not represent the higher elevation climate (Immerzeel et al., 2015; Shea et al., 2015).
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Measuring precipitation amounts, especially of solid precipitation, in mountainous areas is particularly
challenging due to the presence of orographic barriers, strong vertical and horizontal precipitation rate
variability, and the difficulty in finding representative sites for precipitation measurements (Barry, 2012).
However, the precipitation amounts can be indirectly estimated by the observed point mass balances at
glacier accumulation areas representing net snow accumulation (Haimberger et al., 2012; Immerzeel et al.,
2015; Sakai et al., 2015; Azam et al., 2018). There is very high confidence that precipitation measurements,
especially solid precipitation, in mountainous areas are strongly affected by the gauge location and setup.
Precipitation measurements are also affected by the type of measurement method, presence/absence of
shielding, presence/absence of a heating system and operating meteorological conditions (Nitu et al., 2018).
Solid precipitation measurements may have errors ranging from 20% to 50%, largely due to under-catch in
windy, icing and riming conditions (Rasmussen et al., 2012), and therefore require corrections by applying
transfer functions developed mainly from collected wind speed and temperature data (Kochendorfer et al.,
2017). The latest Solid Precipitation Intercomparison Experiment report recommends ‘measurements of wind
speed, wind direction and temperature as the minimum standard ancillary data‘for solid precipitation
monitoring (Nitu et al., 2018).

Recent advancements through remote-sensing methods provide an alternative, but they alsoshave limitations
over mountainous areas. Different versions of TRMM products were found to perform differently over
mountainous areas (Zulkafli et al., 2014). Orographic heavy rainfallassociated with Typhoon Morakot in
2009 was severely underestimated in all microwave products‘including TRMM 3B42 (Shige et al., 2013).
The underestimation has been mitigated in the Global Satellite Mapping of Precipitation (GSMaP) product
by considering the orographic effects (Shige et al., 2013). Studies have suggested a high accuracy of passive
optical satellite (e.g., MODIS, Landsat) snow productswunder clear skies when compared with the field
observations. However, cloud masking and sub-pixel cloud heterogeneity in these snow-cover products
considerably restrict their applications (Kahn et al., 2011; Brun et al., 2015; Tang et al., 2017; Stillinger et
al., 2019). Gridded datasets (e.g., CRU, GPCC Full Data Product;;GPCC Monitoring Product, ERA-Interim,
ERAS, ERAS5-land, MERRA-2, MERRA=2 bias adjusted, PERSTANN-CDR) are of paramount importance,
yet they often lack enough in situ observations to improve the temporal and spatial distribution of
meteorological parameters over complex mountain terrain (Zandler et al., 2019).

10.2.2.6 Structural uncertainty

Beyond climate monitoring; the quality and availability of multiple observational reference datasets play a
central role in model evaluation. In fact, when using observations for model evaluation, there are multiple
examples where inter-observational uncertainty is as large as the inter-model variability. This has been
shown for variousiaspects of the Indianh monsoon (Section 10.6.3) (Collins et al., 2013a) and for precipitation
uncertainties over-Africa (Section:10:6.4) (Nikulin et al., 2012; Sylla et al., 2013; Dosio et al., 2015; Bador et
al., 2020) and Europe (Prein.and Gobiet, 2017). Kotlarski et al. (2019) compared three high-resolution
observational temperature.and precipitation datasets (E-OBS, a compilation of national/regional high-
resolution gridded-datasets, and the EURO4M-MESAN 0.22° reanalysis based on a high-resolution limited-
area model) with five EURO-CORDEX RCMs driven by ERA-Interim. Generally, the differences between
RCMs are larger than those between observation datasets, but for individual regions and performance
metrics, observational uncertainty can dominate. They also showed that the choice of reference dataset can
have an influence on the RCM performance score. Over the high mountain Asia region and East Asia,
differences among gridded precipitation datasets can generate significant uncertainties in deriving
precipitation characteristics (Kim et al., 2015b; Kim and Park, 2016; Guo et al., 2017). Over western North
America, observational uncertainty induces differences in multi-decadal precipitation trends (Lehner et al.,
2018). Taking a very different perspective, the agreement between model simulations may be used to
estimate the uncertainty and quality of observations (Massonnet et al., 2016). There is high confidence that
an ensemble of multiple observational references at a regional scale is fundamental for model performance
assessment. The uncertainties vary according to region, season, and statistical properties (Cross-Chapter Box
10.2).
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10.2.3 Other Uses of Observations at Regional Scale
10.2.3.1 Observations for calibrating statistical methods

Statistical downscaling, bias adjustment and weather generators are post-processing methods used to derive
climate information from climate simulations. They all require observational data for calibration as well as
evaluation (Section 10.3.3.1). Typically, the so-called perfect prognosis methods use quasi-observations for
the predictors (i.e., reanalyses) and actual observations for the predictands (the surface variables of interest).
By contrast, bias adjustment methods use observations only for the predictands. Weather generators typically
require only observed predictands, although some are conditioned on observed predictors as well. Very often
these methods are based on daily data, because of user needs, but also because of the limited availability of
sub-daily observations and the limited ability of climate models to realistically simulate,sub-daily weather
(lizumi et al., 2012). Some methods are calibrated on the monthly scale, but some of the'generated time
series are then further disaggregated to the daily scale (e.g., Thober et al., 2014). A few methods; mainly
weather generators, represent sub-daily weather (Mezghani and Hingray, 2009; Kaczmarska ¢t al., 2014).
Many methods simulate temperature and precipitation only, although some alsorepresent. wind, radiation
and other variables. The limited availability of high quality and long gbservational records typically restricts
these applications to a few cases (Verfaillie et al., 2017; Pryor and'Hahmann, 2019)..Overall, there is high
confidence that limited availability of station observations, including variables beyond:temperature and
precipitation as well as sub-daily data, limit the use of statistical modelling of reégional climate.

All the limitations and challenges of observational data discussed in Section 10.2.2 also apply to its use for
post-processing of climate model data. High quality and.long observational.data‘series are particularly
relevant to quantify uncertainties. Different reanalyses present significant discrepancies when used as key
predictor variables at the daily scale and may even affect the downscaled climate change signal (Brands et
al., 2012; Dayon et al., 2015; Manzanas et al., 2015; Horton and Brénnimann, 2019). There is high
confidence that reanalysis uncertainties limit-the quality of statistical downscaling in some regions, although
no assessment has been made for the most recent reanalysis products.

An important issue for bias adjustment is the correctrepresentation of the required spatial scale. Ideally, bias
adjustment is calibrated against aréa-averaged data of the same spatial scale as the climate model output.
Hence, high-quality observed gridded datasets with.an'effective resolution close to the nominal model
resolution are required.-Driven by the need to also generate regional-scale information in station-sparse
regions, researchers have considered derived datasets that blend in situ and remote sensing data to produce
high-resolution observations to be used.as predictands (e.g., Haiden et al., 2011; Wilby and Yu, 2013)
(Sections 10.2.1.2 and'10.2.2.4).

10.2.3.2 Observation for paleoclimate data assimilation

Following some eatly concept studies, the first practical applications of paleoclimate data assimilation over
past centuries used only selected data to reconstruct past climate changes for analysis of a specific process or
case (Widmann et al.; 2010). Recently, assimilation of multiple series from various data sources, including
tree rings, ice cores, lake cores, corals, and bivalves, has allowed production of reconstructions that can be
widely/shared and applied to multiple purposes, as with modern reanalyses (Franke et al., 2017; Hakim et al.,
2016; Steiger et al., 2018, Tardif et al. 2019). Most of these paleo-reanalyses are global but there are
products using regional models or targeted at specific regions such as Europe, East Africa and the Indian
Ocean (Fallah et al., 2018; Klein and Goosse, 2018).

Paleo-reanalyses are enabling a new range of applications and have already provided useful information on
seasonal-to-multidecadal climate variability over past millennia. They are useful tools to study the
covariance between variables at interannual-to-centennial time scales and at regional to global spatial scales.
In particular, they have highlighted the processes that can be responsible for changes in continental
hydrology at multi-decadal time scales (Franke et al., 2017; Klein and Goosse, 2018; Steiger et al., 2018).
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Paleo-reanalyses have confirmed a large contribution of internal variability in past changes at regional scale
during the pre-industrial period, superimposed on a weak common signal due to forcing changes (Goosse et
al., 2012) and the absence of a globally coherent warm period in the common era before the recent warming
(Neukom et al., 2019). Reconstructions of the atmospheric state obtained in the reanalysis also provide
robust evidence of a local enhancement of warming or cooling conditions due to changes in atmospheric
circulation, such as for the warm conditions in some European regions around 950-1250 CE, the cooling
observed in 1809/1810, or the cold and rainy 1816 summer in Europe ( Cross-Chapter Box 4.1; Goosse et al.,
2012; Hakim et al., 2016; Franke et al., 2017; Schurer et al., 2019).

10.2.4 Outlook for Improving Observational Data for Regional Climates

An encouraging development for understanding climate variations over the past 250 years or so at the:global
and regional scale lies in the field of data rescue, in which hitherto hidden archives of meteorological data
are brought to the forefront (Sections 1.5.1.1 and 2.5). Surface observations from data rescue projects may
then be assimilated to derive long-term high-resolution gridded surface regional reanalysis (Devers et al.,
2020). Global extended reanalyses such as 20CR (Compo et al., 2011), ERA-20C*(Poli et.al., 2016b, 2016a)
or CERA-20C (Laloyaux et al., 2018) may be further downscaled to quantify the variability.of past climate
at the regional scale (Caillouet et al., 2016, 2019).

One of the main scientific challenges related to high-resolution regional climaté modelling is dealing with
the representation of fine-scale processes (e.g., Yano et al.; 2018) in observational data sets. Additionally,
reliable observation networks following WMO standards have.a«wery sparse geographical representation.
Hence, regional climate models have started to use high-resolution data combined with crowdsourced
observations (Zheng et al., 2018). Recent efforts have led to the production.of homogeneously processed
long-term datasets for regional climate model.€valuation (Goudenhoofdt and Delobbe, 2016; Humphrey et
al., 2017; Yang and Ng, 2019). While they are far less reliable’and-accurate than professional observations,
crowdsourced data are abundantly available and can give spatial representations at very high resolution. This
technological trend could prove very useful (high confidence), and the regional climate community is
making efforts to understand the extent to which these data sources can be exploited, at least as a
complement to traditional datasets (Overeem et al;;2013; Meier et al., 2017; Uijlenhoet et al., 2018; de Vos
et al., 2019; Langendijk et al; 2019a).

10.3 Using Models for Constructing Regional Climate Information

Much of the information available on future regional climate arises from studies based on climate model
simulations/(Chapters 3, 4 and 8). In this section, different types of models (Section 10.3.1) and model
experiments (Section 10.3.2) for generating regional climate information are discussed, followed by an
assessment of the performance, added value, and fitness-for-purpose of different model types (Section
10.3.3). The focus is on the representation of large- to local-scale phenomena and processes relevant for
regional climate. Finally, uncertainties of regional climate projections and methodologies to manage these
are assessed (Section 10.3.4).

10.3.1/ Model Types

Regional climate change information may be derived from a hierarchy of different model types covering a
wide range of spatial scales and processes (Figure 10.5). The application of any model relies on assumptions,
depending on the specific model as well as the application. Table 10.1 gives an overview of the generic
assumptions of the different model types discussed here for generating regional climate information. The
violation of these assumptions will affect the model performance, which is discussed in Section 10.3.3.

[START FIGURE 10.5 HERE]

Do Not Cite, Quote or Distribute 10-32 Total pages: 228



OO LN AW~

— e b e e e e
O IO NP WN—O O

Final Government Distribution

Chapter 10

IPCC AR6 WGI

Figure 10.5: Typical model types and chains used in modelling regional climate. The dashed lines indicate model
chains that might prove useful but have not or only rarely been used. Hybrid approaches combining the
model types shown have been developed.

[END FIGURE 10.5 HERE]

[START TABLE 10.1 HERE]

Assumptions underlying different model types in simulating regional climate and climate change.

Violating these assumptions will affect model performance (see links to different subsections for details).
All assumptions regarding future climate are in addition to those regarding present climate and predicated
on the driving global model simulating a plausible global climate sensitivity:(Section 1.3.5, Chapters 4
and 7). The assumptions listed for future climate applications of perfect prognosis statistical downscaling
and bias adjustment are often called the “stationarity assumption”. Numbers in curly brackets refer to
chapters and sections assessing these assumptions.

Table 10.1:

Model type Scale at
which the
assumptio
n applies

Global model (GCM | Large

or ESM; not bias (>1000k

adjusted) (Section m)

10.3.1.1)

Regional
(<1000k
m)

Dynamical Large

downscaling of

global model with

RCM (not bias

adjusted) (Section

10.3.1.2)

Regional

Perfect prognosis Large

statistical
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Assumptions to realistically
simulate present regional
climate

Global model includes all
relevant large-scale forcings and
realistically simulates relevant

large-scale circulation {3.3:3,
8.5.1,,10:3.3.3}.

Global model includes all
relevant regional forcings and
realistically simulates.all
relevant regional scale processes
and feedbacks and their
dependence on large-scale
climate {8.5.1, 10.3.3.4-
10.3.3.6, 10.3.3.8}.

Driving global model includes
all relevant large-scale forcings
and realistically simulates
relevant large-scale circulation,
RCM does not deteriorate global
simulations. Feedbacks from
regional into large-scale
processes are negligible {3.3.3,
8.5.1,10.3.3.3}.

RCM includes all relevant
regional forcings and
realistically simulates all
relevant regional scale processes
and feedbacks and their
dependence on large-scale
climate {10.3.3.4-10.3.3.6,
10.3.3.8}.

Global model realistically
simulates all relevant large-scale

10-33

Additional assumptions to be fit for
simulating future regional climate

Global model realistically
simulates processes controlling
large-scale changes.
Parameterisations are valid in
future climate {Chapter 3, 4.2, 4.5,
8.5.1,10.3.3.9}.

Global model realistically
simulates processes controlling
regional changes.
Parameterisations are valid in
future climate {8.5.1, 10.3.3.9}.

Driving global model realistically
simulates processes controlling
large-scale changes, RCM does not
deteriorate global model changes.
Parameterisations are valid in
future climate {Chapter 3, 4.2, 4.5.
8.5.1,10.3.3.9}.

RCM realistically simulates
processes controlling regional
changes. Parameterisations are
valid in future climate {10.3.3.9}.

Global model realistically
simulates processes controlling
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downscaling of GCM predictors. The predictors are changes in the predictors. The
(Section 10.3.1.3) bias free and represent the predictors represent the response to
regional variability at all desired = external forcing {Chapter 3, 4.2,
time-scales {3.3.3, 8.5.1, 4.5.8.5.1,10.3.3.9}.
10.3.3.3}.
Regional = The statistical model structure is = The statistical model structure is
adequate to represent the adequate under the required

predictor influence on regional- | extrapolation {10.3.3.9}.
scale variability. There are no

relevant feedbacks involving the

predictands {10.3.3.7}.

Bias adjustment of Large As per driving model. As per driving model.
dynamical model Regional = As per driving model, apart As per drivingimodel, apart from
(GCM or RCM) from adjustable biases. The gap = adjustable biases. The chosen bias
(Section 10.3.1.3) between driving model adjustment is-applicable in'a future
resolution and target resolution  elimate {10.3.3.9, Cross-Chapter
is minor {10.3.3.4-10.3.3.6, Box 10.2}.
10.3.3.8, Cross-Chapter Box
10.2}.
Delta change Large Not applicable As per.driving model. There are no
approach applied to changes altering the non-changed
dynamical model statistics'(e/g., no circulation
(Section 10.3.1.3) changes that alter temporal
structure) {Chapter 3, 4.2, 4.5,
8:5.1, 10.3.3.9}.
Regional = Not applicable As per driving model. There are no

changes altering the non-changed
statistics. The gap between driving
model resolution and target
resolution is minor {10.3.3.9}.

Change factor Large Not applicable As per driving model.

weather generator Regional. The weather generator structure | As per driving model. The weather
applied to dynamical is adequate {10.3.3.7}. generator structure is adequate in a
model (Section future climate. Change factors are
10.3.1.3) adequately incorporated for all

changing weather aspects. The gap
between driving model resolution
and target resolution is minor
{10.3.3.9}.

[END TABLE 10.1 HERE]

10.3.1.1 Global models, including high-resolution and variable resolution models

Model-based regional climate projections are all based upon some type of global climate model, including
state-of-the-art Earth system models (ESMs), coupled atmosphere-ocean general circulation models (GCMs)
or atmosphere-only general circulation models (AGCMs) (see Section 1.5.3.1). They are collectively referred
to as global models.

State-of-the-art global models are generally used to derive climate information at continental to global scales
both for past and future climates (e.g., Chapters 3 and 4). The nominal horizontal resolution in CMIPS5 global
models is typically 100-200 km. The effective resolution, for which the shape of the kinetic energy spectrum
is simulated correctly, is about 3 to 5 times larger (Klaver et al., 2020), and a similar relationship also applies
to RCMs (Skamarock, 2004). This strongly limits their ability to resolve local details. Since AR5 the
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progress in reducing biases and providing more credible regional projections by global models has been
moderate in spite of the more realistic representation of a number of processes and the increase in resolution
of some models. For ARG, several of the new CMIP6 (Eyring et al., 2016a) model intercomparison projects
(MIPs) address some of these limitations. The list of MIPs is provided in Chapter 1 (Table 1.3). HighResMIP
(High-Resolution MIP; Haarsma et al., 2016) and GMMIP (Global Monsoons MIP; Zhou et al., 2016))
specifically address the regional climate challenge using global models. HighResMIP focuses on producing
global climate projections at a horizontal resolution of around 50 km grid spacing or finer while GMMIP
aims at better understanding and predicting the monsoons.

An alternative to increasing resolution everywhere is offered by variable resolution global models, that is,
with regionally finer resolution. They have been developed since the 1970s (Li, 1999), resulting in a first
coordinated effort (SGMIP) by Fox-Rabinovitz et al., (2006, 2008). They are expected to offer the finest
resolution possible in the region of interest, while still resolving the climate processes at the global scale
(although at lower resolution). An overview of recent developments is in McGregor (2015). This is a rapidly
developing field (Krinner et al., 2014; Ferguson et al., 2016; Huang et al., 2016) that will possibly contribute
to improved future regional projections.

10.3.1.2 RCMs

RCMs are dynamical models similar to GCMs that are applied over a limited area, but with a horizontal
resolution higher than that of standard GCMs. They are the basis for dynamical downscaling to produce sub-
continental climate information (e.g., Chapters 11, 12 and Atlas)/but are also often used for process
understanding. At lateral and, if applicable, lower boundaries, RCMs take their values from a driving data
set, which could be a GCM or a reanalysis. RCMs are typically one-way nested: they do not feed back into
the driving model, although two-way nested GCM-RCM simulations have been performed that examine
regional influence on large-scale climate, potentially improving-it.(Lorenz and Jacob, 2005; Harris and Lin,
2013; Junquas et al., 2016). Spectral nudging(Kida et al., 1991; Waldron et al., 1996; von Storch et al.,
2000; Kanamaru and Kanamitsu, 2007) can increase consistency.with the driving model, whereby selected
variables, such as the wind field, aré forced to closely follow a prescribed large-scale field over a specified
range of spatial scales. RCMs can inherit biases from.the driving GCM in addition to producing biases
themselves (Dosio et al., 2015; Hall, 2014; Hong and Kanamitsu, 2014; Takayabu et al., 2016). The
consistency between the circulation features Simulated'by the RCM and those inherited through the boundary
conditions depends on_l):the relative importance of the large-scale forcing compared to local-scale
phenomena, and 2) the size of the RCM domain (e.g., Diaconescu and Laprise, 2013). Large domains also
allow the RCM to-generate-much of‘its.own internally generated unforced variability (Nikiema et al., 2017,
and references therein; Sanchez-Gomez and Somot, 2018).

The CORDEX initiative (COordinated Regional climate Downscaling EXperiment; Giorgi et al., 2009;
Giorgi and Gutowski, 2015; Gutowski Jr. et al., 2016) provides ensembles of high-resolution historical
(starting as early as 1950).and. future climate projections for various regions. RCMs in CORDEX typically
have a horizontal resolution between 10 and 50 km. But much finer spatial resolution is required to fully
resolve deep convection, an important cause of precipitation in much of the world. Therefore, an emerging
strand in dynamical downscaling employs simulations at convection permitting scales, at horizontal
resolutions of a few kilometres, where deep-convection parameterisations can be switched off,
approximately simulating deep convection (Prein et al., 2015; Stratton et al., 2018; Coppola et al., 2020). A
recent study indicates that switching off the deep-convection parameterization may be beneficial also in
simulations performed at coarser resolutions (Vergara-Temprado et al., 2019). Alternatively, some RCMs
make use of scale-aware parameterizations that are able to adapt to increasing resolution without switching
off the convection scheme (Hamdi et al., 2012; De Troch et al., 2013; Plant and Yano, 2015; Giot et al.,
2016; Termonia et al., 2018; Yano et al., 2018).

RCMs have often consisted of atmospheric and land components that do not include all possible Earth-

system processes and therefore neglect important processes such as air-sea coupling (in standard RCMs sea
surface temperatures, SSTs, are prescribed from GCM simulations or reanalyses) or the chemistry of cloud-
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aerosol interaction (aerosols prescribed with a climatology), which may influence regional climate
projections. Therefore, some RCMs have been extended by coupling to additional components like
interactive oceans, sometimes with sea ice (Kjellstrom et al., 2005; Somot et al., 2008; Van Pham et al.,
2014; Sein et al., 2015; Ruti et al., 2016; Zou and Zhou, 2016a; Zou et al., 2017; Samanta et al., 2018), rivers
(Sevault et al., 2014; Lee et al., 2015; Di Sante et al., 2019), glaciers (Kotlarski et al., 2010), and aerosols
(Zakey et al., 2006; Zubler et al., 2011; Nabat et al., 2015). The coupling of these components allows for the
investigation of additional climate processes such as regional sea-level change (Adloff et al., 2018), ocean-
land interactions (Lima et al., 2019; Soares et al., 2019a), or the impact of high-frequency ocean-atmosphere
coupling on the climatology of Mediterranean cyclones (Flaounas et al., 2018).

10.3.1.3 Statistical approaches to generate regional climate projections

An alternative or addition to dynamical downscaling is the use of statistical approaches-to generate regional
projections. In ARS these methods were collectively referred to as statistical downscaling, but their
performance assessment has received little attention. A major conclusion was that a wide range of different
methods exist and a general assessment of their performance is difficult (Flato et-al., 2014): Since ARS,
several initiatives have been launched to improve the understanding of statistical approaches such as
VALUE (now merged into EURO-CORDEX activities; Maraun et-al., 2015), STARMIP (Vaittinada Ayar et
al., 2016) and BADJAM (Galmarini et al., 2019). The performance of different implementations of these
approaches will be assessed in Section 10.3.3.7.

10.3.1.3.1 Perfect prognosis

Perfect-prognosis models are statistical models calibrated between observation-based large-scale predictors
(e.g., from reanalysis) and observed local-scal¢ predictands (Maraun and Widmann, 2018b). Regional
climate projections are then generated by replacing the quasi-observed predictors by those from climate
model (typically global model) projections. Predictor patterns:that.are common to observations and climate
model data can be defined by common empirical orthogonal-functions (Benestad, 2011). The perfect
prognosis approach can either be used to.generate daily (or even sub-daily) time series, or local weather
statistics (e.g., Benestad et al., 2018).

Regression-like models (Maraun and Widmann, 2018b) rely on a transfer function linking an observed local
statistic (such as the temperatureat a given day) to some set of large-scale predictors. Recent developments
include stochastic regression models to explicitly simulate local variability (San-Martin et al., 2017; those
explicitly modelling temporal dependence are assessed in Section 10.3.1.3.4). The use of machine learning
techniques has been reinvigorated, including genetic programming to construct a data-driven model structure
(Zerenner et-al., 2016) and deep and convolutional neural networks (Reichstein et al., 2019; Bafio-Medina et
al., 2020).

Analogue methods (Martin et'al., 1996; Maraun and Widmann, 2018b) compare a simulated large-scale
atmospheric field with an archive of observations and select, using some distance metric, the closest
observed field in the‘archive. The downscaled atmospheric field is then chosen as the local atmospheric field
observed on the instant the analogue occurred. New analogue methods have been developed to simulate
unobserved values including a rescaling of the analogue (Pierce et al., 2014) or by combining analogues and
regression models (Chardon et al., 2018).

10.3.1.3.2 Bias adjustment

Bias adjustment is a statistical post-processing technique used to pragmatically reduce the mismatch between
the statistics of climate model output and observations. The approach estimates the bias or relative error
between a chosen simulated statistical property (such as the long-term mean or specific quantiles of the
climatological distribution) and that observed over a calibration period; the simulated statistic is then
adjusted taking into account the simulated deviation. Bias adjustment methods are regularly applied on a
spatial scale similar to that of the simulation being adjusted, but they are often used as a simple statistical
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downscaling method by calibrating them between coarse resolution (e.g., global) model output and finer
observations (Maraun and Widmann, 2018b).

Typical implementations of bias adjustment are (1) additive adjustments, where the model data is adjusted by
adding a constant, (2) rescaling, where the model data is adjusted by a factor, and (3) more flexible quantile
mapping approaches that adjust different ranges of a distribution individually. Hempel et al. (2013), Pierce et
al. (2015), Switanek et al. (2017), and (Lange, 2019) developed variants of quantile mapping that preserve
trends in the mean or even further distributional statistics. Multivariate bias adjustment extends univariate
methods, which adjust statistics of individual variables separately, to joint adjustment of multiple variables
simultaneously. Implementations remove biases in (1) specific measures of multivariate dependence, like
correlation structure, via linear transformations (Bardossy and Pegram, 2012; Cannon, 2016), or, more
flexibly, (2) the full multivariate distribution via nonlinear transformations (Vrac and Friederichs, 2015;
Dekens et al., 2017; Cannon, 2018; Vrac, 2018; Robin et al., 2019). Other research strands focus on the
explicit separation of bias adjustment and downscaling (Section 10.3.1.3.5), or the integration of process
understanding (Maraun et al., 2017), such as by conditioning the adjustment on the.occurrence of relevant
phenomena (Addor et al., 2016; Verfaillie et al., 2017; Manzanas and Gutiérrez, 2019). Some authors
suggest to mitigate the influence of large-scale temperature or circulation biases'by performing a bias
adjustment of the driving fields prior to dynamical downscaling (Colette et-al., 2012; Hernandez-Diaz et al.,
2013, 2019). Issues that may arise when using bias adjustment are.discussed in Cross-Chapter Box 10.2.

10.3.1.3.3 Delta-change approaches

In the delta change approach, selected observations are modified‘according to corresponding changes derived
from dynamical model simulations. Traditionally, only-long term means have been adjusted, but recently
approaches to modify temporal dependence (Webber et al., 2018) have been developed, as well as quantile
mapping approaches that individually adjust quantiles of the observed distribution (Willems and Vrac,

2011). By construction, the approach cannot modify the spatial and.temporal dependence structure of the
input observations (Maraun, 2016).

10.3.1.3.4 Weather generators

Weather generators are statistical models that simulate weather time series of arbitrary length. They are
calibrated to represent observed weather statistics, in.particular daily or even sub-daily variability. One
variant of these models-are advanced stochastic perfect-prognosis methods, conditioned on large-scale
atmospheric predictors on a‘daily basis, for instance multi-site generalised linear models (Chandler, 2020).
Another widely used variant is change-factor weather generators: the weather generator parameters are
calibrated against present and future climate model simulations, and the climate change signals are then
applied to the parameters calibrated to observations. Recent research has mainly focussed on multi-site
Richardson type (Markov-chain) weather generators (Keller et al., 2015; Dubrovsky et al., 2019), some
explicitly modelling extremes and their spatial dependence (Evin et al., 2018).

10.3.1.3.5 Hybrid approaches and emulators

A wide variety of approaches has been proposed to combine the advantages of different statistical
approaches. For instance, to overcome the scale mismatch between climate model output and observations,
bias adjustment has been combined with stochastic downscaling (Volosciuk et al., 2017; Lange, 2019) or
rescaled analogues (Pierce et al., 2014). Other approaches known as emulators have been developed to
emulate an RCM using a statistical model and also applied to a range of driving global models (Déqué et al.,
2012; Haas and Pinto, 2012; Walton et al., 2015, 2017; Beusch et al., 2020; Erlandsen et al., 2020).

10.3.2 Types of Model Experiments

The most commonly used model experiments to generate regional climate information are transient
simulations. Alternative experiment types serve specific purposes. The role of these experiment types for
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generating regional climate information is assessed in this subsection.

10.3.2.1 Transient simulations and time-slice experiments

Transient simulations intend to represent the evolving climate state of the Earth system (Chapter 4). They are
typically based on coupled global model simulations, such as those in the DECK and ScenarioMIP part of
CMIP6 covering the period 1850-2100 (Eyring et al., 2016a), and HighResMIP (1950-2050; Haarsma et al.,
2016). Global transient climate simulations may be further downscaled by either dynamical or statistical
downscaling. Currently available CORDEX RCM simulations (1950-2100) are based on CMIP5 (Gutowski
et al., 2016).

In contrast, time-slice experiments are designed to represent only a specific period of time (typically 30
years). They are often run using global and regional models in atmosphere-only mode; forced by SSTs
derived either from observations, as AMIP experiments, or from historical simulations.and future projections
of coupled global models. Compared to transient simulations, they offer advantagesiin being computationally
cheaper (due to the lack of coupled ocean and short duration), which allows for the number of ensemble
members (Zhang et al., 2016c), and/or the resolution (Haarsma et al., 2013a; Davini et al., 2017) to be
increased. Convection-permitting simulations, both covering the globe or particular reégions, are currently
conducted for short time slices only (Kendon et al., 2017; Hewitt and Lowe, 2018; Coppola et al., 2020;
Pichelli et al., 2021). Another high-resolution time-slice database’is d4PDF (Mizuta et al., 2017; Ishii and
Mori, 2020). Experiments covering a limited integration peériod have been carried out-for coupled ocean-
atmosphere RCMs (Sein et al., 2015; Zou and Zhou, 2016b, 2017). However, long spin-up periods are
required to reach a stable stationary state in the deep Ocean that otherwise mightrlead to invalid projections
(Planton et al., 2012; Soto-Navarro et al., 2020).

10.3.2.2 Pseudo-global warming experiments

Results from downscaling experiments often suffer from large-scale circulation biases in the driving GCMs
such as misplaced storm tracks (Section 10.3.3.4),while changes in atmospheric circulation are often
uncertain owing to both climate response uncertainty (Section 10.3.4.2) and internal variability (Section
10.3.4.3). In a given application, if one can assume that changes in the regional climate are dominated by
thermodynamic rather than by circulation changes, so-called pseudo-global warming (PGW) experiments
(Schir et al., 1996) may be helpful in mitigating the effects of circulation biases, and to fix the large-scale
circulation to present climate. In classical PGW experiments, boundary conditions for the downscaling are
taken from reanalysis data, but modified according to the thermodynamic signals of climate change. The
boundary conditions.thus represent thé sequence of observed weather, but with adjusted temperatures,
humidity and atmospheric stability. Recent applications of PGW experiments include assessments of climate
change in Japan (Adachi etal., 2012; Kawase et al., 2012, 2013), the Los Angeles area (Walton et al., 2015),
Hawaii (Zhang et al., 2016a), and the Alps (Keller et al., 2018). Recently, PGW studies have been
generalised to modify global model simulations with the objective of separating the drivers of regional
climate change, such'as the Mediterranean amplification (e.g., Brogli et al., 2019a; Section 10.3.2.3).

Equivalent simulations can be conducted for individual events, thereby allowing for very high resolution.
With counterfactual past climate conditions, such simulations can be used for conditional event attribution
(Trenberth et'al., 2015; Chapter 11), using hypothetical future conditions to generate physical climate
storylines of how specific events may manifest in a warmer climate. The approach has been employed to
study extreme events that require very high resolution simulations such as tropical cyclones (Lackmann,
2015; Takayabu et al., 2015; Lau et al., 2016; Kanada et al., 2017a; Gutmann et al., 2018; Patricola and
Wehner, 2018; Chen et al., 2020a) or convective precipitation events (Pall et al., 2017; Hibino et al., 2018).
The range of possible events is broader and has included Korean heat waves (Kim et al., 2018) and monsoon
onset in West Africa (Lawal et al., 2016). However, if only individual events are simulated, no immediate
conclusions can be derived for changes to the occurrence probability of these events (Otto et al., 2016a;
Shepherd, 2016a).
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10.3.2.3 Sensitivity studies with selected drivers

Sensitivity studies are used to identify the impact of a specific forcing, driver or process on regional climate
phenomena and changes and improve the process understanding. The influence of a single external forcing
can be assessed with transient historical simulations within two different frameworks (Bindoff et al., 2013;
Gillett et al., 2016). The first entails simulations taking prescribed (often observed) changes only in the
external forcing of interest, the others being fixed at a constant value (often pre-industrial). The second
framework is based on simulations in which all external forcings are applied other than the one of interest.
Both approaches may not give the same results since the climate response to a range of forcings is not
necessarily equal to the sum of climate responses to individual forcings (Ming and Ramaswamy, 2011; Jones
et al., 2013; Schaller et al., 2013; Shiogama et al., 2013; Marvel et al., 2015; Deng et al., 2020).

To study the influence of internal variability, new approaches such as partial coupling simulations are now
routinely used since ARS. These are coupled ocean-atmosphere simulations in which the interaction between
atmosphere and ocean is only one-way over a specified ocean basin or sub-basin-and two-way everywhere
else. Different implementations have been used such as SST anomaly/Newtonian relaxation.at the air-sea
interface or prescription of wind-stress anomalies from reanalysis (Kosaka and Xie, 2013, 2016; England et
al., 2014; McGregor et al., 2014; Douville et al., 2015; Deser etal., 2017a). Such simulations have been
applied to identify the regional impacts of the Pacific Decadal Variability (PDV) and Atlantic Multidecadal
Variability (AMV) (Kosaka and Xie, 2013; Watanabe et al.; 2014; Delworth et al., 2015; Boer et al., 2016;
Ruprich-Robert et al., 2017, 2018).

Nudging experiments have been used to identify the relative roles of dynamic and thermodynamic processes
in climate model biases and specific extreme events (Wehrli et al.; 2018, 2019). Another related framework
is used to evaluate the impact land conditions have on a climate'phenomenon in a pair of experiments with
one simulation serving as control run, and a perturbed simulation'with prescribed land conditions (i.e., soil
moisture, leaf area index, or surface albedo) characterizing a specific state of the land surface (i.e.,
afforestation or deforestation). The difference between the perturbed and control simulations enables a robust
assessment of the possible impact of land conditionson events like droughts and heatwaves (Seneviratne et
al., 2013; Stegehuis et al., 2015; Hauser et al., 2016, 2017; van den Hurk et al., 2016; Vogel et al., 2017;
Rasmijn et al., 2018; Strandberg and Kjellstrém, 2019).

RCM sensitivity simulations have been'used in a similar way to assess the contribution of external forcings
and large-scale drivers to projected regional climate change (Nabat et al., 2014; Brogli et al., 2019b, 2019a)
and the influence of selected drivers on observed extreme events (Meredith et al., 2015b; Wang et al., 2017a;
Ardilouze et.al., 2019).

In summary, there is robust evidence that sensitivity experiments are key to assessing the influence of
different forcings and drivers on regional climate change.

10.3.2.4 Control simulations

In recent years, the role of internal variability in the interpretation of climate projections has become clearer,
particularly at the regional scale (Section 10.3.4.3). A considerable fraction of CMIP5 and CMIP6 resources
has been invested in generating an ensemble of centennial or multi-centennial control simulations with
constant external forcings (Pedro et al., 2016; Rackow et al., 2018). As part of the CMIP6 DECK (Eyring et
al., 2016a) pre-industrial control (piControl) simulations have been conducted (Menary et al., 2018).
Similarly, control simulations with present-day conditions (pdControl) have been performed to represent
internal variability under more recent forcing conditions (Pedro et al., 2016; Williams et al., 2018). Control
simulations have been used to study the role of internal variability, teleconnections and many other
fundamental aspects of climate models (Wang et al., 2015b; Krishnamurthy and Krishnamurthy, 2016).
Control simulations are also used along with large ensembles of historical or scenario simulations to assess
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the characteristics of the regional internal climate variability (Olonscheck and Notz, 2017).

10.3.2.5 Simulations for evaluating downscaling methods

Experiments driven by quasi-perfect boundary conditions or predictors (observations or reanalysis) can be
useful to evaluate downscaling performance (Frei et al., 2003; Laprise et al., 2013), including the simulation
of observed past trends (Lorenz and Jacob, 2010; Zubler et al., 2011; Nabat et al., 2014; Gutiérrez et al.,
2018; Drugg et al., 2019; Bozkurt et al., 2020) and the added value of downscaling compared to the
reanalysis fields (Section 10.3.3.2). Although the reanalysis model itself can introduce biases especially for
non-assimilated variables (such as precipitation) it is assumed that in such a setting, discrepancies between
the modelled and observed climate arise mostly from errors in the downscaling method (Laprise et al., 2013)
or internal climate variability generated by the downscaling method (Bohnisch et al., 2020; Ehmele et.al.,
2020). Since ARS, reanalysis-driven RCMs have been extensively evaluated for manyregions, especially in
the CORDEX framework (see region specific examples in the Atlas).

Over Europe, the VALUE initiative assessed statistical downscaling for marginalytemporal, and spatial
aspects of temperature and precipitation including extremes, and performed.a process-based.evaluation of
specific climatic phenomena (Gutiérrez et al., 2018; Maraun et al.,.2018). Alternatively, statistical
downscaling can be evaluated in so-called perfect model or pseudo-reality simulations,(Charles et al., 1999),
where a high-resolution climate model simulation is used as.a proxy for a hypothetical present and future
realities. A statistical downscaling model is first calibrated with this pseudo present-day climate and,
subsequently, assessed whether it correctly reproduces the pseudo-future conditions (Dixon et al., 2016).

10.3.3 Model Performance and Added Value in Simulating and Projecting Regional Climate

Assessing model performance is a prerequisite for building confidence in regional climate projections. This
subsection assesses the performance of different model.types at simulating regional climate and climate
change. The subsection builds on the assessment of global model performance in Chapter 3, and
complements the model assessment in Chapter 8, which focuses on the water cycle, and the Atlas.

[START FIGURE 10.6 HERE]

Figure 10.6: Illustration of some model biases in simulations performed with dynamical models. (a) Top row:
Mean summer (June to"August)near-surface air temperature (in °C) over the Mediterranean area in
Berkeley Earth and respective mean bias for five multi-model historical experiments with GCMs
(CMIP5, CMIP6'and HighResMIP) and RCMs (CORDEX EUR-44 and EUR-11) averaged between
1986-2005. Bottom row: Box-and-whisker plot shows spread of the 20 annual mean summer surface air
temperature averaged over land areas in the western Mediterranean region (33°N-45°N, 10°W-10°E,
black quadrilateral in the first panel of the top row) for a set of references and single model runs of the
five multi-model experiments (one simulation per model) between 1986-2005. Additional observation
and reanalysis data included in the bottom row are CRU TS, HadCRUT4, HadCRUTS, E-OBS, WFDES,
ERAS, ERA-Interim, CERA-20C, JRA-25, JRA-55, CFSR, MERRA2, MERRA. Berkeley Earth is
shown in the first box to the left. (b) as (a) but for precipitation rate (mm day™!) and showing CRU TS in
the first panel of the top row. Biases of the five multi-model experiments are shown with respect to CRU
TS. Additional observation and reanalysis data included in the bottom row are GPCC, REGEN, E-OBS,
GHCN, WFDES, CFSR, ERA-Interim, ERAS, JRA-55, MERRA2, MERRA. CRU TS is shown in the
first box to the left. All box-and-whisker plots show the median (line), and the interquartile range (IQR =
Q3-Q1, box), with top whiskers extending to the last data less than Q3+1.5%IQR and analogously for
bottom whiskers. Data outside the whiskers range appear as flyers (circles). Further details on data
sources and processing are available in the chapter data table (Table 10.SM.11).

[END FIGURE 10.6 HERE]
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While the ability of global models to simulate large-scale indicators of climate change has improved since
ARS (Chapter 3), the simulation of regional climate and climate change poses an additional challenge. Users
demand regional climate projections for decision making and have high expectations regarding accuracy and
resolution (Rossler et al., 2019a), but some scientists consider such projections still a matter of basic research
(Hewitson et al., 2014a). For instance, large-scale circulation biases or the misrepresentation of regional
topography as well as regional phenomena and feedbacks are very relevant (Hall, 2014; Maraun and
Widmann, 2018b). New global model ensembles such as CMIP6 (Eyring et al., 2016a), HighResMIP
(Haarsma et al., 2016) or, at the regional scale, the convection permitting simulations from the CORDEX
Flagship Pilot Study (FPS) on convective phenomena (Coppola et al., 2020) have the potential to
substantially improve the basis for generating regional climate information, yet uncertainties and (often
unresolved) contradictions between model projections at the regional scale can be substantial (Fernandez et
al., 2019).

Figure 10.6 shows the mean summer temperature and precipitation biases of several state-of-the-art climate
model ensembles for the western Mediterranean. It additionally illustrates the role of observational
uncertainty for model evaluation (Section 10.2), where observations display differences that can be
substantial. Model performance varies strongly from model to model, but also between ensembles. These
biases are an expression of model error that leads to misrepresented phenomena and processes, and thus limit
the confidence in future projections of regional climate. The focus.of this subsectionis therefore to evaluate
the representation of relevant regional scale phenomena for représenting regional ¢limate.

10.3.3.1 Evaluation diagnostics

Since ARS, model evaluation has made use of a broad combination of diagnostics (Colette et al., 2012;
Kotlarski et al., 2014; Eyring et al., 2016b; Gleckler et al., 2016; Ivanov et al., 2017, 2018; Vautard et al.,
2020), ranging from long-term means to indices of extreme events.(Zhang et al., 2011; Sillmann et al., 2013)
or a combination of these (Dittus et al., 2016). This evaluation has shown that global models have pervasive
biases in some aspects of their large-scale behaviour (Section 1.5.3.1, Chapter 3). More complex diagnostics
are used to characterize specific meteorological phenomena (Sprenger et al., 2017), such as feedbacks in the
El Nifio-Southern Oscillation (ENSQO; Bellenger et-al., 2014), Madden-Julian Oscillation (MJO)
characteristics (Ahn et al., 2017; Benedict et al., 2014; Jiang et al., 2015; Kim et al., 2015), extra-tropical
modes of variability (Lee et al.;2019), cyclone tracking (Neu et al., 2013; Flaounas et al., 2018), front
detection (Hope et al., 2014; Schemm et al., 2015), thunderstorm environment parameters (Bukovsky et al.,
2017), African easterly waves (McCrary et al., 2014; Martin and Thorncroft, 2015), land-atmosphere
coupling (Spennemann-and/Saulo, 2015; Santanello et al., 2018), and sea-atmosphere coupling (Bellenger et
al., 2014; Mayer et al.; 2017).

New diagnostics for multivariate dependencies are needed to characterize compound events (Section 11.8;
Hobaek Haff'et al., 2015; Wahl et.al., 2015; Sippel et al., 2016, 2017; Tencer et al., 2016; Bevacqua et al.,
2017; Careto et al., 2018; Zscheischler et al., 2018b). However, their success depends on the availability of
adequate observational data (Section 10.2.2). Multivariate dependencies discovered in compound events can
also be used for designing and evaluating multivariate bias adjustment and statistical downscaling. Process-
based diagnostics are useful for identifying the cause of model errors, although it is not always possible to
associate a systematic error with a specific cause (Eyring et al., 2019). ARS discussed two approaches of
process-based evaluation: 1) the isolation of physical components or parameterizations by dedicated
experiments (Section 10.3.2.4) and 2) diagnostics conditioned on relevant regimes, usually synoptic-scale
weather patterns. The regime-based approach has been used with both global models (e.g., Barton et al.,
2012; Catto et al., 2015; Taylor et al., 2019) and RCMs (Endris et al., 2016; Bukovsky et al., 2017; Whan
and Zwiers, 2017; Pinto et al., 2018), but also with perfect prognosis and bias adjustment methods (Marteau
et al., 2015; Addor et al., 2016; Beranova and Kysely, 2016; Soares and Cardoso, 2018; Soares et al.,
2019b).

Recent studies highlight the importance of user-defined or user-relevant diagnostics for model evaluation
(Maraun et al., 2015; Rhoades et al., 2018; Rossler et al., 2019b; Nissan et al., 2020). Diagnostics have been
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used to assess the performance of climate models to produce useful input data for impact models as in the
comparison between RCMs and convection-permitting models to capture flood generating precipitation
events in the Alps (Reszler et al., 2018). Alternatively, the observed impact can be compared to that
simulated by an impact model that uses input from both observations and climate models. This approach has
been used to evaluate the influence of statistical downscaling and bias adjustment on hydrological (Rojas et
al., 2011; Chen et al., 2012b; Gutiérrez et al., 2019; Rossler et al., 2019b), agricultural (Ruiz-Ramos et al.,
2016; Galmarini et al., 2019), forest and wildfire (Abatzoglou and Brown, 2012; Migliavacca et al., 2013)
(Bedia et al., 2013), snow depth (Verfaillie et al., 2017), and regional ocean modelling (e.g., Macias et al.,
2018).

There is high confidence that to assess whether a climate model realistically simulates required aspects of
present-day regional climate, and to increase confidence of future projections of these aspects, evaluation
needs to be based on diagnostics taking into account multiple variables and process-understanding.

10.3.3.2 Model improvement and added value

Obtaining regional information from global simulations may involve a range of different methods (Section
10.3.1). An approach with higher complexity or resolution is useful.if it adds further;useful information to
that of a reference model. Section 10.5 discusses the set of considerations that determine if the information is
useful. This further useful information is often referred to as-added value and is'a function of variables,
processes, and the temporal and spatial scales targeted taking into account the needs of specific users (Di
Luca et al., 2012; Ekstrom et al., 2015; Giorgi and Gutowski, 2015; Torma et al., 2015; Rummukainen,
2016; Falco et al., 2018). There is no common definition of added value, but here it is considered a
characteristic that arises when one methodology gives further value to what another methodology yields.

Downscaling is expected to improve the reptesentation of a region’s climate compared to the driving GCM
(Di Luca et al., 2015). Arguably, there should'be a clear physical reason for the improvement, which is
applicable to the evaluation of added value in downscaled projections (Giorgi et al., 2016). The added value
depends on the region, season, and governing physical processes (Lenz et al., 2017; Schaaf and Feser, 2018).
Thus, added value of downscaling GCM simulations:is most likely where regional- and local-scale processes
play an important role in a region’s climate, for example in complex or heterogeneous terrain such as
mountains (Lee and Hong; 2014; Prein et al.; 2016a), urban areas (Argiieso et al., 2014), along coastlines
(Feser et al., 2011; Herrmann et al., 2011; Bozkurt et al., 2019), or where convective processes are important
(Prein et al., 2015). Examples of model improvements and added value are given in the following
subsections and the*Atlas.

A first step in determining added value in downscaling is to analyse whether the downscaling procedure
gives detail on spatial or temporal:scales not well-resolved by a GCM, thus potentially representing climatic
features missing in the GCMs This added detail, referred to as potential added value (PAV; Di Luca et al.,
2012), is insufficient for demonstrating added value in downscaling (Takayabu et al., 2016), but lack of PAV
indicates that the downscaling method lacks usefulness. Added value is not guaranteed simply by producing
model output at finer resolution. It depends on several factors, such as the simulation setup and the specific
climatic variables analysed (Di Luca et al., 2012; Hong and Kanamitsu, 2014; Xue et al., 2014). A variety of
performance:measures are needed to assess added value (Section 10.3.3.1; Di Luca et al., 2016; Wilks, 2016;
Ivanov/et al., 2017, 2018; Soares and Cardoso, 2018).

A further challenge, especially at increasingly higher resolutions, is that adequate observational data may not
be available to assess added value (Section 10.2, e.g., Di Luca et al., 2016; Zittis et al., 2017; Bozkurt et al.,
2019). This implies a need for additional efforts to obtain, catalogue and quality-control higher resolution
observational (or observation-based) data sets (Thorne et al., 2017; Section 10.2). Univariate demonstration
of added value is necessary, but may be insufficient, as better agreement with observations in the downscaled
variable may be a consequence of compensating errors that are not guaranteed to compensate similarly as
climate changes. Multivariate analysis of added value is better able to demonstrate physical consistency
between observed and simulated behaviour (Prein et al., 2013a; Meredith et al., 2015a; Reboita et al., 2018).
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10.3.3.3 Performance at simulating large-scale phenomena and teleconnections relevant for regional
climate

Regional climate is often controlled by large-scale weather phenomena, modes of variability and
teleconnections (e.g., Sections 2.3 and 2.4, Annex IV). In particular extreme events are often caused by
specific, in some cases persistent, circulation patterns (Sections 11.3—11.7). It is therefore important for
climate models to reasonably represent not only continental, but also regional climate and its variability for
such extremes. As explained in Section 3.3.3, standard resolution GCMSs can suffer biases in the location,
occurrence frequency or intensity of large-scale phenomena, such that statements about a specific regional
climate and its change can be highly uncertain (Hall, 2014). RCMs have difficulties improving especially
large-scale circulation biases, although some successful examples exist. But due to their enhanced
representation of complex topography and coastlines, RCMs may add value to simulating the regional
expression of teleconnections. Bias adjustment cannot mitigate fundamental misrepresentations of the large-
scale atmospheric circulation (Maraun et al., 2017, Cross-Chapter Box 10.2). This subsectionllustrates the
relevance of large-scale circulation biases for regional climate assessments with'selected examples from the
mid-to-high latitudes and tropics.

10.3.3.3.1 Mid-to-high latitude atmospheric variability phenomena: blocking and extratropical cyclones
Major large-scale meteorological phenomena for mid-to-high latitude mean and extreme climate include
atmospheric blocking and extratropical cyclones (Section 2.3.1.4). Atmospheric blocking is characterized by
a quasi-stationary long-lasting, high pressure system that blocks and diverts, thesmovement of synoptic
cyclones (Woollings et al., 2018). In regions where blocking occurs, it is known to lead to cold conditions in
winter and warmth and drought during summer, defining the seasonal regional climate in certain years
(Sousa et al., 2017, 2018b). Extratropical cyclones are storm systems that propagate preferentially in
confined storm-track regions, characterized by large eddy-kinetic.energy, heat and momentum transports that
shape regional weather at mid-to-high‘latitudes(Shaw et al..»2016). Given their importance in shaping mean
and extreme regional climate (Sections 3.3.3.3, 11.3 and 11.4), an accurate representation of blocking and
extratropical cyclones in global-and regional climate:models is needed to better understand regional climate
variability and extremes as well as'to project future changes (Section 11.7.2; Grotjahn et al., 2016; Mitchell
et al., 2017; Rohrer et al., 2018; Huguenin et al., 2020). An overview of CMIP5 and CMIP6 model
performance in simulating blocking and extratropical cyclones is given in Section 3.3.3.3. CMIP6 models
still suffer from long-standing blocking biases identified in previous generations of models. However,
blocking location‘has improved compared to CMIP5, while comparable performance is seen for blocking
frequency and persistence (Figure 10.7). Increasing horizontal model resolution to about 20 km in the
HighResMIP. experiments improves the representation of blocking frequency and its spatial pattern in most
models, but no.clear effect.could be.shown for blocking persistence. Biases associated with these two
phenomena are highly region- and season-dependent and their amplitudes vary among CMIP models
(Drouard and Woollings, 2018; Schaller et al., 2018; Woollings et al., 2018; Harvey et al., 2020; Schiemann
et al., 2020).

[START FIGURE 10.7 HERE]

Figure 10.7: Northern-Hemisphere blocking performance in historical coupled simulations for different multi-
model ensembles. CMIP5/6: CMIP5 and CMIP6 DECK historical simulations, 1950-2005, LC/HC:
Low/High-resolution simulations from the PRIMAVERA project, 1950-2014 following the hist-1950
experiment of the CMIP6 HighResMIP Protocol, (Haarsma et al., 2016). (top) blocking frequency, i.e.
fraction of blocked days; (middle) root-mean-squared error in blocking frequency; (bottom) 90th
percentile of blocking persistence, aggregated over an Atlantic domain (left, ATL: 90°W—-90°E, 50°-
75°N) and a Pacific domain (right, PAC: 90°E-270°E, 50°~75°N). Results are for boreal winter (DJF) and
summer (JJA). Box-and-whisker plots for CMIP5/6 follow the methodology used in Figure 10.6 and
show median (line), mean (triangle), and interquartile range (box) across 29 models for each ensemble.
The reference estimate (ERA, asterisk) is from a 50-year reanalysis dataset that merged ERA-40 (1962—
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1978) and ERA-Interim (1979-2011) reanalyses. An estimate of internal variability for each metric (IV)
is shown as a box-and-whisker plot over the asterisk and is obtained from a single-model ensemble
(ECMWFE-IFS high-resolution hist-1950 experiment, 6 x 65 years). For details on the methodology see
(Schiemann et al., 2020). Further details on data sources and processing are available in the chapter data
table (Table 10.SM.11).

[END FIGURE 10.7 HERE]

RCMs have a very limited ability to reduce large-scale circulation errors of the driving GCM (Hall, 2014). In
a study of five ERA-Interim-driven RCMs, Jury et al. (2018) showed that RCMs typically simulate fewer
blocking events over Europe than are present in the driving data, irrespective of the RCM horizontal
resolution. Based on a simple blocking bias-decomposition method, they suggest thatblocking frequency
biases can contribute to the RCM mean surface biases. Over some large domains, reanalysis-driven RCMs
can significantly improve the representation of storm characteristics compared to.the.driving reanalysis.near
regions with complex orography and/or large water masses (Poan et al., 2018). However, this is not
necessarily true if the domain is large enough because the RCM and its biases will then control the
circulation leading to a biased performance with regard to storm characteristics (Pontoppidan et al., 2019).
An ensemble of 12 RCMs with and without air-sea coupling reasonably.réproduced theelimatology of
Mediterranean cyclones, and air-sea coupling had a rather weak impact (Flaounas et'al. 2018). Over the Gulf
Stream, however, air-sea coupling played an important role in representing cyclone development (Vries et
al., 2019). Sanchez-Gomez and Somot (2018) showed that the effect of RCM internal variability on density
of cyclone tracks is very significant and larger than for other variables such as precipitation. It is larger in
summer than in winter, in particular over the Iberian Peninsula, northern‘Africa and the eastern
Mediterranean, which are regions of enhanced cyclogenesis during the. warm season.

Biases in the representation of large-scale atmospheric circulation can result in biased representation of
regional climate. While the connection between large-scale and regional biases is in principle obvious, given
the strong control of regional climate by large-scale phenomena, research on this connection is still limited.
Munday and Washington (2018) relate. CMIP5 model rainfall biases over South Africa to anomalous low-
level moisture transport across high-topography due to upstream wind biases and inaccurate representation
of unresolved orographic drag effects. Addor et al. (2016) show that the overestimated frequency of westerly
synoptic situations was a significant contributor to the wet bias in several RCMs in winter over Switzerland.
Pepler et al. (2014, 2016) suggest that better capturing westerly-driven synoptic systems such as cold fronts
and cut-off lows in climate models could be key.in simulating the observed pattern correlation between
rainfall and zonal wind in southern southeast Australia. Cannon (2020) shows global improvement in
performance going from CMIPS5 to CMIP6 for both frequency and persistence of circulation types.

The robust quantification of the influence of atmospheric circulation errors on regional climate remains a
challenge as many parameterized processes such as cloud radiative effects and soil moisture or snow
feedbacks can also conttibute and interact with the circulation errors. Atmospheric nudging experiments
where the simulated circulation is constrained to be close to that observed have been used to separate the
circulation effect-from.other contributions to regional climate biases (Wehrli et al., 2018). The nudging
approach requites detailed and careful implementation in order to limit detrimental effects due to the added
tendency term in the model equations (Zhang et al., 2014; Lin et al., 2016). Based on single-model
experiments, Wehrli et al. (2018) show that the circulation-induced biases are often not the main contributors
to mean and extreme temperature and precipitation biases for many regions and seasons.

There is high confidence that atmospheric circulation biases can deteriorate the model representation of
regional land surface climate. Assessing the relative contributions of atmospheric circulation and other
sources of bias remains a challenge due to the strong coupling between the atmosphere and other
components of the climate system, including the land surface.

10.3.3.3.2 Tropical phenomena: ENSO teleconnections
Model performance in simulating ENSO characteristics, including ENSO spatial pattern, frequency,
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asymmetry between warm and cold events, and diversity, is assessed in Chapter 3 (Section 3.7.3). The ability
of the recent generation of GCMs and RCMs to adequately simulate ENSO-related teleconnections is
reviewed here along with relevant methodological issues (see also Annex [V2.3.2, Figure 3.38 and Section
3.7.3).

Langenbrunner and Neelin (2013) show that there is little improvement in CMIP5 relative to CMIP3 in
amplitude and spatial patterns of the ENSO influence on boreal winter precipitation (spatial pattern
correlations against observations are typically less than 0.5). However, the CMIPS ensemble accurately
represents the amplitude of the precipitation response in regions where observed teleconnections are strong.
(Garcia-Villada et al., 2020) found a decline in performance of the representation of simulated ENSO
teleconnection patterns for model experiments with fewer observational constraints. They also show that
ENSO warm phase (El Nifio) teleconnections are better represented than those for the cold phase (La Niiia).
Individual CMIP5 and CMIP6 models show a good ability to represent the observed teleconnections at
aggregated spatial scales (Power and Delage, 2018; Section 3.7.3 and Figure 3.38). The-evaluation of the
atmospheric dynamical linkages is also an important part of the assessment. Hurwitz et al. (2014) showed
that CMIP5 models broadly simulate the expected (as seen in the MERRA reanalysis) upper-tropospheric
responses to central equatorial Pacific or eastern equatorial Pacific ENSO events«in boreal autumn and
winter. CMIP5 models also simulate the correct sign of the Arctic stratospheric response, consisting of polar
vortex weakening during eastern and central Pacific Nifio events and vortex strengthening during both types
of La Nifia events. In contrast, most CMIP5 models do not capture the observed weakening of the Southern
Hemisphere polar vortex in response to central Pacific ENSO events (Brown etal.,2013).

In RCMs, the effects of tropical large-scale modes and teleconnections are inherited through the boundary
conditions and influenced by the size of the numerical'domain. Done et al.(2015) and Erfanian and Wang
(2018) claim that large domains that include source oceanic regions are required to capture the remote
influence of teleconnections, although, without spectral nudging, this can lead to biased synoptic-scale
patterns (Prein et al., 2019). RCMs generally reproduce the regional precipitation responses to ENSO, and
can sometimes even improve the representation of these teleconnections compared to the driving reanalysis
(Endris et al., 2013; Fita et al., 2017),/but the overall performance may depend both on the driving reanalysis
or GCM (Endris et al., 2016; Chandrasa.and Montenegro, 2019) and on the chosen RCMs (Whan and
Zwiers, 2017).

New studies since AR5 have shown that model performance assessment regarding ENSO teleconnections
remains a difficult challenge dueto the different types of ENSO and model errors in ENSO spatial patterns,
as well as the strong influence of atmospheric internal variability at mid-to-high latitudes (Coats et al., 2013;
Polade et al., 20135 Capotondi et al.;2015; Deser et al., 2017; Tedeschi and Collins, 2017; Garcia-Villada et
al., 2020). Another difficulty comes from the non-stationary aspects of teleconnections in both observations
and models,raising methodological questions on how best to compare a given model with another model or
observations (Herein et al.,.2017; Perry et al., 2017; O’Reilly, 2018; O’Reilly et al., 2019; Abram et al.,
2020).

There is robust evidence that an accurate representation of both atmospheric circulation and SST variability
are key factors_for the realistic representation of ENSO teleconnections in climate models. A robust and
thorough evaluation of model performance regarding ENSO teleconnections is a challenging task with many
methodological issues related to asymmetry between the warm and cold phases, non-stationarity and time-
varying interaction between the Pacific and other ocean basins, signal-to-noise issues in the mid-latitudes
and observational uncertainties, particularly for precipitation (Section 10.2.2.3).

10.3.3.4 Performance at simulating regional phenomena and processes
Regional climate is shaped by a wide range of weather phenomena occurring at scales from about 2,000 km
to 2 km (Figure 10.3). These modulate the influence of large-scale atmospheric phenomena and create the

characteristic and potentially severe weather conditions. The climate in different regions will be affected by
different mesoscale phenomena, of which several may be relevant. A skilful representation of these
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phenomena is a necessary condition for providing credible and relevant climate information for a given
region and application. Therefore, it is important to understand the strengths and weaknesses of different
model types in simulating these phenomena. The performance of different dynamical climate model types to
simulate a selection of relevant mesoscale weather phenomena is assessed here.

10.3.3.4.1 Convection including tropical cyclones

Convection is the process of vertical mixing due to atmospheric instability. Deep moist convection is
associated with thunderstorms and severe weather such as heavy precipitation and strong wind gusts.
Convection may occur in single locations, in spatially extended severe events such as supercells, and
organised into larger mesoscale convective systems such as squall lines or tropical cyclones, and embedded
in fronts (see below). Shallow and deep convection are not explicitly simulated but parameterized in standard
global and regional models. In consequence, these models suffer from several biases. AR5 has stated that
many CMIP3 and CMIPS5 models simulate the peak in the diurnal cycle of precipitationtoo early, but
increasing resolution and better parameterisations help to mitigate this problem (Flatoet al., 2014). Similar
issues arise for RCMs with parameterised deep convection (Prein et al., 2015), which also tend to
overestimate high cloud cover (Langhans et al., 2013; Keller et al., 2016).

Non-hydrostatic RCMs at convection-permitting resolution (4 km.and finer) improve features such as the
initiation and diurnal cycle of convection (Zhu et al., 2012; Prein et al., 2013a, 2013b; Fosser et al., 2015;
Berthou et al., 2018a; Stratton et al., 2018; Sugimoto et al., 2018; Finney et al.;2019; Ban et al., 2021;
Pichelli et al., 2021), the triggering of convection by orographic lifting (Langhans et al., 2013; Fosser et al.,
2015), and maximum vertical wind speeds in convective cells (Meredith.et al., 2015a). Also spatial patterns
of precipitation (Prein et al., 2013a, 2013b; Stratton et'al., 2018), precipitation intensities (Prein et al., 2015;
Fumiére et al., 2019; Ban et al., 2021; Pichelli et al., 2021), the scaling of precipitation with temperature
(Ban et al., 2014), cloud cover (Bohme et al., 2011; Langhans et al;; 2013) and its resultant radiative effects
(Stratton et al., 2018), as well as the annual.Cycle of tropical convection (Hart et al., 2018) are improved.
Phenomena such as supercells, mesoscalé convective systems; or the local weather associated with squall
lines are not captured by global models and standard R€CMs. Convection-permitting RCM simulations,
however, have been shown to realistically simulate supercells (Trapp et al., 2011), mesoscale convective
systems, their life cycle and motion (Prein et al., 2017; Crook et al., 2019), and heavy precipitation
associated with a squall line (Kendon et al., 2014). There is high confidence that simulations at convection
permitting resolution add value'to the representation.of deep convection and related phenomena.

Convection is the key ingredient of tropical cyclones. An intercomparison of high-resolution AGCM
simulations (Shaevitz et.al,; 2014) showed that tropical cyclone intensities appeared to be better represented
with increasing model resolution: Takayabu et al. (2015) have compared simulations of typhoon Haiyan at
different resolutions.ranging from 20 km to 1 km (Figure 10.8). While the eyewall structure in the
precipitation pattern was strongly'smoothed in the coarse resolution simulations, it was well resolved at the
highest resolution. Gentry and Lackmann (2010) found similar improvements in simulating hurricane Ivan
for horizontal resolutions between 8 km and 1 km. High-resolution coupled ocean-atmosphere simulations
improve the representation of the radial structure of core convection and thereby the rapid intensification of
the cyclone (Kanada'et al., 2017b). There is high confidence that convection-permitting resolution is required
to realistically simulate the three-dimensional structure of tropical cyclones.

Initial studies with convection-permitting GCMs suggests that improvements in representing convection, as
described for’ RCMs above, have a positive impact on the tropical and extra-tropical atmospheric circulation
and, thus, regional climate (Satoh et al., 2019; Stevens et al., 2019; see also Section 8.5.1.2 and Chapter 7).

Computational constraints currently limit these simulations to a length of few months only, such that they
cannot yet be used for routine climate change studies.

[START FIGURE 10.8 HERE]

Figure 10.8: Hourly accumulated precipitation profiles (mm hour™) around the eye of Typhoon Haiyan.
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Represented by (a) GSMaP (Global Satellite Mapping of Precipitation) data, (b) Guiuan radar
(PAGASA), (c) Weekly Ensemble Prediction System (WEPS) data (JMA), (d) NHRCM (20 km), (e)
NHRCM (5 km), and (f) WRF (1 km) models. Panels (b), (d)-(f) are adapted from Takayabu et al. (2015),
CCBY3.0 https://creativecommons.org/licenses/by/3.0. Further details on data sources and processing are
available in the chapter data table (Table 10.SM.11).

[END FIGURE 10.8 HERE]

10.3.3.4.2 Mountain wind systems

Mountain slope and valley winds are localised thermally generated diurnal circulations that have a strong
influence on temperature and precipitation patterns in mountain regions. During the day, heating of mountain
slopes induces upslope winds; during the night this circulation reverses. This phenomenon is not realistically
represented by global models and coarse-resolution RCMs. RCM simulations at 4<km resolution showed
good skill in simulating the diurnal cycle of temperature and wind on days of weak synoptic forcing in'the
Rocky Mountains (Letcher and Minder, 2017) as well as in simulating the mountain-plain wind circulation
over the Tianshan mountains in Central Asia (Cai et al. 2019), while in the:Alps, a1 km resolution has been
required (Zingl, 2004).

Fohn winds are synoptically-driven winds across a mountain range that are'warm and.dry due to adiabatic
warming in the downwind side. In an RCM study for the Japanese Alps, Tshizaki and Takayabu (2009) found
that at least 10 km resolution was required to realistically simulate the basic characteristics of Fohn events.

Synoptically-forced winds may be channelled and accelerated in long valleys. For instance, the Tramontana,
Mistral and Bora are northerly winds blowing down-valley-from central France and the Balkans into the
Mediterranean (Flaounas et al., 2013). In winter; these winds may.causesevere cold air outbreaks along the
coast. Flaounas et al. (2013) have shown that a.GCM with a horizontal resolution of roughly 3.75°
longitude/1.875° latitude (roughly 400 km'x 200 km depending on latitude) is unable to reproduce these
winds because of the coarse representation of orography..50-km RCM simulations did not realistically
represent the Mistral (Obermann et al., 2018)and Bora winds (Belusi¢ et al., 2018), but simulations at 12 km
added substantial value. Similarly, Cholette et al. (2015) found that a 30-km RCM resolution was not
sufficient to adequately simulate the channelling/of winds in the St Lawrence River Valley in eastern
Canada, whereas a 10 km resolution was.

There is high confidence that climate models with resolutions of around 10 km or finer are necessary for
realistically simulating mountain wind systems such as slope and valley winds and the channelling of winds
in valleys.

10.3.3.4.3 Coastal winds andlake effects

Simulating coastal climates and-the influence of big lakes are a modelling challenge, due to the complex
coastlines, the different heat capacities of land and water, the resulting wind system, and differential
evaporation. The'’AR5 concluded that RCMs can add value to the simulation of coastal climates.

Summer coastal low-level jets off the mid-latitude western continental coasts are forced by the semi-
permanent subtropical anticyclones, inland thermal lows, strong across-shore temperature contrasts in
upwelling regions, and high coastal topography. They are important factors in shaping regional climate by,
for instance; preventing onshore advection of humidity and thereby causing aridity in the Iberian Peninsula
(Soares et al., 2014), or by transporting moisture towards precipitating regions as in the North American
monsoon (Bukovsky et al., 2013).

Reanalyses and most global models do not well resolve the details of coastal low-level jets (Bukovsky et al.,
2013; Soares et al., 2014), but they are still able to represent annual and diurnal cycles and interannual
variability (Cardoso et al., 2016; Lima et al., 2019). Bukovsky et al. (2013) found RCM simulations at a 50
km resolution to improve the representation of the coastal low-level jet in the Gulf of California and the
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associated precipitation pattern compared to the driving global models. Lucas-Picher et al. (2017) find
indirect evidence via precipitation patterns that 12 km simulations further improve the representation. Soares
et al. (2014) demonstrated that an 8-km resolution RCM simulated a realistic three-dimensional structure of
the Iberian coastal low-level jet, and the surface winds compare well with observations. Lucas-Picher et al.
(2017) showed that a 0.44°-resolution RCM underestimated winds along the Canadian east coast, whereas a
0.11°-resolution version simulated more realistic 10-metre wind speed. Also, the Etesian winds in the
Aegean Sea were realistically simulated by 12 km-resolution RCMs (Dafka et al., 2018).

A particularly relevant coastal phenomenon is the sea breeze, which is caused by the differential heating of
water and land during the diurnal cycle and typically reaches several tens of kilometres inland. Reanalyses
and global models have too coarse a resolution to realistically represent this phenomenon, such that they
typically underestimate precipitation over islands and misrepresent its diurnal cycle (Lucas-Picher et al.,
2017). RCMs improve the representation of sea breezes and thereby precipitation in coastal areas and
islands. Over Cuba and Florida only a 12 km-resolution RCM is able to realistically simulate the inland
propagation of precipitation during the course of the day (Lucas-Picher et al.,2017). RCM simulations at 20
km horizontal resolution realistically represented the sea breeze circulation in the Mediterranean Gulf of
Lions including the intensity, direction and inward propagation (Drobinski et al.;;2018). Even though a
coupled ocean-atmosphere simulation improved the representation ofdiurnal SST variations, the sea breeze
representation itself was not improved.

Big lakes modify the downwind climate. In particular during‘winter they are relatively warm compared to
the surrounding land, provide moisture, destabilize the passingair column and producé convective systems.
The increase in friction when moving air reaches land causes convergence and uplift, and may trigger
precipitation. Gula and Peltier (2012) found that a state-of-the-art GCM does not realistically simulate these
effects over the North American Great Lakes, but a 10 km RCM better represents them and thereby
simulates realistic downwind precipitation patterns, in particular enhanced snowfall during the winter season.
Similar results were found by Wright et al. (2013), Notaro et al:(2015) and Lucas-Picher et al. (2017). In a
convection permitting simulation of the IlakeVictoria region,.a too strong nocturnal land-breeze resulted in
unrealistically high precipitation (Finney et al.,2019).

There is high confidence that climate models with-sufficiently high resolution are necessary for realistically
simulating lake and coastal weather including coastal low-level jets, lake and sea breezes, as well as lake
effects on rainfall and snow.

In regions like Fenno-Scandinavia or céntral-eastern Canada, very large fractions of land are covered by
small and mediumrsized lakes. Other regions have fewer but larger lakes, such as central-eastern Africa, the
eastern border between the US and Canada, and central Asia. In these regions it has been considered
essential to include.a lake model in an RCM to realistically represent regional temperatures (Deng et al.,
2013; Mallard et al., 2014; Pietikdinen et al., 2018; Samuelsson et al., 2010; Thiery et al., 2015), as well as
remote effects (Spero et al.; 2016). The most common approach in RCMs is the two-layer lake model,
including a lake-ice model, with parameterized vertical temperature profiles (Mironov et al., 2010; Golosov
et al., 2018). For the'Caspian Sea, it is found that a three dimensional ocean model simulated the SST fields
better than a one dimensional lake model when coupled to the same RCM (Turuncoglu et al., 2013).

There is medium evidence and high agreement that it is important to include interactive lake models in
RCMs to improve the simulation of regional temperature, in particular in seasonally ice-covered areas with
large fractions of lakes. There is medium evidence of the local influence of lakes on snow and rainfall as well
as the importance of including lakes in regional climate simulations.

10.3.3.4.4 Fronts

Weather fronts are two-dimensional surfaces separating air masses of different characteristics and are a key
element of mid-latitude cyclones. In particular cold fronts are regions of relatively strong uplift and hence
often associated with severe weather (e.g., Schemm et al., 2016). Stationary or slowly moving fronts may
cause extended heavy precipitation. The evaluation of how climate models represent fronts, however,
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remains limited. Catto et al. (2014) found in both ERA-Interim and CMIP5 models that frontal frequency
and strength were realistically simulated, albeit with some biases in the location. Follow-up investigations,
for boreal and austral winter (Catto et al., 2015) found frontal precipitation frequency to be too high and the
intensity too low, but these compensating biases resulted in only a small total precipitation bias. Blazquez
and Solman (2018) found similar results for Southern Hemisphere winter, and also showed that CMIP5
models typically overestimate the fraction of frontal precipitation compared to total precipitation. As for the
reference, the ERA-Interim reanalysis misrepresents conditional symmetric instability associated with fronts,
and the corresponding precipitation (Glinton et al., 2017). Only a few studies evaluating fronts in RCMs
have been conducted. Kawazoe and Gutowski (2013) diagnosed strong temperature gradients associated with
extreme winter precipitation in the North American Regional Climate Change Assessment Program
(NARCCAP) RCM ensemble (Mearns et al., 2012) and found the models agreed well with gradients in a
reanalysis. De Jesus et al. (2016) diagnosed the representations of cold fronts over southern Brazil in two
RCMs, finding that they were only underestimated by about 5% across the year, but in one RCM, summer
cold fronts were underestimated by 17%. An RCM-based reanalysis suggests that high=resolution RCM
simulations improve the representation of orographic influences on fronts (Jenkner.et al., 2009).

10.3.3.5 Performance at simulating regional feedbacks

Both the SRCCL (Jia et al., 2019) and SROCC (Hock et al., 2019) highlight the weaknesses of climate
models at simulating atmosphere-surface feedbacks. The performance at simulating’'some of these feedbacks
is assessed below (climate feedbacks in urban areas are discussed in Box 10.3).

The snow-albedo feedback contributes to enhanced warming at high elevations (Pepin et al., 2015; Section
8.5). Global models often do not simulate it realistically due to their mistepresentation of orography in
complex terrain (Hall, 2014; Walton et al., 2015). The elevation dependence of historical warming, which is
partly caused by the snow-albedo effect, is realistically represented.across Europe by the ENSEMBLES
RCMs (Kotlarski et al., 2015). Some EURO-CORDEX RCMs simulate a springtime snow-albedo feedback
close to that observed, whereas others‘considerably overestimate.it (Winter et al., 2017). In a multi-physics
ensemble RCM experiment, the cold bias in northeastern Europe is amplified by the albedo feedback
(Garcia-Diez et al., 2015). For the Rocky Mountains;;RCM simulations generally reproduce the observed
spatial and seasonal variability in.snow cover, but strongly overestimate the snow albedo (Minder et al.,
2016). There is high confidence (medium evidence.and high agreement) that RCMs considerably improve the
representation of the snow albedo effect in complex terrain.

Soil-moisture feedbacks.influence changes in both temperature and precipitation. More than 30% of CMIP5
models overestimate the influence of preceding precipitation (a proxy for soil moisture) on temperature
extremes in-Europe and the USA (Donat et al., 2018), and many CMIP5 models simulate an unrealistic
influence of evaporation on‘temperature extremes for wet regions in Europe and the US (Ukkola et al.,
2018). RCMs were found to realistically simulate the correlation between latent and sensible heat fluxes and
temperature (coupling strength) over Africa (Knist et al., 2017; Careto et al., 2018) and in Northern and
Southern Europe, but to overestimate it in Central Europe (Knist et al., 2017). Land-surface models driven
by global reanalysis-agreed relatively well with observations. However, the coupling strength varied strongly
across models attheregional scale, and a realistic partitioning of the incoming radiation into latent and
sensible heat fluxes did not necessarily result in a realistic soil moisture-temperature coupling (Gevaert et al.,
2018; Boe et al:;2020a).

Evaluating the representation of soil moisture-precipitation feedbacks in climate models is challenging as
different processes may induce feedbacks including moisture recycling, boundary-layer dynamics and
mesoscale circulation. Moreover, the effects of soil-moisture on precipitation may be region and scale
dependent and may even change sign depending on the strength of the background flow (Taylor et al., 2013;
Froidevaux et al., 2014; Guillod et al., 2015; Larsen et al., 2016; Tuttle and Salvucci, 2016). On seasonal-to-
interannual time scales, CMIP5 models showed a stronger soil-moisture precipitation feedback than
estimated by satellite data (Levine et al., 2016). Taylor et al. (2013) found that convection-permitting RCMs
simulate well surface-induced mesoscale circulations in day-time convection and the observed negative soil
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moisture feedback, whereas an RCM with parameterised convection, even when run at the same resolution,
simulated an unrealistic positive feedback. There is medium evidence and high agreement that simulations at
convection-permitting resolution are required to realistically represent soil-moisture precipitation feedbacks.

Ocean-atmosphere RCMs have successfully been used to understand and simulate phenomena involving
strong regional feedbacks like tropical cyclones in the Indian Ocean (Samson et al., 2014), Indian summer
monsoon (Samanta et al., 2018), East-Asian summer monsoon (Zou et al., 2016), near-coastline intense
precipitation in the Mediterranean (Berthou et al., 2015, 2018b), air-sea fluxes influencing heat and humidity
advection over land (Sevault et al., 2014; Lebeaupin Brossier et al., 2015; Akhtar et al., 2018) or snow bands
in the Baltic region (Pham et al., 2017). The positive impact of ocean-coupling on the simulation of strongly
convective phenomena such as Medicanes, a class of severe cyclones in the Mediterranean, can only be
diagnosed when using relatively fine atmospheric resolution of about 10 km (Akhtar et al., 2014; Flaounas et
al., 2018; Gaertner et al., 2018). A positive impact of ocean coupling has been quantified in marginal sea
regions with reduced large-scale influence (e.g., in the Baltic Sea area during weak phases of the NAO and
thus weak influence of Atlantic westerlies (Kjellstrom et al., 2005; Pham et al; 2018)). There is some
evidence that coupled ocean-components also positively impact RCM simulations of inland climates such as
precipitation extremes in Central Europe (Ho-Hagemann et al., 2017; Akhtar etal:; 2019), There is high
confidence that coupled ocean-atmosphere RCMs improve the representation of ocean-atmosphere feedbacks
and related phenomena.

The influence of ice sheet mass balance on regional climate, €xplored with global and regional models by
(Noél et al., 2018; Fettweis et al., 2020), is discussed in Section 9.4.

10.3.3.6 Performance at simulating regional drivers of climate and climate change

Dust, with its regional character in both emissions and climaticiinfluences, has traditionally been specified in
climate simulations with a climatological estimate. In CMIP5.models, the influence of vegetation changes on
mineral dust is largely underestimated while the‘influence of surface wind and precipitation are
overestimated, resulting in a low bias of dust load (Pu and ‘Ginoux, 2018). Interactive dust emission modules
that simulate the dust optical depth in most of the key emission regions have only been recently introduced
(Pu and Ginoux, 2018). However, coarse dust is/underestimated in global models (Adebiyi and Kok, 2020).
Simulations of future changes in dust are hindered by the uncertainties in future regional wind and
precipitation as the climate warms (Evan et al.;,2016), in the effect of CO, fertilization on source extent
(Huang et al., 2017), in the dust feedbacks (Evans et al., 2019), and in the effect of human activities that
change land use and disturb the soilyincluding cropping and livestock grazing, recreation and urbanization,
and water diversion for irrigation/(Ginoux.et al., 2012).

Volcanoes also provide foreings with‘a marked regional impact (Cross-Chapter Box 4.1). This implies that
models are expected to capture these effects (Bethke et al., 2017). Both proxy analyses and simulations have
demonstrated reduced Asian monsoon precipitation after tropical and Northern Hemisphere volcanic
eruptions due to reduced humidity and divergent circulation (Man and Zhou, 2014; Zhuo et al., 2014; Liu et
al., 2016a; Stevenson et al., 2016). Global model experiments (Zanchettin et al., 2013; Ortega et al., 2015;
Michel et al., 2018; Sjolte et al., 2018) have suggested that tropical volcanic eruptions (larger than the one
from Mount Pinatubo in 1991) may lead to a positive phase of the winter NAO in the following few years
(with an uncertainty on the exact years affected), but this influence is not well reproduced in climate models
(Driscoll‘et al., 2012; Toohey et al., 2014; Swingedouw et al., 2017; Ménégoz et al., 2018b). The ability to
simulate the effect of volcanic aerosol in global models is evaluated in VoIMIP (Zanchettin et al., 2016).
Given the relevance of volcanic aerosol, a good knowledge of the initial conditions is important because the
response has proven to be sensitive to them (Ménégoz et al., 2018a; Zanchettin et al., 2019). A few decadal
prediction systems have illustrated that current systems can predict some aspects of regional climate a few
years in advance (Swingedouw et al., 2017; Illing et al., 2018; Ménégoz et al., 2018a; Hermanson et al.,
2020). However, a better performance requires information about volcanic location (Haywood et al., 2013;
Pausata et al., 2015; Stevenson et al., 2016; Liu et al., 2018a), strength (Emile-Geay et al., 2008; Lim et al.,
2016b; Liu et al., 2018b), and seasonality (Stevenson et al., 2017; Sun et al., 2019a, 2019b).
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Some recent regional climate changes can only be simulated by climate models if anthropogenic aerosols are
correctly included (Sections 10.4.2.1, 10.6.3 and 10.6.4; Chapters 6 and 8). Examples of the importance of
correctly representing anthropogenic aerosols are the recent enhanced warming over Europe (Nabat et al.,
2014; Dong et al., 2017), the cooling over the East Asian monsoon region, leading to a weakening of the
monsoon (Section 8.3.2.4; Song et al., 2014; Wang et al., 2017b), as well as changes in the monsoons of
West Africa (Sections 8.3.2.4 and 10.4.2.1) and South Asia (Sections 8.3.2.4 and 10.6.3; Undorf et al.,
2018). The relevance of appropriately representing anthropogenic aerosols has been widely studied in
regional models (Boé et al., 2020a; Gutiérrez et al., 2020), with an advantage for models with interactive
aerosol schemes (Drugé et al., 2019; Nabat et al., 2020). Without a fully coupled chemistry module, radiative
forcing can be simulated by including simple models of sulphate chemistry or specifying the optical
properties from observations and prescribing the effect of aerosols on the cloud-droplet number (Fiedler et
al., 2017, 2019; Stevens et al., 2017). In all cases, the specification of the aerosol load limits the
trustworthiness of the simulations at the regional scale when enough detail is not provided (Samset et al.;
2019; Shonk et al., 2020; Wang et al., 2021).

The inclusion of irrigation in global and regional models over the South Asian monsoon region(Section
10.6.3) has been found to be important to represent the monsoon circulation and rainfall correctly (Lucas-
Picher et al., 2011; Guimberteau et al., 2012; Shukla et al., 2014; Tuinenburg et al., 2014; Cook et al., 2015a;
Devanand et al., 2019). Similarly, the inclusion of irrigation ovet northern India and western Pakistan could
be important for the correct simulation of precipitation over the Upper Indus Basin.in northern Pakistan
(Saeed et al., 2013). Irrigation in the East African Sahel inhibits rainfall over the irrigated region and
enhances instead rainfall to the east, coherent with both observations and theoretical understanding of the
local circulation anomalies induced by the lower surface ait temperatures over the irrigated region (Alter et
al., 2015). Although several studies show how modelled irrigation reduces.daytime temperature extremes,
few compare modelled results with observations. Global model studies have found improvements in
simulated surface temperature when including irrigation (Thiety-et.al.,; 2017), in particular in areas where the
model used has a strong land-atmosphere coupling (Chen and.Dirmeyer, 2019). An RCM study over the
North China Plain showed that the inclusion of‘irrigation led to a better representation of the observed night
time warming (Chen and Jeong, 2018).

There is medium confidence that tepresenting irrigation is important for a realistic simulation of South Asian
monsoon precipitation. There is' /imited evidence that including irrigation in climate models improves the
simulation of maximumrand minimum daily temperatures as well as precipitation for other regions.

Regional land-radiation.management, including modifying the albedo through, for instance, no-tillage
practices, has been suggested as a'measure to decrease regional maximum daily temperatures (see review in
Seneviratne-et al.,2018), but although modelled results and theoretical understanding are coherent, few
studies have verified the results with-Observations. Hirsch et al. (2018) is an exception, showing that
implementing minimal tillage, crop residue management and crop rotation in a global model over regions
where it is practiced, improves.the simulation of surface heat fluxes.

10.3.3.7 Statistical downscaling, bias adjustment and weather generators

The performance of statistical downscaling models, bias adjustment and weather generators is determined by
the choseén model structure (e.g., to represent variability and extremes or spatial dependence) and, if
applicable, the predictors selected (Maraun et al., 2019b). The VALUE initiative has assessed a range of
such methods in a perfect-predictor experiment where the predictors are taken from reanalysis data (Maraun
et al., 2015, 2019b; Gutiérrez et al., 2019). Table 10.2 shows an overview comprising performance results
from VALUE and other studies. These results isolate the performance of the statistical method in the present
climate. The overall performance in a climate change application also depends on the performance of the
driving climate model (Sections 10.3.3.3—-10.3.3.6) and the fitness of both the driving model and the
statistical method for projecting the climatic aspects of interest (Section 10.3.3.9).
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[START TABLE 10.2 HERE]

Table 10.2: Performance of different statistical method types in representing local weather at daily resolution.
Individual state-of-the-art implementations may perform better. "+": should work reasonably well based
on empirical evidence and/or expert judgement; “o0”: problems may arise depending on the specific
context; "-": weak performance either by construction or inferred from empirical evidence; "?": not
studied. The categorisation assumes that predictors are provided by a well performing dynamical model.
Statements about extremes refer to moderate events occurring at least once every 20 years. Adopted and
extended from (Maraun and Widmann, 2018b). (1) (Casanueva et al., 2020); (2) (Dubrovsky et al., 2019);
(3) (Evin et al., 2018); (4) (Frost et al., 2011); (5) (Gutiérrez et al., 2013); (6) (Gutiérrez et al., 2019); (7)
(Gutmann et al., 2014); (8) (Hertig et al., 2019); (9) (Hu et al., 2013a); (10) (Huth.et al., 2015) (11)
(Keller et al., 2015); (12) (Maraun et al., 2019a); (13) (San-Martin et al.;2017);(14) (Widmann et al:,

2019).
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Climate change + - |+ o0 + o o o + + + + 1,12, 13
Precipitation, spatial variability

Means - - |- |-+ o + |+ + -/o | -/o | -/o | o 3,4,11, 14
Extremes - |- - -+ o o o o -7 ? 3,14

[END TABLE 10.2 HERE]

10.3.3.7.1 Performance of perfect prognosis methods

Perfect-prognosis methods can perform well when the synoptic forcing (i.e., the explanatory power of large-
scale predictors) is strong (Schoof, 2013). Using this approach, downscaling of precipitation is particularly
skilful in the presence of strong orographic forcing. The representation of daily variability and extremes
requires analogue methods or stochastic regression models, although the former typically do not extrapolate
to unobserved values (Gutiérrez et al., 2019; Hertig et al., 2019). Temporal precipitation variability is well
represented by analogue methods and stochastic regression, but analogue methods typically underestimate
temporal dependence of temperature (Maraun et al., 2019a). Spatial dependence of both temperature and
precipitation is only well represented by analogue methods, for which/analogues are defined jointly across
locations, and by stochastic regression methods explicitly representing'spatial dependénce (Widmann et al.,
2019). Overall, there is #igh confidence that analogue methods and stochastic regression are able to represent
many aspects of daily temperature and variability, but the analogue method is inherently limited in
representing climate change (Gutiérrez et al., 2013).

10.3.3.7.2 Performance of bias adjustment methods

This subsection assesses the performance of bias adjustment in a perfect predictor context. In practice,
climate model imperfections may cause substantial additionalissues in the application of bias adjustment.
These are assessed separately in Cross-Chapter Box 10.2.

Bias adjustment methods, if driven by reanalysis predictors, in principle adjust well all the aspects that they
intend to address (Maraun and Widmann, 2018b). For temperature, all univariate methods are good for
adjusting means, variance, and high quantiles (Gutiérrez et al., 2019; Hertig et al., 2019). For precipitation,
means, intensities, wet-day frequencies, and wet-dry and dry-wet transitions are well adjusted (Gutiérrez et
al., 2019; Maraun et al.,.2019a). The representation of high quantiles depends on the chosen method,
although flexible quantile mapping performs best (Hertig et al., 2019). Empirical (non-parametric) methods
perform better than-parametric methods over the observed range, but it is unclear how this translates into
extrapolation to unobserved values-(Hertig et al., 2018; Stocker et al., 2015). Many quantile mapping
methods overestimateinterannual variability (Maraun et al., 2019a). Temporal and spatial dependence are
usually not adjusted and thus inherited from the driving model (Maraun et al., 2019a; Widmann et al., 2019).
Spatial fields are thus typically too smooth in space, even after bias adjustment (Widmann et al., 2019).

Several studies show.improved simulations of present day impacts, when the impact model is fed with bias-
adjusted climate‘model output, including the assessment of river discharge (Rojas et al., 2011; Muerth et al.,
2013; Montroull.et al.,2018), forest fires (Migliavacca et al., 2013), crop production (Ruiz-Ramos et al.,
2016), and Tegional ocean modelling (Macias et al., 2018).

There is-high confidence that bias adjustment can improve the marginal distribution of simulated climate
variables, if applied to a climate model that adequately represents the processes relevant for a given
application (Cross-Chapter Box 10.2).

10.3.3.7.3 Performance of weather generators

Weather generators represent well most aspects that are explicitly calibrated. This typically includes mean,
variance, high quantiles (for precipitation, if explicitly modelled), and short-term temporal variability for
both temperature and precipitation, whereas interannual variability is strongly underestimated (Frost et al.,
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2011; Hu et al., 2013a; Keller et al., 2015; Dubrovsky et al., 2019; Gutiérrez et al., 2019; Hertig et al., 2019;
Maraun et al., 2019a; Widmann et al., 2019). There is growing evidence that some spatial weather generators
fairly realistically capture the spatial dependence of temperature and precipitation (Frost et al., 2011; Hu et
al., 2013a; Keller et al., 2015; Evin et al., 2018; Dubrovsky et al., 2019). There is high confidence that
weather generators can realistically simulate a wide range of local weather characteristics at single locations,
but there is /imited evidence and low agreement of the ability of weather generators to realistically simulate
the spatial dependence of atmospheric variables across multiple sites.

10.3.3.8 Performance at simulating historical regional climate changes

This section assesses how well climate models perform at realistically simulating historical regional climatic
trends. Current global model ensembles reproduce global to continental-scale surface temperature trends at
multi-decadal to centennial time scales (CMIP5, CMIP6), but underestimate precipitation trends (CMIPS)
(Sections 3.3.1 and 3.3.2). For regional trends, AR5 concluded that the CMIP5 ensemble cannot.be taken as
a reliable representation of reality and that the true uncertainty can be larger than the simulated model spread
(Kirtman et al., 2014). Case studies of regional trend simulations by global models‘can be found in Sections
10.4.1 and 10.6, and region-by-region assessments in the Atlas. A key limitation for assessing the
representation of regional observed trends by single transient simulations of global models.(or:downscaled
versions thereof) is the strong amplitude of internal variability compared to the forced:signal at the regional
scale (Section 10.3.4.3). Even on multidecadal time scales, an agréeement between observed and individual
simulated trends would be expected to occur only by chance (Laprise, 2014).

In the context of downscaling, the ability of downscaling methods to reproduce observed trends when driven
with boundary conditions or predictors taken from reanalysis data (which.reproduce the observed internal
variability on long time scales) can be assessed: For temperature in the continental USA, reanalysis-driven
RCMs skilfully simulated recent spring and-winter trends, butdid.not reproduce summer and autumn trends,
(Bukovsky, 2012). Over Central America; observed warming trends were reproduced (Cavazos et al., 2019).
In contrast, a reanalysis-driven coupled atmosphere-ocean RCM. covering the Mediterranean could not
reproduce the observed SST trend (Sevault et al., 2014).

Similar studies have been carried.out for statistical downscaling and bias adjustment using predictors from
reanalyses (or in case of bias adjustment, dynamically.downscaled reanalyses). For a range of different
perfect prognosis methods, Huth.et al. (2015) found that simulated temperature trends were too strong for
winter and too weak for summer. The performance was similar for the different methods, indicating the
importance of choosing sensible predictors. Similarly, Maraun et al. (2017) found that the performance of
perfect prognosis methods depends'mostly on the predictor and domain choice (for instance, temperature
trends were.only captured by those methods including surface temperature as predictor). Bias adjustment
methods reproduced the trends of the/driving reanalysis, apart from quantile mapping methods, which
deteriorated these trends.

RCM experiments.are often set up such that changes in forcing agents are included only via the boundary
conditions, but not explicitly included inside the domain. Jerez et al. (2018) demonstrated that not including
time-varying GHG concentrations within the RCM domain may misrepresent temperature trends by 1-2°C
per century. Including the past trend in anthropogenic sulphate aerosols in reanalysis-driven RCM
simulations substantially improved the representation of recent brightening and warming trends in Europe
(Nabat et'al., 2014; Section 10.3.3.6, 10.6.4, Atlas 8.4). Similarly, Bukovsky (2012) argued that RCMs may
not capture’observed summer temperature trends in the USA because changes in land cover are not taken
into account. Barlage et al. (2015) have revealed that including the behaviour of groundwater in land
schemes increases the performance of an RCM model to represent climate variability in the central USA.
Hamdi et al. (2014) found that an RCM that did not incorporate the historical urbanization in the land-use,
land-cover scheme is not able to reproduce the warming trend observed in urban stations, with a larger bias
for the minimum temperature trend.

Overall, there is high confidence that including all relevant forcings is a prerequisite for reproducing
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historical trends.

10.3.3.9 Fitness of climate models for projecting regional climate

ARS stated that confidence in climate model projections is based on the physical understanding of the
climate system and its representation in climate models. A climate model’s credibility for future projections
may be increased if the model is able to simulate past variations in climate (Flato et al., 2014; Sections
10.3.3.8, 10.4.1 and 10.6). In particular, the credibility of downscaled information depends on the quality of
both the downscaling method and of the global model providing the large-scale boundary conditions (Flato
et al., 2014). Credibility is closely linked to the concept of adequacy or fitness for purpose (Parker, 2009;
Section 1.5.4.1). From a regional perspective, one may ask about the fitness of a climate model for
simulating future changes of specific aspects of a specific regional climate. The required level of model
fitness may depend on the user context (Section 10.5). A key challenge is to link performance at representing
present and past climate (Sections 10.3.3.3 to 10.3.3.8) to the confidence in future projections (Section 1.3.5;
Baumberger et al., 2017) and it is addressed in this subsection.

A general idea of model fitness for a given application may be obtained by checking whether relevant large-
(Section 10.3.3.4) and regional-scale (Sections 10.3.3.5 and 10.3.3.6) processes are explicitly resolved
(Figure 10.3). The basis for confidence in climate projection is a'solid process understanding (Flato et al.,
2014; Baumberger et al., 2017). Thus, the key to assessing the fitness for purpose of 'a model is the
evaluation of how relevant processes controlling regional climate are represented (Collins et al., 2018). A
process-based evaluation may be more appropriate than an evaluation of the variables of interest (e.g.,
temperature, precipitation), because biases in the lattér.may. in principle be.reduced if the underlying
processes are realistically simulated (Cross-Chapter Box 10.2), while individual variables may appear as
well represented because of compensating errors (Flato et al., 2014; Baumberger et al., 2017). Combining a
process-based evaluation with a mechanistic explanation of projected changes further increases confidence in
projections (Bukovsky et al., 2017). Fitness-for-purpose can alsobe assessed by comparing the simulated
response of a model with simulations of higher rfesolution models that better represent relevant processes
(Baumberger et al., 2017). For instance, Giorgi et al. (2016) have corroborated their findings on precipitation
changes comparing standard RCM simulations with.convection-permitting simulations.

The evaluation of model performance at historical.variability and long-term changes provides further
relevant information (Flato et al.,2014). Trend evaluation may provide very useful insight, but has
limitations in particular at the regional scale, mainly due to multi-decadal internal climate variability
(Section 10.3.3.8)y0bservational uncertainty (in both driving reanalysis and local trends; Section 10.2), and
the fact that often not all regional-forcings are known, and that past trends may be driven by forcings other
than those driving future trends/(Sections 10.4.1 and 10.6.3).

Increasing resolution (Haarsma et.al., 2016) or performing downscaling may be particularly important when
it modifies the climate change signal of a lower resolution model in a physically plausible way (Hall, 2014).
Improvements mayresult from a better representation of regional processes, upscale effects, as well as the
possibility of a region-specific model tuning (Serland et al., 2018). For instance, Gula and Peltier (2012)
showed that a higher resolution allows for a more realistic simulation of lake-induced precipitation, resulting
in a more credible projection of changes in the snow belts of the North American Great Lakes. Similarly,
Giorgi et al. (2016) demonstrated that an ensemble of RCMs better represents high-elevation surface heating
and in turn increased convective instability. As a result, the summertime convective precipitation response
was opposite to that simulated by the driving global models (Figure 10.9). Similarly, Walton et al. (2015)
showed that a kilometre-scale RCM enables a more realistic representation of the snow-albedo feedback in
mountainous terrain compared to standard resolution global models, leading to a more plausible simulation
of elevation-dependent warming. Bukovsky et al. (2017) argue that strong seasonal changes in warm-season
precipitation in the Southern Great Plains of the US, projected by RCMs, are more credible than the weaker
global model changes because precipitation is better simulated in the RCMs.
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[START FIGURE 10.9 HERE]

Figure 10.9: Projected changes in summer (June to August) precipitation (in percent with respect to the mean
precipitation) over the Alps between the periods 2070-2099 and 1975-2004. (a) Mean of four GCMs
regridded to a common 1.32°x1.32° grid resolution; (b) mean of six RCMs driven with these GCMs. The
grey isolines show elevation at 200 m intervals of the underlying model data. Further details on data
sources and processing are available in the chapter data table (Table 10.SM.11). Adapted from Giorgi et
al. (2016).

[END FIGURE 10.9 HERE]

Including additional components, feedbacks and drivers can substantially modify the simulated future
climate. For example, Kjellstrom et al. (2005) and Somot et al. (2008) have shown that'a regional ESM can
significantly modify the SST response to climate change of its driving global model with implications for the
climate change signal over both the sea and land. In particular, coupled‘ocean-atmosphere:RCMs may
increase the credibility of projections in regions of strong air-sea coupling such as the East Asia-western
North Pacific domain (Zou and Zhou, 2016b, 2017). Recent studies demonstrate the‘importance of including
regional patterns of evolving aerosols in RCMs for simulating regional climate change (Bo¢ et al., 2020a;
Gutiérrez et al., 2020). RCMs not including the plant physielogical response to inereasing CO»
concentrations have been shown to substantially underestimate projected increases'in extreme temperatures
across Europe compared to GCMs that explicitly model this effect (Schwingshackl et al., 2019).

A difference between the climate changes simulated by two models does not automatically imply the more
complex or higher resolution model is superior (e.g., Dosio et al., 2019). Studies comparing convection-
permitting RCM simulations to simulations of climate models with parameterized convection find,
depending on the considered models, regions and seasons; either similar or qualitatively different projected
changes in short duration extreme precipitation (Chan et.als 2014b, 2014a, 2020; Ban et al., 2015; Tabari et
al., 2016; Fosser et al., 2017; Kendon et al., 2017, 2019; Vanden Broucke et al., 2018). Process studies
provide evidence that convection-permitting simulations better represent crucial local and mesoscale features
of convective storms and thus simulate more plausible changes (Meredith et al., 2015a; Prein et al., 2017,
Fitzpatrick et al., 2020), but further research is required to confirm and reconcile the different findings.

Studies assessing the fitness of statistical approaches for regional climate projections are still very limited in
number. For statistical downscaling, a key issue is to include predictors that control long-term changes in
regional climate. Models differing only in the choice of predictors may perform similarly in the present
climate, but may project opposite precipitation changes (Fu et al., 2018; Manzanas et al., 2020). In addition
to trend-evaluation studies (Section 10.3.3.8), perfect-model experiments (Section 10.3.2.5) have been used
to assess whether a given modelstructure with a chosen set of predictors is capable of reproducing the
simulated future climates (Gutiérrez et al., 2013; Rity et al., 2014; Dayon et al., 2015; Dixon et al., 2016;
San-Martin et al.;2017). dImportantly, it is found that standard analogue methods inherently underestimate
future warming trends because of missing analogues for a warmer climate (Gutiérrez et al., 2013).

Bias adjustment assumes that model biases are time invariant (or more precisely, independent of the climate
state), such that the adjustment made to present climate simulations is still applicable to future climate
simulations: Many findings challenge the validity of this assumption, as already assessed in ARS (Flato et
al., 2014). Further research has addressed this issue by means of perfect model experiments (Section
10.3.2.5) and process understanding. Perfect-model studies with GCMs found that circulation, energy, and
water-cycle biases are roughly state-independent (Krinner and Flanner, 2018), whereas temperature biases
depend linearly on temperature (Kerkhoff et al., 2014). Others show that regional temperature biases may
depend on soil moisture and albedo, and may thus be state-dependent (Maraun, 2012; Bellprat et al., 2013;
Maraun et al., 2017; see Cross-Chapter Box 10.2 for further limitations of bias adjustment). The fitness of
weather generators for future projections depends on whether they account for all relevant changes in their
parameters, either by predictors or change factors (Maraun and Widmann, 2018b).
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In any case, the fitness of regional climate projections based on dynamical downscaling or statistical
approaches depends on the fitness of the driving models in projecting boundary conditions, predictors and
change factors (Hall, 2014; Maraun and Widmann, 2018b).

Overall, there is high confidence that an assessment of model fitness for projections applying process-based
evaluation, process-based plausibility checks of projections and a comparison of different model types,
increases the confidence in climate projections. There is high confidence that increasing model resolution,
dynamical downscaling, statistical downscaling with well simulated predictors controlling regional climate
change, and adding relevant model components can increase the fitness for projecting some aspects of
regional climate when accompanied by a process-understanding analysis.

10.3.3.10 Synthesis of model performance at simulating regional climate and climate change

Global models reproduce many of the features of observed climate and its variability at regional:scales.
However, global models can show a variety of biases in, for instance, precipitation and temperature at scales
ranging from continental (Prasanna, 2016) to sub-continental scales (Lovino,et'al.;2018), both in the mean
and in higher order moments of the climatological distribution of the variable (Ren et al., 2019; Xin et al.,
2020; Figure 10.6). Regional biases could occur even if all the relevant large-scale processes are correctly
represented, but not their interaction with regional features suchias orography or land-sea contrasts (Section
10.3.3.4). These biases have been considered an important limiting factor in model usability, especially at the
regional scale (Palmer, 2016). In spite of this, global model simulations have been exténsively used to create
regional estimates of climate change (Chapters 11, 12 and Atlas); taking into account the result of a
performance assessment (e.g., Jiang et al., 2020; Sections 10.3.3.3 to 10.3:3.8, Chapters 11 and Atlas).
However, their application is limited in part by the effective resolution of these models (Klaver et al., 2020).

Global model performance at the regional scale'is assessed in terms of the time or spatial averages of key
variables (Brunner et al., 2019; Chapter Atlas), the‘ability to reproduce their seasonal cycle (Hasson et al.,
2013) or a set of extreme climate indicators (Luo et al., 2020; Chapter 11) and the representation of regional
processes and phenomena, feedbacks, drivers and forcing.impacts (Sections 10.3.3.4-10.3.3.6). In many
cases, the performance estimates’have been used to-select models for either an application or a more in-depth
study (Lovino et al., 2018), to select the models that provide boundary conditions to perform RCM
simulations (McSweeney et al.;2015) or to weight the results of the GCM simulations (Sanderson et al.,
2015; Brunner et al., 2020). While some large-scale metrics are improved between the CMIP5 and CMIP6
experiments (e.g., Cannon, 2020; Chapter 3), there is not yet concluding evidence of a systematic
improvement for surface variables at the regional scale.

The special class of high-resolution global models (Haarsma et al., 2016; Prodhomme et al., 2016; Sections
1.5.3.1 and 10.3.3:1, Chapter 3) is.expected to improve some of the regional processes that are not
appropriately represented in standard global models (Roberts et al., 2018). There is general consensus that
increasing global model resolution improves some long-standing biases (Demory et al., 2014, 2020;
Schiemann et al., 2014; Dawson and Palmer, 2015; van Haren et al., 2015; Feng et al., 2017; Fabiano et al.,
2020; Chapter 3‘and10.3.3.3; Figures 10.6 and 10.7), although the resolution increase is not a guarantee of
overall improvement (Fabiano et al., 2020; Hertwig et al., 2021; Section 8.5.1). For instance, increasing
resolution in.global models has been shown to improve Asian monsoon rainfall anchored to orography and
the monsoon circulation (Johnson et al., 2016), but fails to solve the major dry bias. It is also difficult to
disentangle the role of resolution increase and model tuning on the performance of the GCM (Anand et al.,
2018). Some efforts have been undertaken to complement the performance improvements of resolution by
using stochastic parameterisations (Palmer, 2019), which explicitly acknowledge the multi-scale nature of
the climate system, in standard resolution global models with some success (Dawson and Palmer, 2015;
MacLeod et al., 2016; Zanna et al., 2017, 2019). The expectation is to achieve a similar performance to the
increase in resolution at a reduced computational cost.

Despite their known errors that affect model performance, there is high confidence that global models
provide useful information for the production of regional climate information. There is robust evidence and
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high agreement that the increase of global model resolution helps in reducing the biases limiting
performance at the regional scale, although resolution per se does not automatically solve all performance
limitations shown by global models. There is robust evidence that stochastic parameterisations can help to
improve some aspects of the global model performance that are relevant to regional climate information.

Global models tend to have difficulties in simulating climate over regions where unresolved local scale
processes, feedbacks and nonlinear scale interactions result in a degradation of the model performance
compared to models with higher resolution. In this case, RCMs and variable resolution global models can
resolve part of these processes in the regions of interest at an acceptable computational cost (Rummukainen,
2016; Giorgi, 2019; Gutowski et al., 2020).

The assessment of RCM performance needs to focus not only on mean climatology (Atlas), but also trends
(Section 10.3.3.8) and extremes (Chapter 11), and the RCM’s ability at correctly reproducing relevant
processes, forcings and feedbacks (including e.g., aerosols, plant responses to increasing CO., etc.,
Schwingshackl et al., 2019; Boé et al., 2020; Sections 11.2. and 10.3.3.3 to 10:3.3.8) to be fit for.future
projections (Section 10.3.3.9).

When RCMs are driven by global models, part of the uncertainty in the REM simulation is introduced by the
global model biases (Kjellstrom et al., 2018; Serland et al., 2018; Christensen and Kjellstrém, 2020). As
RCMs are typically not able to mitigate global model biases in large-scale dynamical processes, if such
biases are substantial, and if the corresponding large-scale processes are important drivers of regional
climate, downscaling is questionable (Section 10.3.3.3). However, when global models have weak
circulation biases and regional climate change is controlled mainly by regional-scale processes and
feedbacks, dynamical downscaling has the potential toradd substantial value to global model simulations
(Hall, 2014; Rummukainen, 2016; Giorgi, 2019; Schwingshackl et al.; 2019; Boé¢ et al., 2020; Lloyd et al.,
2020; Section 10.3.3.4 and Chapter Atlas).

There is very high confidence (robust evidence and high agreement) that RCMs add value to global
simulations in representing many regional weather and climate phenomena, especially over regions of
complex orography or with heterogeneous surface characteristics and for local-scale phenomena.
Realistically representing local-scale phenomena such as land-sea breezes requires simulations at a
resolution of the order of 10 km (high confidence). Simulations at kilometre-scale resolution add value in
particular to the representation0f convection; sub=daily summer precipitation extremes (high confidence)
and soil moisture-precipitation feedbacks (medium confidence). Resolving regional processes may be
required to correctly represent the sign/of regional climate change (medium confidence). However, the
performance of RCMs and their fitness.for future projections depend on their representation of relevant
processes, forcings and drivers in‘the specific context (Sections 10.3.3.4-10.3.3.8).

Statistical downscaling, bias adjustment and weather generators outperform uncorrected output of global and
regional models for a range of statistical aspects at single locations due to their calibration, but RCMs are
superior when spatial fields arerelevant (Mehrotra et al., 2014; Vaittinada Ayar et al., 2016; Maraun et al.,
2019b). Similarly,there is some evidence that bias adjustment is comparable in performance when applied to
global models and dynamically downscaled global models only for single locations, but dynamical
downscaling prior to:bias adjustment clearly adds value once spatial dependence is relevant (Maraun et al.,
2019b). These results may explain why dynamical downscaling does not add value to global model
simulations for (single-site) agricultural modelling, when both global and regional model are bias adjusted
(Glotter'et al., 2014), but dynamical downscaling adds value compared to bias adjusted global model output
for spatially distributed hydrological models (Qiao et al., 2014).

Overall, statistical downscaling methods with carefully chosen predictors and an appropriate model structure
for a given application realistically represent many statistical aspects of present-day daily temperature and
precipitation (high confidence, Section 10.3.3.7). Bias adjustment has proven beneficial as an interface
between climate model projections and impact modelling in many different contexts (high confidence,
Section 10.3.3.7). Weather generators realistically simulate many statistical aspects of present-day daily
temperature and precipitation (high confidence, Section 10.3.3.7). The performance of these approaches and
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their fitness for future projections also depends on predictors and change factors taken from the driving
dynamical models (high confidence, Section 10.3.3.9).

10.3.4 Managing Uncertainties in Regional Climate Projections

Regional climate projections are affected by three main sources of uncertainty (Sections 10.2.2, 1.4.3 and
4.2.5): unknown future external forcings, imperfect knowledge and implementation of the response of the
climate system to external forcings, and internal variability (Lehner et al., 2020). In a regional downscaling
context, uncertainties arise in every step of the modelling chain. Here the propagation of uncertainties
(Section 10.3.4.1), the management of uncertainties (Section 10.3.4.2), the role of the internal variability for
regional projections (Section 10.3.4.3), and the design and use of ensembles to account for uncertainties
(Section 10.3.4.4) will be assessed. Observational uncertainty, in particular for the calibration of statistical
downscaling methods (Section 10.2.3.1), also contributes to projection uncertainty.

10.3.4.1 Propagation of uncertainties

Modelling chains for generating regional climate information range.from the definition of forcing scenarios
to the global modelling, and potentially to dynamical or statistical downscaling and bias adjustment (Section
10.3.1). The propagation and potential accumulation of uncertainties along the ¢hain has been termed the
cascade of uncertainty (Wilby and Dessai, 2010). Even within.one model, like a global model, uncertainty
propagates across scales. From a process point of view, these uncertainties are related to forcings and global
climate sensitivity, and errors in the representation of the large-scale circulation(McNeall et al., 2016;
Section 10.3.3.3) and regional processes (Section 10.3.3.4), feedbacks (Section 10.3.3.5) and drivers (Section
10.3.3.6). From a modelling point of view, these uncertainties are related to the choice of dynamical and
statistical models (Section 10.3.1) and experimental design (Section 10.3.2). The overall uncertainty can be
statistically decomposed into the individual sources (Evin et al., 2019; Christensen and Kjellstrom, 2020),
although there might be nonlinear dependencies between them.

Uncertainty propagation often incCreases the spread-in.regional climate projections when comparing global
model and downscaled results, which has been used as an argument against top-down approaches to climate
information (Prudhomme et al42010). Increased spread in the modelling chain may also arise from a more
comprehensive representation of previously unknown or underrepresented uncertainties (Maraun and
Widmann, 2018b). The increased spread in this case goes together with a better representation of processes
and thus an increased model fitness for:purpose (Section 10.3.3.9).

10.3.4.2 Representing and reducinguncertainties

Climate response uncertainties (Chapter 1) can be represented by multi-model ensembles, although the
sampled uncertainty-typically underestimates the full range of uncertainty (Collins et al., 2013b; Shepherd et
al., 2018; Almazroui‘et al., 2021). Traditionally, climate response uncertainty has been characterized by the
ensemble spread.around the multi-model mean change. The change has then further been qualified in terms
of the agreement across models and compared to estimates of internal climate variability (Collins et al.,
2013b)s Since AR5, several limitations of this approach have been identified (Madsen et al., 2017) such as
the failure to address physically plausible, but low probability high-impact scenarios (Chapters 1, 4, 8 and 9;
Sutton, 2018) or that qualitatively different or even opposite changes may be equally plausible at the regional
scale (Shepherd, 2014). In a multi-model mean these different responses would be lumped together, strongly
dampened, and qualified as non-robust, whereas in fact high impacts might occur. Further, the multi-model
mean itself is often implausible because it is a statistical construct (Zappa and Shepherd, 2017). Overall,
there is high confidence that some regional future climate changes are not well characterised by multi-model
mean and spread.

Since ARS, physical climate storyline approaches (see also Chapter 1, Box 10.2, Section 10.5.3, and Atlas
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2.5.2) have been developed to better characterise and communicate uncertainties in regional climate
projections (Shepherd, 2019). A special class of such storylines attempts to attribute regional uncertainties to
uncertainties in remote drivers. For instance, the Dutch Meteorological Service has presented climate
projections for the Netherlands for different plausible changes of the mid-latitude atmospheric circulation
and different levels of European warming (van den Hurk et al., 2014). Manzini et al. (2014) have quantified
the impact of uncertainties in tropical upper troposphere warming, polar amplification, and stratospheric
wind change on Northern Hemisphere winter climate change. Based on these results, Zappa and Shepherd
(2017) separated the multi-model ensemble into physically consistent sub-groups or storylines of
qualitatively different projections in relevant remote drivers of the atmospheric circulation. In a similar vein,
(Ose et al., 2020) trace uncertainties in projections of the East Asian summer monsoon and Mindlin et al. (
2020) conditioned the response of Southern Hemisphere mid-latitude circulation and precipitation to
greenhouse gas forcing on large-scale climate indicators (Section 8.4.2.9.2).

These physical climate storylines help to physically explain contradicting regional projections and.thus make
the conveyed information a better representation of the true uncertainty (Hewitson'et al., 2014a):
Additionally, the attribution of regional uncertainties to drivers may in principle help reduce uncertainty in
the case where some storylines can be ruled out because the projected changes in-the driving processes
appear to be physically implausible (Zappa and Shepherd, 2017). Thete is.thus high confidence that
storylines attributing uncertainties in regional projections to uncertainties in changesof remote drivers aid
the interpretation of uncertainties in climate projections.

Another approach that has continued to develop for characterising and reducing projection uncertainties is
the use of emergent constraints (Hall et al., 2019; Chapters 1,4,.5, 7). The idea is to link the spread in
climate model projections via regression to the spread'in present climate model biases for relevant driving
processes. Models with lower biases are assigned higher weight in the projections, which in turn reduces the
spread of the projections in a physical way and may additionally reduce projection uncertainty. For instance,
Simpson et al. (2016) have reduced the spread in projections of North- American winter hydroclimate by
linking this spread to model biases in therepresentation of relevant stationary wave patterns. Other examples
of using emergent constraints in a regional context are Brown etal. (2016), Li et al. (2017), Giannini and
Kaplan (2019), Ose (2019) and Zhou et al.(2019).

10.3.4.3 Role of internal variability

A regional climate projection based ona single simulation from a single global model or driving a single
RCM alone will inevitably be affected by not taking into account the internal variability (Figure 10.10). This
is mainly due to the dominant influence of the chaotic atmospheric circulation on regional climate
variability, in particular at mid-to-high latitudes. Internal variability is an irreducible source of uncertainty
for mid-to-long-term projections with an amplitude that typically decreases with increasing spatial scale and
lead time (Section 1.4.3; Section 4.2.1). However, regional-scale studies show that both large- and local-
scale internal variability together can still represent a substantial fraction of the total uncertainty related to
hydrological cyclewvariables, even at the end of the 21st century (Lafaysse et al., 2014; Vidal et al., 2016;
Aalbers et al., 2018;/Gu et al., 2018).

Analysis of multi-model archives such as CMIP or CORDEX simulation results cannot easily disentangle
model uncertainty and uncertainty related to internal variability. Since ARS, the development of single-
model (GCM and/or RCM) initial-condition large ensembles (SMILEs) has emerged as a promising way to
robustly assess the regional-scale forced response to external forcings and the respective contribution of
internal variability and model uncertainty to future regional climate changes (Deser et al., 2014, 2020; Kay et
al., 2015; Sigmond and Fyfe, 2016; Aalbers et al., 2018; Bengtsson and Hodges, 2018; von Trentini et al.,
2019b; Dai and Bloecker, 2019; Leduc et al., 2019; Mabher et al., 2019; Lehner et al., 2020; Section 4.2.5).
The recent development of a multi-model archive of SMILE simulations facilitates the quantification and
comparison of the influence of internal variability on global model-based regional climate projections
between different models (Deser et al., 2020; Lehner et al., 2020). Another related development is the more
frequent use of observation-based statistical models to assess the influence of internal variability on regional-
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scale global and regional model projections (Thompson et al., 2015; Salazar et al., 2016). However, these
methods often implicitly assume that regional-scale internal variability does not change under anthropogenic
forcing, which is a strong assumption that does not seem to hold at regional and local scales (LaJoie and
DelSole, 2016; Pendergrass et al., 2017; Cai et al., 2018b; Dai and Bloecker, 2019; Mankin et al., 2020;
Milinski et al., 2020).

[START FIGURE 10.10 HERE]

Figure 10.10: Observed and projected changes in austral summer (December to February) mean precipitation in
GPCC, CRU TS and 100 members of the MPI-ESM. (a) 55-year trends (2015-2070) from the
ensemble members with the lowest (left) and highest (right) trend (% per decade, baseline 1995-2014).
(b) Time series (%, baseline 1995-2014) for different spatial scales (from top to bottom: global averages;
S.E. South America; grid boxes close to Sdo Paulo and Buenos Aires) with a five-point weighted running
mean applied (a variant on the binomial filter with weights [1-3-4-3-1]). The brown (green) lines
correspond to the ensemble member with weakest (strongest) 55-year trend and the grey lines to all
remaining ensemble members. Box-and-whisker plots show the distribution of 55-year linear trends
across all ensemble members, and follow the methodology used.in Figure 10.6. Trends are estimated
using ordinary least squares. Further details on data sources and processing are available in the chapter
data table (Table 10.SM.11).

[END FIGURE 10.10 HERE]

The appropriate ensemble size for a robust use of SMILEs depends on the model and physical variable being
investigated, the spatial and time aggregation being performed, the magnitude of the acceptable error and the
type of questions one seeks to answer (Deser et al., 2012, 2017b; Kang et al., 2013; Wettstein and Deser,
2014; Dai and Bloecker, 2019; Maher et al.;2019). It is noteworthy. that the recent development of
ensembles with a very large ensemble size (greater than 100) have led to new insights and methodologies to
robustly assess the required ensemblesize for questionssuch as the estimation of the forced response to
external forcing or a forced change in modes of internal variability, such as ENSO, and its associated
teleconnections (Herein et al., 2017; Maher et al.,.2018; Haszpra et al., 2020; Milinski et al., 2020).

The use of SMILEs assumes that they have a'realistic representation of internal variability and its evolution
under anthropogenic climate change (Eade et al., 2014; McKinnon et al., 2017; McKinnon and Deser, 2018;
Chen and Brissette, 2019). Assessing the realism of simulated internal variability for past and current
climates remains.anvactive researchfield with a number of issues such as the shortness and uncertainties of
the observed record, in particularin data-scarce regions (Section 10.2.2.3), the signal-to-noise paradox
(Scaife and Smith;2018; Section 4.4.3.1), uncertainty in past observed external forcing estimates (Chapters
2, 6 and 7) and. the limitations of assumptions underlying the statistical methods used to derive observational
large ensembles (McKinnon.€t al.; 2017; McKinnon and Deser, 2018; Castruccio et al., 2019). Calibration
methods inspired by weather and seasonal forecasts can be used to improve the reliability of regional-scale
climate projectionsfrom large ensembles (Brunner et al., 2019; O’Reilly et al., 2020). Interestingly,
reliability is improved when the calibration is performed separately for the dynamical and residual
components of the ensemble resulting from dynamical adjustment (O’Reilly et al., 2020; Section 10.4.1).

Importantly, aceurately partitioning uncertainty in regional climate projections can provide an incentive for
immediate action, accepting a large range of possible outcomes due to internal variability, while confounding
model uncertainty with internal variability may be understood as a lack of knowledge and lead to delayed
action in adaptation decision-making (Maraun, 2013; Mankin et al., 2020; Section 10.5.3).

There is high confidence that the availability of SMILEs allows a robust assessment of the relative
contributions of model uncertainty and internal variability in regional-scale projection uncertainty. There is
high confidence that the use of SMILEs with appropriate ensemble size leads to an improved estimate of
regional-scale forced response to an external forcing as well as of the full spectrum of possible changes
associated with internal variability. There is high confidence that these improved estimates are beneficial for
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characterizing the full distribution of outcomes that is a key ingredient of climate information for robust
decision-making and risk-analysis frameworks.

10.3.4.4 Designing and using ensembles for regional climate change assessments to take uncertainty into
account

Ensembles of climate simulations play an important role in quantifying uncertainties in the simulation output
(Sections 10.3.4.2 and 10.3.4.3). In addition to providing information on internal variability, ensembles of
simulations can estimate scenario uncertainty and model (structural) uncertainty. Chapter 4, especially Box
4.1, discusses issues involved with evaluating ensembles of GCM simulations and their uncertainties. In a
downscaling context, further considerations are necessary, such as the selection of GCM-RCM combinations
when performing dynamical downscaling. This is a relevant issue when resources are limited. The structural
uncertainty of both the GCM and the downscaling method can be important (e.g., Dosio; 2017; Mearns et al.,
2012), as well as further potential uncertainty created by inconsistencies between the GCM and the
downscaling method (e.g., Dosio et al., 2019), which could include, for example, differences.in topography
or the way to model precipitation processes (Mearns et al., 2013).

An important consideration is which set of GCMs should be used for GCM-RCM combinations. If adequate
resources exist, then large numbers of GCM-RCM combinations are possible (Déqué et al., 2012; Vautard et
al., 2020; Coppola et al., 2021). However, coordinated downscaling programmes can be limited by the
human and computational resources available, for producing ensembles of downscaled output, which limits
the number of feasible GCM-RCM combinations. With this limitation in. mind, a small set of GCMs may be
chosen that span the range of equilibrium climate sensitivity in available GCMs(e.g., Inatsu et al., 2015;
Mearns et al., 2012, 2013), though this range may be inconsistent with the likely range (Chapter 4), or some
other relevant measure of sensitivity, such as the projected range of tropical SSTs (Suzuki-Parker et al.,
2018). A further choice is to emphasize models that do not have:the same origins or that do not use similar
parameterizations and thus might be viewed as indépendent, a criterion that could be applied to both GCMs
(Chapter 4) and RCMs (Evans et al., 2014). GCMs and RCMs could also be discarded that unrealistically
represent processes controlling the regional climate of interest (McSweeney et al., 2015; Maraun et al., 2017;
Bukovsky et al., 2019; Eyring etal., 2019). Box 4.1-offers a'more detailed discussion of the issues
surrounding these approaches. Finally, GCMs may be selected to represent different physically self-
consistent changes in regional climate (Zappa and.Shepherd, 2017). Statistical methods can provide
estimates of outcomes from missing GCM-RCM combinations in a large matrix (Déqué et al., 2012;
Heinrich et al., 2014; Evin et al., 2019):

However, even using a relatively-small set of GCMs can still involve substantial computation that strains
available resources, both for performing the simulations and for using all simulations in the ensemble for
further impacts assessment.The NARCCAP programme (Mearns et al., 2012) used only a subset of its
possible GCM-RCM combinations that balanced comprehensiveness of sampling the matrix with economy
of computation demand, while still allowing discrimination, via ANOVA methods, of GCM and RCM
influences on regional climate change (Mearns et al., 2013). An advantage of the sparse, but balanced matrix
for those using the downscaling output for further studies, is that they have a smaller, yet comprehensive set
of GCM-RCM combinations to work with. Alternatively, data-clustering methods can clump together
downscaling simulations featuring similar climate-change characteristics, so that only one representative
simulation from-each cluster may be needed for further impacts analysis, again systematically reducing the
necessary number of simulations to work with (Mendlik and Gobiet, 2016; Wilcke and Bérring, 2016).

Independently of the resources, participation of multiple models in a simulation programme such as
CORDEX for RCMs or CMIP for GCMs creates ensembles of opportunity, which are ensembles populated
by models that participants chose to use without there necessarily being an overarching guiding principle for
an optimum choice. As discussed in Chapter 4, these ensembles are likely suboptimal for assessing sources
of uncertainty. An important contributor to the suboptimal character of such an ensemble is that the models
are not independent. Some may also have larger biases than others. Yet often, the output from models in
these ensembles has received equal weight when viewed collectively, as was the case in much of the ARS
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assessment (e.g., Collins et al., 2013; Flato et al., 2014; Kirtman et al., 2014; Knutti et al., 2013). A number
of emerging methodologies aim at optimizing the ensembles available by weighting the simulation results
according to a number of criteria relevant at the regional scale that aim at obtaining more realistic estimates
of the uncertainty (Sanderson et al., 2015; Brunner et al., 2020)

There is high confidence that ensembles for regional climate projections should be selected such that models
unrealistically simulating processes relevant for a given application are discarded, but at the same time, the
chosen ensemble spans an appropriate range of projection uncertainties.

[START CROSS-CHAPTER BOX 10.2 HERE]
Cross-Chapter Box 10.2: Relevance and limitations of bias adjustment

Coordinators: Alessandro Dosio (Italy), Douglas Maraun (Austria/Germany)
Contributors: Ana Casanueva (Spain), Jos¢ M. Gutiérrez (Spain), Stefan Lange (Germany), Jana Sillmann
(Norway/Germany)

Bias adjustment is an approach to post-process climate model output and has become‘widely used in climate
hazard and impact studies (Gangopadhyay et al., 2011; Hagemann et al., 2013; Warszawski et al., 2014) and
national assessment reports (Cayan et al., 2013; Georgakakoscet al:, 2014). Despite its wide use, bias
adjustment was not assessed in ARS (Flato et al., 2014). Several problems have been identified that may
arise from an uncritical use of bias adjustment, and that may result in misleading impact assessments. The
rationale of this Cross-Chapter Box is to provide an overview of the use of bias adjustment in this report, and
to assess key limitations of the approach.

Bias-adjusted climate model output is used extensively througheut this report. Several results from Chapter
8, and many of the climatic impact-drivers in.Chapter 12 (Seection 12.2) are based on bias adjustment. The
Atlas presents many results both as raw and bias-adjusted data (Atlas.1.4.5). The application of bias
adjustment in the WGI1 report was informed by the assessment in Chapter 10 and this Cross-Chapter Box.
Finally, bias adjustment is crucial for many studies.assessediin the WG II report. An overview of bias
adjustment can be found in Section'10.3.1.3, a general performance assessment of individual method classes
in Section 10.3.3.7. The fitness-of bias adjustment for climate change applications is assessed in Section
10.3.3.9.

Relevance of bias-adjustment

An argument made for the use of bias adjustment is the fact that impact models are commonly very sensitive,
often nonlinearly,.to the input climatic variables and their biases, in particular when threshold-based climate
indices are required (Dosio;2016). There are, however, cases where bias adjustment may not be necessary or
useful, such as: when only qualitative statements are required; when only changes in mean climate are
considered (instead of absolute walues); when percentile-based indices are used.

Modification of the climate change signal

Bias adjustmentmethods like quantile mapping can modify simulated climate trends, with impacts on
changes to climate indices, in particular, extremes (Haerter et al., 2011; Dosio et al., 2012; Ahmed et al.,
2013; Hempel etal., 2013; Maurer and Pierce, 2014; Cannon et al., 2015; Dosio, 2016; Casanueva et al.,
2020). Some argue that these trend modifications are implicit corrections of state-dependent biases (Boberg
and Christensen, 2012; Gobiet et al., 2015). However, others argue that the modification is generally invalid
because the modification is linked to the representation of day-to-day rather than long-term variability
(Pierce et al., 2015; Maraun et al., 2017); a given temperature value does not necessarily belong to the same
weather state in present and future climate (Maraun et al., 2017); the modification affects the models climate
sensitivity (Hempel et al., 2013); and is affected by random internal climate variability (Switanek et al.,
2017). Thus, trend preserving quantile mapping methods have been developed (Section 10.3.1.3.2), although
some authors found no clear advantage of these methods (Maurer and Pierce, 2014). Further research is
required to fully understand the validity of trend modifications by quantile-mapping.
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Bias adjustment in the presence of large-scale circulation errors

The large-scale circulation has a strong impact on regional climate, thus circulation errors will cause regional
climate biases (Section 10.3.3.3). As bias adjustment in general does not account for circulation errors, it is
therefore important to understand the impact of these errors on the outcome of the bias adjustment (Addor et
al., 2016; Photiadou et al., 2016; Maraun et al., 2017). If the frequency of precipitation-relevant weather
types is biased, a standard bias adjustment (not accounting for this frequency bias) would remove the overall
climatological bias, but the precipitation falling in a given weather type could still be substantially biased
(Addor et al., 2016). Adjusting the number of wet days can artificially deteriorate the spell-length
distribution (Maraun et al., 2017). In the presence of location biases of circulation patterns, bias adjustment
may introduce physically implausible solutions (Maraun et al., 2017). Bias adjusting the location of
circulation features (Levy et al., 2013) may introduce inconsistencies with the model orography, land-sea
contrasts, and SSTs (Maraun et al., 2017).

There is medium confidence that the selection of climate models with low biases in the frequency,
persistence and location of large-scale atmospheric circulation can reduce negative impacts of bias
adjustment.

Using bias adjustment for statistical downscaling

Bias adjustment is often used to downscale climate model results from grid box data to finer resolution or
point scale. It is sometimes even directly applied to coarse-resolution global medel.output to avoid an
intermediate dynamical downscaling step (Johnson and Sharma, 2012; Stoner et al., 2013). But bias
adjustment does not add any information about the processes acting on un-resolved scales and is therefore by
construction not capable of bridging substantial scale gaps (Maraun, 2013a; Maraun et al., 2017). Using bias
adjustment for downscaling has been shown to artificially modify long-term trends, misrepresent the spatial
characteristics of extreme events, and misrepresent local weather phenomena such as temperature inversions
(Maraun, 2013a; Gutmann et al., 2014; Maraun et al., 2017). Crucially, sub-grid influences on the local
climate change signal are not represented. For instance, if a mountain chain is not resolved in the driving
model, the snow-albedo feedback is not represented by the bias adjustment such that local temperature trends
in high altitudes are under-represented (Maraun et al., 2017; Cross-Chapter Box 10.2, Figure 1). It has
therefore been suggested to account for local random.variability by combining bias adjustment with
stochastic downscaling (Volosciuk et al., 2017; Lange, 2019), although this approach still does not account
for local modifications of the climate change signal. Two approaches have been proposed to represent these
local changes: dynamical:downsealing with high-resolution RCMs (Maraun et al., 2017) or statistical
emulators of such (Walton et al., 2015). Sections 10.3.3.4—10.3.3.6 and 10.3.3.9 discuss other examples
where RCMs improve the representation of regional phenomena and regional climate change.

Overall, there is high confidence that the use of bias adjustment for statistical downscaling, in particular to
downscale coarseresolution global models, has severe limitations.

[START CROSS-CHAPTER BOX 10.2, FIGURE 1 HERE]

Cross-Chapter Box 10.2, Figure 1: Boreal spring (March to May) daily mean surface air temperature in the Sierra
Nevada region in California. (a) Present climate (1981-2000 average, in °C) in the
GFDL-CM3 AOGCM, interpolated to 8 km (left), GCM bias adjusted (using
quantile mapping) to observations at 8 km resolution (middle) and WRF RCM at 3
km horizontal resolution (right). (b) Climate change signal (2081-2100 average
minus 1981-2000 average according to RCP8.5, in °C) in the AOGCM (left), the
bias adjusted AOGCM (middle) and the RCM (right). Further details on data
sources and processing are available in the chapter data table (Table 10.SM.11).
Adapted from Maraun et al. (2017b).

[END CROSS-CHAPTER BOX 10.2, FIGURE 1 HERE]
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Bias adjustment of multiple variables

Impact models, as well as indices of climatic impact-drivers, often require input of several meteorological
variables (Chapter 12). In several situations, for example, if the dependence between the variables is not well
simulated, univariate bias adjustment of the individual variables may increase biases in the resulting
indicator (Zscheischler et al., 2019). A simple alternative would be a bias adjustment of the indicator, but
such a procedure may substantially alter the climate change signal, in particular for extreme events
(Casanueva et al., 2018). Multivariate bias adjustment methods are in principle good to adjust all statistical
aspects of the multivariate distribution that they intend to adjust. Depending on the method, this includes the
correlation structure or even broader aspects of the dependence (Cannon, 2016, 2018; Vrac, 2018; Frangois
et al., 2020). If multivariate adjustment includes a spatial dimension, then spatial dependence is adjusted well
(Vrac, 2018), but care is needed when applied across large areas (Frangois et al., 2020). Adjustment of
multivariate dependence necessarily modifies the temporal sequencing of the driving model (Cannon, 2016;
Maraun, 2016). The extent of the modification depends on the chosen method and the number of variables to
adjust (Vrac and Friederichs, 2015; Cannon, 2016; Vrac, 2018; Frangois et al., 2020).

Bias adjustment in the presence of observational uncertainty and internal variability

Observational uncertainties and internal variability introduce uncertainty in the estimation of biases and thus
in the calibration of bias-adjustment methods. Dobor and Hlasny (2018) found a considerable influence of
the choice of the observational dataset and calibration period on the.adjustment for some regions. RCM
biases are typically larger than observational uncertainties, but in some regions, and in.particular for wet-day
frequencies, spatial patterns and the intensity distribution of daily precipitation; the situation may reverse
(Kotlarski et al., 2019). Switanek et al. (2017) found a strong influence of internal variability and thus of the
choice of calibration period on the calibration of quantile mapping and on the modification of the climate
change signal.

Bias adjustment is typically evaluated using cross-validation, i.e. by calibrating the adjustment function to
one period of the observational record, and by evaluating it on‘a-different one. Maraun et al. (2017) and
Maraun and Widmann (2018) demonstrated that, in the presence of multi-decadal internal variability, cross-
validation may lead to a rejection of a‘valid bias adjustment.or even lead to a positive evaluation of an
invalid adjustment. The authors therefore argued that, in the presence of substantial internal variability, the
evaluation of bias adjustment requires to consider-aspects that have not been adjusted, such as temporal,
spatial, or multi-variable dependence.

There is high confidencethat observational uncertainty and internal variability adversely affect bias
adjustment and introduce uncertainties‘in bias adjusted future projections.

Overall assessment and new ayvenues

In the light of these issues, several authors dismiss the use of bias adjustment for climate change studies
(Vannitsem, 201 13- Ehret etal., 2012). Ehret et al. (2012) and Stocker et al. (2015) propose to at least provide
the raw model output alongside the adjusted data. Maraun et al. (2017b) argue that the target resolution
should be similar to the medel resolution to avoid downscaling issues. Stocker et al. (2015) and Maraun et al.
(2017) highlighted-the relevance of understanding model biases and the misrepresentations of the underlying
physical processes prior to any adjustment. Together with Galmarini et al. (2019) , they point out the need
for collaboration between bias adjustment users, experts in climate modelling and experts in the considered
regional climate. As new research avenues, development of process-oriented bias adjustment methods
(Addor'et al., 2016; Verfaillie et al., 2017; Manzanas and Gutiérrez, 2019) or run-time bias adjustment
integrated into the climate simulation, e.g., to reduce circulation errors (Guldberg et al., 2005; Kharin et al.,
2012; Krinner et al., 2019, 2020) are proposed.

[END CROSS-CHAPTER BOX 10.2 HERE]
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10.4 Interplay between Anthropogenic Change and Internal Variability at Regional Scales

This section focuses on the assessment of the methodologies used to identify the physical causes of past and
future regional climate change in the context of the ongoing anthropogenic influence on the global climate.
The main foci are the attribution of past regional-scale changes (Sections 10.4.1-2) and the robustness and
future emergence of the regional-scale response to anthropogenic forcing (Section 10.4.3).

In this chapter, regional-scale attribution is defined as the process of evaluating the relative contributions of
multiple causal factors (or drivers) to regional climate change (Cross-Working Group Box: Attribution (in
Chapter 1); Rosenzweig and Neofotis, 2013; Shepherd, 2019). Attribution at regional scale builds upon the
usual definition of attribution used in the ARS (Hegerl et al., 2010; Cross-Working Group Box 1.1).
However, in contrast with global-scale attribution methods where internal variability might be considered as
a noise problem (Section 3.2), the preliminary detection step is not always required to perform regional-scale
attribution since causal factors of regional climate change may also include internal modes of variability in
addition to external natural and anthropogenic forcing. Importantly, regional-scale (or process-based)
attribution also seeks to determine the physical processes and uncertainties involved in the causal factor’s
influence (Cross-Working Group Box: Attribution).

Section 10.4.1 describes regional-scale attribution methodologies and assesses their application to regional
changes of temperature and precipitation. Section 10.4.2 presents three. illustrative'attribution examples that
illustrate a number of specific regional-scale challenges and methodological aspects. Section 10.4.3 focuses
on methodologies used to assess the robustness and emergence of the regional climate response to
anthropogenic forcing. A basic description of future regional climate change for all regions considered in the
report (as defined in Section 1.4.5) appears in the Atlas:

10.4.1 Methodologies for Regional Climate Change Attribution

Attribution at sub-continental and regional scales is usually more complicated than at the global scale due to
various factors: a larger contribution from internal variability, an increased similarity among the responses to
different external forcings leading to a more difficult'discrimination of their effects, the importance at
regional scale of some omitted forCings in global model simulations, and model biases related to the
representation of small-scale phenomena (Zhai et al.;2018). Since AR5 and in addition to standard optimal
fingerprint regression-based approaches (Section 3.2.1 and Zhai et al. 2018), several emerging
methodologies have been increasingly-used for regional-scale climate change attribution. These include
several statistical‘approaches that differ.in their use or omission of spatiotemporal covariance information.
Dynamical adjustment and pattern recognition techniques fall into the category of spatiotemporal methods
while univariate detection and attribution methods rely on single grid-point analysis. Finally, the
development, evaluation and use of-all these methodologies rely upon the availability of multiple and high-
quality observational datasets (Section 10.2) as well as multi-model simulations of the historical period
constrained by different external forcing combinations, including single-forcing experiments and single-
model initial-condition large ensembles (SMILEs).

10.4.1.1 _Optimal fingerprinting methods

Optimal fingerprint regression-based methods have been applied to detection and attribution of mean
temperature anthropogenic signal in several regions of the world such as Canada, India, Central Asia,
Northern and Western China, Australia, and North Africa (Xu et al., 2015; Li et al., 2017a; Dileepkumar et
al., 2018; Wang et al., 2018b; Peng et al., 2019; Wan et al., 2019). The influence of anthropogenic forcing,
and in particular that of greenhouse gases (GHGs), is robustly detected in annual and seasonal mean
temperatures for all considered regions. Most of the observed regional temperature changes since the mid-
twentieth century can only be explained by external forcings, with anthropogenic influence being the
dominant factor. GHG increase is found to be the primary factor of the anthropogenic-induced warming
while the aerosol forcing leads to a cooling offsetting a fraction of the GHG change (Li et al., 2016b, 2017a).
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While the influence of external natural forcing can often be detected as well, its contribution to observed
changes is usually much smaller (Li et al., 2017a; Wan et al., 2019). Temperature detection results are found
to be robust to the use of different observational data sets and detection methodologies (Dileepkumar et al.,
2018).

Detection of mean precipitation changes caused by human influence is much more difficult, due to a larger
role of internal variability at regional to local scales, as well as substantial modelling and observational
uncertainty (Wan et al., 2015; Sarojini et al., 2016; Li et al., 2017a). However, multi-decadal precipitation
changes due to anthropogenic forcing have been detected for several regions. Ma et al. (2017) show that
anthropogenic forcing has strongly contributed to the observed shift of China daily precipitation towards
heavy precipitation. The observed weakening of the East Asia summer monsoon, also known as the southern
flooding and northern drought pattern has been partially linked to anthropogenic forcing (Section 8.3.2.4:2;
Song et al., 2014; Tian et al., 2018; Zhou et al., 2017b). Changes in GHGs lead to increasing precipitation
over southern China, whilst changes in anthropogenic aerosols over East Asia are the dominant factors
determining drought conditions over northern China (Song et al., 2014; Tian et al.;2018). Based.on all-
forcing and single-forcing simulation ensembles with a high-resolution model, Delworth and Zeng (2014)
found that the observed long-term regional austral autumn and winter rainfall decline over southern and
particularly southwest Australia is partially reproduced in response to‘anthropogenic changes in GHGs and
ozone in the atmosphere, whereas anthropogenic aerosols do not centribute to the simulated precipitation
decline. In contrast, the observed increase of northwest Australian summertime rainfall since 1950 has been
partially attributed to anthropogenic aerosol based on CMIP5 detection and attribution single-forcing
simulations (Section 8.3.2.4.6; Dey et al., 2019b, 2019a).

It is noteworthy that these methods require a very significant reduction of spatial and temporal dimensions in
order to reliably estimate the covariance matrix of internal variability (an-entire region is thus often
considered as being only one or a few spatial points that represent the spatial average of the whole region or
a few sub-regions; time samples are often 5< or 10-year averages).Finally, model bias is rarely considered in
statistical models used in detection and attribution regional studies, while it has been shown to have a strong
impact on the stability of detection results and their associated confidence intervals when increasing the
spatial dimension (Ribes and Terray, 2013). New statistical methods are emerging to provide some
alternative to standard optimal fingerprinting but they have not yet been evaluated and applied at regional
scales (Section 3.2.2).

10.4.1.2 Other spatiotemporal statistical methods for isolating regional climate responses to external
forcing

The primary.objective of any attribution method is to optimally separate the influences of external forcing
and internal variability on a‘global.or'regional climate record. In a multi-model ensemble context, the
estimation of the externally-forced climate response has been typically performed by ensemble averaging of
linear trends or regional domain spatial average, thus not taking into account the available and complete
space and time covariance information. Since AR5, methods using spatiotemporal information have been
further developed.and used to improve the separation between external and internal drivers in multiple or
single historical climate realizations performed by a given global model.

The typical ensemble size of CMIP historical climate simulations for a given model traditionally ranges
between one and ten members, with three often being the default choice. At the regional scale, a simple
ensemble average with such sample sizes does not provide robust estimates of the response patterns to
external forcing (Maher et al., 2019; Deser et al., 2020). Since ARS, pattern filtering methods such as signal-
to-noise maximizing empirical orthogonal functions (Ting et al., 2009) have been shown to improve the
identification of forced response patterns when only few model members are available (Wills et al., 2020).
Using SMILEs as a test bed, it has been shown that pattern filtering strongly reduces the number of ensemble
members needed to estimate the forced response pattern compared to simple ensemble averaging. Pattern
filtering allows the identification of low signal-to-noise signals such as the El Nifio-like response to volcanic
eruptions (Khodri et al., 2017; Wills et al., 2020).
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Methods to extract the response to external forcing in an observed or simulated single realization include
dynamical adjustment (Smoliak et al., 2015; Deser et al., 2016; Sippel et al., 2019) and time-scale separation
methods (DelSole et al., 2011; Wills et al., 2018, 2020). Dynamical adjustment seeks to isolate changes in
surface air temperature or precipitation that are due purely to atmospheric circulation changes. The residual
can then be analysed and attributed to internal changes in both land or ocean surface conditions and the
thermodynamical response to external forcing. Smoliak et al. (2015) performed their dynamical adjustment
using partial least squares regression of temperature to remove variations arising from sea-level pressure
changes. Deser et al. (2016) used constructed atmospheric circulation analogues and resampling to estimate
the dynamical contribution to changes in temperature. Sippel et al. (2019) used machine learning techniques
known as regularized linear regression to provide estimates of circulation-induced components of
precipitation and temperature variability from global to local scales. It is noteworthy that the dynamical
adjustment method by itself cannot account for the component of the forced response associated with
circulation changes that project onto atmospheric internal variability. However, this component can be
estimated within a model framework by averaging the dynamical contribution‘across multiple members of a
SMILE (Deser et al., 2016).

Dynamical adjustment methods have been used by, for instance, Deser et al. (2016), Saffioti et al. (2016),
O’Reilly et al. (2017), Gong et al. (2019), and Guo et al. (2019). Deser et al. (2016) focused on the causes of
observed and simulated multi-decadal trends in North American temperature. They demonstrated that the
main advantage of this technique is to narrow the spread of temperature trends found by the model ensemble
and to bring the dynamically-adjusted observational trend much closer to the forced response estimated by
the model ensemble mean. Similar results were obtained by Saffioti et al. (2016) regarding recent observed
winter temperature and precipitation trends over Europe. Similarly, O’Reilly et al. (2017) applied dynamical
adjustment techniques to more carefully determine the influence of the Atlantic Multi-decadal Variability
(AMV; Annex AIV.2.7) on continental climates. Over Europe, summer temperature anomalies induced
thermodynamically by the warm phase of the AMV are furthet reinforced by circulation anomalies;
meanwhile, precipitation signals are largely controlled by dynamical responses to the AMV. Based on a
partial least-squares approach, Gong et al. (2019) showed that recent winter temperature 30-year trends over
northern East Asia are strongly influenced by internal variability linked to decadal changes of the Arctic
Oscillation. Using dynamical adjustment purely onprecipitation observations, Guo et al. (2019) showed that
human influence has led to increased wintertime precipitation across north-eastern North America, as well as
a small region of north-western'North America, and to‘an increase in precipitation across much of north-
western and north central:Eurasia. The latter results confirm previous findings obtained by standard optimal
fingerprinting methods (Wan et al., 2015).

Time-scale separation imethods such as the low-frequency component analysis and ensemble empirical mode
decomposition methods take advantage of the longer time scale associated with anthropogenic external
forcing compared-to that of most internal modes of variability. The low-frequency component analysis
method tries to find low-frequency variability patterns by searching for linear combinations of a moderate
number of empirical orthogonal functions that maximize the ratio of low-frequency to total variance. It has
first been used to separate internal modes of interannual and decadal variability from slowly varying and
externally-forced variability in the Pacific and Atlantic Oceans (Wills et al., 2018, 2019). The methodology
has also been applied to patterns of observed surface air temperature to isolate the slow components of
observed changes that are consistent with the expected response to anthropogenic greenhouse gas and
aerosol forcing (Wills et al., 2020).

The ensemble empirical mode decomposition method (Wu and Huang, 2009; Wilcox et al., 2013; Ji et al.,
2014; Qian and Zhou, 2014) decomposes data, such as time series of historical temperature and precipitation,
into independent oscillatory modes of decreasing frequency. The last step of the method leaves behind a
smooth and low-frequency residual time series. Typically, the nonlinear anthropogenic trend (e.g., of 20th-
century temperature) can be reconstructed by summing the long-term mean, the residual, and eventually the
lowest-frequency mode to account for a multi-decadal forced signal, for instance associated with
anthropogenic aerosol forcing. The ensemble empirical mode decomposition method is an example of a data-
driven, non-parametric approach that can be used to directly provide an estimate of the forced response
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without the need for model data (Qian, 2016).

10.4.1.3 Other regional-scale attribution approaches

The univariate detection method does not use spatial pattern information, but compares observed trends in
gridded datasets with distributions of trends from ensembles of simulations during the historical period
(Knutson et al., 2013; Knutson and Zeng, 2018). The trends arising from simulations constrained by natural
forcing-only and all-forcing are compared with distributions of trends purely due to internal variability and
derived from long simulations with constant pre-industrial external forcing. Consistency between observed
and simulated historical trends is also assessed with statistical tests that can be applied independently over a
large number of grid points. The fraction of area over a given region where the change is classified as
detectable, attributable, or consistent/inconsistent, is then finally estimated. The method.can be viewed as a
simple consistency test for both amplitude and pattern of observed versus simulated trends. Its application to
CMIP3 and CMIPS5 models suggests that 80% of the Earth’s surface has a detectable anthropogenic warming
signal (Knutson et al., 2013). Regarding regional land precipitation changes over the 1901-2010 and 1951—
2010 periods, application of the univariate detection method based on CMIPS models suggests attributable
anthropogenic changes at several locations such as increases over regions.of the north-central United States,
southern Canada, Europe, and southern South America and decreases over parts of the Mediterranean region,
northern tropical Africa and southwestern Australia (Knutson and Zeng, 2018).

Another regional attribution technique is based on the similarity of past changes between observations and
one or several simulations of a large ensemble that share the same time evolution for a suggested driver of
these changes. Huang et al. (2020) used a perturbed physics ensemble to attribute the drying trend of the
Indian monsoon over the latter half of the 20th century to decadal forcing from the Pacific Decadal
Variability (PDV; Annex AIV.2.6). The ensemble members predicted different trends in PDV behaviour
across the 20th century and the negative precipitation trend was-only replicated in those members with a
strong negative-to-positive PDV transition across the 1970s, consistent with the observed PDV behaviour
(see also the detailed case study in Section 10.6). In a similar manner, Cvijanovic et al. (2017) addressed the
possible influence of Arctic sea-ice loss on the North Pacific pressure ridge and, consequently, on south-
western United States precipitation. They sampled-the uncertainties in selected sea-ice physics parameters to
achieve a “low Arctic sea-ice” state in their perturbed simulations. They then compared the latter with
control simulations representative of sea-ice.conditions at the end of the 20th century to assess changes
purely due to sea-ice loss:

New methods aiming to.remove underlying model biases before performing detection and attribution, for
instance related to precipitation changes, are emerging based on image transformation techniques such as
warping (Levy et al.,2014a). By corrécting location and seasonal precipitation biases in CMIP5 models,
Levy et al. (2014b) showed that the agreement between observed and fingerprint patterns can be improved,
further enhancing the ability to attribute observed precipitation changes to external forcings. The
improvement mainly relies on the assumption that precipitation changes are tied to the underlying
climatology, which'has been shown to be a reasonable assumption in regions of the world where
intensification of the’hydrological cycle is expected (Held and Soden, 2006).

Importantly,.evidence that the models employed in regional-scale attribution are fit for purpose is essential in
order to estimate'the degree of confidence in the attribution results (Section 10.3.3). For example, models
need to be evaluated and assessed in their ability to simulate internal variability modes that are known to be
important drivers of regional climate change (Sections 3.7 and 10.3.3.3 and Annexes AIV.2 and AIV.3).
Models are likely to have different performance in different regions and therefore their evaluation needs to
be performed in terms of key physical processes and mechanisms relevant to the climate of the region under
consideration (Section 10.3.3).

To conclude, there is very high confidence (robust evidence and high agreement) that the use of diverse and

independent attribution methods, multiple model ensemble types and observed datasets strengthens the
robustness of results of regional-scale attribution studies. Since ARS, multiple SMILEs have provided an
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adequate testbed for new attribution methodologies aimed at separating forced signals from internal
variability in observational records as well as small-size single-model ensemb]es.

10.4.2 Regional Climate Change Attribution Examples

This section focuses on three illustrative examples that span different regions, time scales, attribution
methods, without aiming at being comprehensive. These examples illustrate attribution statements that are
based upon multiple lines of evidence, combining multiple observational data sets, different generations and
types of models, process understanding and assessment of various sources of uncertainty. Detection and
attribution assessments for all AR6 regions and specific variables can be found in the Atlas.

10.4.2.1 The Sahel and West African monsoon drought and recovery

The Sahel, fed by the West African monsoon, has experienced severe decadal rainfall variations (Figure
10.11a). Abundant rainfall in the 1950s—1960s was followed by a large negative'trend (Figure 10.11b) until
at least the 1980s, over which annual rainfall fell by 20-30% (Hulme;2001). The subsequent partial
recovery (Wang et al., 2020) is more uncertain: rain-gauge studies-suggest a return to long-term positive
anomalies in the western Sahel in the early 2000s (Panthou et al., 2018), while CHIRPS merged
satellite/gauge data show a wetter western Sahel since 1981 (Bichet and Diedhiou, 2018b, 2018a). The
recovery has been more significant over the central rather than'the western Sahel (Lebel and Ali, 2009;
Sanogo et al., 2015; Maidment et al., 2015) and a multiple-gauge record supports a greater recovery to the
eastern side (Nicholson et al., 2018). In this attribution'example, drivers of'the long-term drought and
subsequent partial recovery are discussed, including anthropogenic GHG and aerosol emissions, and sea
surface temperature (SST) variations that, in part, relate to internal'variability. The reader is also referred to
assessment in Section 8.3.2.4. We define the Sahel within 10°N=20°N across to 30°E, consistent with the
eastern boundary used in Chapter 8, and the rainy season as spanning June to September.

[START FIGURE 10.11 HERE]

Figure 10.11: Attribution of historic precipitation change in the Sahelian West African monsoon during June to
September.(a) Time series of CRU TS precipitation anomalies (mm day!, baseline 1955-1984) in the
Sahel box (10°N-20°N, 20°W-30°E) indicated in panel (b) applying the same low-pass filter as that used
in Figure 10.10. The two periods used for difference diagnostics are shown in grey columns. (b)
Preg¢ipitation change (mm day™) in CRU TS data for 1980-1990 minus 1950—1960 periods. (c)
Precipitation difference (mm day!) between 1.5x and 0.2x historical aerosol emissions scaling factors
averaged over 1955-1984 and five ensemble members of HadGEM3 experiments after Shonk et al.
(2020). (d) Sahel precipitation anomaly time series (mm day!, baseline 1955-1984) in CMIP6 for 49
historical simulations with all forcings (red), and thirteen for each of greenhouse gas-only forcing (light
blue) and aerosel-only forcing (grey), with a thirteen-point weighted running mean applied (a variant on
the binomial filter with weights [1-6-19-42-71-96-106-96-71-42-19-6-1]). The CMIP6 subsample of all
forcings'matching the individual forcing simulations is also shown (pink). (e) Precipitation linear trend
(% per decade) for (left) decline (1955—-1984) and (right) recovery periods (1985-2014) for ensemble
means and individual CMIP6 historical experiments (including single-forcing) as in panel (d) plus 34
CMIPS5 models (dark blue). Box-and-whisker plots show the trend distribution of the three coupled and
the d4PDF atmosphere-only SMILEs used throughout Chapter 10 and follow the methodology used in
Figure 10.6. The two black crosses represent observational estimates from GPCC and CRU TS. Trends
are estimated using ordinary least-squares regression. Further details on data sources and processing are
available in the chapter data table (Table 10.SM.11).

[END FIGURE 10.11 HERE]

The role of SST forcing in the rainfall decline is assessed first. Competing mechanisms from equatorial
Atlantic SSTs and interhemispheric SST gradients regulate decadal variability in the Sahel (Nicholson,

Do Not Cite, Quote or Distribute 10-70 Total pages: 228



[c-BRN e NIV, IRV S

o hnmnhnhunandsh B PABRARPRARPDEPRARPEPDE P WULLWLWLWLWWLWLWWULWWWRNRNDNDNDNDDNDNDDNDDNDND = = = ———————
NP DO, OOVHOTIATNNPAEWNDN,L OOV NPEWNODNRLOOVOTANNIELWVWDF,L OO P WD —ONO

Final Government Distribution Chapter 10 IPCC AR6 WQI

2013), alternatively explained by tropical warming leading to Sahel drought, while North Atlantic warming
promotes increased rainfall (Rodriguez-Fonseca et al., 2015). The SST influence has been formalised in an
AMYV framework (Giannini et al., 2013; Martin and Thorncroft, 2014; Martin et al., 2014; Park et al., 2015),
suggesting that relative North Atlantic SST warming increases the Northern Hemisphere differential
warming, enhancing Sahel rainfall. The AMV influence is supported by CMIPS5 initialized decadal hindcasts
(Gaetani and Mohino, 2013; Mohino et al., 2016; Sheen et al., 2017), which outperform empirical
predictions based on persistence. Some caution is needed since the full magnitude of internal variability is
not captured in most CMIP5 models, as poor resolution prevents reproduction of AMV teleconnection
responses (Vellinga et al., 2016), and the magnitude of AMV-related SST variation may be underestimated
in CMIPS5 (Section 3.7.7, which also assesses that the AMV may be partially forced). The influence of PDV
has been studied to a lesser extent, with the PDV positive phase having a negative impact on Sahel rainfall in
combined observational/CMIP5 analysis (Villamayor and Mohino, 2015). The closer match between the
observed rainfall declining trend and those in an atmosphere-only SMILE, in which SSTs are matched to
observations, compared to three coupled SMILEs in which they are not, suggests thatthe underlying ocean
surface might be essential in driving the decline (Figure 10.11e).

In terms of anthropogenic emissions, regional aerosol emissions from Europe, and‘to a lesser extent from
Asia, have been shown in a global model to weaken Sahel precipitation either through a weakened Saharan
heat low or via the Walker circulation (Dong et al., 2014). Greenhouse gases (GHGs) and anthropogenic
aerosol can be considered together to control ITCZ position based on temperaturecasymmetry at the
hemispheric scale. GHGs increase Sahel precipitation, while-aerosol reduces it{in coupled slab-ocean model
experiments by Ackerley et al., 2011 following Biasutti and Giannini, 2006). This effect is stronger when
models account for aerosol-cloud interactions (Allen et al., 2015). Perturbed physics GCM ensembles
suggests that aerosol emissions were the main driver ‘of.observed drying over 1950-1980 (Ackerley et al.,
2011), supported by CMIPS5 single-forcing experiments (Polson et al., 2014). A coherent drying signal in
CMIPS5 over the extended 1901-2010 period has also been found, although smaller than the observed trend
(Knutson and Zeng, 2018). By applying aerosol scaling factors to.the historical period in order to sample the
uncertainty in CMIPS5 aerosol radiative forcing, Shonk et al. (2020) found differences of 0.5 mm day™' for
Gulf of Guinea rainfall between strong and weak aerosol experiments as illustrated in Figure 10.11c,
although the drying appears further south than observed due to model bias.

For the partial recovery in West African monsoon and Sahel rainfall since the late 1980s, a detection study
using three reanalyses (Cook and Vizy, 2015) shows a‘connection to increasing Saharan temperatures at a
rate 2—4 times greater than the tropical mean, also confirmed by multiple observational and satellite-based
data (Zhou and Wang, 2016; Vizy andCook, 2017) and the review of Cook and Vizy (2019). Reanalyses are
also noted to significantly underestimate the Saharan warming (Zhou and Wang, 2016). Saharan warming
causes a stronger thermal low and‘more intense monsoon flow, providing more moisture to the central and
eastern Sahel, supported by CMIP5 models (Lavaysse et al., 2016), although not all models capture the
observed rainfall/heat low relationship. Sahel rainfall is also incorrectly located in prototype versions of a
few CMIP6 models, related to tropospheric temperature biases (Martin et al., 2017). Amplified Saharan
warming has increased the wind shear, leading to a tripling of extreme storms since 1982, which may
partially explain the'recovery (Taylor et al., 2017). Instead, observations, multiple models and SST-
sensitivity experiments with atmospheric GCMs have suggested that stronger Mediterranean Sea evaporation
enhances low-level moisture convergence to the Sahel, increasing rainfall (Park et al., 2016). Meanwhile, an
atmospheric GCM study suggested that GHGs alone (in the absence of SST warming) could cause Sahel
rainfall recovery; with an additional role for anthropogenic aerosol (Dong and Sutton, 2015); recent changes
in North"Atlantic SSTs, although substantial, did not exert a significant impact on the recovery. Large spread
in the recovery in a five-member atmospheric GCM ensemble suggests that atmospheric internal variability
cannot be discounted (Roehrig et al., 2013).

Consistent timing of the southward ITCZ shift during the decline period in CMIP3 and CMIPS5 historical
simulations supports the role of external forcing, chiefly anthropogenic aerosol (Hwang et al., 2013). The
evolution of the observed decline and recovery is largely followed by the CMIP5 multi-model mean, further
supporting the role of external drivers (Giannini and Kaplan, 2019). Updated results from CMIP6 for
historical simulations with all and single forcings are represented in Figure 10.11d,e, showing smaller trends
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than those observed. Giannini and Kaplan (2019) attempted to unify the driving mechanisms for decline and
recovery based on singular-value decomposition of observed and modelled SSTs. Since the 1950s, tropical
warming arising from GHGs and North Atlantic cooling from aerosol led to regional stabilization,
suppressing Sahel rainfall. The subsequent reduction in aerosol emissions then led to North Atlantic
warming and recovery of Sahel rainfall. Such mechanisms continue into the near-term future in idealised and
modified RCP experiments, with scenarios featuring more aggressive reductions in aerosol emissions, or
including aerosol-cloud interactions, favouring a greater northward shift of rainfall (Allen, 2015; Westervelt
et al., 2017, 2018; Scannell et al., 2019). There is paleoclimate evidence of changes to Sahel rainfall in the
past, in particular with enhancement of the West African monsoon during the mid-Holocene. However, the
mechanisms governing such a change have been shown to be largely dynamical in nature (D’ Agostino et al.,
2019), suggesting that the mid-Holocene cannot be used to inform the credibility of changes due to
greenhouse warming.

There is very high confidence (robust evidence and high agreement) that patterns of 20®™=century ocean and
land surface temperature variability have caused the Sahel drought and subsequentirecovery by adjusting
meridional gradients. There is high confidence (robust evidence and medium agreement) that.the changing
temperature gradients that perturb the West African monsoon and Sahel rainfall-are themselves:driven by
anthropogenic emissions: warming by GHG emissions was initially restricted to the tropics but suppressed in
the North Atlantic due to nearby emissions of sulphate aerosols, leading to a reduction in rainfall. The North
Atlantic subsequently warmed following the reduction of aerosel emissions, leading to.rainfall recovery.

10.4.2.2 The southeastern South America summer wetting

A positive trend in summer (December to February) precipitation has been detected in multiple observational
sources in southeastern South America since the beginning of the 20th ¢entury (Gonzalez et al., 2013; Vera
and Diaz, 2015; Wu et al., 2016; Zhang et al., 2016; Diaz and Vera, 2017; Saurral et al., 2017). Sedimentary
records from the Mar Chiquita lake indicate that the last quarter of the 20th century was wetter than any
period during the last 200 years (Piovano et al.;2004). In this attribution example the drivers contributing to
the positive trend for the period 1951-2014 are discussed (Figure 10.12a). Precipitation anomalies of CRU
TS as well as for the two members of a SMILE with:the most negative and positive trends for 1951-2014 are
displayed in Figure 10.12b. The trend for 1951-2014 using CRU TS and GPCC is illustrated in Figure
10.12c, and for the region.defined by the black quadrilateral, it amounts to 2.8 (CRU TS) — 3.5 (GPCC) mm
per month and decade (see blackCrosses in Figure 10.12d) while the mean summer monthly precipitation for
the same period is 104 (CRU TS) —109'(GPCC) mm. The trend is also detectable in daily and monthly
extremes (Re and-Barros, 2009; Marengo et al., 2010; Penalba and Robledo, 2010; Doyle et al., 2012; Donat
et al., 2013; Lorenz et al., 2016).

[START FIGURE 10.12 HERE]

Figure 10.12: Southeastern South America positive mean precipitation trend and its drivers during 1951-2014.
(a) Mechanisms that have been suggested to contribute to southeastern South America summer wetting.
(b) Time series of austral summer (December to February) precipitation anomalies (%, baseline 1995—
2014) over the south-eastern South American region (26.25°S—-38.75°S, 56.25°W-66.25°W), black
quadrilateral in the first map of panel (c). Black, brown and green lines show low-pass filtered time series
for CRU TS, and the members with driest and wettest trends of the MPI-ESM SMILE (between 1951—
2014), respectively. The filter is the same as the one used in Figure 10.10. (¢) Mean austral summer
precipitation spatial linear 1951-2014 trends (mm per month and decade) from CRU TS and GPCC.
Trends are estimated using ordinary least squares regression. (d) Distribution of precipitation 1951-2014
trends over southeastern South America from GPCC and CRU TS (black crosses), CMIP6 all-forcing
historical (red circles) and MIROC6, CSIRO-Mk3-6-0, MPI-ESM and d4PDF SMILEs (grey box-and-
whisker plots). Grey squares refer to ensemble mean trends of their respective SMILE and the red circle
refers to the CMIP6 multi-model mean. Box-and-whisker plots follow the methodology used in Figure
10.6. Further details on data sources and processing are available in the chapter data table (Table
10.SM.11).
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[END FIGURE 10.12 HERE]

The influence of SST anomalies on southeastern South America precipitation have been studied extensively
on interannual to multi-decadal time scales (Paegle and Mo, 2002). The positive phase of El Nifio Southern
Oscillation (ENSO; Annex AIV.2.3) is related to stronger mean and extreme rainfall over south-eastern
South America (Ropelewski and Halpert, 1987; Grimm and Tedeschi, 2009; Robledo et al., 2016). The
ENSO influence may be modulated by the PDV (Kayano and Andreoli, 2007; Fernandes and Rodrigues,
2018) and the AMV (Kayano and Capistrano, 2014). PDV and AMV also influence the southeastern South
American climate independently of ENSO (Barreiro et al., 2014; Grimm and Saboia, 2015; Robledo et al.,
2019). While Pacific SSTs dominate the overall influence of oceanic variability in the region, the Atlanti¢
variability seems to dominate on multi-decadal time scales and has been proposed as a driver for the long-
term positive trend (Seager et al., 2010; Barreiro et al., 2014). Based on experiments designed to test how
southeastern South America precipitation is modulated by tropical Atlantic SSTs, Seager et al. (2010)
showed that cold anomalies in the tropical Atlantic favour wetter conditions by inducing an upper-
tropospheric flow towards the equator, which, via advection of vorticity, leads torascending motion over
southeastern South America (Figure 10.12a). Monerie et al. (2019) supported this argument.showing a
negative relationship between southeastern South America precipitation and the AMV index (Huang et al.,
2015) using an atmospheric GCM coupled to an ocean mixed layer model with nudged SSTs.

The positive trend of precipitation has also been attributedto anthropogenic GHG emissions and
stratospheric ozone depletion. CMIP5 models only show a positive trend when including anthropogenic
forcings (Vera and Diaz, 2015). These results were supported by Knutson and Zeng (2018) based on
univariate detection/attribution analysis of annual-mean trends for the 19012010 and 1951-2010 periods.
However, the main features of summer mean precipitation and variability of South America are still not well
represented in all CMIP5 and CMIP6 models (Gulizia and Camilloni, 2015; Diaz and Vera, 2017; Diaz et al.,
2020). This motivates the construction of ensembles that exclude'the worst performing models (Section
10.3.3.4). The construction of ensembles of CMIP5 historical simulations with realistic representation of
precipitation anomalies with opposite sign over southeastern South America and eastern Brazil showed that
the trend since the 1950s could be related to changes:in precipitation characteristics only when simulations
included anthropogenic forcings (Diaz and Vera, 2017). GHG emissions have been related to increased
precipitation in southeastern South Americathrough three different mechanisms (Figure 10.12a). First, GHG
warming induces a non-zenally uniform pattern of SST warming that includes a warming pattern over the
Indian and Pacific Oceans that excites.wave responses over South America (Junquas et al., 2013). Zonally
uniform SST patterns of warming alone lead to precipitation signals opposite to those observed in an
atmospheric GCM (Junquas et al:;2013). Second, GHG radiative forcing drives an expansion of the Hadley
cell so that its descending branch moves poleward from the region, generating anomalous ascending motion
and precipitation (Zhang etal., 201.6b; Saurral et al., 2019). The third mechanism by which increased GHG
can contribute to increased precipitation in the region is through a delay of the stratospheric polar vortex
breakdown. As depicted in Figure 10.12a, both stratospheric ozone depletion and increased GHGs have
contributed to the later breakdown of the polar vortex in recent decades (Ceppi and Shepherd, 2019;
McLandress et al.; 2010; Wu and Polvani, 2017). Mindlin et al. (2020) developed future atmospheric
circulation storylines.(Section 10.3.4.2, Box 10.2) for Southern Hemisphere mid-latitudes with the CMIP5
models and found that for southeastern South America summer precipitation, increases are related to the late
springtime breakdown of the stratospheric polar vortex. The connecting mechanism is through a lagged
southward shift of the jet stream (Saggioro and Shepherd, 2019), which enhances cyclonic activity over the
region (Wu and Polvani, 2017).

A common feature among the above discussed studies is that even if GCMs simulate positive trends when
forced with GHG and/or stratospheric ozone, these trends are in general smaller than those observed (e.g.,
CMIP6 trends in red open circles in Figure 10.12d). Diaz et al. (2020) showed that to capture the observed
trend a multi-model ensemble of SMILEs is needed. Out of the 12 large ensembles examined (with ensemble
size varying in the 16—100 range), only seven simulated the observed trend within their range. This could
partly be explained by model biases in mean precipitation and its interannual variability. In the sub-ensemble
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of six models that reproduce reasonably well the observed spatial patterns of mean precipitation and
interannual variability, the ensemble mean spread is lower, and the forced response, taken as the multi-model
ensemble mean, is slightly more positive than that of the six poorly performing models. The signal to noise
ratio, estimated as the ratio of the forced response to the spread due to internal variability, is also slightly
higher for the best-performing models, suggesting that selecting the best-performing models may have an
influence on both attribution of the observed trend and emergence of the forced response in future (Section
10.4.3).

There is high confidence that southeastern South America summer precipitation has increased since the
beginning of the 20th century. Since ARS, science has advanced in the identification of the drivers of the
precipitation increase in southeastern South America since 1950, including GHG through various
mechanisms, stratospheric ozone depletion and Pacific and Atlantic variability. There is high confidence that
anthropogenic forcing has contributed to the southeastern South America summer precipitation increase
since 1950, but very low confidence on the relative contribution of each driver to the precipitation increase.

10.4.2.3  The southwestern North America drought

Persistent hydroclimatic drought in southwestern North America remains a much-studied event. Drought is a
regular feature of the southwestern North America’s climate regime, as can be seen in:both the modern
record, and through paleoclimate reconstructions (Cook et al;; 2010; Woodhouse etal., 2010; Williams et al.,
2020), as well as in future climate model projections (Cook etal., 2015a). Since the early 1980s, which were
relatively wet in terms of precipitation and streamflow, the region has experienced major multiyear droughts
such as the turn-of-the-century drought that lasted from.1999 to 2005, and the most recent and extreme
2012-2014 drought that in certain locations is perhaps unprecedented in‘the last millennium (Griffin and
Anchukaitis, 2014; Robeson, 2015; Section 8.3.1.6). Shorter dry spells also happened between these
multiyear droughts making 1980 to presenta period with an exceptionally steep trend from wet to dry
(Figure 10.13a), leading to strong declines in-Rio Grande and.Colorado river flows (Lehner et al., 2017b;
Udall and Overpeck, 2017). While robust attribution of this trend is complicated by the large natural
variability in this region, the 20th céntury warming has been suggested to increase the chances for
hydrological drought periods by lowering runoff efficiency (Woodhouse et al., 2016; Lehner et al., 2017b;
Woodhouse and Pederson, 2018).and affecting evapotranspiration (Williams et al., 2020). There is some
evidence suggesting that the Last Glacial Maximum, a‘period of low atmospheric CO,, ~21 ka ago, has a
thermodynamically-driven zonal-mean precipitation response similar to that of the current state with
relatively high CO; levels when compated with the pre-industrial period. Pluvial conditions at that time and
a reduction in precipitationfrom the'Last Glacial Maximum to the pre-industrial period are consistent with
drying trends for the region in models with GHG concentrations exceeding pre-industrial levels. However,
the dominant large-scale drivers responsible for the precipitation changes observed during these two
transitions are markedly different:mainly ice sheet retreat and increasing insolation on one hand, increasing
GHGs on the other hand. This suggests that the Last Glacial Maximum correspondence is fortuitous which
strongly limits its use to capture future hydrological cycle changes (Morrill et al., 2018; Lowry and Morrill,
2019; Section 8.3.2:4.4). Furthermore, the conclusion of the Last Glacial Maximum drying versus wetting
seems to strongly depend on the physical property of interest, hydrologic or vegetation indicators (Scheff et
al., 2017). Droughts are characterized by deficits in total soil moisture content that can be caused by a
combination of decreasing precipitation and warming temperature, which promotes greater
evapotranspiration. Regional-scale attribution of the prevalence of southwestern North America drought
since 1980 then mostly focuses on the attribution of change in these two variables.

The observed southwestern North America drying fits the narrative of what might happen in response to
increasing GHG concentrations due to a poleward expansion of the subtropics, that is conducive to drying
trends over subtropical to mid-latitude regions (Hu et al., 2013b; Birner et al., 2014; Lucas et al., 2014).
However, several studies based on modern reanalyses and CMIP5 models have recently shown that the
current contribution of GHGs to Northern Hemisphere tropical expansion is much smaller than in the
Southern Hemisphere and will remain difficult to detect due to large internal variability, even by the end of
the 21* century (Section 3.3.3.1; Garfinkel et al., 2015; Allen and Kovilakam, 2017; Grise et al., 2018,
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2019). In addition, the widening of the Northern Hemisphere tropical belt exhibits strong seasonality and
zonal asymmetry, particularly in autumn and the North Atlantic (Amaya et al., 2018; Grise et al., 2018).
Therefore, it seems that the recent Northern Hemisphere tropical expansion results from the interplay of
internal and forced modes of tropical width variations and that the forced response has not robustly emerged
from internal variability (Section 3.3.3.1; Section 10.4.3).

A second possible causal factor is the role for ocean-forced or internal atmospheric circulation change.
Analysis of observed and CMIP5-simulated precipitation indicates that the drought prevalence since 1980 is
linked to natural, internal variability in the climate system (Knutson and Zeng, 2018). Based on observations
and ensembles of SST-driven atmospheric simulations, Seager and Hoerling (2014) suggested that robust
tropical Pacific and tropical North Atlantic forcing drove an important fraction of annual mean precipitation
and soil moisture changes and that early 21* century multiyear droughts could be attributed to natural
decadal swings in tropical Pacific and North Atlantic SSTs. A cold state of the tropical Pacific would lead by
well-established atmospheric teleconnections to anomalous high pressure across the North Pacific and
southern North America, favouring a weaker jet stream and a diversion of thePacific storm track away from
the southwest (Delworth et al., 2015; Seager and Ting, 2017). The multiyear drought of 2012<2016,has been
linked to the multiyear persistence of anomalously high atmospheric pressure over'the north-eastern Pacific
Ocean, which deflected the Pacific storm track northward and suppressed regional precipitation during
California's rainy season (Swain et al., 2017). Going into more detail, Prein et al. (2016) used an assessment
of changing occurrence of weather regimes to judge that changes in the frequency of certain regimes during
1979-2014 have led to a decline in precipitation by about 25%, chiefly related to the prevalence of
anticyclonic circulation patterns in the northeast Pacific. Finally, the moderate model performance in
representing Pacific SST decadal variability and its remote influence (Section 3.7.6) as well as its change
under warming may affect attribution results of observed and future precipitation changes (Seager et al.,
2019).

It has also been suggested that the ocean-controlled influence is-limited and internal atmospheric variability
has to be invoked to fully explain the observed history of drought.on decadal time scales (Seager and
Hoerling, 2014; Seager and Ting, 2017). From roughly 1980 to the present, the regional climate signals show
an interesting mix between forced and internal variability. Lehner et al. (2018) used a dynamical adjustment
method and large ensembles of coupled and SST-forced atmospheric experiments to suggest that the
observed southwestern NorthrAmerica rainfall decline mainly results from the effects of atmospheric internal
variability, which is in part driven by a PDV+related phase shift in Pacific SST around 2000 (Figure 10.13b,
¢). Based upon four SMILESs (three using a coupled GCM and another one an atmospheric GCM constrained
by observed SSTs) and a CMIP6 multismodel suite constrained by observed external forcings, Figure 10.13
shows, in agreement with Liehner et-al.(2018), that observed SSTs with their associated atmospheric
response are the main drivers of the southwestern North America precipitation decrease during the 1983—
2014 period:.Once.aspects of the internal variability are removed by dynamical adjustment, the observed
precipitation-change signal‘and simulated anthropogenically-forced components look more similar (Lehner
et al., 2018).

[START FIGURE 10.13 HERE]

Figure 10.13: Attribution of the southwestern North America precipitation decline during the 1983-2014 period.
(a)-Water year (October to September) precipitation spatial linear trend (in percent per decade) over
North America from 1983 to 2014. Trends are estimated using ordinary least squares. Top row: Observed
trends from CRU TS, REGEN, GPCC, and the Global Precipitation Climatology Project (GPCP). Middle
row: Driest, mean and wettest trends (relative to the region enclosed in the black quadrilateral, bottom
row) from the 100 members of the MPI-ESM coupled SMILE. Bottom row: Driest, mean and wettest
trends relative to the above region from the 100 members of the d4PDF atmosphere-only SMILE. (b)
Time series of water year precipitation anomalies (%, baseline 1971-2000) over the above south-western
North America region for CRU TS (grey bar charts). Black, brown and green lines show low-pass filtered
time series for CRU TS, driest and wettest members of the d4PDF SMILE, respectively. The filter is the
same as the one used in Figure 10.10. (c) Distribution of south-western region-averaged water-year
precipitation 1983-2014 trends (in percent per decade) for observations (CRU TS, REGEN, GPCC and
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GPCP, black crosses), CMIP6 all-forcing historical simulations (red circles), the MIROC6, CSIRO-Mk3-
6-0, MPI-ESM and d4PDF SMILEs (grey box-and-whisker plots). Grey squares refer to ensemble mean
trends of their respective SMILE and the red circle refers to the CMIP6 multi-model mean. Box-and-

whisker plots follow the methodology used in Figure 10.6. Further details on data sources and processing
are available in the chapter data table (Table 10.SM.11).

[END FIGURE 10.13 HERE]

Importantly, as the AR6 assessment views the PDV as being mostly driven by internal variability (Section
3.7.6), the lines of evidence cited above suggest that the contribution of natural and anthropogenic forcings
to the precipitation decline has a small amplitude. Unlike the precipitation deficit, the accompanying
southwestern North America warming is driven primarily by anthropogenic forcing from GHGs rather than
atmospheric circulation variability and may help to enhance the drought through increased
evapotranspiration (Knutson et al., 2013; Diffenbaugh et al., 2015; Williams et.al., 2015, 2020, Lehner-et al.,
2018, 2020).

To conclude, there is high confidence (robust evidence and medium agreement) that most'(>50%).of the
anomalous atmospheric circulation that caused the southwestern North-America negative:precipitation trend
can be attributed to teleconnections arising from tropical Pacific SST variations related to PDV. There is
high confidence (robust evidence and medium agreement) that anthropogenic forcing has made a substantial
contribution (~50%) to the southwestern North America warming since 1980.

10.4.2.4 Assessment summary

The robustness of regional-scale attribution differs strongly between temperature and precipitation changes.
While the influence of anthropogenic forcing on regional temperature long-term change has been detected
and attributed in almost all land regions; a robust'detection and attribution of human influence on regional
precipitation change has not yet fully occurred for many land regions (Section 10.4.3). Although the
contribution of anthropogenic forcing to long-term regional precipitation change has been detected in some
regions, a robust quantification of the contributions of different drivers remains elusive. The delayed
emergence of the anthropogeénic precipitation fingerprint with respect to temperature is likely due to the
opposing sign of the fast and slow-land precipitation forced responses and time-dependent SST change
patterns (Section 8.2.1; Section10.4.3), stronger.internal variability (Section 10.3.4.3) as well as larger
observational uncertainty (Section 10:2) and impact of model biases. The contribution of internal variability
to the observed changes can also be very:sensitive to the period length and level of spatial aggregation for
the region under scrutiny (Kumar et al., 2016; Cross-Chapter Box 3.1; Section 4.4.1). Finally, even in the
case of temperature changes-at multi-decadal time scale, internal variability can still be a substantial driver of
regional changes due to cancellation between different external forcings (Nath et al., 2018).

To conclude, it is virtually certain (robust evidence and high agreement) that anthropogenic forcing has been
a major driver of'temperature change since 1950 in many sub-continental regions of the world. There is high
confidence (high evidence and medium agreement) that anthropogenic forcing has contributed to multi-
decadal mean precipitation changes in several regions such as for example West Africa, southeast South
Americassouthwestern Australia, northern Central Eurasia, South and East Asia. However, at regional scale,
the role of internal variability is stronger while uncertainties in observations, models and external forcing are
all larger than at the global scale, precluding a robust assessment of the magnitude of the relative
contributions of greenhouse gases, including stratospheric ozone, and different aerosol species.

10.4.3 Future Regional Changes: Robustness and Emergence of the Anthropogenic Signal
Regional climate projections are one key element of the multiple lines of evidence that are used for climate

risk assessments as well as for adaptation and policy decisions at regional scales (Sections 10.3.3.9 and
10.5). Regional climate projections can be separated into two components: the regional-scale forced response
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or regional-scale climate sensitivity when normalized by the global mean temperature change (Seneviratne
and Hauser, 2020) and the climate internal variability characterizing the future period or global warming
level under scrutiny. This section assesses a few methodological aspects related to robustness and emergence
properties of the regional-scale forced response as well as the possible influence of internal variability on the
emergence of the anthropogenic signal.

10.4.3.1 Robustness of the anthropogenic signal at regional scale

Standard methodologies to derive the regional forced response include pattern scaling and the time-shift or
epoch approach (Tebaldi and Arblaster, 2014; Vautard et al., 2014; Herger et al., 2015; Tebaldi and Knutti,
2018; Christensen et al., 2019; Section 4.2.4). Pattern scaling assumes that the spatial patterns of regional
change, often based on a time-averaged 20 or 30-year period at the end of the 21 century, are roughly.
constant in time, and simply scale linearly with global mean warming. The time-shift approach defines a
target in terms of global warming level (GWL) and locates the time segment, sisually 20 or 30 years,.in
historical or scenario simulations in which global mean warming matches the required GWL (Section 10.1.2;
Cross-Chapter Box 11.1). Physical consistency between multiple variables and space-time Covariance are
fully preserved in the time-shift approach, which is not the case for pattern-scaling (Herger et al., 2015).
Importantly, pattern scaling cannot account for the non-linearity arising from either interacting quasi-linear
processes (Chadwick and Good, 2013) and purely nonlinear mechanisms, which have been shown to be
present in CMIP5 models for high GWL (4°C) and affect precCipitation more than temperature at the
regional-scale (Good et al., 2015, 2016; Section 8.5.3.1). The time-shift approach canalso be used to test
whether regional climate change patterns depend on the rate of global mean warming and external forcing
pathways, in addition to global warming magnitude. ‘Aglobal evaluation of both-approaches in projecting the
forced temperature and precipitation response for a highly mitigated scenario based on a moderately
mitigated one has been performed using a perféct-model framework (Tebaldi and Knutti, 2018). The
amplitude of errors for both approaches appears to be substantially.smaller than model uncertainty
approximated by the CMIP5 multi-model spread.

Based on large and coordinated modelling exercises suchias CMIP5 and CORDEX, the time-shift approach
has been largely used to assess differences in regional climate impacts for different GWLs, with a strong
focus on 1.5°C versus 2°C (Karmalkar and Bradley, 2017; Dosio and Fischer, 2018; Karnauskas et al., 2018;
Liu et al., 2018; Taylor etal., 2018;Weber et al., 2018; Chapter 3, SR1.5, IPCC 2018). Comparisons
between pattern scaling-and time-<shift approaches allow assessment of the scalability of the regional climate
change signal and the extent to which pattern scaling assumptions still hold at regional scale for a wide range
of GWL. This was'the approach followed by Matte et al. (2019) in their assessment of the scalability of
European regional climate projections. Based on EURO-CORDEX projections, they performed a detailed
comparison:between the pattern scaling and the GWL spatial patterns (GWL range: 1°C, 2°C and 3°C) for
different seasons, regional model resolutions, and both temperature and precipitation. High pattern
correlation values (greater than 0.9) are found between the scaled pattern and all GWL patterns for
temperature. In the case of precipitation, the correspondence is slightly lower, especially in summer, for high
GWLs (2°C and 3°2C) and much lower for 1°C.

Figure 10.14 illustrates a similar comparison based on the CMIP6 multi-model ensemble forced with the
scenario SSP5-8.5 and applied to two large-scale continental areas. The forced response to anthropogenic
forcing'is simplytaken as the CMIP6 multi-model mean of future regional climate change relative to the
1850—-1900 reference period. Robustness of the forced response is based on both significance of the change
and model agreement about the sign of change (Cross-Chapter Box Atlas.1; Figure 10.14). Caution has to be
exercised against a too literal interpretation of lack of robust change given that significance and sign
agreement can be sensitive to spatial and temporal aggregation (Cross-Chapter Box Atlas.1, Figure 2) and
lack of a robust change does not necessarily translate to lack of regional-scale climate change impacts
(McSweeney and Jones, 2013; Hibino and Takayabu, 2016).

[START FIGURE 10.14 HERE]
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Figure 10.14: Robustness and scalability of anthropogenic signals at regional scale. (a) Spatial patterns of Europe
and Africa summer (June to August) surface air temperature change (in °C °C™!) from the CMIP6 multi-
model mean (45 models, one member per model, historical simulations and scenario SSP5-8.5) at
different global warming levels (GWLs) and the end-21st century scaling pattern estimated from the
multi-model mean difference between 2081-2100 and the pre-industrial period (1850—-1900) divided by
the corresponding global mean warming. The scale of all GWL patterns has been adjusted to a global
mean warming of 1°C (for example, the resulting 3°C spatial pattern has been divided by three). The
scales of the GWL patterns have to be multiplied by their threshold values to obtain the actual simulated
warming. The metrics shown in the bottom left corner of the GWL pattern plots indicate the spatial
pattern correlation and the root-mean square difference between the GWL patterns and the scaling
pattern. The number in bold just above the metrics gives the number of used CMIP6 models (out of 45)
that have reached the GWL threshold. Areas with robust change (at least 66% of the models have a signal
to noise ratio greater than one and 80% or more of the models agree on the sign of the change) are
coloured with no pattern overlaid (Cross-Chapter Box Atlas.1). Areas with a significant change (at least
66% of the models have a signal to noise ratio greater than one) and lack-of model agreement (meaning
that less than 80% of the models agree on the sign of the change) are marked by cross-hatching. Areas
with no change or no robust change (less than 66% of the models have a signal to noiseratio greater than
one) are marked by negatively sloped hatching. (b) Same as (a).but for North, Central and Seuth America
annual mean precipitation relative change (percent °C™!'). The baselifie for precipitation climatology is
1850-1900. Further details on data sources and processingare available in thechapter data table (Table
10.SM.11).

[END FIGURE 10.14 HERE]

If projected regional mean temperature (Figure 10.14a) and precipitation (Eigure 10.14b) changes were to
scale linearly with global mean warming, the adjusted spatial patterns would be congruent with each other at
different GWLs. While pattern scaling seemis to be a/reasonable first-order approximation for both
temperature and precipitation changes in‘tropical and high-latitude regions (high pattern correlation values),
there are a number of regions exhibiting substantial amplitude differences at different GWLs (Northern
Africa and Middle East, southern and eastern Europe for temperature; southwestern North America, Chile
and north-eastern Brazil for precipitation). These differences hint at the possible influence of nonlinear
mechanisms (Good et al., 2015), including soil moisture feedbacks (Seneviratne et al., 2010; Vogel et al.,
2017), a time-dependent balance between the different contributions of fast and slow response to greenhouse
gas forcing as well as changing SST response patterns (Long et al., 2014; Good et al., 2016; Ceppi et al.,
2018; Zappa et al., 2020). Decreasing spatial pattern amplitude with increasing GWL suggests that the initial
transient regional'response-overshoots the long-term change in regions such as northern Africa for summer
temperature and southwestern Seuth America for precipitation (Zappa et al., 2020). In the latter region, long
simulations with stabilized GHG concentrations even suggest a change of sign when near-equilibrium is
reached (Sniderman et al., 2019). The reverse behaviour, increasing pattern amplitude with increasing GWL,
is seen for summer temperature in southern and eastern Europe and for precipitation in southwestern North
America (Sniderman et al.; 2019; Zappa et al., 2020), suggesting that, in these regions, the initial transient
response is lagging global mean warming and final regional climate change will be reached once GHG
concentrations are stabilized.

There is high.confidence that the time-evolving contribution of different mechanisms operating at different
time scales.can modify the amplitude of the regional-scale response of temperature, and both the amplitude
and sign of the regional-scale response of precipitation, to anthropogenic forcing. These mechanisms include
non-linear temperature, precipitation and soil moisture feedbacks, and slow and fast response of SST patterns
and atmospheric circulation changes to increasing GHGs.

10.4.3.2 Emergence of the anthropogenic signal at regional scale

This section provides an assessment of the different approaches used in emergence studies as well as
sensitivities to methodological choices. The section then focuses on the possible influence of internal
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variability on future emergence of the simulated mean precipitation anthropogenic signal at regional scales
with some illustrative examples.

In climate science, emergence or distinguishability of a signal refers to the appearance of a persistent change
in the probability distribution and/or temporal properties of a climate variable compared with that of a
reference period (Giorgi and Bi, 2009; Mahlstein et al., 2011, 2012; Hawkins and Sutton, 2012; Section
1.4.2). Similar to anthropogenic climate change detection (Cross-Working Group Box: Attribution (in
Chapter 1)), signal emergence can be detected, at least initially, without identifying the physical causes of
the emergence (Section 1.4.2). In the context of human influence on climate, the objective of emergence
studies is the search for the appearance of a signal characterizing an anthropogenically-forced change
relatively to the climate variability of a reference period, defined as the noise.

Precise definitions of signal and noise as well as a metric to measure the relative importance of the signal are
key ingredients of the emergence framework and depend on the framing question. In particular, emergence
study results can depend on the specific definitions of signal and noise such as'the level of spatial and
temporal aggregation (McSweeney and Jones, 2013). For instance, grid-point scale emergence will likely be
delayed compared with region-average emergence (Fischer et al., 2013; Maraun;2013; Lehner et al., 2017a;
Section 11.2.4; Cross-Chapter Box Atlas.1, Figure 2). The signal is often estimated by a running mean multi-
decadal average or probability distribution function of the physical-variable uinder scrutiny in order to avoid
false emergence due to manifestation of multi-decadal internal variability (King et'al.;;2015). In the case of
extremes such as climate records, a notion of multi-year persistence or recurrence can also be used to fully
characterize the anthropogenic signal and its emergence (Christiansen, 2013; Bador etal., 2016).

Emergence is also sensitive to the noise characteristics:assuming a common signal definition, larger signal-
to-noise values and earlier emergence will arise if the noise is based on decadal mean variability rather than
interannual variability (Kusunoki et al., 2020).Depending on the framing question, the noise can include or
omit external natural forcing such as volcanic and solar forcing (Zhang and Delworth, 2018; Silvy et al.,
2020). Furthermore, emergence results are very sensitive to the choice and length of the reference period
(Section 1.4.1). The reference period can be the‘pre-industrial, the very recent past or even a time-evolving
baseline, depending on both the framing.and assumption that adaptation to the current climate has already
occurred (King et al., 2015; Zhang and Delworth, 2018; Brouillet and Joussaume, 2020). These choices will
then determine the type of simulations and periods that will be used to construct the noise distribution.
Finally, the permanence of future emergence cannot be taken for granted when emergence occurs in the late-
21* century based on simulations‘ending in 2100 (Hawkins et al., 2014; King et al., 2015; Lehner et al.,
2017a).

Robust assessments and comparisons of past emergence between observations and models are strengthened
by the use of consistent definitions of'signal and noise (Lehner et al., 2017a; Hawkins et al., 2020). In the
case of future emergence under increasing greenhouse gas emissions, two main approaches have been
followed to assess emergence. The first is based on estimating the signal and noise (and sometimes the
signal-to-noise ratio as well) in‘individual models before using the resulting distribution median or mean to
construct the final.emergence metric (Hawkins and Sutton, 2012; Maraun, 2013b; Sui et al., 2014; Barrow
and Sauchyn, 2019):The second method first estimates the signal as a multi-model mean change and the
noise variance as,a combination of internal variability and model structural differences (Giorgi and Bi, 2009;
Mariotti et al., 2015; Nguyen et al., 2018). The first approach allows the definition of emergence of the
signal relative torinternal variability only and treats model error as source of uncertainty (Maraun, 2013b;
Lehner et al., 2017a). The second assumes that the multi-model mean is the optimal estimate of the signal
and confounds internal variability and model structural differences in the noise estimate. It is noteworthy that
most emergence studies implicitly assume model independence (Annan and Hargreaves, 2017; Bo¢, 2018;
Box 4.1) and therefore sensitivity of emergence results to model selection or weighting is rarely performed
(Akhter et al., 2018).

Metrics can vary from a simple signal-to-noise ratio to statistical distributional tests (King et al., 2015;

Gaetani et al., 2020) and give median estimates and uncertainty bounds for the date (or time of emergence)
corresponding to the exceedance of specific thresholds by the emergence metric. Reconciling future
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emergence results among different studies is challenging due to their many methodological differences
including the choice of the reference period, the selected climate models and scenario, the precise definition
of signal and noise and the choice of different signal-to-noise thresholds to characterize robust emergence.
Contrasting with binary yes/no statements, emergence can also be viewed as a continuous process
characterized by an amplitude or level, for example the value of the signal-to-noise ratio, that is a function of
time or global warming level.

Since ARS, the development and production of SMILEs (Sections 4.2.5 and 10.3.4.3) has allowed the
assessment of the influence of internal variability on anthropogenic signal emergence. The influence of
internal variability, and specifically of the unforced atmospheric circulation, on temperature signal
emergence can delay or advance the time of emergence by a decade or two in mid-to-high latitude regions
(Lehner et al., 2017a; Koenigk et al., 2020). Internal variability can also result in small or decreasing decadal
to multi-decadal heatwave frequency trends under the historical anthropogenic forcing over most regions,
thereby delaying emergence of unprecedented heatwave frequency trends relative to the-pre-industrial trend
distribution (Perkins-Kirkpatrick et al., 2017; Sections 11.2-3).

Regional precipitation future changes are much more impacted by internal variability than their.temperature
counterpart (Monerie et al., 2017b; Singh and AchutaRao, 2018; Dai and Bloecker, 2019; von Trentini et al.,
2019; Koenigk et al., 2020). Relative to mean temperature changes;:this larger influence of internal
variability on mean precipitation changes contributes, among other factors (Sarojini et.al., 2016), to a much
delayed emergence of the forced precipitation response in observations (Hawkins et‘al., 2020). Based on the
CMIP6 multi-model ensemble forced with the scenario SSP5-8.5, we assess the future emergence of mean
precipitation forced change as a function of GWLs for all AR6 land regions (Figure 10.15a). The
methodology is a straightforward adaptation of the standard approach (Hawkinsrand Sutton, 2012). While the
standard method is only based on the signal-to-noise ratio exceedance of'a.specified threshold (taken as one),
the approach used here assumes that grid-point'emergence occurs when the forced change is considered
robust following the AR6 WGI1 definition.of robustness for ptojected changes (Cross-Chapter Box Atlas.1).
At a GWL of 1°C, emergence only occurs in-high-latitude regions (Wan et al., 2015; Guo et al., 2019b),
albeit with only small (less than 30%)area fraction with'robust change. Robust changes in tropical and
subtropical regions only appear from GWLs of 1.5°C, foriexample in southwest South America (Boisier et
al., 2016), western Africa (Hawkins et al., 2020; Section 10.4.2.1) and southern Australia (Delworth and
Zeng, 2014). Substantial (taken here simply as area fraction greater than 50%) emergence only occurs in
some tropical, subtropicaland midlatitude regionsiwhen high GWLs (3°C—4°C) are reached. Importantly,
even at these high GWlsvalues, there are still a large number of these regions with robust changes covering
less than 50% of their area. In contrast; most high-latitude regions have an area fraction with robust changes
greater than 80% at:GWLs.of 3°C and above.

[START FIGURE 10.15 HERE]

Figure 10.15: Future emergence of anthropogenic signal at regional scale. (a) Percentage area of land regions with
robust-annual mean precipitation change as a function of increasing GWLs. Robustness of the
precipitation change is first estimated at each grid-point followed by the estimation of the AR6 region
arca with robust changes. For each CMIP6 model considered (45 models, one member per model,
historical simulations and scenario SSP5-8.5), the annual mean precipitation change is based on the
difference between a 20-year average centred on the GWL crossing year and the mean precipitation
during the pre-industrial period (1850—-1900) taken as a reference. Robustness of the change is acted
when at least 66% of the models (30 out of 45) have a signal to noise ratio greater than one and at least
80% of them (36 out of 45) agree on the sign of change. The signal to noise ratio is estimated for each
model from the ratio between the change and the standard deviation of non-overlapping 20-year means of
the corresponding pre-industrial simulation (scaled by square root of 2 times 1.645). (b) Time evolution
of the percentage area of land region with robust annual mean precipitation change for five AR6 land
regions. Thick solid lines represent precipitation changes based on the same CMIP6 ensemble as in (a).
Thin solid, dotted and dashed lines represent changes based on the three coupled SMILEs used in Chapter
10, illustrating the influence of internal variability on the emergence of robust change. The change is
estimated from the difference between all consecutive 20-year periods from 1900-1919 up to 2081-2100
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and the pre-industrial period. The line colour indicates the sign of the robust change given by the multi-
model mean (CMIP6) or ensemble mean (SMILE) change: brown (decreasing precipitation) and dark
green (increasing precipitation). Further details on data sources and processing are available in the
chapter data table (Table 10.SM.11).

[END FIGURE 10.15 HERE]

We now illustrate the potential influence of internal variability on late or lack of emergence for a few AR6
land regions (Figure 10.15b). For each of these AR6 regions, the time evolution of the percentage area with
robust annual mean precipitation change is estimated for both the CMIP6 multi-model ensemble and the
three coupled SMILEs used throughout Chapter 10. Similarity in percentage area time evolution between
CMIP6 and the three coupled SMILEs suggests that internal variability can substantially influence the timing
of emergence. For example, internal variability could explain the mid-21* century emergence (percentage
area greater than 50%) of the drying and wetting signal over the Mediterranean and South Asia (sec also
Section 10.6.3) regions, respectively. Internal variability can also contribute to the late and moderate
emergence over southeast South America (see also Section 10.4.2) and western'‘South Africa (see also
Section 10.6.2). In contrast, it cannot explain the lack of robust changes (percentage area less than 30%) over
western Africa at the end of the 21% century, suggesting that model.differences are also contributing to the
lack of emergence (Monerie et al., 2017b, 2017a). In addition to'different forced signals, the differences of
time evolution between the three SMILESs, in particular for African regions, point to'the issue of global
model performance in accurately representing internal variability and its future changes. While
overestimation and underestimation of internal variability in currént models have been reported (Eade et al.,
2014; Laepple and Huybers, 2014), methodological challenges to assess the magnitude and spatial pattern of
model biases in simulating internal variability, still remain (Section 10.3:4.3). Therefore, the existence of
model biases and the limited knowledge of their characteristics lead to limitations about a precise
quantification of internal variability influence on delayed regional-scale emergence.

There is high confidence that consistency in definitions of signal.and noise, choice of the reference period
and signal-to-noise threshold, is important to robustly assess the future emergence of anthropogenic signals
across different types or generations of models, as-well as comparing past emergence results between
observations and models. There is #1igh confidence that internal variability can delay the emergence of the
regional-scale mean precipitation anthropogenic signal in many regions, mainly located in the tropics,
subtropics and midlatitudes. An accurate estimation of the delay in regional-scale emergence caused by
internal variability remains challenging'due to global model biases in their representation of internal
variability as well-as methodological difficulties to precisely estimate these biases (high confidence).

10.5 Combining. Approaches to.Constructing Regional Climate Information

This section assesses approaches and challenges for producing climate information for climate risk
assessments as wellas for adaptation and policy decisions at regional scales (Section 10.1.2.1). An overview
of the different sources used for developing regional climate information is given in Section 10.5.1. The role
of the user context in the construction of climate information is assessed in Section 10.5.2. The distillation to
combine multiple lines of evidence is assessed in Section 10.5.3. Finally, climate services in the context of
regional climate-information are assessed in Section 10.5.4. The role of storylines in constructing climate
information is assessed in Box 10.2. The assessment of how regional climate information is distilled in the
report is treated in Cross-Chapter Box 10.3, whereas the assessment of information on regional, physical
climate processes that impact society or ecosystems, termed climatic impact-drivers (Section 10.1), appears
in Chapter 12, as well as more information on climate services in Cross-Chapter Box 12.2.

The rise in demand for relevant regional climate information (Hewitt et al., 2012, 2020; Lourenco et al.,
2016) has resulted in diverse approaches to produce it. Historically, the construction of climate information
has been embedded in a linear supply chain: extracting the source data, processing into maps or derived data
products, preparing the material for communication, and delivering to users (Section 10.1.4). Typical
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products are open-access, web-portal delivery services of data (Hewitson et al., 2017), which may also be
implemented as commercialised climate services (Webber and Donner, 2017). Such a chain, although it is
intended to meet a demand for regional climate information, contains many assumptions that are not obvious
to the recipients and that may introduce possible misunderstandings in the hand-over from one community to
the next (Meinke et al., 2006; Lemos et al., 2012). In recognition that data is not necessarily relevant
information, a new pathway towards a tailored distillation of climate information has emerged. The
construction of information assessed in this section draws on multiple sources (Figure 10.16), whereby the
context framing for an application is addressed through co-design with users. The constructed information is
then translated into the context of the user taking into account the values of all actors involved (Figure 10.1
and Sections 10.5.2 and 10.5.3).

10.5.1 Sources of Regional Climate Information

[START FIGURE 10.16 HERE]

Figure 10.16: Illustration of how using different sources can result in different.and potentially conflicting
information. Change in daily precipitation (2071-2100 RCP8.5 relative to 1981-2010) over West Africa
as simulated by an ensemble of GCM-driven RCMs. (a)Change in daily precipitation (mm) for April to
September, as mean of 17 CORDEX models (Dosio et al.;2020) (b-e) Time-latitude'diagram of daily
precipitation change for four selected RCM-GCM . combinations. For each month/and latitude, model
results are zonally averaged between 10°W—10°E (blue box in a). Different GEM-RCM combinations can
produce substantially different and contrasting results, when the same RCM is used to downscale
different GCMs (b, d), or the same GCM is downscaled by different RCMs (d, ). GCM1=IPSL-IPSL-
CMS5A, GCM2=ICHEC-EC-EARTH, REM1=RCA4, RCM2=REM02009. Adapted from (Dosio et al.,
2020), CCBY4.0 https://creativecominons.org/licenses/by/4.0/. Further details on data sources and
processing are available in the chapter data table (Table 10:SM.11).

[END FIGURE 10.16 HERE]

Regional climate information'may be constructed from a diverse range of sources, each depending on
different assumptions and-affected by different methodological limitations (Sections 10.2, 10.3 and 10.4).
The construction of information.may lead to preducts for direct adoption by users, or intermediate products
for further analysis by usersiand climate services agencies in collaboration with climate scientists. Widely
used sources include:

e Extrapolation of observed historical trends into the future (e.g., Livezey et al., 2007; Laaha et al.,
2016). Given‘that internal variability can affect regional trends significantly on decadal to
multidecadal timescales (Section 10.4), this approach could be potentially misleading without other
supporting evidence(Westra et al., 2010), or finding congruence with other changes (e.g., Langodan
et al., 2020).

e The output from global climate models (GCMs, Section 10.3.1), including high-resolution GCMs,
for which performance has been assessed and documented (Section 10.3.3). Model data can be used
in its raw.form or may be bias adjusted (Section 10.3.1 and Cross-Chapter Box 10.2) or weighted
(Section 10.3.4 and Box 4.1).

e | Thewoutput from dynamically (10.3.1.2) or statistically (10.3.1.3) downscaled GCM simulations for
which performance has been assessed and documented as trustworthy (Section 10.3.3). Model data
can be used in its raw form or may be bias adjusted, in the case of regional climate models (RCMs,
Section 10.3.1).

e Process understanding about climate and the drivers of regional climate variability and change,
grounded in theory about dynamics, thermodynamics and other physics of the climate system as a
basis for process-based evaluation. For instance, teleconnections are useful to understand the links
between large and regional scales at both near and long-term depending on the application. (Sections
10.1.3,10.3.3, 10.4.1, 10.4.3 and Annex IV).

e Idealized scenarios of possible future climates as narratives to explore the implications and
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consequences of such scenarios in the presence of uncertainty (Jack et al., 2021). This approach has
been used to explore the response to geoengineering (Cao et al., 2016), as well as alternative
scenarios where model projections are highly uncertain (Brown et al., 2016; Jack et al., 2021).

e Information directly from research reported in the peer-reviewed scientific literature (e.g, Sanderson
et al., 2017) or related research reports such as communications to the UN Framework on Climate
Change (UNFCCC) about national adaptation.

e Engaging with climate scientists and local communities who may provide indigenous information
(Makondo and Thomas, 2018; Rosenzweig and Neofotis, 2013).

e Relevant information may also be drawn from paleoclimate studies (e.g., McGregor, 2018;
Armstrong et al., 2020; Kiem et al., 2020) to support and contextualize other sources about more
recent and projected changes.

Different sources of information may be more appropriate for some purposes than others, as they may
provide information better aligned to the spatial and temporal scales of interest, in different formats,.and
tailored to different types of application. In some cases, a purpose may be best served using several types of
information together. For example, when model data is the primary source, it can be advantageous te employ
data from multiple models or even from a range of different experiment.types. (Section 10.3.2) supported by
assessing how the models reflect changes in driving processes. In this manner a purpose. may be best served
by seeking the congruence of several types of information together; though one needs to recognize how well
the attributes of each source align with the specific need for informatien. Depending on resources, one may
even design model experiments specifically for a given use,such as constructing physical climate storylines
of individual events (Box 10.2 and Section 10.3.2). Such.analyses may be complemented by event attribution
studies (Section 11.1.4).

Users of climate information may face the so-called practitioner’s dilemma:.a plethora of different and
potentially contrasting sources (Figure 10.16)nay be available without a comprehensive and user-relevant
evaluation, and these datasets may also lack a transparent and ‘easily-understandable explanation of
underlying assumptions, strengths and limitations (Barsugli et.al.,;2013; Hewitson et al., 2017). Often, the
choice of information source is therefore not.determined by what is most relevant and informative for the
question at hand, but rather by practical constraints such as accessibility and ease of use and may be limited
to the availability of just one source in extreme cases'(Rossler et al., 2019a).

10.5.2 Framing Elements for Constructing User-Relevant Information
10.5.2.1 Consideration-of different contexts

Without considering the specific context, the distillation of climate information relevant to users may poorly
serve the goal of informing adaptation and policy (Cash et al., 2003; Lemos et al., 2012; Baztan et al., 2017).
Section 10.1.4 identifies three implicit framing issues of constructing and delivering user-relevant climate
information: practical issues arising from the climate information sources, issues with including the context
in constructing the information, and difficulties presented by complex networks of practitioners. The social
context strongly influences decisions about constructing information and requires a nuanced and holistic
approach to recognize'the complexity of a coupled social and physical system (Daron et al., 2014). For
example, urban water managers must recognize the dependency of the city on different water resources and
the interplay-of both local and national government legislation that can involve a range of different
constituencies and decision makers (Scott et al., 2018; Savelli et al., 2021).

Context plays a role in determining the risks that may affect human systems and ecosystems and
consequently the climate information needs. The context may also limit access to such information. Hence,
the context imposes inherent constraints on how climate information can be constructed and optimally
aligned with its intended application. Although contexts are unlimited in variety, some key contextual
elements include:
e Whether the problem formulation needs to be constructed through consultative activities that, for
instance, help identify thresholds of vulnerability in complex urban or rural systems (Baztan et al.,
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2017; Willyard et al., 2018) or is more a matter of addressing a generic vulnerability already
identified, such as the frequency of flood events or recurrence intervals of multi-year droughts
(Hallegatte et al., 2013).

e Societal capacity, such as cultural or institutional flexibility and willingness to respond to different
scientific information (e.g., Hart and Nisbet, 2012; Kahan, 2012, 2013).

e The technical capability and expertise of the different actors, including users, producers, and
communicators (e.g., Sarewitz, 2004; Gorddard et al., 2016).

e Potential contrasts in value systems such as the different views of the Global North compared to
those of economies in transition or under development (Henrich et al., 2010a, 2010b; Sapiains et al.,
2020).

e The relative importance of climate change in relation to non-climate stressors on the temporal and
spatial scales of interest to the user, which at times are not the ones initially assumed by the
producers (Otto et al., 2015).

e Availability, timing and accessibility of the required climate information, including the availability
of sources such as observations, model simulations, literature and experts of the relevant regional
climate (Mulwa et al., 2017). In developing countries, the availability of all' or some0f these.sources
may be limited (Dinku et al., 2014).

These and other contextual elements can frame subsequent decisions about.the construction of regional
climate information for applications. For example, an engineer typically.seeks quantitative information,
while the policy community may be more responsive to storylines and how information is positioned within
a causal network describing regional climate risk (Section 1:4:4 and Box 10.2). Multiple contexts can coexist
and potentially result in competing approaches (for example, when urban governance contends with regional
water-resource management in the same area).

10.5.2.2 Developing climate information conditionéed by values of different actors and communities

Developing climate information relevant to user needs ¢an be influenced by the explicit and implicit values
of all parties: those constructing the information, those communicating the information, those receiving the
information, and, critically, those who construct the problem statement being addressed. A discussion of how
values in the scientific community shape climate research appears in Section 1.2.3.2. The influence of values
need not be a source of bias or'distortion; itis sometimes appropriate and beneficial: critical scrutiny from a
diverse range of valuesgoverning perspectives may uncover and challenge biases and omissions in the
information that might otherwise go ufirecognized (Longino, 2004). Dialogue among all parties in a
culturally, socially, and economically heterogeneous society is therefore important for recognizing and
reconciling value differences to/best yield information that is salient, relevant and avoids ambiguity, most
notably whensinforming the complexity of risks and resilience for human systems and ecosystems in
developing nations (e.g., Baztan et'al., 2017).

Thus, a challenge with constructing climate information for users, especially about impactful change, is that
producing the information.may need to involve people with a variety of backgrounds, who have different
sets of experiences; capabilities, and values. The information thus would need to accommodate and be
relevant to a range of different ways of viewing the problem (Sarewitz, 2004; Rosenzweig and Neofotis,
2013; Gorddard et'al., 2016). Failure to recognize the variety of people using the climate information can
make it ineffective, even if the source data on which it is based is of the highest quality, and may create a
danger of mal-adaptation.

[START FIGURE 10.17 HERE]

Figure 10.17: Effective regional climate information requires shared development of actionable information
that engages all parties involved and the values that guide their engagement. Participants in the
development of climate information come from varying perspectives, based in part on their
professions and communities. Each of the three broad categories shown in the Venn diagram (Users,
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Producers, Scientists) is not a homogenous group, and often has a diversity of perspectives, values
and interests among its members. The subheadings in each category are illustrative and not all-
inclusive. The arrows connecting those categories represent the distillation process of providing
context and sharing climate relevant information. The arrows that point toward the centre represent
the distillation of climate information that involves all three categories.

[END FIGURE 10.17 HERE]

A substantial body of evidence shows that the receptivity of individuals to climate information is strongly
conditioned by motivated reasoning (Hart and Nisbet, 2012; Kahan, 2012, 2013), wherein a person’s
reception of climate information is influenced by the values of the community with which the person
identifies. Adherence to a community’s values forms part of an individual’s social identity (Hart and Nisbet,
2012). Individuals thus frame their analysis and understanding of climate information in the context of
cultural values espoused by their community (Hart and Nisbet, 2012; Kahan, 2012, 2013; Campbell and.Kay,
2014; Bessette et al., 2017; Tschakert et al., 2017; Vezér et al., 2018). Successful framing of climate
information products thus seeks to identify common ground with users, taking.account of their values and
Interests.

Given the relevance of both context and values, the effectiveness of climate information can increase if
developed in partnership with the target communities (Tschakert.et'al., 2016; Figure.10.17). Such an
approach can inspire trust among all parties and at the same'time promote a co-production process (Cash et
al., 2003). Recipients of information have the greatest trust when the communicatoris perceived as
understanding their context and sharing their values and identity (Corner et al., 2014). As a consequence,
developing mental models informed by user values can help with understanding complex climate models and
their outcomes (Bessette et al., 2017).

The importance of a co-production process does not preclude the climate-research community from taking
steps to develop and convey relevant information on its own. Indeed, communicating expert consensus about
contested scientific issues is beneficial (Goldberg et al., 2019). Climate services (Section 10.5.4), in
particular, can become effective means for using sources from the climate community and crafting these to
be consistent with the needs, interests and values of stakeholder communities. However, simply presenting
more information without recognizing user values and the contextual elements listed in Section 10.5.2.1 may
be ineffective (Kahan, 2013).”/An aversion.to climate information discordant with one’s preexisting beliefs
can actually become stronger for people who are.more scientifically literate: they feel more confident sifting
through all sources of information tofind support for their positions (Kahan, 2012). A challenge is that if
climate information is not framed carefully, recognizing context and user values, it may make the sceptical
person less receptive to further information about climate change (Corner et al., 2012; Hart and Nisbet, 2012;
Shalev, 2015)+A. further complication is that audiences may view climate change as a problem distant in
time and space (Spence et al., 2012), too threatening to acknowledge (Briigger et al., 2015; McDonald et al.,
2015), or too economically challenging to accept (Bessette et al., 2017). Identifying positive outcomes that
align with user values, instead of adaptation and mitigation efforts, appears to promote the interest in and the
success of climate information (Bain et al., 2012).

10.5.2.3+Theroles of spatial and temporal resolution in relation to decision scale

Climate processes occur on a range of spatial and temporal scales, from global to local, from centuries and
longer to days or less (Section 10.1.2 and Figure 10.3). Similarly, decisions by stakeholders cover a range of
spatial and temporal scales that can vary with the size of their region of interest and scope of activity.
However, the link between decision scales and the spatial and temporal resolution of climate and related
non-climatic, natural-system information is not straightforward, and failure to recognize mismatches
between the two can undermine the effectiveness and relevance of the information (Cumming et al., 2006;
Sayles, 2018).

Nevertheless, the scale of regional climate information does not have to be the same as the decision scale.
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Physical-climate storylines (Box 10.2) valid at large scales can be used to develop understanding that is
relevant to local decisions. For example, global climate change affecting Antarctic ice-mass loss is relevant
to formulating Dutch responses to sea-level rise (Haasnoot et al., 2020). On the other hand, extreme
precipitation processes can occur on scales of tens of kilometres and smaller and thus require high resolution
climate information when projecting future changes (e.g., Xie et al., 2015). An important factor for
developing effective climate information using the distillation process is aligning the vulnerabilities of the
social and economic systems under consideration ranging from, for example, those important to a farmer to
those important to a national agricultural ministry (Andreassen et al., 2018; O’Higgins et al., 2019). Thus,
more sophisticated matching of spatial and temporal resolution of climate information with decision scales
requires engagement across a hierarchy of governance structures at national, regional and local level (e.g.,
Lagabrielle et al., 2018).

10.5.3 Distillation of Climate Information

The preceding sections laid out the diversity of sources of climate information (Section 10.5.1) and
important elements for its use in a decision context (Section 10.5.2). Here, it.is assessed how context-
relevant climate information can be distilled from these sources of information. Although the term
distillation lacks a clear definition in the literature, it has, in principle, two aspects: the construction of
(potentially user-targeted) information that is defensible and evidence-based (Giorgi, 2020), and the
translation of this information into a specific context, targeting a specific purpose and set of values. The
former typically involves data from multiple sources, including expert knowledge, and comprehensively
considers relevant uncertainties to give physically plausible climate information. The latter translates the
information explicitly into the user context, such as bylinking it to experience, by formulating a narrative, by
highlighting the relevance for the user context, or.by putting the climate information into the context of the
relevant non-climatic stressors.

Distilling climate information for a specific purpose benefits from.a co-production process that includes non-
climate-scientists in the research design, analysis and the exploration and interpretation of the results to best
place it in context of the intended application (Collins and Ison, 2009; Berkhout et al., 2013; Wildschut,
2017; Bhave et al., 2018; Dessai et al., 2018). Consideration of the specific contexts of information
requirements by the providersas well as including the user values in connecting the science with users is
increasingly recognized as paramount to construct.information relevant for decisions at the regional scale
(Section 10.5.2; Kruk etwal., 2017; Vizy and Cook, 2017; Djenontin and Meadow, 2018; Parker and Lusk,
2019; Norstrom et al.; 20205 Turnhout-et al., 2020). As a response, regional climate change information is
increasingly being developed through participatory and context-specific dialogues that bring together
producers and users across disciplinies and.define climate impacts as one of the many stressors shaping user
decisions (Brown and'Wilby, 2012; Lemos et al., 2012). Although there are multiple practical issues
involving communication (Rossler.et'al., 2019a), such as providing data in a format that users can interpret,
being mindful of the contextual issues raised in Section 10.5.2 allows non-scientists to be involved in
decisions about approaches and assumptions for the distillation and thus to take ownership of the resultant
information and to'make informed decisions based on the distilled information (Pettenger, 2016; Verrax,
2017). Importantly, the application of trans-disciplinary engagement processes that emphasise the role of
non-scientists in the learning and knowledge production process builds relationships and trust between
information users and producers, which is arguably as important for the uptake of climate science into
decision making-as the nature of the climate information itself (Section 10.5.2).

10.5.3.1 Information construction

Data, either from observations or models, is in general not inherently information, but may contain relevant
information if interpreted appropriately (Hewitson et al., 2017). The same applies to other sources of climate
information. Relevance is controlled by the given user context (Section 10.5.2.1) and relates to the required
temporal and spatial scales (Section 10.5.2.3), the characteristics of required variables (often referred to as
indicators), and the meteorological and climatic phenomena driving these variables (Section 10.1.3). For
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example, if climate information for driving impact models is sought (e.g., McSweeney et al., 2015), the
impact modelling analysis in the target region is the specific user context.

Climate risk assessment considers all plausible outcomes (Weaver et al., 2017; Marchau et al., 2019; Sutton,
2019). Thus, a key element of information construction is the exploration and reconciliation of different
sources of information (Barsugli et al., 2013; Hewitson et al., 2014b; Maraun and Widmann, 2018b) and
involves mainly two issues: first, assessing the fitness of different sources in the given context and thereby
potentially omitting (or down-weighting) selected sources (Sections 10.3.3), and, second, integrating
different sources into a broader picture within a context (Sections 10.3.4).

A non-comprehensive selection of approaches that may contribute to the construction of information
includes:

e Overall assessment and inter-comparison of different sources of information, including hierarchi¢s
of models and identification of potentially conflicting results (Figure 10.16), where observational
availability plays a critical role (Section 10.2.3).

e Assessing the emergence of forced trends from internal variability (Section.10:4.3), andtesting
whether differences in simulations can be explained by internal variability, ideally using initial-
condition large ensembles (Sections 10.3.4.3 and 10.4.3).

e Assessing the interdependence of chosen models to identify the amount of independent information
(Section 10.3.4.4).

e Process-based evaluation with focus on those processes'that are.relevant for the specific application
(Sections 10.3.3.4-10.3.3.10).

e  Weighting or sub-selecting ensembles based on a prioti knowledge or the outcome of a process-
based evaluation, while sampling as much uncertainty as possible (Section 10.3.4.4).

e Tracing back differences in projections to the representation of fundamental processes, e.g., by using
physical climate storylines (Sections 10.3:4.2 and Box 10.2) or sensitivity simulations (Section
10.3.2.3).

e Producing physical-climate storylinies (Box<10.2) to.explore uncertainties not sampled by available
model ensembles (Shepherd etal.;2018); for example in pseudo-global warming experiments
(Section 10.3.2.2), or to simulate events that have never happened before but are nevertheless
plausible (Lin and Emanuel; 2016).

Attributing observed changes to different external forcings and internal drivers (Section 10.4.1).

e Comparing observed trends with pastssimulated trends in order to constrain projections with, for
instance, the Allen-Stott-Kettleborough method (Allen et al., 2000; Stott and Kettleborough, 2002;
Stott et al., 2013) to explain drivers of past observed trends (Section 10.4.2) for understanding future
trends.

¢ Integrating present-day performance via emergent constraints to reduce projection uncertainty
(Section 10.3.2).

e Complementing theobservational and model-based sources with expert judgement (e.g., integrating
knowledge from theory or experience that is available from experts or the literature; Section 10.5.1).

These approaches often can be used in combination to increase confidence in conclusions drawn (Hewitson
et al., 2017).

10.5.3.2" Translating climate information into the user context

Awareness-and understanding of the users’ decision-making context is a central and key aspect of
developing tailored, context-appropriate information (Briley et al., 2015), as clearly evidenced by the climate
services’ experiences (e.g., Vincent et al., 2018). Understanding the context, however, is not trivial and
requires understanding of both the user and provider (Guido et al., 2020) if the information is to be robust,
reliable and relevant (Giorgi, 2020). Translating the information into context requires consideration of
terminology and expectations (Briley et al., 2015), issues of user interpretation (Daron et al., 2015), and
hence necessitating engagement in co-production with all attendant challenges (Vincent et al., 2021). The
actual provision of climate information may be conducted at different levels of sophistication, ranging from
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generic data provision via web portals (Hewitson et al., 2017), potentially including impact-relevant climate
indicators, region-specific factsheets and stakeholder reports, social media (Pearce et al., 2019), to a close
engagement with specific stakeholders in co-exploring the research (Steynor et al., 2016).

Climate information products may often lack explanations of their potential use and misuse (Street, 2016;
Lamb, 2017; Chimani et al., 2020). This is particularly important if the information is provided as a generic,
publicly accessible product without a specific context (Hewitson et al., 2017). Context-specific collaboration,
especially if organized in workshop, enables a close transdisciplinary co-exploration of the results as in the
form of climate risk narratives (Jack et al., 2020, Box 10.2). Such approaches explicitly account for the user
context, values and non-climatic stressors (Steynor and Pasquini, 2019).

10.5.3.3 Transdisciplinary approaches to stakeholder interaction

The transdisciplinary interaction with stakeholders has been categorised into top-down, bottom-up and
interactive approaches (Berkhout et al., 2013). Traditional top-down approaches frame the research from the
perspective of global climate change as a driver of regional climate risk. Bottom=up approaches; also referred
to as scenario-neutral impact studies (Prudhomme et al., 2010; Brown et al.;, 2012a, 2012b; Culley et al.,
2016) begin with the user’s articulation of vulnerability in the context of climatic and non-climatic stressors,
follow with the definition of key system thresholds of climatic variables, and only‘incorporate climate data to
assess the likelihood of threshold exceedances. Bottom-up approaches are special cases of robust decision
making (Lempert et al., 2006; Lempert and Collins, 2007; ‘Walker et al., 2013; Weaver et al., 2013), which
are designed to account for uncertainties not represented by climate models as well as non-climatic stressors.
Interactive approaches combine aspects of top-down ‘and bottom-up approachess The choice of approach
depends on the context. While bottom-up approaches might be optimal in-a local context, where case-
specific risks are addressed, top-down approaches provide generic information that may serve a range of
different purposes, e.g., at the national scale’(Berkhout et al., 2013). All these approaches benefit from the
integration of fully distilled climate information (Berkhout et'al., 2013; Maraun and Widmann, 2018b).

10.5.3.4 Barriers to the distillation of climate information

As implied by Section 10.5.2, meeting the needs of users can be a substantial challenge for climate scientists
if they misunderstand or-have limited understanding of user needs and context (Porter and Dessai, 2017).
Several barriers in user communities can trigger and sustain this challenge. This can include an institutional
aversion to incorporating new tools.nto decision making (Callahan et al., 1999). Coincident with this factor,
there may be limited staff capacity;lack of management support and lack of a mandate to plan for climate
change (Lee.and Whitely Binder, 2010).

Following from those challenges, .constructing and communicating regional climate information often occurs
under the overarching assumption that uncertainty is a problem and reducing uncertainty is the priority
(Eisenack et al., 2014; Otto et al., 2016b). This is both a psychological (Morton et al., 2011) as well as a
pragmatic barrier in.cases where uncertainty appears to limit the ability to make decisions (Mukheibir and
Ziervogel, 2007). However, where in-depth engagements with decision contexts are undertaken, these initial
barriers are often dismantled to reveal a more complex, nuanced and potentially more productive intersection
with climate information producers that can efficiently handle uncertainty (e.g., Rice et al., 2009; Lemos et
al., 20125 Moss, 2016). Specifically, disclosure of all uncertainties in the climate information, transparency
about the sources of these uncertainties, and tailoring the uncertainty information to specific decision
frameworks have the potential for reducing problems of distilling and communicating uncertain climate
information (Otto et al., 2016b).

10.5.3.5 Synthesis assessment of climate information distillation

There is high confidence that distilling climate information for a specific purpose benefits from a co-
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production process that involves users of the information, considers the specific user context and the values
of relevant actors such as users and scientists, and translates the resultant information into the broader user
context. This process allows users to take ownership of the information, builds relationships and trust
between information users and producers and helps to overcome barriers in the information construction.
This process enhances trust in the information as well its usefulness, relevance, and uptake, especially when
the communication involves complex, contextual details (high confidence). The optimal approach for the
transdisciplinary collaboration with users depends on the specific context conditioned by the sources
available and the actors involved, which together are dependent on the regions considered and the framing
by the question being addressed.

Drawing upon multiple lines of evidence in the construction of climate information increases the fitness of
this information and creates a stronger foundation (high confidence). The lines of evidence can include
multiple observational datasets, ensembles of different model types, process understanding, expert
judgement, and indigenous knowledge, among others. Attribution studies, the characterization of possible
outcomes associated with internal variability and a comprehensive assessment of observational, model and
forcing uncertainties and possible contradictions using different analysis methods are important elements of
distillation. To make the most appropriate decisions and responses to changing climate it is'necessary to
consider all physically plausible outcomes from multiple lines of evidence;-especially in the.case when they
are contrasting such as in the examples of Cross-Chapter Box 10. l.and Section 10.6.2.

10.5.4 Climate Services and the Construction of Regional Climate Information

Climate services have been defined as the provision of climate information:to assist decision-making
(Sections 1.2.3, and 12.6, and Cross-Chapter Box.12.2). Services are expected to be based on scientifically
credible information and expertise, have appropriate engagement from users and providers, have an effective
access mechanism and aim at meeting the users®needs (Hewitt et-al., 2020). To achieve this, climate services
synthesize context-relevant climate information addressing questions for a wide range of climate time scales.
From this point of view, climate services are instruments for the production, translation and transfer of
climate information and knowledge for their use in climate-informed decision-making and climate-smart
policy and planning (Hewitt et al., 2012). The appropriate provision of climate services considers the
diagnosis of climate information needs, the service itself and a number of good practices still under
development (Vaughan etal., 2018).

The preceding subsections assess reseatrch on the distillation of climate information, which is directly
relevant for the development of climate services. Distillation, when implemented appropriately and
interpreted with'all dué caveats, leads to credible climate information with a broader foundation of evidence
to be used in.climate services practice according to the recommendations of the Global Framework for
Climate Services (Hewitt et'al., 2012). As stated in Chapter 12, climate services set new scientific challenges
to research. Examples of some of the challenges have been given in Chapters 1 and 12, which are
complemented by the barriers:to the distillation assessed in Section 10.5.3.3.

[START BOX 10.2 HERE]
BOX 10.2:Storylines for constructing and communicating regional climate information

Communicating the full extent of available information on future climate for a region, including an
uncertainty quantification, can act as a barrier to the uptake and use of such information (Lemos et al., 2012;
Daron et al., 2018). To address the need to simplify and increase the relevance of information for specific
contexts, recent studies have adopted storyline and narrative approaches (Hazeleger et al., 2015; Shepherd et
al., 2018; Section 1.4.4.2). As such, these approaches are an important tool for the climate information
distillation (Section 10.5.3). Here we assess these in a regional climate information context, namely for
exploring uncertainties, embedding climate information into a given user context, and communicating
climate change information.
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Physical climate storylines are self-consistent and plausible unfoldings of a physical trajectory of the climate
system, or a weather or climate event, on time scales from hours to multiple decades (Section 1.4.4.2).
Storylines that condition climatic features and processes on a set of plausible but distinct large-scale climatic
changes enables the exploration of uncertainties in regional climate projections (Box 10.2, Figure 1; Section
10.3.4.2). For instance, Zappa and Shepherd (2017) condition projected changes in European surface wind
speeds on different plausible projections of tropical upper tropospheric warming and the polar vortex
strength in the CMIP5 multi-model ensemble. Storylines of specific events are generated to explore the
unfolding and impacts of comparable events in counterfactual climates (Lackmann, 2015; Meredith et al.,
2015b; Takayabu et al., 2015; Hegdahl et al., 2020; Sillmann et al., 2020). Those event storylines can be
based on pseudo-global warming studies (Lackmann, 2015; Meredith et al., 2015; Takayabu et al., 2015;
Section 10.3.2.2), selected and possibly downscaled events from long-term climate projections (Hegdahl et
al., 2020; Huang et al., 2020a), or based on expert judgment of plausible changes to observed events (Pisaric
et al., 2011; Dessai et al., 2018). They can be used for attributing events to different causal factors
(Lackmann, 2015; Meredith et al., 2015; Takayabu et al., 2015; Trenberth et al., 2015; Shepherd; 2016;
Section 11.2.4) as well as for exploring the unfolding of events in future climates.

Physical climate storylines are complementary to probabilistic or unconditienal risk-based approaches, and
are particularly suitable to explore low-likelihood changes or events, which are often‘associated with the
highest impacts (Shepherd et al., 2018; Sillmann et al., 2020; Section 4.8). They also facilitate providing
local context to large-scale trends and changes, by conditioning the projectionson locally relevant
circumstances (Hazeleger et al., 2015). Storylines are also‘developed based on expert-€licitation and include
plausible changes beyond those simulated by existing model projections in order to explore deep
uncertainties (Dessai et al., 2018).

Storylines can be combined with impact modelling (Strasser et al.;2019; Hegdahl et al., 2020) and can be
embedded in a user’s risk landscape (Shepherd, 2019; Box 10:2;Figure 1). This holds in particular for event
storylines, where confounding factors such as'regional characteristics like land-use changes and non-climatic
drivers of the event are an element of the storyline (Pisaric et al.;,2011; Dessai et al., 2018; Lloyd and
Shepherd, 2020; Sillmann et al., 2020). In a co-production process, multi-disciplinary expert knowledge as
well as the values and interests_of the intended audiences and stakeholders can be explicitly considered (Kok
et al., 2014; Bhave et al., 2018; Dessai et al., 2018; Scott et al., 2018; Hegdahl et al., 2020).

Storylines can also be used to communicate climate information by narrative elements describing the main
climatological features and the relevant consequences in the user context (Flottum and Gjerstad, 2017;
Moezzi et al., 20175 Dessaicet al., 2018; Scott et al., 2018; Jack et al., 2020). Co-produced narratives have
been demonstrated to énhance knowledge integration in decision-making contexts (e.g., de Bruijn et al.,
2016). Narrative elements have also been employed to convey information from climate models (Corballis,
2019). Jack et al.(2020) introduced.the concept of climate risk narratives and developed a set of principles,
such as using present tense.in their presentation to avoid effects of future discounting, and writing individual
narratives without uncertainty.language to assume an imagined observer perspective. From this point of
view, event storylines are particularly useful for communication purposes as they link to the experience and
episodic memory of stakeholders (Schacter et al., 2007; Steynor et al., 2016; Shepherd et al., 2018).

[START BOX'10.2, FIGURE 1 HERE]

Box 10.2, Figure 1: Schematic of two types of physical climate storylines with a particular climate impact of
concern (red). The storylines are defined by specified elements (dark blue). Variable elements
(light blue) are simulated conditional on the specified elements. The white elements are ‘blocked’
since their state does not need to be known to determine the light blue elements. Other types of
storylines could be defined by specifying other elements (e.g., storylines of different climate
sensitivities or different representative concentration pathways). (a) Event storyline, where the
particular dynamical conditions during the event as well as the regional warming are specified and
control the hazard arising from the event. (b) Dynamical storyline, where the global warming level
and remote drivers are specified and control the long-term changes in atmospheric dynamics and
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regional warming. In both storylines, the impact is also conditioned on specified exposure and
vulnerability. Adapted from Shepherd (2019).

[END BOX 10.2, FIGURE 1 HERE]

[END BOX 10.2 HERE]

[START CROSS-CHAPTER BOX 10.3 HERE]
Cross-Chapter Box 10.3: Assessment of climate change information at the regional scale

Coordinators: Erika Coppola (Italy), Alessandro Dosio (Italy), Friederike Otto (UK/Germany)
Contributors: Claudine Dereczynski (Brazil), Melissa I. Gomis (France/Switzerland), Richard G. Jones
(UK), Roshanka Ranasinghe (The Netherlands, Sri Lanka, Australia), Alexander C. Ruane (USA), Sonia I.
Seneviratne (Switzerland), Anna A. Sérensson (Argentina), Bart van den Hurk (The Netherlands), Robert
Vautard (France), Sergio M. Vicente-Serrano (Spain)

This Cross-Chapter Box illustrates how assessments of past, present and future regional climate changes
(e.g., change in an extreme event index or Climatic Impact-Drivery CID) are derived in the WGI report.
Robust assessments can be derived when changes are supported by multiple lines of evidence.

Multiple, sometimes contrasting, lines of evidence are.derived from the various data sources, methodologies
and approaches that can be used to construct climate information (Figure.10.1; Section 10.5). Such data
sources and methodologies include theoretical inderstanding of relevant processes, drivers and feedbacks of
climate at regional scale, observed data from multiple datasets:(e.g., ground station networks, satellite
products, reanalysis, etc.), simulations from different model types (including GCMs, RCMs, statistical
downscaling methods, etc.) and experiments (e.g., CMIP5 and 6, CORDEX, and Single-Model Initial-
condition Large Ensembles), methodologies to attribute observed changes or events to large- and regional-
scale anthropogenic and natural drivers and forcings.as well.as other relevant local knowledge (e.g.,
indigenous knowledge).

The assessment is derived following the [IPCC uncertainty guidance through a distillation process of multiple
lines of evidence on observed trends, attribution of trends or events, climate model projections and physical
understanding, covered.in several chapters of the WGI report.

In particular, this Cross-Chapter Box explains the methodology used to derive the regional assessments
summarised in the Technical Summary (TS) table that are, in turn, used as a basis for the synthesis
assessment in the Summary for Policymakers (SPM).

[START CROSS-CHAPTER BOX 10.3, FIGURE 1 HERE]

Cross-Chapter Box 10.3, Figure 1: Schematic illustration of the process to derive the assessment of regional climate
change information based on a distillation process of multiple lines of evidence
taken from observed trends, attribution of trends or events, climate model

projections, and physical understanding.

[END CROSS-CHAPTER BOX 10.3, FIGURE 1 HERE]

The process consists of three discrete steps, listed below and schematically illustrated in Cross-Chapter Box
10.3, Figure 1:

1) Collection and assessment of the fitness for purpose of available information
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Any specific climate change that is regionally relevant is assessed looking at lines of evidence, potentially
across multiple indices. For example, several definitions of “drought” exist that refer to a variety of the
underlying processes, temporal and spatial scales, as well as sectoral applications and associated impacts
(Sections 11.6, 12.3). Such diverse definitions need to be gathered from the relevant literature, compared,
and individually assessed if appropriate.

Once the indices of change are properly defined, the relevant climate information is collated from the
available sources.

The information is then evaluated against its fitness for purpose, i.e., whether it is adequate to provide robust
evidence to derive an assessment. In the case of observed data, issues to be considered include (but are not
limited to): spatial and temporal resolution, accuracy, gaps in the recorded data, homogeneity in the station
network, uncertainty treatment, etc. (Sections 10.2, 11.2, 11.9, 12.4, Atlas.1.4). In case of modeled data, an
assessment of the fitness for purpose typically includes an evaluation of numerical or statistical methods
adopted, adequate representation of the physical processes, forcings and feedbacks relevant for the region
and the change under consideration, the availability of adequate ensembles to assess the interplay between
forced response and internal variability and the uncertainty in future projections (Sections 10.3,.10.4, 11.2,
11.9, 12.4 and Chapter Atlas). Attribution assessments are usually based on.models and observations for
which the fitness for purpose is assessed with similar criteria as these described aboyve (Cross-Working
Group Box: Attribution (in Chapter 1)). The assessment is made either directly orsindirectly by scrutinizing
the data and methods of the relevant literature against the criteria listed above.

2) Assessment of confidence of the multiple lines of evidence

Once the relevant information has been collated for a given regional change, an-assessment of the confidence
is first made for each line of evidence separately. The assessment of confidence is the result of expert
judgment drawing around a set of questions such as:

e Do we have a physical explanationof the processes responsible for past and future changes in the
region?

e Do observed trends agree amongst different observational products/datasets? Are they statistically
significant? Do the observations.cover the same temporal period and/or spatial area? Are the
observations homogeneous in time?

e (Can past trends be attributed to human activities (GHGs, SLCFs or land use/management changes)?
Are attributed trends and events consistent? What is the interplay between internal variability and
forced response?

e Do model projections agree on the magnitude and sign of the projected signal? Are we able to
understand the reasons underlying any discrepancies? Can we quantify the uncertainty in the
projected signal? Are the projections based on similar SSP-RCP/time horizon or GWL (Cross-
Chapter Box*11.1)? If not, are they comparable?

e Has the signal already emerged? Are there studies indicating the time of emergence of the signal?

The assessment is then tested for overall coherence across the available lines of evidence, for example:
e Are observed historical changes consistent with future projections?
e Are attributed events similar to the types of changes projected for the future?
e s there a physical explanation for changes that are projected but have not yet been clearly observed
orattributed?
e | Are assessments of confidence and likelihood performed in a similar way across regions?

3) Distillation of regional information and synthesis of the independent assessments

To ensure transparency, a traceback matrix is constructed (refer to 10.SM) that, for each region and index,
identifies where in the chapters the relevant information can be found, together with a summary of the
relevant information in the Technical Summary.

Based on assessments mainly in Chapters 8, 9 11, 12 and Atlas, the table in Technical Summary TS.4.3.1

collates, by means of colours and symbols, the assessment of the confidence in past trend, attribution and
direction of future change. This distillation process is illustrated below with two examples: (1) a relatively
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simple case for the assessment of extreme heat over Southeast South America, where most of the lines of
evidence agree, and (2) ecological, agricultural and hydrological drought in the Mediterranean, which is
more complex due to the different definitions of ‘drought’ and the sometimes conflicting information arising
from different lines of evidence and the example shown here is preceded by the decision to focus on these
types of drought rather than, e.g., meteorological drought.

a) Extreme heat in southeastern South America (SES)

Observed past trends

Mean temperature and extreme maximum and minimum temperatures have shown an increasing trend (high
confidence). An increase in the intensity and in the frequency of heatwave events between 1961 and 2014 is
also observed. However, there is medium confidence that warm extremes have decreased in the last decades
over the central region of SES during austral summer (Sections Atlas.7.2.2 and 11.9).

There is evidence of increasing heat stress during summertime in much of SES for the period 1973-2012
(Section 12.4.4.1).

Attribution

Based on trend detection and attribution studies of maximum and minimum.temperatures and event
attribution of heat waves in the region, there is #igh confidence in.a-human contribution to the observed
increase in the intensity and frequency of hot extremes (Section11.9).

The increasing heat stress over summertime in much of SES has been attributed to human influence on the
climate system (Section 12.4.4.1).

Projections
There is high confidence that by the end of centfury most regions in.South America will undergo extreme heat

stress conditions much more often than in the recent past, with about 50-100 more days per year under SSP1-
2.6 and more than 200 additional days pet year under SSP5-8.5 (high confidence) (Section 12.4.4.1).

Based on different lines of evidence (GCMs, RCMs) an increase in the intensity and frequency of hot
extremes is extremely likely for SES at all assessed'warming levels (compared with pre-industrial) (Section
11.9).

Synthesized assessmentin the Technical Summary from multiple lines of evidence

There is high confidence that extreme temperatures have increased over SES over the last decades and that
human influence /ikely contributed to the observed changes in extreme temperatures. An increase in the
frequency and intensity of heatwave events has been observed. Most land regions will frequently undergo
extreme heat stress.conditions by the énd of the 21* century, with an increase in the frequency of heatwaves
and heat stress conditions (Technical'Summary TS.4.3.2).

b) Mediterranean ecological, agricultural and hydrological droughts

Observed past trends

Hydrological modelling suggests that the recent decline in soil moisture in the Mediterranean is
unprecedented in the last 250 years. Paleoclimate evidence extends this view, additionally indicating that
dryness in the Mediterranean is approaching an extreme condition compared to the last millennium (Section
8.3.1.6).

There is an increase in probability and intensity of agricultural and ecological droughts (medium confidence)
and there is an increase in frequency and severity of hydrological droughts (kigh confidence) (Section 11.9).

Attribution

Global warming has contributed to drying in dry summer climates including the Mediterranean (high
confidence). Records of soil moisture indicate that higher temperatures and increased atmospheric demand
have played a strong role in driving Mediterranean aridity. Multiple lines of evidence suggest that
anthropogenic forcings are causing increased aridity and drought severity in the Mediterranean region (high
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confidence) (Section 8.3.1.6).

An increasing trend towards agricultural and ecological droughts has been attributed to human-induced
climate change in the Mediterranean (medium confidence). Model-based assessment shows with medium
confidence a human fingerprint on increased hydrological drought, related to rising temperature and
atmospheric demand, and frequency and intensity of recent drought events. There is medium confidence that
change in land use and terrestrial water management contribute to trends in hydrological drought (Section
11.9).

Projections
There is high confidence that drought severity and intensity will increase in the Mediterranean. Increased

evapotranspiration due to growing atmospheric water demand will decrease soil moisture (high confidence).
The seasonality of runoff and streamflow (the annual difference between the wettest and driest months. of the
year) is expected to increase with global warming (high confidence). Annual runoff is'very likely to
decrease. Under middle or high emissions scenarios, the likelihood of extreme droughts increases by.200—
300% in the Mediterranean. The paleoclimate record provides context for these future expected changes:
climate change will shift soil moisture outside the range of observed and reconstructed values spanning the
last millennium (high confidence) (Sections 8.4.1.5 and 8.4.1.6).

There is medium confidence in the increase of agricultural and ecological droughtat +1.5°C, high confidence
at +2°C and very likely at +4°C, with large decreases in soil water availability during drought events and
increase in drought magnitude. There is medium confidence inthe increase in hydrological drought at
+1.5°C, high confidence at +2°C and very likely at +4°C with very strong decrease (40-60%) of total runoff in
the spring-summer half-year and a 50-60% increase in‘frequency of days under low flow (Section 11.9).

There is high confidence that agricultural, ecological and hydrological droughts will increase in the
Mediterranean region by mid and far end of ‘century under all RCPs.(except RCP2.6/SSP1-2.6), or for GWLs
equal to or higher than 2°C (Section 12.4:5.2):

Synthesized assessment in the Technical Summary from multiple lines of evidence

There is high confidence that hydrological droughts-have increased in the Mediterranean since the 1960s
related to rising temperature and atmospheric demand, and medium confidence of a human fingerprint on this
increase. There is medium confidence in the increase of ecological and agricultural droughts and in their
attribution to human-induced climate change. There is high confidence of an increase in ecological,
agricultural and hydrological droughtsfor warming levels exceeding 2°C, and medium confidence of an
increase for lowerwarming levels (Technical Summary TS4.3.2).

[END CROSS-CHAPTER BOX.10.3 HERE]

10.6 Comprehensive Examples of Steps Toward Constructing Regional Climate Information
10.6.1 Introduction

This section-presents three comprehensive examples of steps for distilling regional climate information from
the multiple sources of regional climate information presented in this chapter. These examples build on the
general framework presented in Section 10.5, examining in particular the strengths and challenges in linking
the different sources, while also exposing the assumptions behind and consequences of decisions made in the
process. The examples are framed taking into account societal perspectives that provide context for their
regional climate statements. Although the nature of an IPCC Working Group I assessment precludes
engaging with users of climate information (Section 10.5), we do cite relevant national and regional reports
that give user perspectives to set a foundation from which one could distil climate information for users. We
have chosen the recent Cape Town drought, Indian summer-monsoon trends and the Mediterranean summer
warming because they provide a geographically diverse set of locations and relevant processes and because
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most of the components for constructing regional climate information outlined in Chapter 10 are directly
relevant to each case.

The three comprehensive examples follow a similar structure:
e Motivation and regional context
The region’s climate
Observational issues
Relevant anthropogenic and natural drivers
Model simulation and attribution over the historical period
Future climate information from global simulations
Future climate information from regional downscaling
Storylines
Climate information distilled from multiple lines of evidence

Following this structure, construction of the regional climate information presented in these examples
depends on an assessment of observational uncertainty relative to the maghitude of‘a climate-change signal
(Section 10.2), the evaluations of model performance to judge the fitness for purpose of a‘given model
(Section 10.3), and expert judgement. These factors contribute to attribution of historical'climate-change
signals (Section 10.4), recognizing that attribution must account for the interplay between externally forced
signals and unforced internal variability. This interplay is explored-using multiple model ensembles,
including, when appropriate and feasible, single-model initial-condition large ensembles (SMILEs). The
multiple lines of evidence for the climate information may conflict, thus requiring distillation of the evidence
(Section 10.5) to arrive at climate-change statements.. When moving from:global climate information to
climate information at the regional scale, following the structure above.provides a basis for arriving at
relevant and credible climate information. The ecomprehensive examples of distilling climate information
thus show the value of working with multiple lines of evidence to develop robust climate change information
for a region.

In addition to the three comprehensive examples, this section contains two additional examples analysing
multiple sources of regional climate information. Box 10.3'en urban climate assesses information that
provides a foundation for understanding climatic’behaviour in urban areas and its projected change. Cross-
Chapter Box 10.4 on climate change over the Hindu Kush Himalaya assembles information rooted in several
chapters and previous assessment reports to assess understanding of several climate elements (temperature,
precipitation, snow and glaciets, and extreme events) for the region and their projected changes.

As these examples will show, the distillation process of regional climate information from multiple lines of
evidence can vary substantially from one case to another. Confidence in the distilled regional climate
information is‘enhanced when there is agreement across multiple lines of evidence, but the outcome of
distilling regional climatedinformation can be limited by inconsistent or contradictory sources.

10.6.2 Cape Town Drought
10.6.2.1 Motivation and regional context

Cape Town’s “Day Zero” water crisis in 2018 threatened a shut-down of water supply to 3.4 million
inhabitants.of the city and resulted in domestic water use restriction of 50 litres per person per day (pre-
drought unconstrained water use was ~170 litres per person per day, DWA, 2013) lasting for nine months,
punitive water tariffs, and temporary closure of irrigation systems. Problems with water supply in many large
cities in developing countries are endemic and rarely reported internationally. The water crisis in Cape Town
attracted considerable international attention to a city with functional government structures, well developed
services (compared to other urban centres in Africa), a centre of international tourism, and an economic hub
with GDP of USD22 billion (~USD 7,500 per capita, Gallie et al., 2018). Economic and social impacts of the
crisis were significant. Loss of revenue for companies of all sizes resulted not only from the scaling down of
water-dependent activities, but also from the need to invest in water-efficient technologies and processes.
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Tourism was affected through reduced arrivals and bookings, although only temporarily (CTT, 2018). In the
agricultural sector, 30,000 people were laid-off and production dropped by 20% (Piennaar and Boonzaaier,
2018). The crisis initially polarized society, with conflict emerging between various water users and erosion
of trust in the government, but eventually social cohesion and an acute awareness of limited water resources
emerged (Robins, 2019).

Cape Town’s crisis resulted from a combination of a strong, rare multi-year meteorological drought (Figure
10.18), estimated at 1 in 300 years (Wolski, 2018), and factors related to the nature of the water supply
system, operational water management and water resource policies. Cape Town was very successful in
implementing water-saving actions after the previous drought of 2000-2003, reducing water losses from
over 22% to 15% (Frame and Killick, 2007; DWA, 2013), breaking the previous coupling of growth in water
demand with growth in population. As a consequence, Cape Town won a Water Smart City award from the
C40 Cities program only three years prior to the crisis. However, the water-saving actions, together with
changing priorities in water resource provision from infrastructure-oriented towards resource and demand
management, may well have led to delays in implementation of the expansionof water supply infrastructure
(Muller, 2018). The expansion plan, formulated a decade prior to the crisis, included an expectation of long-
term climate-change drying in the region (DWAF, 2007). The crisis also_exposed-structural deficiencies of
water management and inadequacy of a policy process in which decisions.about local water.resources are
taken at a national level, particularly in a situation of political tension (Visser, 2018)+The crisis was widely
seen as a harbinger of future problems to be faced by the city, and a highlight of vulnerability of many cities
in the world resulting from the interplay of three factors: 1) the fast urban-population growth, 2) the
economic, policy, infrastructural and water resource paradigms and constraints, and 3) anthropogenic climate
change.

[START FIGURE 10.18 HERE]

Figure 10.18: Historical and projected rainfall and Southern Annular Mode (SAM) over the Cape Town region.
(a) Yearly accumulation of rainfall (inimm) obtained by summing monthly totals between January and
December, with the drought years 2015 (orange); 2016 (red), and 2017 (purple) highlighted in colour. (b)
Monthly rainfall for the drought years (in colour) compared with the 1981-2014 climatology (grey line).
Rainfall in (a) and (b) is.the average of 20 quality controlled and gap-filled series from stations within the
Cape Town region (31°S-35°S, 18°W-20.5°W). (c) Time series of the SAM index and of historical and
projected rainfall anomalies (%, baseline 1980-2010) over the Cape Town region. Observed data
presented as 30-year running means of relative total annual rainfall over the Cape Town region for
station-based data (black line, average of 20 stations as in (a) and (b)), and gridded data (average of all
grid.cells falling within 31°S=35°S, 18°W-20.5°W): GPCC (green line) and CRU TS (olive line). Model
ensemble fesults presefited as the 90"-percentile range of relative 30-year running means of rainfall and
the SAM.index from 35 CMIP5 (blue shading) and 35 CMIP6 (red shading) simulations, 6 CORDEX
simulations drivén by 1.to.10 GCMs (cyan shading), 6 CCAM (purple shading) simulations from
individual ensemble members, and 50 members from the MIROC6 SMILE simulations (orange shading).
The light blue, dark red and yellow lines correspond to NCEP/NCAR, ERA20C and 20CR, respectively.
The SAM index is calculated from sea-level pressure reanalysis and GCM data as per Gong and Wang
(1999) and.averaged over the aforementioned bounding box. CMIP5, CORDEX and CCAM projections
use RCP8.5, and CMIP6 and MIROC6 SMILE projections use SSP5-8.5. (d) Historical and projected
trends in rainfall over the Cape Town region and in the SAM index. Observations and gridded data
processed as in (c). Trends calculated as Theil-Sen trend with block-bootstrap confidence interval
estimate. Markers show median trend, bars 95% confidence interval. GCMs in each CMIP group were
ordered according to the magnitude of trend in rainfall, and the same order is maintained in panels
showing trends in the SAM. Further details on data sources and processing are available in the chapter
data table (Table 10.SM.11).

[END FIGURE 10.18 HERE]

10.6.2.2 The region’s climate
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An evaluation of the relative role of rainfall and temperature signal in the 2015-2017 hydrological drought
gives a strong indication that lack of rainfall was the primary driver (Otto et al., 2018) leading to the 2018
water crisis. Thus, the remainder of this section focuses on rainfall. Section 11.6 offers a discussion of
African drought over broader areas, including mechanisms relevant to them.

Cape Town is located at the southwestern tip of Africa, within an approximately 100 km x 300 km region
that receives 80% of its rainfall during the austral winter (March to October), with the largest portion in June
to August. In the vicinity of Cape Town, rainfall is strongly heterogeneous, ranging from ~300 mm/year on
coastal plains to >2,000 mm/year in mountain ranges. The Cape Town water supply relies on surface water
reservoirs located in a few small mountain catchments (~800 km? in total). The Cape Town region receives
85% of its rainfall from a series of cold fronts forming within mid-latitude cyclones. The remainder is
brought in by infrequent cut-off lows that occur throughout the year (Favre et al., 2013). This creates a very
strong water resource dependency on a single rainfall delivery mechanism that may be strongly affected by
anthropogenic climate change (Chapter 4, Section 10.6.2.6).

The 20152017 drought had strong low-rainfall anomalies in shoulder seasons (March to May and
September to November, though weaker in the latter), and average rainfall in June‘and July (Sousa et al.,
2018a; Mabhlalela et al., 2019). The anomaly resulted from fewer rainfall events and lower average intensity
of events. The anomaly was strongest in the mountainous region where the water supply system’s catchments
are located (Wolski et al., 2021).

Although the 2015-2017 drought was unprecedented in the historical record, the Cape Town region has
experienced other droughts of substantial magnitude, notably in.the 1930s, 1970s and more recently in 2000—
2003. Long term (>90 years) rainfall trends are mixed in sign, location-dependent, and weak (Kruger and
Nxumalo, 2017; Wolski et al., 2021); mid-term (~50 years) trends are similarly mixed in sign (MacKellar et
al., 2014). In the southwestern part of the region, rainfall is mostly decreasing in the post 1981 period,
particularly in December-January-Februaryand March-April-May;,.although there is no trend or a weak
wetting in June-July-August (Sousa et al.5 2018a; Wolski et al.; 2021). Rainfall trends of similar magnitude
and duration to the post-1981 trend accompanied previous strong droughts in the region (Wolski et al., 2021).

10.6.2.3 Observational issues

South Africa and the Cape Towntegion have good instrumental weather data. Records start in the late
1800s, with in excess/of 10 gauges reporting since the 1920s, expanding to ~80 gauges in the 1980s, but the
number of stations'has declined since. The mountains have only a few stations, which receive more than
1,000 mm/year. In view of the strong heterogeneity of rainfall, changes in the number of stations
contributing to datasets such asiCRU and GPCP results in a lack of consistency between them, which limits
their reliability in‘the region (Wolskiet al., 2021; Section 10.2).

10.6.2.4 Relevantanthropogenic and natural drivers

Because the primary rainfall mechanism is frontal rain, the most relevant large-scale drivers are those that
affect cyclogenesis, frontogenesis and the mid-latitude westerlies’ latitudinal position and moisture supply.
These drivers and, thus, the region’s rainfall are linked to the Antarctic Oscillation (AAO; Reason and
Rouault;2005) or Southern Annual Mode (SAM), the dominant monthly and interannual mode of Southern
Hemisphere atmospheric variability, and a measure of the pressure gradient between mid- and high-latitudes.
(see Sections 3.3, 3.7, 4.3 and Annex [V.2.2 for more general discussion of the SAM.) While in the post-
1930 period, the SAM displays a long-term positive trend, the Cape Town region’s rainfall does not, and
only the post-1979 trends of rainfall and SAM are conceptually consistent, i.e., a positive trend in the SAM
is associated with a negative trend in rainfall (Section 10.6.2.5 and Figure 10.18). There is also good
agreement between the seasonality of the SAM and rainfall trends in the post-1979 period: a drying trend appears
strongly in December to February and March to May, but not in June to August and September to November
(Wolski et al., 2021), and trends in the SAM have similar seasonal dependence (Lim et al., 2016b; Section 3.7.2).
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Additionally, there is a similar seasonal pattern in the post-1979 trends in indices capturing the southern edge of the
Hadley circulation (Grise et al., 2018).

In the longer-term, Cape Town regional rainfall is characterized by a multi-decadal scale quasi-periodicity
(Figure 10.18; Dieppois et al., 2019; Wolski et al., 2021), with the 2015-2017 drought and previous strong
droughts (1930s and 1970s) occurring during the rainfall’s periodic low phases. However, the studies linking
the Cape Town 2015-2017 drought to the hemispheric processes expressed by the SAM (Sousa et al., 2018a; Burls
et al., 2019; Mahlalela et al., 2019) focused almost exclusively on the post-1979 period, when global reanalyses are
available. Detailed understanding of the drivers of previous (1930s and 1970s) Cape Town region droughts
and the role of hemispheric processes expressed by the SAM in the pre-1979 period is missing.

The Cape Town regional rainfall is also potentially linked to other hemispheric phenomena, such as the
expansion of the tropics and, specifically, the South Atlantic high-pressure system and the position of the
subtropical jet, which share some variability with the SAM. The relationships between these phenomena and
Cape Town rainfall have not been thoroughly investigated outside of the context of'the.2015-2017 drought,
but the drought itself was associated with poleward expansion of the subtropical anticyclones_ in the South
Atlantic and South Indian Oceans and (a resulting) poleward displacement of the-moisture corridor across the
South Atlantic (Sousa et al., 2018a), as well as a weaker subtropical jet (Mahlalela et al., 2019). Burls et al.
(2019) also link the decline in the number of rainy days to the increase in sea-level pressure along the
poleward flank of the South Atlantic high-pressure system and the intensity of the post=frontal ridging high.
Additionally, there is a possible linkage between Cape Town rainfall and near-shote cold sea surface
temperature (SST) anomalies arising from Ekman upwelling dueto reduced westerly and increased south-
easterly winds. These might lead to suppression of convection and reduction of rainfall over land (Rouault et al.,
2010). All these phenomena are conceptually consistent:-with the poleward migration of the westerlies and
expansion of the tropics.

Rainfall in the Cape Town region also responds to SST anomalies.in the Southeast Atlantic, including the
Agulhas Current retroflection region, which may drive intensification of low-pressure systems, leading to the
trailing front strengthening as it makes landfall.Over the Cape Town region (Reason and Jagadheesha, 2005).
There are also linkages at seasonal time scale between the Cape Town regional rainfall and Antarctic sea ice
(Blamey and Reason, 2007).

In addition to mid-latitude Controls, subtropical processes also play a role in the Cape Town region’s rainfall
variability. The 10°-30°S:region.of the subtropical Atlantic, parts of the South American continent and even
parts of the African continent north of Cape Town are sources of moisture for atmospheric river events
contributing to frontal rainfall (Blamey:et al., 2018; Ramos et al., 2019), with implications for the 2015—
2017 drought (Sousa et al., 2018a)."Also, the second major rainfall contributing system, cut-off-lows, is
conditional .on moisture supply from the sub-tropics (Abba Omar and Abiodun, 2020).

Although EI Nifio-Southern Oscillation (ENSO) influences climate in southern Africa, any relationship
between ENSO and Cape Town’s rainfall is weak and inconsistent, showing the strongest impact in May to
June (Philippon etal;; 2012). ENSO, however, does influence large-scale processes and phenomena relevant
to the drought, though the relationship between ENSO and the SAM is complex, with each ENSO event
influencing the SAM differently in different seasons (Ding et al., 2012). Similarly, ENSO affects meridional
circulation and thus the subtropical anticyclone as well as the polar and subtropical jets (Seager et al., 2019),
but only modifying, not controlling, their role in Cape Town’s rainfall.

Paleoclimate studies reveal that long-term variability in the winter rainfall region of South Africa (including
Cape Town) is consistent with a general framework of warming/cooling-induced latitudinal migration of the
westerlies and transformation of the subtropical high-pressure belt and associated hemispherical processes
(see section 10.2.3.2 for assessment of paleoclimate analysis). The synchronicity of winter rainfall with
Antarctic ice-core-derived polar temperature anomalies is consistently revealed in studies using different
paleoclimate proxies and time scales of 1.4k (Stager et al., 2012), ~3k (Hahn et al., 2016) and 12k years
(Weldeab et al., 2013). Changes in rainfall regimes at shorter (decadal) time scales appear to reflect
influence of local processes such as the Agulhas current's interaction with the Atlantic, resulting in changes
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in SST and coastal upwelling, as well as modification of the wind tracks by topography (Stager et al., 2012).

10.6.2.5 Model simulation and attribution over the historical period

Due to the small scale of the Cape Town region, robust comparison of CMIP simulations to observations is
difficult. However, in general, CMIP5 models capture well the seasonality, such as the dominance of austral
winter rains, although they overestimate the peak and underestimate the shoulder season rainfall (Mahlalela
et al., 2019). Trends in rainfall are particularly difficult to assess as they are generally weak and depend
strongly on the time period and dataset adopted for the analyses (Section 10.6.2.3). A multi-method
attribution study (Otto et al., 2018) estimates the probability of the 2015-2017 drought to have increased by
a factor of 3 since pre-industrial times (with a wide 95% confidence interval of 1.5 to 6). However,
throughout the 20™ century, a substantial portion of the global climate models (GCMs; ~36% of CMIPS and
44% of CMIP6 models, as well as many of the MIROC SMILE members) simulate a statistically significant
(95% level) decline in total annual rainfall, while there is no robust long-termtrend in.observations (Figure
10.18). Section 10.4 offers a more detailed assessment of attribution challenges.

GCMs capture the overall behaviour of the observed main hemispherical processes, such asithe expansion of
the tropics, a positive trend in SAM and the poleward shift of the westerly jet. However, they fail to capture
details of their observed climatology and variability (Simpson and Polvani, 2016)yand.the magnitudes of
simulated trends vary, though the models typically underestimate observed trends in'these processes (Purich
et al., 2013; Staten et al., 2018). In general, CMIP5 models do-capture the SAM-regional rainfall association,
although not consistently across all seasons (Purich et al., 2013; Lim et al., 2016a).

10.6.2.6 Future climate information from global simulations

GCMs show strong consistency in a drying signal for the Cape Town region, with the reduction in total
annual rainfall ranging up to 20% by the end ofthe 21 ¢entury in CMIP5 RCP8.5 and CMIP6 SSP5-8.5
simulations (Almazroui et al., 2020a; Figure 10.18). The consistency across the models is a robust signal
compared to the rest of southern’Africa, where the-climate change signal varies spatially: stronger drying in
the west and moderate drying or weak wetting in the east (DEA, 2013, 2018; Atlas.4.4 for further discussion
of southern Africa precipitation projections)< Rainfall changes projected for the Cape Town region are
consistent with projected-.changes in hemispheric-scale processes and regional-scale dynamics that point
toward reduced frequency of frontal systems affecting that region. These changes include robust signals in
CMIP5 models forthe Southern Hemisphere for a poleward expansion of the tropics (Hu et al., 2013b),
poleward displacement of mid-latitude storm tracks (Chang et al., 2012), increased strength and poleward
shift of the westerly winds (Bracegirdle et al., 2018) and subtropical jet-streams (Chenoli et al., 2017), and a
shift toward a more positive phase.of the SAM (Lim et al., 2016a). However, despite the consistency in
circulation changes, the.emergence of anthropogenic rainfall change above unforced variability in
southwestern Africa remains uncertain for annual rainfall throughout most of the 21* century, even under
SSP5-8.5 (Section10.4, Figure 10.15).

There is also a substantial increase in the frequency of conditions supporting atmospheric rivers and water
vapour transport towards the southwest coast of southern Africa in the projected climate (Espinoza et al.,
2018). This behaviour has strong implications for the region, as most topographically high locations receive
rainfall from persistent atmospheric rivers (Blamey et al., 2018). A thorough understanding of the role of
atmospheric rivers in the Cape Town region under a changing climate is missing.

10.6.2.7 Future climate information from regional downscaling
Dynamical downscaling studies implemented with a stretched-grid model (Engelbrecht et al., 2009) revealed

a signal compatible with the driving CMIPS5 ensemble, that is, consistent drying throughout the region,
amplifying in time, irrespective of the considered emission scenario and the generation of GCMs (DEA,
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2013, 2018). A multi-model CORDEX ensemble indicates a robust signal of reduction of total annual
rainfall in the future, although there is less agreement on how changes in rainfall occurrence may evolve in
the region, such as through fewer consecutive rain days or longer dry spells (Abiodun et al., 2017; Maure et
al., 2018). For the end of the century under RCP8.5, Dosio et al. (2019) also found drying. Moreover, in their
analysis, the drying is associated with an increase in the number of consecutive dry days and a reduction in
number of rainy days. Their results are consistent with the driving GCMs for all the precipitation indices,
and they are robust independent of the choice of the regional climate model (RCM) or GCM. However,
collectively, these analyses indicate that uncertainty remains in the characteristics of the precipitation
decrease.

10.6.2.8 Storyline approaches

There is a consistency in rainfall projections with the projections of rainfall drivers and-with the general
understanding of the influence of global warming on the circulation dynamicsand rainfall patterns in the
region. Thus, the expansion of the South Atlantic high-pressure system, related to widespread ' warming of
the tropics and poleward shift of the subsiding limb of the Hadley cell, is associated with the southward
displacement of the subtropical jet, and southward migration of mid-latitude westerlies and storm tracks, in
addition to changes in the SAM (Section 10.6.2.4). These effects are also relatively consistent with recent
(post-1980s) declines in rainfall in the Cape Town region. The storyline of an extended drought is thus a set
of events that can yield reduced rainfall in the Cape Town region: poleward shift of'the downward branch of
the Hadley cell that produces a sustained southward shift in. mid-latitude westerlies and storm tracks. The
behaviour is potentially reinforced by changes in the SAM.

10.6.2.9 Climate information distilled from multiple lines of evidence

There is high agreement among observational data and reanalyses that the recent (post-1979) downward
trend in the Cape Town region’s rainfall leading to the 2015-2017 drought is related to the hemispheric
processes of poleward shift in the westerlies and expansion of the Hadley circulation. However, there is less
support for the precipitation-circulation relationship-in historical CMIP5 and CMIP6 simulations. As a
consequence, there is only medium’ confidence that these process changes produced the 2015-2017 drought
leading to the 2018 water crisis:

For the water-resource planner who has to deal with potential drought like the 2015-2017 event, several lines
of evidence indicate future drying: the projected precipitation by GCMs and RCMs of different spatial
resolutions, and the observed andprojected changes of circulation patterns consistent with drier conditions,
the paleoclimatic evidence confirming a millennial-scale circulation-rainfall link. However, the distillation is
limited by a'lack of information about whether or not a relationship between Cape Town precipitation and
large-scale circulation processes adequately explains droughts in the twentieth century prior to 1979.

Thus, although a clear association appears in observations from 1979 onward between increasing GHG
concentrations, drying in the Cape Town region and behaviour of a key circulation process, the SAM, further
analysis suggests.caution. Not all GCMs show the historical post-1979 association among these factors, and
when the observational record is extended back further to times when the anthropogenic greenhouse forcing
was weaker, there is no strong association between the SAM and Cape Town drought. Thus, there is only
medium confidence in the expectation of a future drier climate for Cape Town.

10.6.3 Indian Summer Monsoon
10.6.3.1 Motivation and regional context

The Indian summer monsoon provides 80% of the country’s annual rainfall from June to September,
supplying the majority of water for agriculture, industry, drinking and sanitation to over a billion people.
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Any variations in the monsoon on time scales from days to decades can have large impacts (Challinor et al.,
2006; Gadgil and Gadgil, 2006). Evidence from paleoclimate records (Sections 8.3.2.4.1) shows high
confidence in a weakened Indian monsoon during cold epochs of the past such as the Younger Dryas
(12,800-11,600 years ago) as measured by speleothem oxygen isotopes (Kathayat et al., 2016). There is a
pressing need to understand if the monsoon will change in the future under anthropogenic forcing and to
quantify such changes. Multiple datasets have shown robust negative trends since the 1950s until the turn of
the century (Bollasina et al., 2011) followed by a recovery (Jin and Wang, 2017), yet repeated assessments
project the monsoon to increase in strength under enhanced GHG forcing (Christensen et al., 2007, 2013;
Sections 8.3.2.4.1 and 8.4.2.4.1). The apparent contradiction between future projections and observed
historical trends makes the region an ideal choice for an in-depth assessment. The reader is also referred to
the South Asia (SAS) regional assessment of precipitation extremes (Section 11.9), which is not discussed
here for brevity.

10.6.3.2 The regional climate of India

Local geography gives rise to distinct differences in societal experience of the summer monsoon. The
southwesterly monsoon winds are incident upon the Western Ghats mountains on the west coast, leading to
orographic enhancement and heavy rains (Shige et al., 2017), which.supply rivers with water for much of the
southern peninsula, often the subject of inter-regional water disputes. The northern plains contain the Ganges
river and also India’s most intensive agriculture, both rainfed’and irrigated. Synoptic systems known as
monsoon depressions cross the northern east coast, supplying much of the rain in central India (Hunt and
Fletcher, 2019). Further north, the eastern Himalayas are dominated by the summer monsoon, while the
western Himalayas receive most rainfall from western'disturbances during winter (Palazzi et al., 2013).
Meanwhile, southeastern India sits under a rain shadow (the only region te.receive more rainfall during the
winter monsoon).

10.6.3.3 Observational issues for India

India has one of the oldest rain-gauge networks in-the world, leading to the production of numerous
observational products (reviewed i Khouider et al., 2020). Gridded gauge-based products dating back to the
19" century reveal pronousiced‘decadal variability.(Sontakke et al., 2008). Trends for India over the whole
20" century are inconclusive (Kntitson and Zeng, 2018), although declining over central and northern areas
(Roxy et al., 2015). Assessment of multiple observational datasets covering the Indian summer monsoon
reveals significant‘declining rainfall‘over the second half of the 20™ century (Section 8.3.2.4.1, Figure
10.19¢,d). A subsequent recovery has been noted since the early 2000s (Jin and Wang, 2017).

Observational products containing.critical inhomogeneities in gauge distribution and reporting over time are
acknowledged as suitable for mesoscale analysis (Rajeevan and Bhate, 2009), while use for climate trends
requires consistent reporting over time from quality-controlled gauges (e.g., ~2000 gauges since the 1950s in
Rajeevan et al., 2006). A newer 0.25°-gridded product covering 1901 onwards (Pai et al., 2014, 2015), based
on Shepard’s interpolation method for irregularly-spaced stations (Shepard, 1968), shows increased intensity
of daily rainfall and extremes over some regions, especially in the late-20" century. However, changes to the
inputted gauges may have introduced an artificial jump in extreme rainfall since 1975 over central India
(Section 10.2.2:3; Lin and Huybers, 2019). They suggest that this method may have masked declines in
mean rainfall and highlight the need for availability of raw gauge data to allow transparent assessments.
Khouider et al. (2020) have successfully tested a probabilistic interpolation method for India to overcome
problems inherent in algorithms based on inverse-distance weighting when applied to data-sparse regions.
An example snapshot of the uneven distribution of rain gauges in a common observational product is shown
in Figure 10.19a.

The uncertainty among local and international observational products for India can pose challenges when

evaluating climate models (as in Section 10.2.2.6; Prakash et al., 2015). For the seasonal mean summer
monsoon rainfall, Collins et al. (2013) found large biases separating many CMIP5 models from the available
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observational products. However, for seasonal mean variability, the spread across observational products
was larger than across the CMIP5 ensemble.

10.6.3.4 Relevant anthropogenic and natural drivers for long-term change

The relevant drivers for long-term change in the mean Indian summer monsoon are summarised briefly:

e Increased greenhouse gas (GHG) concentrations (chiefly CO,) are a strong contributor to changes in
the monsoon, with repercussions for the meridional temperature contrast driving the monsoon
circulation (Ueda et al., 2006; Roxy et al., 2015), for the monsoon winds in the lower troposphere
(Cherchi et al., 2011; Krishnan et al., 2013), or for the availability of moisture from the Indian Ocean
(May, 2011).

e Industrial emissions of sulphate aerosol predominantly in the Northern Hemisphere could change
inter-hemispheric energy transports and weaken the monsoon (Polson et al.; 2014; Undorf et al.,
2018). The effect of local anthropogenic emissions of black carbon (chiefly. from cooking fires) is
uncertain (Lau and Kim, 2006; Nigam and Bollasina, 2010).

e India’s green revolution over the late-20™ century led to considerable lanid-use change, with massive
expansion of agriculture at the expense of forest and shrublands. As,a result, India’s:northern plains
feature widespread irrigation, suggested to be a cause of drying (Mathur and AchutaRao, 2020).

e Decadal modes of variability such as the Pacific Decadal Variability (PDV, Annex [V) and Atlantic
Multidecadal Variability (AMV, Annex V), which.may be partly forced (Section 3.7.7), are known
to cause decadal modulation of the monsoon (Krishnamurthy and Krishnamurthy, 2014; Naidu et al.,
2020).

The interplay of these external and internal drivers is key.to understanding past‘and future monsoon change.

10.6.3.5 Model simulation and attribution’of drying over the historical period

The robust decline of Indian summer monsoon tainfall dveraged over India in the second half of the 20™
century (Section 10.6.3.3) is not in.line with expectations arising from thermodynamic constraints on the
water cycle in a warming world'(Section 8.2.2) and has been regarded as a puzzle (Goswami et al., 2006).
Assessing the attribution of 20™-c¢éntury changes to Indian rainfall is the subject of coordinated modelling
under the Global Monsoon MIP (GMMIP; Zhou et-al:; 2016), but is complicated by long-standing dry biases
in coupled CMIP3, CMIP5 (Sperber et al., 2013) and CMIP6 (Figure 10.19b) GCMs. These dry biases are
connected to a lower tropospheric circulation that is too weak (Sperber et al., 2013) and wet biases in the
equatorial Indian‘Ocean'(Bollasina and Ming, 2013). Section 8.3.2.4.1 finds high confidence that
anthropogenic aerosol emissions have dominated the observed declining trends of countrywide Indian
summer monsoon rainfall, consistent with findings at the global-monsoon scale (Section 3.3.3.2).

Stronger Northern Hemisphere aerosol emissions cool it relative to the Southern Hemisphere, increasing
northward energy transport at the expense of moisture transport towards India (Bollasina et al., 2011). The
attribution to anthropogenic aerosols is supported in CMIP5 single-forcing experiments, including some
testing the sensitivity to local and remote emissions (Guo et al., 2015, 2016; Shawki et al., 2018), comparing
CMIP5 GCMs forced by both aerosol and GHG to GHG only (Salzmann et al., 2014) and reducing
emissions.to pre-industrial levels (Takahashi et al., 2018). The large spread between individual model
realisations-of comparable magnitude to the aerosol-induced signal suggested to Salzmann et al. (2014) that
internal variability may also play a role over regions such as northern-central India. Further uncertainty
surrounds the level of radiative forcing. Dittus et al. (2020) forced a GCM with historical aerosol emissions
scaled between 0.2 and 1.5 times their observed values, representing the spread in CMIP5 effective radiative
forcing. The strongest forcing led to around 0.5 mm day™' less late-20" century Indian monsoon rainfall than
the weakest (Shonk et al., 2020). Meanwhile, the uncertainty surrounding aerosol-cloud interactions could
change the sign of long-term precipitation trends (Takahashi et al., 2018).

There is some evidence that declining Indian monsoon rainfall is due to regional SST warming patterns,
themselves arising due to radiative forcing from GHG (e.g., in the Indian Ocean, Guemas et al., 2013). Roxy
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et al. (2015) artificially raised SST in a coupled GCM in the equatorial Indian Ocean (the region of strongest
observed SST warming), leading to a weakened monsoon. Annamalai et al. (2013) used a GCM to suggest
instead that preferential warming of the western North Pacific may force a Rossby-wave response to its west
that weakens the monsoon through dry advection and subsidence. These hypotheses are not borne out in
GHG-forced future projections (Section 10.6.3.6).

A small anthropogenic contribution may be expected from local land-use/land-cover changes and land
management. India is the world’s most irrigated region with around 0.5 mm/day in places, although peaking
higher in summer (Cook et al., 2015b; McDermid et al., 2017). Including irrigation in GCMs and RCMs
slows the monsoon circulation and diminishes rainfall (Lucas-Picher et al., 2011; Guimberteau et al., 2012;
Shukla et al., 2014; Tuinenburg et al., 2014; Cook et al., 2015b) due to reduced surface temperature (Thiery
et al., 2017), reducing the monsoon wind and moisture fluxes towards India (Mathur and AchutaRao, 2020).
However, implementation methodologies for irrigation in climate models are simplified.and often do not
account for spatial heterogeneity while overestimating demand and supply (Nazemi and-Wheater, 2015;
Pokhrel et al., 2016; Section 10.3.3.6). Changing forest cover to agricultural land in an. RCM (Paul et al,
2016) finds weakened summer monsoon rainfall especially in central and eastern India, due to decreased
local evapotranspiration. Decreased evapotranspiration from a warmer surface since the 1950s in the CMIP5
ensemble may also feedback on the supply of moisture (Ramarao et al., 2015). Based on a global
atmospheric GCM study and literature review, Krishnan et al. (2016) support the role of land-use/land-cover
change in adding to the effects of aerosol in weakening the monsoon, in addition to dynamic effects on the
circulation caused by rapid warming of the Indian Ocean.

In addition to anthropogenic forcing, there is evidence that internal variability in the Pacific is a significant
driver. Huang et al. (2020b) compared a large perturbed-physics ensemble (HadCM3C) with a SMILE for
the historical period. Ensemble members replicating the negative Indian rainfall trend were accompanied by
a strong phase change in the PDV from negative to positive, consistent with SST observations. Jin and Wang
(2017) have demonstrated increasing Indian'monsoon rainfall §since. 2002 in a variety of observed datasets,
suggesting the increase is due either to a<hange in dominance of'a particular forcing (for example from
aerosol to GHG) or to a change in phase of internal variability such as the PDV. Huang et al. (2020b)
partially attribute the rainfall recovery to.a phase change in the PDV, supported by a SMILE study combined
with reanalyses (Ha et al., 2020):

The drying trend of Indian’Summer monsoon rainfall since the mid-20™ century can be attributed with high
confidence to aerosol assthe dominant anthropogenic forcing with a further contribution from internal
variability, supported by thereview of Wang et al. (2020) including CMIP6 results. Understanding the
interplay between-anthropogenic and internal drivers will be important for understanding future change.

10.6.3.6 Future climate projectionsfrom global simulations

The ARS (Christensen et al., 2013) concluded that Indian summer monsoon rainfall will strengthen under all
RCP future climate'scenarios, while the circulation will weaken (medium confidence). SR1.5 (Hoegh-
Guldberg et al., 2018) found only low confidence in projections of monsoon change at 1.5°C and 2°C, or any
difference between them. The AR6 assessment of Chapter 8 (8.4.2.4.1) finds more precipitation in future
projections (also depicted in Figure 10.19¢,d,e), supported by reviews of CMIP3, CMIP5 and CMIP6 models
(Turner and Annamalai, 2012; Kitoh, 2017; Chen et al., 2020b; Wang et al., 2020).

Given the assessment for a future wetter monsoon dominated by GHG emissions and attribution of the late-
20" century decline to aerosol (Sections 8.3.2.4.1 and 10.6.3.5), the change between dominant forcings will
lead, at some point, to a positive trend. For example, RCP4.5 experiments in an atmospheric GCM forced by
coupled model-derived future SSTs showed continuation of 20™-century drying, before a rainfall recovery
(Krishnan et al., 2016). By holding aerosol emissions at 2005 levels, lower monsoon rainfall is found
throughout the 21* century than in a standard RCP8.5 scenario (Zhao et al., 2019), suggesting that the timing
of the recovery will be partially controlled by the rate at which aerosol emissions decline. The spread in
spatial distribution of aerosol emissions in SSPs may also play a role in near-term projections (Samset et al.,
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2019). Under divergent air-quality policies, SSP3 features a dipole of declining sulphate emissions for China
but increases over India, leading to suppression of GHG-related precipitation increases there (Wilcox et al.,
2020). For the near-term future around the mid-21* century, the interplay between internal variability and
external forcing must be considered (Singh and AchutaRao, 2018). Huang et al. (2020a) used two SMILEs to
show that internal variability related to PDV could potentially overcome the GHG-forced upward trend in
Indian monsoon rainfall, consistent with assessments of the global monsoon for the near term (Section
4.4.1.4). Emergence of the anthropogenic signal for South Asian precipitation is shown from the 2050s
onwards in CMIP6 (Figure 10.15b).

In long-term projections, robust signals consist of a weakened upper-tropospheric meridional temperature
gradient, either due to upper-level heating over the tropical Pacific (Sooraj et al., 2015) or Indian Oceans
(Sabeerali and Ajayamohan, 2018) in CMIP5, and increased seasonal mean rainfall, including in CMIP6
(Almazroui et al., 2020c; Wang et al., 2020). The weakened temperature gradient combines with increased
atmospheric stability to weaken the monsoon overturning circulation, with some findings showing northward
movement of the lower-tropospheric monsoon winds in response to a strongerland-sea temperature contrast
in CMIP3 and CMIPS5 (Sandeep and Ajayamohan, 2015; Endo et al., 2018). The northward shift was also
found in the genesis of synoptic systems (monsoon depressions) in a single high=resolution‘atmospheric
GCM forced by an ensemble of SSTs derived from four GCMs under/the RCP8.5 scenario (Sandeep et al.,
2018).

Projections can also be expressed in terms of global-mean warming levels (GWLs).rather than time horizons
(Cross-Chapter Box 11.1). Advancing upon SR1.5, amplification of mean and extremé monsoon rainfall at
2.0°C compared to 1.5°C has been found both by an atmospheric' GCM forced by future SST patterns
(Chevuturi et al., 2018) and using time slices in CMIP5.GCMs (Yaduvanshi et al., 2019; Zhang et al.,
2020a). These findings are consistent with the general scaling of Indian mensoon precipitation per degree of
warming in CMIP5 (Zhang et al., 2019) and CMIP6 (Wang et al., 2020). Increasing GWLs also lead to
emergence of the anthropogenic signal over’larger proportions of the South Asian region (Figure 10.15a).

Decomposition of the increased rainfall signal showed that while the dynamic component led to a drying
tendency, this was overcome by the thermodynamic contribution (Sooraj et al., 2015; Chen et al., 2020b).
Alternative decomposition experiments using atmospheric GCMs and their coupled counterparts found
increases in the lower-tropospheric temperature gradient and monsoon rainfall to be dominated by the fast
radiative response to GHG increase rather than SST changes (Li and Ting, 2017; Endo et al., 2018). The
response to SST forcing featured-a large model spread, particularly arising from the dynamic component (Li
and Ting, 2017). Chen and Zhou (2015) found that the Indo-Pacific SST warming pattern dominated the
uncertainty in Indian monsoon rainfall change. Finally, in assessing the relative impact of CO; radiative
forcing and plant physiological changes in.quadrupled CO, experiments in four Earth system models, Cui et
al. (2020) showed little impact of plant physiology on annual rainfall for the Indian region.

While several of the above studies selected model subsets to constrain future projections based on standard
performance metrics of the historical period, such as pattern correlation and root-mean-square error, Latif et
al. (2018) included‘a performance measure based on agreement with historical rainfall trends. This is an
unproven constraint-for regional projections (Section 10.3.3.9), since the 20"™-century rainfall trend over
India is assessed to have been driven chiefly by aerosol and other factors such as PDV (Sections 8.3.2.4.1
and 10.6.3.5), while the dominant late-21* century forcing is GHG emissions. Modern emergent-constraint
techniques (Section 10.3.4.2) are being applied to the Indian monsoon such as Li et al. (2017), who found
that models with excessive tropical western Pacific rainfall tend to project a greater Indian monsoon rainfall
change in future, due to an exaggerated cloud-radiation feedback. Correcting for this bias reduces the future
change.

[START FIGURE 10.19 HERE]

Figure 10.19: Changes in the Indian summer monsoon in the historical and future periods. (a) Observational
uncertainty demonstrated by a snapshot of rain-gauge density (% of 0.05°-subgrid boxes containing at
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least one gauge) in the APHRO-MA 0.5° daily precipitation dataset for June to September 1956. (b)
Multi-model ensemble (MME)-mean bias of 34 CMIP6 models for June to September precipitation (mm
day!) compared to CRU TS observations for the 1985-2010 period. (c) Maps of rainfall trends (mm day!
per decade) in CRU TS observations (1950-2000), the CMIP6 MME-mean of SSP5-8.5 future
projections for 2015-2100 (34 models), the CMIP6 hist-GHG and hist-aer runs, both measured over 1950
to 2000. (d) Low-pass filtered time series of June to September precipitation anomalies (%, relative to
1995-2014 baseline) averaged over the central India box shown in panel (b). The averaging region
(20°N-28°N, 76°E—87°E) follows other works (Bollasina et al., 2011; Jin and Wang, 2017; Huang et al.,
2020b). Time series are shown for CRU TS (brown), GPCC (dark blue), REGEN (green), APHRO-MA
(light brown) observational estimates and the IITM all-India rainfall product (light blue) in comparison
with the CMIP6 mean of 13 models for the all-forcings historical (pink), the aerosol-only (hist-aer, grey)
and greenhouse gas-only (hist-GHG, blue). Dark red and blue lines show low-pass filtered MME-mean
change in the CMIP6 historical/SSP5-8.5 (34 models) and CMIPS historical/ RCP8.5 (41 models)
experiments for future projections to 2100. The filter is the same as that used in Figure 10.11(d). To the
right, box-and-whisker plots show the 2081-2100 change averaged over the:CMIPS5 (blue) and CMIP6
(dark red) ensembles. Note that some models exceed the plotting range (EMIP5: GISS-E2-R-CC; GISS-
E2-R & IPSL-CM5B-LRI and CMIP6: CanESM5-CanOE, CanESMS5 & GISS-E2-1-G). (e) Precipitation
linear trend (% per decade) over central India for historical 1950-2000 (left) and future2015-2100 (right)
periods in Indian monsoon rainfall in observed estimates (black crosses), the CMIP5 historical-RCP8.5
simulations (blue), the CMIP6 ensemble (dark red) for historical all-forcings experiment and SSP5-8.5
future projection, the CMIP6 hist-GHG (light blue triangles); hist-aer (grey triangles) and historical all-
forcings (same sample as for hist-aer and hist-GHG, pink circles). Ensemble'means are also shown. Box-
and-whisker plots show the trend distribution of the three coupled and the d4PDF atmosphere-only (for
past period only) SMILEs used throughout Chapter 10.and follow the methodology used in Figure 10.6.
(f) Example spread of trends (mm day™! per decade) out to'the near term (2016-2045) in RCP8.5 SMILE
experiments of the MPI-ESM model, showing the difference between the three driest and three wettest
trends among ensemble members over central India. All trend§-are estimated using ordinary least-squares
regression. Further details on data sources:and processing.are available in the chapter data table (Table
10.SM.11).

[END FIGURE 10.19 HERE]

In summary, long-term future scenarios dominated by:GHG increases (such as the RCPs) suggest increases
in Indian summer monsoonrainfall (high confidence), dominated by thermodynamic mechanisms leading to
increases in the available moisture. In the neéar-term;there is high confidence (medium agreement, robust
evidence) that increased rainfalltrends due to GHGs could be overcome by aerosol forcing or internal
variability.

10.6.3.7 Future climate projections from regional downscaling

Coordinated monsoon-relevant dynamical downscaling efforts such as CORDEX South Asia (Gutowski et
al., 2016; Choudhary et al.;,2018) are relevant to the Indian summer monsoon, first with assessment of their
added value (Sections.10:3:3.2 and Atlas.5.3.3). Singh et al. (2017) compared nine CORDEX-South Asia
RCMs against their'driving CMIP5 GCMs, for present-day rainfall patterns and processes related to
intraseasonal variability. They found no consistent improvement other than for spatial patterns (e.g., rainfall
close to better-resolved orography); some characteristics were made worse. Both the rainfall pattern and its
bias were worsened in CORDEX compared to CMIP5 in Mishra et al. (2018). In contrast, Varikoden et al.
(2018) found improved representation of historical rainfall patterns, such as over the Western Ghats
mountains (consistent with Singh et al., 2017), reducing the dry bias; improvements were not found over the
northern plains, which are dominated by synoptic variability known as monsoon depressions. Similarly,
Sabin et al. (2013) compared a uniform 1°-resolution model ensemble with another zoomed to ~35 km over
South Asia. Local zooming improved simulation of orographic precipitation and the monsoon trough. For the
future, a surrogate approach (like pseudo-global warming, see Section 10.3.2.2) was used in an RCM to test
the impacts of warming or moistening on monsoon depressions (Serland and Sorteberg, 2016; Serland et al.,
2016). The depressions are found to give more rainfall in future, dominated by strengthened synoptic
circulation from the warming perturbation. By forcing an RCM with a perturbed parameter ensemble of a
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GCM, Bal et al. (2016) made projections under SRES A1B for the 2020s, 2050s and 2080s. They noted
increases in rainfall of 15-24% for India. Finally, evidence from a single CORDEX South Asia RCM
showed a mixed signal for changes in peak season rainfall under RCP2.6 and RCP8.5 (Ashfaq et al., 2020).

Statistical downscaling and other post-processing require calibration in historical conditions (e.g., Akhter et
al., 2019) and assessment of fitness for purpose (Section 10.3.3.9) before use for future projections. Given
the noted biases in GCM monsoon simulation (Section 10.6.3.5), Vigaud et al. (2013) used a variant of
quantile mapping to bias adjust (Section 10.3.1.3.2 and Cross-Chapter Box 10.2) GCM outputs. For the
historical period, the pattern, mean and seasonal cycle of rainfall versus the input GCMs were improved.
Increased future monsoon rain, albeit in older SRES A2 projections, was found for southern India. Salvi et
al. (2013) used regression-based perfect prognosis (Section 10.3.1.3.1) for the whole country at 0.5°-
resolution based on five ensemble members of a GCM in SRES scenarios. They noted increases over rainy
regions of west coast and northeast India, but decreases in the north, west and southeast. Madhusoodhanan et
al. (2018) statistically downscaled 20 CMIPS models to 0.05°-resolution. While the GCMs projected
increased rainfall, the downscaled ensemble depicted both increasing and decreasing trends, indicating
uncertainty. However, key physical processes operating at below-GCM scale cannot be resolved nor
calibrated for, such as aspects of the flow around topography. This is notably an‘issue given the resolution
disparity between the driving GCMs and output, and the regional challenges in observational data used for
calibration (Section 10.6.3.3).

There are mixed messages as to whether downscaling adds value to climate projections of the Indian summer
monsoon; however, there is high confidence in projections of precipitation changes. in‘orographic regions
given the consistent improved representation in these regions among several dynamical downscaling studies.

10.6.3.8 Storyline approaches for India

Formal storyline approaches (see Box 10.2) have been used infrequently for the Indian summer monsoon,
representing a knowledge gap. In an expert-elicitation approach (Dessai et al., 2018), physically plausible
futures substantiated by climate processes were constructed, focusing on a river basin in southern India.
Possible outcomes were framedbased on changes-in‘two drivers: availability of moisture from the Arabian
Sea and strength of the low-lével flow. The narratives identified were able to explain 70% of the variance in
monsoon rainfall over 1979—2013, the implication being that climate uncertainties could be easily
communicated to stakeholders in'the context of present-day variability.

The storylines terminology could beused to loosely describe the interplay between internal variability and
forced change (see Section 10.6.3.6), suchras considering the difference between groups of wettest and driest
ensemble members.of a SMILE for the near-term future in Figure 10.19f. However, given the interest in low-
likelihood high-impact scenarios (Sutton, 2018), we can also consider possible storylines for the Indian
monsoon constructed from evidence in paleoclimate records and modelling. For example, a future AMOC
collapse could cause reduced monsoon rainfall (Section 8.6.1; Liu et al., 2017), offsetting increases expected
due to GHG. Largeg tropical volcanic eruptions are also known to weaken the Asian summer monsoon, in
observations and moedel simulations over the last millennium (Section 8.5.2.3; Zambri et al., 2017), although
a hemispheric dependence is found, with southern hemisphere eruptions even strengthening the monsoon
around India (Zuo et al., 2019). Typically, future climate projections do not consider plausible eruption
scenarios and their mitigating effects on greenhouse warming (see also Cross-Chapter Box 4.1). A single-
model ensemble (Bethke et al., 2017) demonstrates a future drier Indian monsoon relative to conditions in
which volcanic eruptions are not considered, although the effects of GHG warming dominate beyond the
mid-term.

The few studies on low-likelihood high-impact scenarios, often in single models, together with findings in
SR 1.5 (Hoegh-Guldberg et al. 2018), noting the small radiative forcing in 1.5°C or 2°C scenarios, or the
absence of large aerosol emissions at the end of the 21 century in RCPs, give us low confidence in abrupt
changes to the monsoon on this time scale.
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10.6.3.9 Regional climate information distilled from multiple lines of evidence

Above, we presented assessments from observational and model attribution studies of the historical period,
followed by future climate projections in global and regional models, and storylines approaches including
low-likelihood high impact events. Miscellaneous lines of evidence are considered here.

Our assessment could also be informed by attempting to constrain future projections of the Indian summer
monsoon using paleoclimate evidence. In modelling work of the mid-Holocene (D’ Agostino et al., 2019), the
increased obliquity (axial tilt) and altered orbital precession lead to an enhanced monsoon with a stronger
dynamic component (strengthening the mean monsoon overturning) controlling the increase in monsoon
rainfall. In future climates however, the dynamic contribution decreases (Section 10.6.3.6), yet the increased
thermodynamic component (greater moisture availability) overcomes this to cause a wetter monsoon.
Monsoon changes under different epochs may not be governed by the same mechanisms-(D’ Agostino etal.,
2019; Hill, 2019), making the mid-Holocene, in particular, unsuitable as a period to. compare with.

Finally, the recent national climate-change assessment for India (Krishnan et al.;:2020) has‘distilled multiple
lines of evidence to show declining summer monsoon rainfall over th¢ second half of the 20" century,
attributable to emissions of anthropogenic aerosols, while future projections informed by CMIP5 modelling
and dominated by GHG forcing show increased mean rainfall by the end of the 21*' century.

There is very high confidence (robust evidence, high agreement) of a negative trend of summer monsoon
rainfall over the second half of the 20" century averaged overall'of India. There is medium agreement over
trends at the regional level owing to uncertainty among.observational products, which hinders model
evaluation, downscaling and assessment of changes to extremes. There is-4igh confidence (robust evidence,
medium agreement) that anthropogenic aerosol emissions over the'Northern Hemisphere and internal
variability have contributed to the negative trend, while there i§high confidence (robust evidence, medium
agreement) that Indian summer monsoon rainfall will increase at'the end of the 21* century in response to
increased GHG forcing, due to the dominance of thermodynamic mechanisms. No contradictory evidence is
found from downscaling methods. The contrast between declining rainfall in the observational record and
long-term future increases can bé explained using multiple lines of evidence. They are not contradictory
since they are attributable to different mechanisms (primarily aerosols and greenhouse gases, respectively).
The long-term future changes are generally consistent-across global (including at high resolution) and
regional climate modelsyrand supported by theoretical arguments; furthermore, while there are subtle
differences found in past periods with a climate similar to the future climate (the mid-Holocene), different
physical mechanisms at.play suggest that paleoclimate evidence does not reduce confidence in the future
projections. In the neat term, there'is high confidence that internal variability will dominate.

10.6.4 Mediterranean Sumimer Warming
10.6.4.1 Motivation and regional context

The Mediterranean region is loosely denoted as the region that surrounds the Mediterranean Sea, and it is
characterized by complex orography and strong land-sea contrasts. The region contains a dense and growing
human/population, with large regional differences: whereas the population of the European Mediterranean
countries has been relatively stable or even declining during the past decades, the population of countries in
Mediterranean areas of the Middle East and North Africa has quadrupled between 1960 and 2015, and the
degree of urbanization has risen from 35 to 64% during the same period (Cramer et al., 2018) and during the
more recent period 2000-2020 the urban expansion rate has exceeded 5% (Kuang et al., 2021).

The Mediterranean region has experienced significant climate variability over recent decades and has been
affected in particular by severe heatwaves and droughts (Hoegh-Guldberg et al. (2018); Sections 8.3, 11.3,
11.6 and 12.4). Increasing summer temperatures will enhance the frequency and intensity of such extreme

events and will cause additional environmental and socio-economic pressure on the region.
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10.6.4.2 The region’s climate

The Mediterranean has a heterogeneous climate that is partly semi-arid, especially along the southern coast
of the Mediterranean Sea (Lionello et al., 2012). It is characterized by mild humid winters and dry warm or
hot summers, which are associated with large scale subsidence that is partly related to the downward branch
of the Hadley circulation. Other factors affecting the Mediterranean circulation include the monsoon heating
over Asia (Rodwell and Hoskins, 1996; Cherchi et al., 2014; Osso et al., 2019) and circulation anomalies
induced by topography (Simpson et al., 2015). Seasonal and interannual variability is strongly linked to
natural modes of variability (Section 10.6.4.4). The Mediterranean Sea acts as an evaporation source that
dominates the regional hydrological cycle, which is characterized by local cyclogenesis and a separate
branch of the mid-latitude storm track (Lionello et al., 2016). It also affects remote locations such as the
Sahel (Park et al., 2016; Section 10.4.2.1). Strong storms can develop over the Mediterranean: among these,
Medicanes are particularly destructive and exhibit several similarities with tropical.cyclones (Cavicchia et
al., 2014; Kouroutzoglou et al., 2015; Gaertner et al., 2018). The Mediterranean region is alse characterized
by strong land-atmosphere coupling and feedbacks (Seneviratne et al., 2006) generating prolonged droughts
and intense heatwaves, which can also affect continental Europe (Zampieri-et al., 2009). Other aspects of
Mediterranean climate include regional winds, which can be very strong due to the channelling effect
(Obermann et al., 2018) and extreme rainfall during autumn (Ducroeq et al., 20145 Ribes et al., 2019).

10.6.4.3 Observational issues

The Mediterranean region spans a wide variety of countries and economies. This has led to large differences
in the existence and availability of observational records, with the southern part of the area being sparsely
covered by meteorological stations (Figure 10.20b). Consequently,.basin-wide, homogeneous, quality
controlled observational datasets are lacking,especially before the advent of substantial satellite observations
in the 1970s. Observational uncertainties exist also for those regions that are covered by high quality
networks such as ECA&D (Flaounas etal., 2012).

Large differences of up to 7°C between the CRU and UDEL datasets have been found especially over
mountainous areas, such as the/Atlas in Morocco (Zittis and Hadjinicolaou, 2017; Strobach and Bel, 2019).
Bucchignani et al., (2016b, 2016a) compared three different datasets (CRU, UDEL, and MERRA) with the
available ground observations and found that although the geographical distribution of the bias is
qualitatively similar for.thethree datasets, differences exist, with the absolute bias being generally lower in
MERRA especially over North Africa during the summer and winter season. There is high confidence that
the sparse monitoringnetwork in parts of the Mediterranean region strongly increases the uncertainty across
different gridded datasets (Section.10.2.2.3, Figure 10.20b,c).

10.6.4.4 Relevantanthropogenic and natural drivers

The Mediterranean summer climate is affected by large-scale modes of natural variability, the most
dominant being the NAO (Annex IV) in winter and the summer NAO in summer (Folland et al., 2009; Bladé
et al., 2012), although regional differences exist. The influence of those modes of variability over the eastern
Mediterranean is recognized by some studies (Chronis et al., 2011; Kahya, 2011; Black, 2012; Blad¢ et al.,
2012), but disputed by others (Ben-Gai et al., 2001; Ziv et al., 2006; Donat et al., 2014; Turki et al., 2016;
Zamrane et al., 2016; Han et al., 2019). During positive summer NAO phase, associated with an upper-level
trough over the Balkans, the Mediterranean is anomalously wet (Bladé¢ et al., 2012). Drivers of
Mediterranean climate variability include modes of variability such as the AMV (Sutton and Dong, 2012)
and the Asian monsoon (Rodwell and Hoskins, 1996; Logothetis et al., 2020). In addition, the increase of
GHGs (e.g., Zittis et al., 2019), the decrease of anthropogenic aerosols over Europe and the Mediterranean
since the 1980’s resulting from air pollution policies (Turnock et al., 2016), and anthropogenic land-use
change (Millan, 2014; Cramer et al., 2020) have been shown to be linked to the regional warming. The role
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of the zonal averaged circulation as a driver for the Mediterranean climate has been stressed by (Garfinkel et
al., 2020).

The attribution of observed Mediterranean summer warming to above drivers and implications for future
projections will be discussed in Sections 10.6.4.5 and 10.6.4.6.

10.6.4.5 Model simulation and attribution over the historical period

Observational datasets show large agreement on the historical (1960-2014) temperature evolution at basin-
wide scale (Figure 10.20¢), with an enhanced warming since the 1990’s, and the early decades of the 21*
century being on average approximately more than 1°C warmer than late 19" century levels (van der Schrier
et al., 2013; Cramer et al., 2018; Lionello and Scarascia, 2018; Figure 10.20e). Over recent decades, the
surface air temperature of the Mediterranean including the Mediterranean Sea has warmed by around 0.4°C
per decade (Macias et al., 2013). Observed trends over land show large geographical heterogeneity (Figure
10.20d) and notable differences exist amongst different datasets at grid point scale (Figure 10:20c; Qasmi et
al., 2021).

Several mechanisms have been proposed for the enhanced Mediterranean warming, although their relative
importance and the possible interplay between them are not fully understood. Circulation changes might
have contributed to this enhanced warming (Figure 10.20a)..Sutton and Dong (2012) argued that the AMV
induced a shift around the 1990s towards warmer southern European summers. This mechanism is associated
with a linear baroclinic atmospheric response to the AMV-related surface heat flux. Also O’Reilly et al.
(2017) related warm summer decades to the AMV, butthe connection was shown to be mainly
thermodynamic. Qasmi et al. (2021) estimate an increase in Mediterranean.summer temperature of 0.2-0.8°C
during a positive AMV.

Increased warming over land compared to the sea is expected dueito the lapse-rate changes associated with
tropospheric moisture contrasts (Krdner et al., 2017; Byrne and O’Gorman, 2018; Brogli et al., 2019a; Figure
10.20a). Enhanced land-sea temperature contrast leads to relative humidity and soil moisture feedbacks
(Rowell and Jones, 2006), the latter also depending on weather regimes (Quesada et al., 2012). The globally
enhanced land-sea contrast in'near surface temperature is also a robust result in CMIP5 and CMIP6 models
(section 4.5.1.1).

Due to its semi-arid climate; strong atmosphere-land coupling has contributed to the larger increase of mean
summer temperature compared to the increase of annual mean temperature (Seneviratne et al., 2006). In
particular, during drought spells,limits to evaporation due to low soil moisture provide a positive feedback
and enhances. the intensity of heat waves (Lorenz et al., 2016; Box 11.1). By comparing reanalysis-driven
RCM simulations 'with observations;Knist et al. (2017) found that RCMs are able to reproduce soil moisture
interannual variability, spatial patterns, and annual cycles of surface fluxes over the period 1990-2008,
revealing a strong land-atmosphere coupling especially in southern Europe in summer. In addition cloud
feedbacks can modulate the Mediterranean summer temperature (Mariotti and Dell’ Aquila, 2012).

The observed trends over 1901-2010 are outside the range of internal variability shown in CMIP5 pre-
industrial control experiments and consistent with, or greater than those simulated by experiments including
both anthropogenic and natural forcings (Knutson et al., 2013) and therefore partly attributable to
anthropogenic forcing. The decrease of anthropogenic aerosols over Europe including the Mediterranean
resulting from European de-industrialisation and air pollution policies (Turnock et al., 2016) has been
highlighted as an important contributor to the observed warming (Ruckstuhl et al., 2008; Philipona et al.,
2009; Laat and Crok, 2013; Nabat et al., 2014; Besselaar et al., 2015; Dong et al., 2017; Boé et al., 2020a).
Pfeifroth et al. (2018) argue that this brightening is mainly due to cloud changes caused by the indirect
aerosol effect with a minor role for the direct aerosol effect, in contrast to Nabat et al. (2014) and Boers et al.
(2017) who attribute it to the direct aerosol effect. Using model sensitivity experiments, Nabat et al., (2014)
also associated the increase in Mediterranean SST since 1980-2012 with the decrease in aerosol
concentrations (Atlas 8.2, 8.3, 8.5).
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Over the period 1960-2014, observed trends over land are consistent with those of most of the multi-model
or SMILEs ensembles (Figure 10.20f), although large differences exist for individual models and ensemble
members. The modelled ensemble-mean trends show large geographical variations; generally, both global
and regional models often underestimate the observed trend especially over part of North Africa, Italy, the
Balkans and Turkey. The cold bias in GCMs is related to simulated SLP trends that are anti-correlated to the
observed trend, which is probably due to systematic model errors (Boé¢ et al., 2020b). Biases in the
simulation of soil-moisture and cloud-cover might also have contributed to the underestimation of the
warming trend in GCMs (van Oldenborgh et al., 2009). The CORDEX results (at both 0.44 and 0.11 degree
resolution) show consistently smaller values than those in GCMs and the available data sets (Figure 10.20g;
Vautard et al., (2020)). This is partly due to the overestimation in the temperature evolution before 1990
(Figure 10.20e), possibly because of differences in the aerosol forcing (Boé et al., 2020a), although the
driving GCMs also have a cold bias (Vautard et al., 2020). Cold biases for recent decades are also found in
Med-CORDEX simulations (Dell’ Aquila et al., 2018) and by RCM simulations over the:southern part of the
Mediterranean, Middle East and North Africa region (Almazroui, 2016; Almazrouietal., 2016b;2016a;
Ozturk et al., 2018; Zittis and Hadjinicolaou, 2017), although higher resolution, new bare soil‘albedo and
modified aerosol parameterization significantly improve the results (Bucchignani-et al., 2016b, 2016a, 2018).
Despite large differences in the multi-model mean trend (Figure 10.20g), in.most of the land points the
observed trend lies within the model range in all ensembles. For the.SST bias exhibited by coupled RCMs
the choice of driving GCM has the largest impact (Darmaraki etal., 2019; Soto-Navarro et al., 2020).

10.6.4.6 Future climate information from global simulations

The Mediterranean is expected to be one of the most prominent and vulnerable climate change hotspots
(Diffenbaugh and Giorgi, 2012). CMIP5, CMIP6, HighResMIP and CORDEX (Section 10.6.4.7) simulations
all project a future warming for the 21st century that ranges between 3.5 and 8.75 °C for RCP8.5 at the end
of this century for those ending at 2100 (Figure 10.21a,b)). CMIP6 results project more pronounced warming
than CMIPS5 for a given emission scenario and time period (Figure 10.21c; Coppola et al., 2020b). However,
when analysing the Mediterranean warming in terms of mean global warming levels, the two ensembles
largely agree showing that summer warming is projected to reach values up to 40-50% larger than the global
annual warming, largely independent of models and emission scenarios (Figure 10.21d). Large regional
differences exist, with enhanced warming projected over Turkey, the Balkans, the Iberian Peninsula and
North African regions (Almazroui et al., 2020a; Figures 10.14a, 10.21c) and reaching, locally, values of up
to double the global mean (Lionello and Scarascia, 2018). The enhanced summer warming also increases the
amplitude of the seasonal cycle (Yettella and England, 2018).

As noted inSection.10.6.4.4, the Mediterranean summer climate is affected by large-scale circulation
patterns, of which'the summer NAO.is the most important (Folland et al., 2009; Bladé et al., 2012).
Barcikowska et al. (2020) highlight the importance of correctly simulating the summer NAO impact on the
Mediterranean climate, as.it partly offsets the anthropogenic warming signal in the western and central
Mediterranean.

Climate models project a reduction in precipitation in all seasons, and a northward and eastward expansion
of the Mediterranean climate, with the affected areas becoming more arid with an increased summer drying
(Alessandri et al:; 2015; Mariotti et al., 2015; Rajczak and Schir, 2017; Waha et al., 2017; Barredo et al.,
2018; Lionello and Scarascia, 2018; Spinoni et al., 2018, 2020; Atlas 8.5). The drying can contribute to the
enhanced warming by land-surface feedbacks (Whan et al., 2015; Lorenz et al., 2016; Russo et al., 2019). A
negative feedback to this dryness induced warming might be provided by an enhanced moisture transport
into the dry area associated with the dynamical response of the atmosphere (Zhou et al., 2021). Due to the
arid climate, no positive soil moisture-temperature feedback is found over the North African regions of the
Mediterranean, where the surface energy budget is mostly governed by radiative cooling (Lelieveld et al.,
2016), implying that soil-moisture feedbacks are not contributing to enhanced warming over those regions.

Over the Mediterranean region, daily maximum temperature is projected to increase more than the daily
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minimum. Consequently, the difference between daytime maxima and night-time minima is expected to
increase, particularly in summer (Lionello and Scarascia, 2018). Temperature extremes will be affected as
well, with a dramatic increase in the number of warm days and reduction of cold nights (Lionello and
Scarascia, 2020; Section 11.9). The Mediterranean summer warming will also increase the frequency and
intensity of heatwaves (Section 11.9).

[START FIGURE 10.20 HERE]

Figure 10.20: Aspects of Mediterranean summer warming. (a) Mechanisms and feedbacks involved in enhanced
Mediterranean summer warming. (b) Locations of observing stations in E-OBS and (Donat et al., 2014).
(c) Differences in temperature observational data sets (NOAA Global Temp, Berkeley Earth, CRUTEM4
and GISTEMP) with respect to E-OBS for the land points between the Mediterranean Sea and 46°N and
west of 30°E. (d) Observed summer (June to August) surface air temperature linear trends (°C decade™)
over the 1960-2014 period from Berkeley Earth. (e) Time series of area averaged Mediterranean+(25°N—
50°N, 10°W—40°E) land point summer temperature anomalies (°C, baseline 1995-2014). Dark blue,
brown and turquoise lines show low-pass filtered temperature of Berkeley Earth, CRU TS and
HadCRUTS, respectively. Orange, light blue and green lines show. low-pass filtered ensemble means of
HighResMIP (4 members), CORDEX EUR-44 (20 members) and CORDEX EUR-11 (37 members).
Blue and red lines and shadings show low-pass filtered ensemble means and standard deviations of
CMIPS (41 members) and CMIP6 (36 members). The filter is the same as the one used in Figure 10.10.
() Distribution of 1960-2014 Mediterranean summer'temperature linear trends (°C.decade™) for
observations (black crosses), CORDEX EUR-11 (green circles), CORDEX EUR#44 (light blue circles),
HighResMIP (orange circles), CMIP6 (red circles), CMIP5 (blue circles) and selected SMILEs (grey box-
and-whisker plots, MIROC6, CSIRO-Mk3-6-0, MPI-ESM and d4PDF). Ensemble means are also shown.
CMIP6 models showing a very high ECS (Box. 4:1) have beennmarked with a black cross. All trends are
estimated using ordinary least-squares.and box-and-whisker plots follow the methodology used in Figure
10.6. (g) Ensemble mean differences with respect to the Berkeley Earth linear trend for 1960-2014 (°C
decade) of CMIP5, CMIP6, HighResMIP, CORDEX EUR=44 and CORDEX EUR-11. Further details on
data sources and processing are available in the chapter data table (Table 10.SM.11).

[END FIGURE 10.20 HERE]

[START FIGURE 10.21‘HERE]

Figure 10.21: Projected Mediterranean summer warming. (a) Time series of area averaged Mediterranean (25°N—
50°N;10°W—40°E) land point summer surface air temperature anomalies (°C, baseline period is 1995-
2014). Orange, light blue and green lines show low-pass filtered ensemble means of HighResMIP
(highres-future, 4 members), CORDEX EUR-44 (RCP8.5, 20 members) and CORDEX EUR-11
(RCP8.5, 37 members). Blue and dark red lines and shadings show low-pass filtered ensemble means and
standard deviations of CMIP5 (RCPS.5, 41 members) and CMIP6 (SSP5-8.5, 36 members). The filter is
the same as‘the one used in Figure 10.10. The box-and-whisker plots show long term (until 2081-2100)
temperature changes of different CMIP6 scenarios with respect to the baseline period (SSP1-2.6 in dark
blue, SSP2-4.5 in yellow, SSP3-7.0 in red, SSP5-8.5 in dark red). (b) Distribution of 2015-2050
Mediterfanean summer temperature linear trends (°C decade™) for CORDEX EUR-11 (RCP8.5, green
circles), CORDEX EUR-44 (RCPS.5, light blue circles), HighResMIP (highres-future, orange circles),
CMIP6 (SSP5-8.5, dark red circles), CMIP5 (RCPS8.5, blue circles) and selected SMILEs (grey box-and-
whisker plots, MIROC6, CSIRO-Mk3-6-0 and MPI-ESM). Ensemble means are also shown. CMIP6
models showing a very high ECS (Box 4.1) have been marked with a black cross. All trends are estimated
using ordinary least-squares and box-and-whisker plots follow the methodology used in Figure 10.6. (c)
Projections of ensemble mean 2015-2050 linear trends (°C decade™) of CMIP5 (RCP8.5), CORDEX
EUR-44 (RCP8.5), CORDEX EUR-11 (RCP8.5), CMIP6 (SSP5-8.5) and HighResMIP (highres-future).
All trends are estimated using ordinary least-squares. (d) Projected Mediterranean summer warming in
comparison to global annual mean warming of CMIPS5 (dashed lines, RCP2.6 in dark blue, RCP4.5 in
light blue, RCP6.0 in orange and RCP8.5 in red) and CMIP6 (solid lines, SSP1-2.6 in dark blue, SSP2-
4.5 in yellow, SSP3-7.0 in red and SSP5-8.5 in dark red) ensemble means. Further details on data sources
and processing are available in the chapter data table (Table 10.SM.11).
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[END FIGURE 10.21 HERE]

10.6.4.7 Future climate information from regional downscaling

To unravel the complex interactions and feedbacks over the region on a range of spatial and temporal scales,
regional downscaling projects are being developed to provide more comprehensive and detailed information
on the future of the Mediterranean. The importance of regional downscaling for investigating the subregional
details caused by the complex morphology of the Mediterranean region is a well-known issue in the
literature (Planton et al., 2012), which has been addressed in many studies since ARS. Recent examples of
dynamical downscaling are EURO-CORDEX (Jacob et al., 2014) and Med-CORDEX (Ruti et al., 2016;
Somot et al., 2018), but earlier activities have included ENSEMBLES (Déqué et al., 2012; Fernandez et al.,
2019), PRUDENCE (Christensen et al., 2002), CIRCE (Gualdi et al., 2013) and ESCENA (Jiménez-
Guerrero et al., 2013).

From an analysis of CORDEX results, studies showed that southern Europe is projected to face a robust non-
linear increase in temperature larger than the global mean (Zittis et al., 2019), EURO-CORDEX projections,
that are driven by CMIP5 GCMs, project a less pronounced warming thanthat of CMIP6 (Coeppola et al.,
2020a; Figure 10.21c¢). The non-linear increase is especially evident.for both hot andCold extremes (Maule et
al., 2017; Jacob et al., 2018; Kjellstrom et al., 2018; Section 11.9). In particular, Dosio.and Fischer (2018)
showed that in many places in southern Europe and the Mediterranean, the incréase in the number of nights
with temperature above 20°C is more than 60% larger under 2°C warming compared to 1.5°C. Over the
region, the projected temperature increase, including a higher probability of severe heat waves (Russo et al.,
2015), is accompanied by a reduction in precipitation (Jacob et al., 2014; Dosio;2016; Rajczak and Schir,
2017), resulting in projected increases of drought frequency and severity (Spinoni et al., 2018, 2020;
Raymond et al., 2019). Also, the frequency and severity of marine heat waves of the Mediterranean Sea are
projected to increase (Darmaraki et al., 2019; Section 12.4, Atlas-8.4):

Only a limited number of RCM simulations for'the MENA domain are currently available. For the southern
and eastern Mediterranean, they project a mean warming ranging from 3°C for RCP4.5 to 9°C for RCP8&.5 at
the end of this century compared to its beginning (Bucchignani et al., 2018; Ozturk et al., 2018). The
frequency and duration of heatwaves and annual number of extremely hot days (i.e., those with maximum
temperature > 50°C) in the southern-Mediterfanean will increase substantially. For 2070-2099 with respect to
1971-2000 the latter might even reach 70 days for RCP8.5 (Lelieveld et al., 2016; Almazroui, 2019;
Driouech et al., 2020; Varela et al., 2020).

Despite the large efforts of theseregional downscaling projects, the GCM-RCM matrix is still sparse and
lacking a systematic.design to explore the uncertainty sources (e.g., GCM, RCM, scenario, resolution)
(Section 10.3). Focusing on'the Iberian peninsula, Fernandez et al. (2019) argued that the driving GCM is the
main contributor to uncertainty in.the ensemble. Physically consistent but implausible temperature changes
in RCMs can occur. An example is a strong temperature increase over the Pyrenees due to excessive snow
cover in the present'climate (Fernandez et al., 2019). Based on an older set of RCM simulations
(ENSEMBLES), Déqué et al. (2012) also argued that the largest source of uncertainty in the temperature
response over Southern Europe is the choice of the driving GCM (whereas for summer precipitation the
choice of the RCM dominates the uncertainty). Finally, Boé et al. (2020) found that over a large area of
Europe; including parts of the Mediterranean, RCMs project a summer warming 1.5-2°C colder than in their
driving GCMs for the end of the 21% century. This is caused by differences in solar radiation related to the
absence of time-varying anthropogenic aerosols in RCMs (Boé¢ et al., 2020a; Gutiérrez et al., 2020), which
also affects the noted differences in cloud cover between GCMs and RCMs (Bartok et al., 2017).

Statistical downscaling studies for the Mediterranean confirm the results from GCM and RCM studies, with

large agreement among future projections showing lower rates of warming in winter and spring, and, in most
cases, higher ones in summer and autumn (Jacobeit et al., 2014).
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10.6.4.8 Storyline approaches

The atmospheric circulation is influenced by large-scale, often slowly varying components of the climate
system, such as ocean, sea ice and soil moisture. Historical and future changes of the atmospheric circulation
depend, among other factors, on how these drivers have changed and will change. Zappa and Shepherd
(2017) have analysed this for the Mediterranean region and developed a set of storylines based on different
plausible evolutions of those drivers and their impact on the Mediterranean winter climate. Important
identified drivers during winter are tropical and polar amplification of global warming and the polar
stratospheric vortex (Manzini et al., 2014; Simpson et al., 2018), with implications for precipitation. Zappa
(2019) discusses the relative amplitude of tropical and Arctic warming, response of the AMOC, patterns of
Pacific SST change, and changes in stratospheric vortex strength as possible drivers of the Mediterranean
summer climate and stresses that given the present state of knowledge, alternative storylines based on these
drivers should be considered as equally plausible future manifestations of regional climate change. Brogli et
al. (2019a, 2019b) and Kroner et al. (2017) have revealed thermodynamic processes, lapse rate, and
circulation as important drivers for Mediterranean summer climate.

Low-likelihood high-impact events might affect future Mediterranean climate. An‘example of such an event
is the collapse of the AMOC (Weijer et al., 2019), that would bring widespread cooling over the Northern
Hemisphere. For the Mediterranean this is estimated to be a few degrees Celsius during summer in the case
of a total collapse (Jackson et al., 2015).

10.6.4.9 Climate information distilled from multiple lines of evidence

There is very high confidence (high agreement, robust evidence) that the:Mediterranean region has
experienced a summer temperature increase in recent decades that is faster than the increase for the
Northern Hemisphere summer mean. There is also very high‘confidence (high agreement, robust evidence)
that the projected Mediterranean summer temperature increase will be larger than the global warming level,
with an increase in the frequency and.intensity of heat waves.

Traditionally, the distillation process to produce contextualised, policy relevant information has taken place
at regional or national level. For example, the potential effects of climate change on public health are
discussed in several national climate changeand adaptation reports (Bruci et al., 2016; MoARE, 2016; MoE,
2016; MoEP, 2018; MoEU, 2018). Although these reports are extremely helpful and widely used for the
development of national adaptation policies, they are often based on non-comprehensive and heterogeneous
sources of climatesinformation (e.g.s’  MEEN, 2018; MoE/UNDP/GEF, 2019): for instance, future climate
change projections are based on a'limited number of socio-economic scenarios and climate model
simulations;which.are also often not évaluated comprehensively (e.g., Bruci ED, 2016; MoARE, 2016;
MoEU, 2018). In"addition, these repotts are often not peer-reviewed, not available in English, and mainly
limited to the country level, thus making it difficult to compare the details of the climate information across
them.

[START BOX 10.3 HERE]
BOX 10.3: Urban Climate: Processes and Trends

Urban areas have special interactions with the climate system that produce heat islands. This box presents
information about these processes, how they are parameterized in climate modules, and on the role of urban
monitoring networks. A discussion on the observed climate trends and climate change projections for urban
areas follows.

Urban Heat Island

During night-time, urban centres are often several degrees warmer than the surrounding rural area, a
phenomenon known as the night-time canopy urban heat island effect (Bader et al., 2018; Kuang, 2019; Li et
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al., 2019, 2020d). While green and blue infrastructures can mitigate the urban heat island effect, three main
factors contribute to its development (Hamdi et al., 2020; Masson et al., 2020): 1) three-dimensional urban
geometry including building density and plan area, street aspect ratio and building height, 2) thermal
characteristics of impervious surfaces, and 3) anthropogenic heat release, either from building energy
consumption, especially waste heat from air conditioning systems, or as direct emissions from industry,
traffic, or human metabolism (Ichinose et al., 1999; Sailor, 2011; de Munck et al., 2013; Bohnenstengel et
al., 2014; Chow et al., 2014; Salamanca et al., 2014; Dou and Miao, 2017; Ma et al., 2017a; Chrysoulakis et
al., 2018; Takane et al., 2019). Urban heat island magnitude is also affected by aerosols due to air pollution
in urban areas (Cheng et al., 2020; Han et al., 2020) and by local background climate (Zhao et al., 2014;
Ward et al., 2016).

Monitoring Network

Long-term climate datasets (a year or more) at the small spatial scales required to resolve processes of
interest for cities (<1 km) are scarce (Bader et al., 2018; Caluwaerts et al., 2020). Moreover, urban
observation sites often represent only parts of the urban environment and are suboptimal for detecting urban
effects (e.g., sites in city parks). Recently, city-scale climate monitoring networks as well as satellite and
ground-based remote sensing are being used (though still missing in global south-cities; Technical Annex I),
enhancing our understanding of the urban microclimate and its interaction.with climate change, and
providing key information for users (Chen et al., 2012a; Barlow et.al., 2017; Bader et al., 2018). It has been
found that harmonization of collection practices, instrumentation, station locations; and quality control
methodologies across urban environments needs improvement to facilitate collaborative research (Muller et
al., 2013; Barlow et al., 2017). Real time crowdsourcing data is becoming available (Section 10.2.4). The
urban climate community is making efforts to understand how: theése methods can complement traditional
datasets (Meier et al., 2017; Zheng et al., 2018; Langendijk et al., 2019a; Venteret al., 2020).

Urban Modules in Climate Models

Exchanges of heat, water and momentum between the urban surface and its overlying atmosphere are
calculated using specific surface-atmosphereexchange schemes. Three different schemes, here in order of
increasing complexity, can be distinguished (Masson, 2006;.Grimmond et al., 2010, 2011; Chen et al., 2011;
Best and Grimmond, 2015): 1) In the slab or bulk approach, the three-dimensional city structure is not
resolved but cities are represented by modifying seiland vegetation parameters within land surface models,
increasing roughness length and displacement height (e.g., Best et al., 2006; Dandou et al., 2005; Liu et al.,
2006; Seaman et al., 1989). The energy balance 1s.often modified to account for the radiation trapped by the
urban canopy, heat storage, evaporation and anthropogenic heat fluxes. 2) Single-layer urban canopy
modules use a simplified geometry (urban canyon, with three surface types: roof, road and wall) that
approximately capture the three-dimensional dynamical and thermal physical processes influencing radiative
and energy fluxes (Masson, 2000; Kusaka et al., 2001). 3) Multi-layer urban canopy modules compute urban
effects vertically, allowing a direct interaction with the planetary boundary layer (Brown, 2000; Martilli et
al., 2002; Hagishima et al.,2005; Dupont and Mestayer, 2006; Hamdi and Masson, 2008; Schubert et al.,
2012). Building-energy.models that estimate anthropogenic heat from a building for given atmospheric
conditions can be incorporated: Recent model development has focused on improving the representation of
urban vegetation (Iee et al., 2016; Redon et al., 2017; Mussetti et al., 2020).

Global (McCarthy et.al., 2010; Oleson et al., 2011; Zhang et al., 2013; Chen et al., 2016b; Katzfey et al.,
2020; Sharma et al., 2020; Hertwig et al., 2021) and regional modelling groups (Kusaka et al., 2012b;
McCarthy et al.;2012; Hamdi et al., 2014; Trusilova et al., 2016; Daniel et al., 2019; Halenka et al., 2019;
Langendijk et al., 2019b) are beginning to implement these urban parameterizations within the land-surface
component of their models. There is very high confidence (robust evidence and high agreement) that while
all types of urban parameterizations generally simulate radiation exchanges in a realistic way, they have
strong biases when simulating latent heat fluxes, though recent research incorporating in-canyon vegetation
processes improved their performance. There is medium confidence (medium evidence, high agreement)
(Kusaka et al., 2012a; McCarthy et al., 2012; Hamdi et al., 2014; Trusilova et al., 2016; Janicke et al., 2017,
Daniel et al., 2019) that a simple single-layer parameterization, is sufficient for the correct simulation of the
urban heat island magnitude and its interplay with regional climate change.
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Observed Trends

There is medium evidence but high agreement (Parker, 2010; Zhang et al., 2013; Chen et al., 2016b) that the
global annual mean surface air temperature response to urbanization is negligible. There is very high
confidence that the different observed warming trend in cities as compared to their surroundings can partly
be attributed to urbanization (Box 10.3, Figure 1; Park et al., 2017).

[START BOX 10.3, FIGURE 1 HERE]

Box 10.3, Figure 1: Urban warming compared to global GHG-induced warming. (a) Change in the annual mean
surface air temperature over the period 1950-2018 based on the local linear trend retrieved from
CRU TS (°C per 68 years). This background warming is compared to the local warming that has
been reported during 1950-2018 in the literature from historical urbanization. The relative share of
the total warming as percentage between the urban warming and the surrounding warming is
plotted in a circle for each city. This map has been compiled from a review study (Hamdi-et.al.,
2020). (b) Low-pass filtered time series of the annual mean temperature (°C) observed. in the urban
station of Tokyo (red line) and the rural reference station in Choshi (blue line) inJapan. The filter
is the same as the one used in Figure 10.10. (c) Uncertainties in the'relative share of urban
warming with respect to the total warming (%) related to theuse of different global observational
datasets: CRU TS (brown circles), Berkeley Earth (dark blue downward triangle), HadCRUTS5
(cyan upward triangle), Cowtan Way (orange plus) and GISTEMP (purple squares). Further
details on data sources and processing are availablein the chapter.data table (Table 10.SM.11).

[END BOX 10.3, FIGURE 1 HERE]

There is very high confidence (robust evidence.and high agreement) that the annual-mean minimum
temperature is more affected by urbanization than the maximum temperature (Ezber et al., 2007; Fujibe,
2009; Hamdi, 2010; Elagib, 2011; Camilloni and Barrucand; 2012; Robaa, 2013; Hausfather et al., 2013;
Argiieso et al., 2014; Alghamdi and Moore; 2015; Alizadeh-Choobari et al., 2016; Sachindra et al., 2016;
Liao et al., 2017; Lokoshchenko, 2017; Wang et al., 2017a; Arsiso et al., 2018). Beside temperature,
urbanization can induce an urban’dryness island, which refers to lower relative humidity in cities than in
nearby rural locations (Lokoshchenko, 2017; Bian et al., 2020) and the urban wind island, where slower
wind speeds are observed in cities (Wu et al.;2017; Bader et al., 2018; Peng et al., 2018). There is medium
confidence (medium evidence and'medium:agreement) (Schliinzen et al., 2010; Ganeshan et al., 2013;
Ganeshan and Murtugudde, 2015; Haberlie et al.; 2015; Daniels et al., 2016; Liang and Ding, 2017; McLeod
et al., 2017; Li et al., 2020c¢) that citi€s induce increases in mean and extreme precipitation over and
downwind of the¢ city especially in.the afternoon and early evening.

Climate Projections

Estimates of the urban heat island under further climate change are very uncertain because studies using
different methods report contrasting results. However, there is very high confidence (robust evidence and
high agreement) that the projected change of the urban heat island under climate change conditions is one
order of magnitude less:than the projected warming in both urban and rural areas under simulation
constraints of no.urban‘growth (Adachi et al., 2012; Arsiso et al., 2018; Friih et al., 2011; Hamdi et al., 2014;
Hatchett etal., 2016; Hoffmann et al., 2018; Kusaka et al., 2012; McCarthy et al., 2010, 2012; Oleson, 2012;
Oleson.et al., 2014; Sachindra et al., 2016).

Combining-climate change conditions together with urban growth scenarios, there is very high confidence
(robust evidence and high agreement) that future urbanization will amplify the projected air temperature
warming irrespective of the background climate (Georgescu et al., 2013; Argiieso et al., 2014; Mahmood et
al., 2014; Doan et al., 2016; Kim et al., 2016; Kusaka et al., 2016; Grossman-Clarke et al., 2017; Kaplan et
al., 2017; Li et al., 2018c) Urbanization will have a strong influence on minimum temperatures that could be
locally comparable in magnitude to the global GHG-induced warming (Berckmans et al., 2019). There is
very high confidence (robust evidence and high agreement) for the combination of future urban development
and more frequent occurrence of extreme climatic events, such as heat waves (Hamdi et al., 2016; Bader et
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al., 2018; He et al., 2021).

The choice of urban planning scenarios and RCM projections shows a large sensitivity during night-time, up
to 0.6°C (Kusaka et al., 2016). The sensitivity is significantly less than the uncertainties arising from global
emission scenarios or GCM projections. However, there is a large difference between RCM simulations with
and without urban land use, indicating that this impact is comparable to the uncertainties related to the use of
different GCM projections (Hamdi et al., 2014; Kusaka et al., 2016; Daniel et al., 2019). Therefore, impact
assessments and adaptation plans for urban areas require high spatial resolution climate projections along
with models that represent urban processes, ensemble dynamical and statistical downscaling, and local-
impact models (Masson et al., 2014; Baklanov et al., 2018, 2020; Duchéne et al., 2020; Schoetter et al.,
2020; Le Roy et al., 2021; Zhao et al., 2021).

[END CHAPTER BOX 10.3 HERE]

[START CROSS-CHAPTER BOX 10.4 HERE]
Cross-Chapter Box 10.4: Climate Change over the Hindu Kush Himalaya

Coordinators: [zuru Takayabu (Japan), Andrew Turner (UK), Zhiyan Zuo (China)

Contributors: Bhupesh Adhikary (Nepal), Muhammad Adnan (Pakistan), Muhammad Amjad (Pakistan),
Subimal Ghosh (India), Rafiq Hamdi (Belgium), Akm Saiful Islam (Bangladesh), Richard G. Jones (UK),
Martin Jury (Austria), Asif Khan (Pakistan), Akio Kitoh (Japan),Krishnan Raghavan (India), Lucas Ruiz
(Argentina), Laurent Terray (France)

The Hindu Kush Himalaya (HKH) constitutes.the latgest glacierized region outside the poles and provides
the headwaters for several major rivers (Sharmaet al., 2019). Since the 1960s, the HKH has experienced
significant trends in the mean and extremes of temperature and precipitation, accompanied by glacier mass
loss and retreat, snowmelt and permafrost degradation (Yao et al., 2012a, 2012b; Azam et al., 2018; Bolch et
al., 2019; Krishnan et al., 2019b, 2019a; Chug et al., 2020; Sabin et al., 2020). Observational uncertainty and
lack of consistent, high-quality datasets hamper reliable assessments of climate change and model evaluation
over several mountain areas, including the HKH (Section 10.2.2). This box assesses observed and projected
climate change in the extended HKH (outline in Cross<Chapter Box 10.4, Figure 1a), in which we include
the Tibetan Plateau (TP).and Pamir mountains.

Temperature trends

Little evidence was presented in the ARS(IPCC, 2014) other than increased minimum and maximum
temperature trends.in.the western Himalaya (Hartmann et al., 2013). SROCC assessed that HKH (named
High Mountain Asia) surface-air temperature has warmed more rapidly than the global mean over recent
decades (high confidence)..Annual mean HKH surface air temperature increased significantly (about 0.1°C
per decade) over 1901-2014 (Ren et al., 2017), although Cross-Chapter Box 10.4, Figure 1d shows an
observational rangeof 0.20-0.25°C per decade over 1961-2014. There is a rising trend of extreme warm
events and fewer extreme cold events over 1961-2015 (Krishnan et al., 2019b; Wester et al., 2019).
However, summer cooling over the Karakoram (western HKH) was reported for 1960—2010 (Forsythe et al.,
2017). A key relevant process is elevation-dependent warming (EDW; reviewed in Pepin et al., 2015),
leading to warming of 2—2.5°C at 5000m over 1961-2006, but only 0.5°C at sea level (Xu et al., 2016).
However, EDW behaviour appears to depend on region, time period and elevation (Guo et al., 2019a; Li et
al., 2020a)and understanding is limited by the sparse observational network (You et al., 2020).
Observational and model analyses have attributed EDW to GHG and black carbon emissions, accelerating
warming by snow-albedo feedback (Ming et al., 2012; Gautam et al., 2013; Xu et al., 2016; Yan et al., 2016;
Lau and Kim, 2018; Zhang et al., 2018b), or the more pronounced cooling effect of scattering aerosols at low
elevations and stratospheric ozone depletion (Guo and Wang, 2012; Zeng et al., 2015). There is high
confidence that the eastern and central HKH has exhibited rising temperatures (Cross-Chapter Box 10.4,
Figure 1), with warming dependent on season and elevation. There is high confidence that much of the
warming can be attributed to GHGs, but the effect of albedo has only medium confidence. There is high
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confidence in more frequent extreme warm events and fewer extreme cold events over the eastern Himalayas
in the last five decades.

[START CROSS-CHAPTER BOX 10.4, FIGURE 1 HERE]

Cross-chapter Box 10.4, Figure 1: Historical annual-mean surface air temperature linear trend (°C per decade)
and its attribution over the Hindu Kush Himalaya (HKH) region. (a) Observed
trends from Berkeley Earth (also showing the HKH outline), CRU TS (also showing
the AR6 TIB outline, for ease of comparison to the Interactive Atlas), APHRO-MA
and JRA-55 datasets over 1961-2014. (b) Models showing the coldest, median and
warmest HKH temperature linear trends among the CMIP6 historical ensemble over
1961-2014. (c) Lowpass-filtered time series of annual-mean surface air temperature
anomalies (°C, baseline 1961-1980) over the HKH region as outlined in panel (a),
showing means of CMIP6 hist all-forcings (red), and the CMIP6 hist all-forcings
sample corresponding to DAMIP experiments (pink), for hist-aer (grey) and hist-
GHG (pale blue). Observed datasets are Berkeley Earth (dark blue); CRU (brown),
APHRO-MA (light green) and JRA-55 (dark green).-The filter is the same as that
used in Figure 10.10. (d) Distribution of annual mean surface air temperature trends
(°C per decade) over the HKH region from 1961 to 2014 for ensemble means, the
aforementioned observed and reanalysis data:(black crosses), individual members of
CMIP6 hist all-forcings (red circles); CMIP6 hist-GHG (blue:triangles), CMIP6 hist-
aer (grey triangles), and box-and-whisker plots for the SMILEs used throughout
Chapter 10 (grey shading). Ensemblemeans are also shown. All trends are estimated
using ordinary least-squares regression and box-and-whisker plots follow the
methodology used in Figure 10.6. Further details on‘data sources and processing are
available in the chapter data table (Table 10.SM.11).

[END CROSS-CHAPTER BOX 10.4, FIGURE 1 HERE]

Precipitation trends

Annual and summer precipitation over the central-eastern HKH show decreasing trends over 1979-2010 in
multiple observed datasets, attributable to a weakening South Asian monsoon (Yao et al., 2012b; Palazzi et
al., 2013; Roxy et al., 2015). There are contradictory trends in the western HKH (Azmat et al., 2017; Yadav
et al., 2017; Li et al., 2018b, Meher et al., 2018), where most precipitation is associated with western
disturbances on the subtropical westerly jet, but trends in western disturbance activity are unclear (Kumar et
al., 2015; Hunt et-al:, 2019;Krishnan et.al., 2019a). There has been an increased frequency and intensity of
extreme precipitation over the central-western HKH but contrasting evidence in the east (Sheikh et al., 2015;
Talchabhadel et al:; 2018). The numbeér of consecutive wet days has increased over 1961-2012, but with no
uniform trend in consecutive dry days (Zhan et al., 2017). There is medium confidence that the eastern-
central HKH has experienced decreased summer precipitation (Section 10.6.3). There is medium confidence
in the increase of summer extreme precipitation over the western HKH.

Glacier trends

The SROCC assessed.that snow cover has declined in duration, depth and accumulated mass at lower
elevations innmountain regions, including the HKH (4igh confidence). Glaciers are losing mass (very high
confidence) and'permafrost is warming (high confidence) over high mountains in recent decades, and it is
very likely that atmospheric warming is the main driver. A significant reduction in HKH glacier area has
been observed since the 1970s, with smaller glaciers generally shrinking faster (e.g., Bolch et al., 2019).
HKH glacier mass loss took place at the lowest rate among high mountain areas in the last 20 years, although
with one of the largest total losses (Shean et al., 2020; Section 9.5.1.1; Figure 9.20). The highest mass-loss
rates occurred in the eastern and northern HKH, while gains occurred in the west (e.g., Shean et al., 2020).
Glacier mass gain has been coined as the “Karakoram anomaly” (Sections 9.5.1 and Section 8.3.1.7.1),
explained by a combination of low temperature sensitivity of debris-covered glaciers, a decrease in summer
air temperatures, and increased snowfall possibly linked to evapotranspiration from irrigated agriculture
(You et al., 2017; Bolch et al., 2019; de Kok et al., 2020a; Farinotti et al., 2020). Meanwhile, increased air
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temperature and decreased snowfall explain the glacier mass decrease elsewhere (Bonekamp et al., 2019; de
Kok et al., 2020b; Farinotti et al., 2020; Shean et al., 2020). There is high confidence that glaciers in most
HKH regions have thinned, retreated and lost mass since the 1970s.

Projections

In AR5, the HKH was projected to continue warming over the 21 century, faster than the likely ranges for
the global mean and South Asia. New CMIPS5 results show temperature increases across mountainous HKH
by about 1-2°C (in some places in summer 4—5°C) during 2021-2050 compared to 1961-1990 (Shrestha et
al., 2015). Projected warming differs by up to 1°C between east and west, with higher values in winter
(Sanjay et al., 2017; see Interactive Atlas). Statistically significant mean warming (0.30-0.90°C per decade
until the end of the 21* century) across all RCPs has been projected by CORDEX South Asia (Dimri et al.,
2018). CMIP6 models report that northwestern South Asia, including the western Himalayas, are projected
to experience temperature increases exceeding 6°C by the end of the 21% century under SSP5-8.5 relative to
1995-2014 (Almazroui et al., 2020c). Results from CMIPS5, CMIP6 and CORDEX ensembles for different
warming levels are shown in the Interactive Atlas and summarised in Figure Atlas:20.. The HKH will /ikely
continue warming in the coming decades.

(IPCC, 2018D) stated that heavy precipitation risk in high-elevation regions.is projected to be higher at 2°C
compared to 1.5°C of global warming (medium confidence). CMIPS.models project increased annual or
summer monsoon precipitation over the HKH in the 21 century (Palazzi et al., 2015; Kitoh and Arakawa,
2016), intensifying by about 22% in the hilly south-eastern Himalaya and TP for the long term in RCPS.5,
but with no trends in the western HKH (Rajbhandari et al.; 2015; Krishnan et al., 2019a). CMIP6 projects an
increase of winter precipitation over the western Himalayas, with'a corresponding decrease in the east
(Almazroui et al., 2020c). HKH projections are subject:to large uncertainties in CMIP5 and CORDEX
(Hasson et al., 2013, 2017; Mishra, 2015; Sanjay et al., 2017). CORDEX;.in particular, has inherent
limitations at reproducing the characteristics of summer monsoon rainfall variability (Singh et al., 2017).
There is medium confidence that HKH precipitation will increase-in.the coming decades.

The SROCC assessed that glaciers will lose substantial mass (4igh confidence) and permafrost will undergo
increasing thaw and degradation (very high confidence) over high mountain regions (including the HKH),
with stronger changes for higher'emission scenarios::Regional differences in warming and precipitation
projections and glacier properties.cause considerable differences in glacier response within High Mountain
Asia (Kraaijenbrink et al.,2017). Glacier mass loss will accelerate through the 21* century, increasing with
RCP after 2030 (Marzeion ct al.,2014; Section.9.5.1.3). Loss of between 40 + 25% to 69 = 21 % of 2015
glacier volume is expected by 2100 in RCP 2.6 and RCP 8.5, respectively (Section 9.5.1.3; Figure 9.21).
Glacier mass lossisrexpected due to'decreased snowfall, increased snowline elevations and longer melt
seasons. However, du¢ to projection uncertainties, simplicity of the models, and limited observations, there
is medium confidencein the magnitude and timing of glacier mass changes (Section 9.5.1.3). Glacier mass in
HKH will decline through the 2 1% century (high confidence), more so under high-emissions scenarios.

[END CROSS-CHAPTER BOX 10.4 HERE]

10.7 Final remarks

The assessments in this chapter are based on a rapidly growing body of evidence from the peer-reviewed

literature, most of which was not previously considered by IPCC reports. A number of challenges in the

construction of regional climate change information have been identified:

¢ Limited climate monitoring in some regions impedes the full understanding of the relevant

climate processes, an appropriate validation of model simulations, and the formulation of
trustworthy regional climate information. Beyond temperature and precipitation, there is a
shortage of observed variables needed for regional process understanding, attribution, and model
development and validation, among others. Examples include surface evapotranspiration, soil
moisture, radiation, wind and relative humidity, among many others identified by sectors
sensitive to climate (Sections 10.2, 10.3 and 10.6).
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1 ¢ Compared to the increasing number of large-scale evaluations, there is a shortage of process-

2 based model evaluations at regional scales to assess the fitness of the chosen models for specific

3 purposes (Sections 10.3 and 10.4).

4 e There is a general lack of studies of the simulation of large-scale, downscaling-relevant

5 processes in global models to support the design of global/regional model matrices that both

6 span a sufficiently large range of projection uncertainty and realistically represent the regional

7 climate of interest. The fitness of statistical methods for regional climate change studies has

8 received limited attention by the scientific community, while as in the case of global models,

9 process-based evaluation has proven useful (Soares et al., 2019b). Studies of past changes and
10 pseudo-reality studies to assess the predictors and model structures required for downscaling in a
11 future climate are promising avenues (Section 10.3).

12 e Internal variability is a large contributor to climate uncertainty at regional scales, especially for
13 extreme events. Further study of the processes governing regional internal variability, such as
14 the modes of variability and the teleconnections that connect them to the tegional variability; but
15 also of the local processes and drivers involved, will help improveits understanding: The same
16 applies to the validation of the simulated internal variability that underpins the trustworthiness of
17 model-based climate information (Sections 10.3, 10.4 and 10.6, Cross-Chapter'Box.10.1).

18 e Methodologies on how to propagate climate uncertainties from.global and regional scales down
19 to the human settlement scale are still under development. In some cases; bias-adjustment

20 methods are used with substantial neglect of the physical processes involved (Section 10.3,

21 Cross-Chapter Box 10.2).

22 e The production of regional climate information relies mainly on global and regional models that
23 often do not incorporate human-controlled surface processes. (urban parametrizations is one

24 example) in their land-surface components. This limits the representation of uncertainties for

25 climate information at the urban scale (Box 10.2, Cross-Chapter Box 10.2, Section 10.3).

26 e Literature plays a central role as aSource for constructing régional climate change information.
27 The amount of climate change literature availabledis-unevenly distributed across the world, and
28 large bodies of literature (e.g., local and regional reports) are often overlooked in the

29 construction of climate information: Furtherimore, research tends to focus on regions that attract
30 the attention of the Global North so that climate aspects relevant to other regions may not

31 receive sufficient attention for generating appropriate regional climate information (Sections

32 10.2,10.3, 10.5 and 10.6).

33 ¢ Governmentalinstitutions producing regional and local climate information often use diverging
34 approaches-that are not necessarily.coherent with each other. Coherency could be improved by
35 implementing arquality control system and a traceability solution for the sources of the

36 information. Collective.:work with the social sciences and humanities will improve the

37 communication, perception and response to regional climate information and help translate user
38 requirements (Sections 10.5 and 10.6).

39 e Thereis a shortage of regional climate change studies distilling multiple lines of evidence. Most
40 studies rely.oneither global models or downscaled global models, with an increasing number of
41 studies focusing on'the use of emulators and the selection and combination of models. However,
42 there are limited studies distilling this information with a wider range of lines of evidence that
43 includes observations, process understanding, attribution, and hierarchies of models (Sections
44 10.3;.10.54and 10.6).

45

46  Addressing these challenges could facilitate the assessment of both sources and methodologies that lead to
47  anincreased fitness and usefulness of regional climate information for a wide range of purposes.

48

49

50

Do Not Cite, Quote or Distribute 10-119 Total pages: 228



0O ON DN kW~

DU dbh DDA BREADODDDDBEDBRUWLLWLWLWWUWLWLWWLWWWRNNDNDNDNDNNDNDNDRE ==
N PHEWND—LFOOUXOTANNPSAERNODNLOOVOTANNISAERNDNLOOOTITANNDE WD, OOUTINNWNDB WD —=O\O

Final Government Distribution Chapter 10 IPCC AR6 WQI

Frequently Asked Questions

[START FAQ10.1 HERE]
FAQ 10.1: How can we provide useful climate information for regional stakeholders?

The world is physically and culturally diverse, and the challenges posed by climate change vary by region
and location. Because climate change affects so many aspects of people’s daily work and living, climate
change information can help with decision-making, but only when the information is relevant for the people
involved in making those decisions. Users of climate information may be highly diverse, ranging from
professionals in areas such as human health, agriculture or water management to a broader community that
experiences the impacts of changing climate. Providing information that supports response actions thus
requires engaging all relevant stakeholders, their knowledge and their experiences, formulating appropriate
information, and developing a mutual understanding of the usefulness and limitations of the information.

The development, delivery, and use of climate change information requires engaging all partiesiinvolved:
those producing the climate data and related knowledge, those communicating it, and those who combine
that information with their knowledge of the community, region oractivity that climate change may impact.
To be successful, these parties need to work together to exploreithe climate data and thus co-develop the
climate information needed to make decisions or solve problems, distilling output from the various sources
of climate knowledge into relevant climate information. Effective partnerships recognize and respond to the
diversity of all parties involved (including their values, beliefsiand interests), especially when they involve
culturally diverse communities their indigenous and local knowledge of weather; climate and their society.
This is particularly true for climate change — a global issue posing challenges that vary by region. By
recognizing this diversity, climate information'can be relevant and credible, most notably when conveying
the complexity of risks for human systems and ecosystems and for-building resilience.

Constructing useful climate information requires considering all'available sources in order to capture the
fullest possible representation of projected changes and distil the information in a way that meets the needs
of the stakeholders and communities impacted by-the.changes. For example, climate scientists can provide
information on future changes by using simulations of global and/or regional climate and inferring changes
in the weather behaviour influencing a region. Aneffective distillation process (FAQ 10.1, Figure 1) engages
with the intended recipients of the information, especially stakeholders whose work involves non-climatic
factors, such as human health, agriculture or water resources. The distillation evaluates the accuracy of all
information sources’(observations, simulations, expert judgement), weighs the credibility of possible
conflicting information, and arrives at climate information that includes estimating the confidence a user
should haveiin it. Producers of climate data should further recognize that the geographic regions and time
periods governingstakeholders’ interest (for example, the growing season of an agricultural zone) may not
align well with the time.and space resolution of available climate data; thus additional model development or
data processing may be required to extract useful climate information.

One way to distil complex information for stakeholder applications is to connect this information to
experiences stakeholders have already had through storylines as plausible unfoldings of weather and climate
events related to stakeholders’ experiences. Dialogue between stakeholders and climate scientists can
determine the most relevant experiences to evaluate for possible future behaviour. The development of
storylines uses the experience and expertise of stakeholders, such as water-resource managers and health
professionals, who seek to develop appropriate response measures. Storylines are thus a pathway through the
distillation process that can make climate information more accessible and physically comprehensible. For
example, a storyline may take a common experience like an extended drought, with depleted water
availability and damaged crops, and show how droughts may change in the future, perhaps with even greater
precipitation deficits or longer duration. With appropriate choices, storylines can engage nuances of the
climate information in a meaningful way by building on common experiences, thus enhancing the
information’s usefulness.
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Forging partnerships among all involved with producing, exploring and distilling climate data into climate
information is at the centre of creating stakeholder-relevant information. These partnerships can occur
through direct interaction between climate scientists and stakeholders as well as through organizations that
have emerged to facilitate this process, such as climate services, national and regional climate forums, and
consulting firms providing specialized climate information. These so-called ‘boundary organizations’ can
serve the varied needs of all who would fold climate information into their decision processes. All of these
partnerships are vital for arriving at climate information that responds to physical and cultural diversity and
to challenges posed by climate change that can vary region-by-region around the world.

[START FAQ 10.1, FIGURE 1 HERE]

FAQ 10.1, Figure 1: Climate information for decision makers is more useful if the physical and cultural diversity
across the world is considered. The figure illustrates schematically the'broad range of knowledge
that must be blended with the diversity of users to distil information‘that will have relevance and
credibility. This blending or distillation should engage the values and knowledge of both the
stakeholders and the scientists. The bottom row contains examples of stakeholders’ interests and is
not all-inclusive. As part of the distillation, the outcomescan advance the U.N.’s Sustainable
Development Goals, covered in part by these examples.

[END FAQ 10.1, FIGURE 1 HERE]

[END FAQ10.1 HERE]
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[START FAQ10.2 HERE]
FAQ 10.2: Why are cities hotspots of global warming?

Urban areas experience air temperatures that can be several degrees Celsius warmer than surrounding
areas, especially during the night. This ‘urban heat island’ effect results from several factors, including
reduced ventilation and heat trapping due to the close proximity of tall buildings, heat generated directly
from human activities, the heat-absorbing properties of concrete and other urban building materials, and the
limited amount of vegetation. Continuing urbanization and increasingly severe heatwaves under climate
change will further amplify this effect in the future.

Today, cities are home to 55% of the world’s population. This number is increasing, and every year cities
welcome 67 million new residents, 90% of whom are moving to cities in developing countries. By.2030,
almost 60% of the world’s population is expected to live in urban areas. Cities and their inhabitants are
highly vulnerable to weather and climate extremes, particularly heatwaves, because urban areas already are
local hotspots. Cities are generally warmer — up to several degrees Celsius at.night — than their surroundings.
This warming effect, called the urban heat island, occurs because cities both receive and retain more heat
than the surrounding countryside areas and because natural coolingprocesses are weakened in'cities
compared to rural areas.

Three main factors contribute to amplify the warming of urban'areas (orange barsin FAQ 10.2, Figure 1).
The strongest contribution comes from urban geometry, which.dépends on the number of buildings, their
size and their proximity. Tall buildings close to each other absorb and store heat'and also reduce natural
ventilation. Human activities, which are very concentrated in cities, also directly warm the atmosphere
locally, due to heat released from domestic and industrial heating or cooling systems, running engines, and
other sources. Finally, urban warming also results directly from the-heat-retaining properties of the materials
that make up cities, including concrete buildings, asphalt roadways, and dark rooftops. These materials are
very good at absorbing and retaining heat, and then re-emitting that heat at night.

The urban heat island effect is further amplified in-cities that lack vegetation and water bodies, both of which
can strongly contribute to local cooling (green bars in FAQ 10.2, Figure 1). This means that when enough
vegetation and water are included inthe urban fabric,.they can counterbalance the urban heat island effect, to
the point of even cancelling out the urban heat island effect in some neighbourhoods.

The urban heat island phenomenon s well known and understood. For instance, temperature measurements
from thermometers located in cities are corrected for this effect when global warming trends are calculated.
Nevertheless, observations, including long-term measurements of the urban heat island effect are currently
too limited to allow a full understanding of how the urban heat island varies across the world and across
different types of cities and.climatic zones, or how this effect will evolve in the future.

As aresult, it is hard to assess how climate change will affect the urban heat island effect, and various
studies disagree. Two things are, however, very clear. First, future urbanization will expand the urban heat
island areas, thereby amplifying future warming in many places all over the world. In some places, the
nighttime warming from the urban heat island effect could even be on the same order of magnitude as the
warming expected from human-induced climate change. Second, more intense, longer and more frequent
heatwaves caused by climate change will more strongly impact cities and their inhabitants, because the extra
warming from the urban heat island effect will exacerbate the impacts of climate change.

In summary, cities are currently local hotspots because their structure, material and activities trap and release
heat and reduce natural cooling processes. In the future, climate change will, on average, have a limited
effect on the magnitude of the urban heat island itself, but ongoing urbanization together with more frequent,
longer and warmer heatwaves will make cities more exposed to global warming.
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[START FAQ 10.2, FIGURE 1 HERE]

FAQ 10.2, Figure 1: Efficiency of the various factors at warming up or cooling down neighbourhoods of urban
areas. Overall, cities tend to be warmer than their surroundings. This is called the ‘urban heat
island’ effect. The hatched areas on the bars show how the strength of the warming or cooling
effects of each factor varies depending on the local climate. For example, vegetation has a stronger
cooling effect in temperate and warm climates. Further details on data sources are available in the
chapter data table (Table 10.SM.11)

[START FAQ 10.2, FIGURE 1 HERE]

[END FAQ10.2 HERE]

Do Not Cite, Quote or Distribute 10-123 Total pages: 228


http://10.sm/

—

— O 00 31NN B~ W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Acknowledgements

We acknowledge the E-OBS dataset and the data providers in the ECA&D project (https://www.ecad.eu) for
their help and the Japan Aerospace Exploration Agency (JAXA) for delivering the GSMaP (Global Satellite
Mapping of Precipitation) data to us. The invaluable contributions from Lisa van Aardenne (South Africa),
Peng Cai (China), Joseph Ching (China), Huili He (China), Kenshi Hibino (Japan), Yukiko Imada (Japan),
Nazrul Islam (Saudi Arabia), Isadora Christel Jiménez (Spain) and Misako Kachi (Japan) are also greatly
acknowledged. We acknowledge the World Climate Research Programme for coordinating the modelling
intercomparison projects CMIP and CORDEX and thank the climate modelling groups for producing and
making available their model output.

Do Not Cite, Quote or Distribute 10-124 Total pages: 228


https://www.ecad.eu/

b b e e e e
OCONAN NP, LWL OOVOIDNNPRWN —

[\
[e)

Final Government Distribution Chapter 10 IPCC AR6 WQI

References

Aalbers, E.E., G. Lenderink, E. van Meijgaard, and B.J.J.M. van den Hurk, 2018: Local-scale changes in mean and
heavy precipitation in Western Europe, climate change or internal variability? Climate Dynamics, 50(11-12),
4745-4766, doi:10.1007/s00382-017-3901-9.

Aalto, J., P. Pirinen, and K. Jylh&, 2016: New gridded daily climatology of Finland: Permutation-based uncertainty
estimates and temporal trends in climate. Journal of Geophysical Research: Atmospheres, 121(8), 3807—3823,
doi:10.1002/2015jd024651.

Abatzoglou, J.T. and T.J. Brown, 2012: A comparison of statistical downscaling methods suited for wildfire
applications. International Journal of Climatology, 32(5), 772—780, doi:10.1002/joc.2312.

Abba Omar, S. and B.J. Abiodun, 2020: Characteristics of cut-off lows during the 2015-2017 drought in the Western
Cape, South Africa. Atmospheric Research, 235, 104772, doi:10.1016/j.atmosres.2019.104772.

Abera, W., L. Brocca, and R. Rigon, 2016: Comparative evaluation of different satellite rainfall estimation products and
bias correction in the Upper Blue Nile (UBN) basin. Atmospheric Research, 178-179,471-483,
doi:10.1016/j.atmosres.2016.04.017.

Abiodun, B.J. et al., 2017: Potential impacts of climate change on extreme precipitation‘over four African coastal cities.
Climatic Change, 143(3—4), 399—413, doi:10.1007/s10584-017-2001-5.

Abram, N.J. et al., 2020: Coupling of Indo-Pacific climate variability over the last millennium. Narture, 579(7799), 385—
392, doi:10.1038/s41586-020-2084-4.

Abramowitz, G. et al., 2019: ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-
selection and out-of-sample testing. Earth System Dynamics, 10(1), 91-105, doi:105194/esd-10-91-2019.

Ackerley, D. et al., 2011: Sensitivity of Twentieth-Century Sahel rainfall to sulfate aerosol and CO2 forcing. Journal of
Climate, doi:10.1175/jcli-d-11-00019.1.

Ackerman, T.P. and G.M. Stokes, 2003: The Atmospheric Radiation/Measurement Program. Physics Today, 56(1), 38—
44, doi:10.1063/1.1554135.

Adachi, S.A., F. Kimura, H. Kusaka, T. Inoue, and H. Ueda;,2012: Comparison of the Impact of Global Climate
Changes and Urbanization on Summertime Future Climate in the Tokyo Metropolitan Area. Journal of
Applied Meteorology and Climatology, 51(8), 14411454, doi:10.1175/jamc-d-11-0137.1.

Addor, N., M. Rohrer, R. Furrer, and J. Seibert, 2016: Propagation of biases in climate models from the synoptic to the
regional scale: Implications for bias adjustment: Journal of Geophysical Research: Atmospheres, 121(5),
2075-2089, doi:10.1002/2015jd024040:

Adebiyi, A.A. and J.F. Kok, 2020: Climate modelsmiss most of the coarse dust in the atmosphere. Science Advances,
6(15), doi:10.1126/sciadv.aaz9507.

Adloff, F. et al., 2018: Improving sea level simulation.in Mediterranean regional climate models. Climate Dynamics,
51(3), 1167-1178, doi:10.1007/s00382-017-3842-3.

Ahmed, K.F. et al., 2013: Statistical downscaling and bias correction of climate model outputs for climate change
impact assessment.in the U.S. northeast. Global and Planetary Change, 100, 320-332,
doi:10.1016/j.gloplacha.2012.11.003.

Ahn, M.-S. et al., 2017: MJO simulation‘in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis.
Climate Dynamics, 49(11-12), 4023—4045, doi:10.1007/s00382-017-3558-4.

Akhtar, N., J. Brauch, and B. Ahrens, 2018: Climate modeling over the Mediterranean Sea: impact of resolution and
ocean coupling. Climate Dynamics, 51(3), 933-948, doi:10.1007/s00382-017-3570-8.

Akhtar, N., J. Brauch, A. Dobler, K. Béranger, and B. Ahrens, 2014: Medicanes in an ocean—atmosphere coupled
regional climate model. Natural Hazards and Earth System Sciences, 14(8), 2189-2201, doi:10.5194/nhess-
14-2189-2014.

Akhtar, N. et al., 2019 European marginal seas in a regional atmosphere—ocean coupled model and their impact on Vb-
cyclones ‘and.associated precipitation. Climate Dynamics, 53(9-10), 5967-5984, doi:10.1007/s00382-019-
04906-x.

Akhter, J., L. Das, J.K. Meher, and A. Deb, 2018: Uncertainties and time of emergence of multi-model precipitation
projection-over homogeneous rainfall zones of India. Climate Dynamics, 50(9-10), 3813-3831,
dei?10.1007/s00382-017-3847-y.

Akhter, J.,.L.Das, J.K. Meher, and A. Deb, 2019: Evaluation of different large-scale predictor-based statistical
downscaling models in simulating zone-wise monsoon precipitation over India. International Journal of
Climatology, 39(1), 465-482, doi:10.1002/joc.5822.

Alessandri, A. et al., 2015: Robust assessment of the expansion and retreat of Mediterranean climate in the 21 st
century. Scientific Reports, 4(1), 7211, doi:10.1038/srep07211.

Alexander, L., 2016: Global observed long-term changes in temperature and precipitation extremes: A review of
progress and limitations in IPCC assessments and beyond. Weather and Climate Extremes, 11, 416,
doi:10.1016/j.wace.2015.10.007.

Alghamdi, A.S. and T.W. Moore, 2015: Detecting Temporal Changes in Riyadh’s Urban Heat Island. Papers in Applied
Geography, 1(4), 312-325, doi:10.1080/23754931.2015.1084525.

Do Not Cite, Quote or Distribute 10-125 Total pages: 228


https://dx.doi.org/10.1007/s00382-017-3901-9
https://dx.doi.org/10.1002/2015jd024651
https://dx.doi.org/10.1002/joc.2312
https://dx.doi.org/10.1016/j.atmosres.2019.104772
https://dx.doi.org/10.1016/j.atmosres.2016.04.017
https://dx.doi.org/10.1007/s10584-017-2001-5
https://dx.doi.org/10.1038/s41586-020-2084-4
https://dx.doi.org/10.5194/esd-10-91-2019
https://dx.doi.org/10.1175/jcli-d-11-00019.1
https://dx.doi.org/10.1063/1.1554135
https://dx.doi.org/10.1175/jamc-d-11-0137.1
https://dx.doi.org/10.1002/2015jd024040
https://dx.doi.org/10.1126/sciadv.aaz9507
https://dx.doi.org/10.1007/s00382-017-3842-3
https://dx.doi.org/10.1016/j.gloplacha.2012.11.003
https://dx.doi.org/10.1007/s00382-017-3558-4
https://dx.doi.org/10.1007/s00382-017-3570-8
https://dx.doi.org/10.5194/nhess-14-2189-2014
https://dx.doi.org/10.5194/nhess-14-2189-2014
https://dx.doi.org/10.1007/s00382-019-04906-x
https://dx.doi.org/10.1007/s00382-019-04906-x
https://dx.doi.org/10.1007/s00382-017-3847-y
https://dx.doi.org/10.1002/joc.5822
https://dx.doi.org/10.1038/srep07211
https://dx.doi.org/10.1016/j.wace.2015.10.007
https://dx.doi.org/10.1080/23754931.2015.1084525

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Alizadeh-Choobari, O., P. Ghafarian, and P. Adibi, 2016: Inter-annual variations and trends of the urban warming in
Tehran. Atmospheric Research, 170, 176185, doi:10.1016/j.atmosres.2015.12.001.

Allen, M.R., P.A. Stott, J.F.B. Mitchell, R. Schnur, and T.L. Delworth, 2000: Quantifying the uncertainty in forecasts of
anthropogenic climate change. Nature, 407(6804), 617620, doi:10.1038/35036559.

Allen, R.J., 2015: A 21st century northward tropical precipitation shift caused by future anthropogenic aerosol
reductions. Journal of Geophysical Research: Atmospheres, 120(18), 9087-9102, doi:10.1002/2015jd023623.

Allen, R.J. and M. Kovilakam, 2017: The Role of Natural Climate Variability in Recent Tropical Expansion. Journal of
Climate, 30(16), 63296350, doi:10.1175/jcli-d-16-0735.1.

Allen, R.J., A.T. Evan, and B.B.B. Booth, 2015: Interhemispheric Aerosol Radiative Forcing and Tropical Precipitation
Shifts during the Late Twentieth Century. Journal of Climate, 28(20), 8219—8246, doi:10.1175/jcli-d-15-
0148.1.

Almazroui, M., 2016: RegCM4 in climate simulation over CORDEX-MENA/Arab domain: selection of suitable
domain, convection and land-surface schemes. International Journal of Climatology, 36(1), 236-251,
doi:10.1002/joc.4340.

Almazroui, M., 2019: Temperature Changes over the CORDEX-MENA Domain in the 2 Ist-Century Using CMIPS
Data Downscaled with RegCM4: A Focus on the Arabian Peninsula. Advances-in Meteorology,
doi:10.1155/2019/5395676.

Almazroui, M., M.N. Islam, A.K. Al-Khalaf, and F. Saced, 2016a: Best convective parameterization scheme within
RegCM4 to downscale CMIP5 multi-model data for the CORDEX-MENA/Arab domain.«7heoretical and
Applied Climatology, 124(3—4), 807-823, doi:10.1007/s00704-0151463=5.

Almazroui, M., M.N.M.N. Islam, S. Saeed, M. Ismail, and E. Al., 2020a:Future changes in elimate over the Arabian
Peninsula based on CMIP6 multimodel simulations. Earth Systems and Environnient,4(3),611-630.

Almazroui, M., S. Saeed, F. Saced, M.N. Islam, and M. Ismail, 2020b: Projections of Precipitation and Temperature
over the South Asian Countries in CMIP6. Earth Systems and Environment, 4(2), 297<320,
doi:10.1007/s41748-020-00157-7.

Almazroui, M. et al., 2016b: Simulation of temperature and precipitation climatology for the CORDEX-MENA/Arab
domain using RegCM4. Arabian Journal of Geosciences, 9(1), 13,/d0i:10.1007/s12517-015-2045-7.

Almazroui, M. et al., 2020c: Projected Change in Temperature and Precipitation Over Africa from CMIP6. Earth
Systems and Environment, 4(3), 455-475; doi:10.1007/s41748-020-00161-x.

Almazroui, M. et al., 2021: Projected Changes-n Temperature and Precipitation Over the United States, Central
America, and the Caribbean in CMIP6 GCMs. Earth Systems and Environment, doi:10.1007/s41748-021-
00199-5.

Alter, R.E., E.-S. Im, and E.A.B. Eltahir, 2015: Rainfall consistently enhanced around the Gezira Scheme in East Africa
due to irrigation. Nature Geoscience, 8(10), 763=767, doi:10.1038/ngeo02514.

Amaya, D.J., N. Siler, S.-P. Xieyand A.J. Miller, 2018: The interplay of internal and forced modes of Hadley Cell
expansion: lessons from the global warming hiatus: Climate Dynamics, 51(1-2), 305-319,
doi:10.1007/s00382-017-3921-5.

Anand, A. et al., 2018: Indian Summer Monsoon Simulations: Usefulness of Increasing Horizontal Resolution, Manual
Tuning, and Semi-Automatic Tuning in Reducing Present-Day Model Biases. Scientific Reports, 8(1), 3522,
doi:10.1038/s41598<018-21865-1.

Andreassen, H.P.; K.E. Gangaas, and B.P. Kaltenborn, 2018: Matching social-ecological systems by understanding the
spatial scale-of environmental attitudes. Nature Conservation, 30, 6981,
doi: 10.389%/natureconservation:30.28289.

Annamalai, H.; J. Hafner, K.P. Sooraj, and P. Pillai, 2013: Global warming shifts the monsoon circulation, drying South
Asia. Journal of Climate;26(9), 2701-2718, doi: 10.1175/jcli-d-12-00208.1.

Annan, J.D. and J.C..Hargreaves, 2017: On the meaning of independence in climate science. Earth System Dynamics,
8(1), 2114224, doi:10.5194/esd-8-211-2017.

Archer, E. et al., 2018: Seasonal prediction and regional climate projections for southern Africa. Biodiversity &
Ecology, 6,.14-21, doi:10.7809/b-¢.00296.

Ardilouze;C., L. Batté, M. Déqué, E. van Meijgaard, and B. van den Hurk, 2019: Investigating the impact of soil
moisture on European summer climate in ensemble numerical experiments. Climate Dynamics, 52(7-8), 4011—
4026, doi:10.1007/s00382-018-4358-1.

Argiieso, D., J.P. Evans, L. Fita, and K.J. Bormann, 2014: Temperature response to future urbanization and climate
change. Climate Dynamics, 42(7-8), 21832199, doi:10.1007/s00382-013-1789-6.

Armstrong, M.S., A.S. Kiem, and T.R. Vance, 2020: Comparing instrumental, palaeoclimate, and projected rainfall
data: Implications for water resources management and hydrological modelling. Journal of Hydrology:
Regional Studies, 31, 100728, doi:10.1016/j.ejrh.2020.100728.

Arsiso, B.K., G. Mengistu Tsidu, G.H. Stoffberg, and T. Tadesse, 2018: Influence of urbanization-driven land use/cover
change on climate: The case of Addis Ababa, Ethiopia. Physics and Chemistry of the Earth,
doi:10.1016/j.pce.2018.02.009.

Aryee, J.N.A. et al., 2018: Development of high spatial resolution rainfall data for Ghana. International Journal of

Do Not Cite, Quote or Distribute 10-126 Total pages: 228


https://dx.doi.org/10.1016/j.atmosres.2015.12.001
https://dx.doi.org/10.1038/35036559
https://dx.doi.org/10.1002/2015jd023623
https://dx.doi.org/10.1175/jcli-d-16-0735.1
https://dx.doi.org/10.1175/jcli-d-15-0148.1
https://dx.doi.org/10.1175/jcli-d-15-0148.1
https://dx.doi.org/10.1002/joc.4340
https://dx.doi.org/10.1155/2019/5395676
https://dx.doi.org/10.1007/s00704-015-1463-5
https://dx.doi.org/10.1007/s41748-020-00157-7
https://dx.doi.org/10.1007/s12517-015-2045-7
https://dx.doi.org/10.1007/s41748-020-00161-x
https://dx.doi.org/10.1007/s41748-021-00199-5
https://dx.doi.org/10.1007/s41748-021-00199-5
https://dx.doi.org/10.1038/ngeo2514
https://dx.doi.org/10.1007/s00382-017-3921-5
https://dx.doi.org/10.1038/s41598-018-21865-1
https://dx.doi.org/10.3897/natureconservation.30.28289
https://dx.doi.org/10.1175/jcli-d-12-00208.1
https://dx.doi.org/10.5194/esd-8-211-2017
https://dx.doi.org/10.7809/b-e.00296
https://dx.doi.org/10.1007/s00382-018-4358-1
https://dx.doi.org/10.1007/s00382-013-1789-6
https://dx.doi.org/10.1016/j.ejrh.2020.100728
https://dx.doi.org/10.1016/j.pce.2018.02.009

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Climatology, 38(3), 1201-1215, doi:10.1002/joc.5238.

Ashcroft, L. et al., 2018: A rescued dataset of sub-daily meteorological observations for Europe and the southern
Mediterranean region, 1877-2012. Earth System Science Data, 10(3), 1613—1635, doi:10.5194/essd-10-1613-
2018.

Ashfaq, M. et al., 2020: Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX
simulations. Climate Dynamics, doi:10.1007/s00382-020-05306-2.

Ashouri, H. et al., 2015: PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations
for Hydrological and Climate Studies. Bulletin of the American Meteorological Society, 96(1), 69—83,
doi:10.1175/bams-d-13-00068.1.

Attada Raju, A. and Parekh, and Chowdary J S., and and Gnanaseelan C, 2018: Reanalysis of the Indian summer
monsoon: four dimensional data assimilation of AIRS retrievals in a regional data assimilation and modeling
framework. Climate Dynamics, 50(7), 2905-2923, doi:10.1007/s00382-017-3781-z.

Auchmann, R. and S. Bronnimann, 2012: A physics-based correction model for homogenizing sub-daily temperature
series. Journal of Geophysical Research: Atmospheres, 117(D17), doi:10.1029/20127d018067.

Ayarzagiiena, B. and J.A. Screen, 2016: Future Arctic sea ice loss reduces severity of cold:air.outbreaks in midlatitudes:
Geophysical Research Letters, 43(6), 28012809, doi:10.1002/2016g1068092.

Ayarzagiiena, B. et al., 2018: No robust evidence of future changes in major stratospheric sudden warmings: a multi-
model assessment from CCMI. Atmospheric Chemistry and Physics, 18(5), 11277-11287,.doi:10.5194/acp-
18-11277-2018.

Azam, ML.F. et al., 2018: Review of the status and mass changes of Himalayan-Karakoram glaciers. Journal of
Glaciology, 64(243), 61-74, doi:10.1017/jog.2017.86.

Azmat, M., U.W. Liagat, M.U. Qamar, and U.K. Awan, 2017: Impacts of changing climate and snow cover on the flow
regime of Jhelum River, Western Himalayas. Regional Environmental Change, 17(3), 813—825,
doi:10.1007/s10113-016-1072-6.

Bach, L., C. Schraff, J.D. Keller, and A. Hense, 2016: Towards a probabilistic regional reanalysis system for Europe:
evaluation of precipitation from experiments. Tellus A: Dynamic Meteorology and Oceanography, 68(1),
32209, doi:10.3402/tellusa.v68.32209.

Bader, D.A. et al., 2018: Urban Climate Science. In: Climate Change and Cities: Second Assessment Report of the
Urban Climate Change Research Network [Rosenzweig, C., P. Romero-Lankao, S. Mehrotra, S. Dhakal, S. Ali
Ibrahim, and W.D. Solecki (eds.)]. Cambridge University Press, Cambridge, United Kingdom, pp. 27-60,
doi:10.1017/9781316563878.009.

Bador, M., L. Terray, and J. Boé, 2016: Emergence 0f human‘influence on summer record-breaking temperatures over
Europe. Geophysical Research Letters, 43(1), 404—412, doi:10.1002/2015g1066560.

Bador, M. et al., 2020: Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in
Global Climate Models: Journal of Geophysical Research: Atmospheres, 125(13), €2019JD032184,
doi:10.1029/2019jd032184.

Bain, P.G., M.J. Hornsey, R. Bongiorno, and C: Jeffries, 2012: Promoting pro-environmental action in climate change
deniers. Nature Climate Change, 2(8), 600-603, doi:10.1038/nclimate1532.

Baker, D.J., A.J. Hartley, S.H.M. Butchart, and S.G. Willis, 2016: Choice of baseline climate data impacts projected
species’ responsesto climate change. Global Change Biology, 22(7), 2392-2404, doi:10.1111/gcb.13273.

Baklanov, A. et al., 2018: From urban meteorology, climate and environment research to integrated city services. Urban
Climate, 23;330-341, doi:10.1016/j.uclim.2017.05.004.

Baklanov, A.'etal., 2020: Integrated urban services: Experience from four cities on different continents. Urban Climate,
32, 100610, doi: 10.1016/j.uelim.2020.100610.

Bal, P.K. et al., 2016: Climate change projections over India by a downscaling approach using PRECIS. 4sia-Pacific
Journal of Atmospheric Sciences, 52(4), 353-369, doi:10.1007/s13143-016-0004-1.

Balsamo, G. et al.; 2015 ERA-Interim/Land: a global land surface reanalysis data set. Hydrology and Earth System
Sciences; 19(1), 389407, doi:10.5194/hess-19-389-2015.

Ban, N., J. Schmidli; and C. Schér, 2014: Evaluation of the convection-resolving regional climate modeling approach in
decade-long simulations. Journal of Geophysical Research: Atmospheres, 119(13), 7889-7907,
dois10.1002/2014jd021478.

Ban, N., J. Schmidli, and C. Schér, 2015: Heavy precipitation in a changing climate: Does short-term summer
precipitation increase faster? Geophysical Research Letters, 42(4), 1165-1172, doi:10.1002/201421062588.

Ban, N. et al., 2021: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, Part
I: Evaluation of precipitation. Climate Dynamics, doi:10.1007/s00382-021-05708-w.

Bandoro, J., S. Solomon, A. Donohoe, D.W.J. Thompson, and B.D. Santer, 2014: Influences of the Antarctic Ozone
Hole on Southern Hemispheric Summer Climate Change. Journal of Climate, 27(16), 6245-6264,
doi:10.1175/jcli-d-13-00698.1.

Bafio-Medina, J., R. Manzanas, and J.M. Gutiérrez, 2020: Configuration and intercomparison of deep learning neural
models for statistical downscaling. Geoscientific Model Development, 13(4), 2109-2124, doi:10.5194/gmd-13-
2109-2020.

Do Not Cite, Quote or Distribute 10-127 Total pages: 228


https://dx.doi.org/10.1002/joc.5238
https://dx.doi.org/10.5194/essd-10-1613-2018
https://dx.doi.org/10.5194/essd-10-1613-2018
https://dx.doi.org/10.1007/s00382-020-05306-2
https://dx.doi.org/10.1175/bams-d-13-00068.1
https://dx.doi.org/10.1007/s00382-017-3781-z
https://dx.doi.org/10.1029/2012jd018067
https://dx.doi.org/10.1002/2016gl068092
https://dx.doi.org/10.5194/acp-18-11277-2018
https://dx.doi.org/10.5194/acp-18-11277-2018
https://dx.doi.org/10.1017/jog.2017.86
https://dx.doi.org/10.1007/s10113-016-1072-6
https://dx.doi.org/10.3402/tellusa.v68.32209
https://dx.doi.org/10.1017/9781316563878.009
https://dx.doi.org/10.1002/2015gl066560
https://dx.doi.org/10.1029/2019jd032184
https://dx.doi.org/10.1038/nclimate1532
https://dx.doi.org/10.1111/gcb.13273
https://dx.doi.org/10.1016/j.uclim.2017.05.004
https://dx.doi.org/10.1016/j.uclim.2020.100610
https://dx.doi.org/10.1007/s13143-016-0004-1
https://dx.doi.org/10.5194/hess-19-389-2015
https://dx.doi.org/10.1002/2014jd021478
https://dx.doi.org/10.1002/2014gl062588
https://dx.doi.org/10.1007/s00382-021-05708-w
https://dx.doi.org/10.1175/jcli-d-13-00698.1
https://dx.doi.org/10.5194/gmd-13-2109-2020
https://dx.doi.org/10.5194/gmd-13-2109-2020

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Barcikowska, M.J. et al., 2020: Changes in the future summer Mediterranean climate: contribution of teleconnections
and local factors. Earth System Dynamics, 11(1), 161-181, doi:10.5194/esd-11-161-2020.

Bardossy, A. and G. Pegram, 2012: Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate
change scenarios over large areas and small. Water Resources Research, 48(9), doi:10.1029/2011wr011524.

Barlage, M. et al., 2015: The effect of groundwater interaction in North American regional climate simulations with
WRF/Noah-MP. Climatic Change, doi:10.1007/s10584-014-1308-8.

Barlow, J. et al., 2017: Developing a Research Strategy to Better Understand, Observe, and Simulate Urban
Atmospheric Processes at Kilometer to Subkilometer Scales. Bulletin of the American Meteorological Society,
98(10), ES261-ES264, doi:10.1175/bams-d-17-0106.1.

Barnes, E.A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes.
Geophysical Research Letters, 40(17), 47344739, doi:10.1002/grl.50880.

Barnes, E.A. and L. Polvani, 2013: Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse
Gases in the CMIP5 Models. Journal of Climate, 26(18), 7117-7135, doi:10.1175/jcli-d-12-00536.1.

Barnes, E.A. and J.A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will
it? Wiley Interdisciplinary Reviews: Climate Change, 6(3), 277-286, doi:10.1002/wec.337.

Barnes, E.A., E. Dunn-Sigouin, G. Masato, and T. Woollings, 2014: Exploring recent trends in Northern Hemisphere
blocking. Geophysical Research Letters, 41(2), 638—644, doi:10.1002/201321058745.

Barredo, J.I., A. Mauri, G. Caudullo, and A. Dosio, 2018: Assessing Shifts of Mediterranean and Arid Climates Under
RCP4.5 and RCPS.5 Climate Projections in Europe. Pure and Applied-Geophysics, 175(11), 3955-3971,
doi:10.1007/s00024-018-1853-6.

Barreiro, M., N. Diaz, and M. Renom, 2014: Role of the global oceans and:land—atmosphereinteraction on summertime
interdecadal variability over northern Argentina. Climate Dynamics, 42(7-8), 1733—1753, doi:10.1007/s00382-
014-2088-6.

Barrett, B., 1. Nitze, S. Green, and F. Cawkwell, 2014: Assessment of multi-temporal, multi-sensor radar and ancillary
spatial data for grasslands monitoring in Ireland using machine‘learning approaches. Remote Sensing of
Environment, 152, 109-124, doi:10.1016/].rse.2044.05.018.

Barrow, E.M. and D.J. Sauchyn, 2019: Uncertainty in climate projections and:time of €mergence of climate signals in
the western Canadian Prairies. International Journal of Climatology, 39(11), 4358-4371,
doi:10.1002/joc.6079.

Barry, R.G., 2012: Recent advances in mountain climate research.. Theoretical and Applied Climatology, 110(4), 549—
553, doi:10.1007/s00704-012-0695x.

Barsugli, J.J. et al., 2013: The Practitionet’s Dilemma: How to Assess the Credibility of Downscaled Climate
Projections. Eos, Transactions American Geophysical Union, 94(46), 424-425, d0i:10.1002/2013e0460005.

Bartok, B. et al., 2017: Projected changes in surface solarradiation in CMIP5 global climate models and in EURO-
CORDEX regional climate:models for Europe. Climate Dynamics, 49(7-8), 2665-2683, doi:10.1007/s00382-
016-3471-2.

Barton, N.P., S.A. Klein, J.S. Boyle, and Y.Y.Zhang, 2012: Arctic synoptic regimes: Comparing domain-wide Arctic
cloud observations with CAM4 and CAMS during similar dynamics. Journal of Geophysical Research:
Atmospheres, 117(D15), n/a—n/a; doi:10.1029/2012jd017589.

Bathiany, S., V. Dakos, M:"Scheffer, and T.M. Lenton, 2018: Climate models predict increasing temperature variability
in poor countries. ScienceAdvances, 4(5), 1-11, doi: 10.1126/sciadv.aar5809.

Baumberger; €., R. Knutti, and G. Hirsch Hadorn, 2017: Building confidence in climate model projections: an analysis
of inferences from fit. Wiley Interdisciplinary Reviews: Climate Change, 8(3), €454, doi:10.1002/wcc.454.

Baztan, J., M. Cordier, J.-M. Huctin,-Z. Zhu, and J.-P. Vanderlinden, 2017: Life on thin ice: Insights from Uummannag,
Greenland for connecting climate science with Arctic communities. Polar Science, 13, 100-108,
doi:10.1016/4wpolar.2017.05.002.

Beck, H.E. et al., 2017a: Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrology and Earth
System Sciences; 21(6), 2881-2903, doi:10.5194/hess-21-2881-2017.

Beck, H.E. et al., 2017b: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological
modeling. Hydrology and Earth System Sciences, 21(12), 6201-6217, doi:10.5194/hess-21-6201-2017.

Bedia, J., S¢Herrera, D.S. Martin, N. Koutsias, and J.M. Gutiérrez, 2013: Robust projections of Fire Weather Index in
the Mediterranean using statistical downscaling. Climatic Change, 120(1-2), 229-247, doi:10.1007/s10584-
013-0787-3.

Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models:
from CMIP3 to CMIPS. Climate Dynamics, 42(7-8), 1999-2018, doi:10.1007/s00382-013-1783-z.

Bellprat, O., S. Kotlarski, D. Liithi, and C. Schir, 2013: Physical constraints for temperature biases in climate models.
Geophysical Research Letters, 40(15), 4042—4047, doi:10.1002/grl.50737.

Belusi¢, A. et al., 2018: Near-surface wind variability over the broader Adriatic region: insights from an ensemble of
regional climate models. Climate Dynamics, 50(11-12), 4455-4480, doi:10.1007/s00382-017-3885-5.
Benedict, J.J., E.D. Maloney, A.H. Sobel, and D.M.W. Frierson, 2014: Gross Moist Stability and MJO Simulation Skill

in Three Full-Physics GCMs. Journal of the Atmospheric Sciences, 71(9), 3327-3349, doi:10.1175/jas-d-13-

Do Not Cite, Quote or Distribute 10-128 Total pages: 228


https://dx.doi.org/10.5194/esd-11-161-2020
https://dx.doi.org/10.1029/2011wr011524
https://dx.doi.org/10.1007/s10584-014-1308-8
https://dx.doi.org/10.1175/bams-d-17-0106.1
https://dx.doi.org/10.1002/grl.50880
https://dx.doi.org/10.1175/jcli-d-12-00536.1
https://dx.doi.org/10.1002/wcc.337
https://dx.doi.org/10.1002/2013gl058745
https://dx.doi.org/10.1007/s00024-018-1853-6
https://dx.doi.org/10.1007/s00382-014-2088-6
https://dx.doi.org/10.1007/s00382-014-2088-6
https://dx.doi.org/10.1016/j.rse.2014.05.018
https://dx.doi.org/10.1002/joc.6079
https://dx.doi.org/10.1007/s00704-012-0695-x
https://dx.doi.org/10.1002/2013eo460005
https://dx.doi.org/10.1007/s00382-016-3471-2
https://dx.doi.org/10.1007/s00382-016-3471-2
https://dx.doi.org/10.1029/2012jd017589
https://dx.doi.org/10.1126/sciadv.aar5809
https://dx.doi.org/10.1002/wcc.454
https://dx.doi.org/10.1016/j.polar.2017.05.002
https://dx.doi.org/10.5194/hess-21-2881-2017
https://dx.doi.org/10.5194/hess-21-6201-2017
https://dx.doi.org/10.1007/s10584-013-0787-3
https://dx.doi.org/10.1007/s10584-013-0787-3
https://dx.doi.org/10.1007/s00382-013-1783-z
https://dx.doi.org/10.1002/grl.50737
https://dx.doi.org/10.1007/s00382-017-3885-5
https://dx.doi.org/10.1175/jas-d-13-0240.1

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

0240.1.

Benestad, R.E., 2011: A New Global Set of Downscaled Temperature Scenarios. Journal of Climate, 24(8), 2080-2098,
doi:10.1175/2010jcli3687.1.

Benestad, R.E., 2018: Implications of a decrease in the precipitation area for the past and the future. Environmental
Research Letters, 13(4), doi:10.1088/1748-9326/aab375.

Benestad, R.E. et al., 2018: Downscaling probability of long heatwaves based on seasonal mean daily maximum
temperatures. Advances in Statistical Climatology, Meteorology and Oceanography, 4(1/2), 37-52,
doi:10.5194/ascmo-4-37-2018.

Ben-Gai, T., A. Bitan, A. Manes, P. Alpert, and Y. Kushnir, 2001: Temperature and surface pressure anomalies in Israel
and the North Atlantic Oscillation. Theoretical and Applied Climatology, 69(3—4), 171-177,
doi:10.1007/s007040170023.

Bengtsson, L. and K.I. Hodges, 2018: Can an ensemble climate simulation be used to separate climate change signals
from internal unforced variability? Climate Dynamics, doi:10.1007/s00382-018-4343-8.

Beniston, M. et al., 2018: The European mountain cryosphere: a~review of its current state, trends, and future
challenges. The Cryosphere, 12(2), 759-794, doi:10.5194/tc-12-759-2018.

Bennett, W.G., H. Karunarathna, D.E. Reeve, and N. Mori, 2019: Computational modelling of morphodynamic
response of a macro-tidal beach to future climate variabilities. Marine Geology, 415, 105960,
doi:10.1016/j.margeo0.2019.105960.

Beranova, R. and J. Kysely, 2016: Links between circulation indices and precipitation in the Mediterranean in an
ensemble of regional climate models. Theoretical and Applied Climatology, 123(3—4),.693-701,
doi:10.1007/s00704-015-1381-6.

Berckmans, J., R. Hamdi, and N. Dendoncker, 2019: Bridging the gap'between policy-driven land use changes and
regional climate projections. journal of geophysical research, doi:10.1029/20187d029207.

Berkhout, F. et al., 2013: Framing climate uncertainty: socio-economic and climate scenatios in vulnerability and
adaptation assessments. Regional Environmental Change, d0i:10.1007/s10113-013-0519-2.

Berthou, S. et al., 2015: Sensitivity of an intense rain event.between atmosphere-only and atmosphere-ocean regional
coupled models: 19 September 1996. Quarterly Journal of the Royal-Meteorological Society, 141(686), 258—
271, doi:10.1002/qj.2355.

Berthou, S. et al., 2018a: Pan-European climate at‘convection-permitting scale: a model intercomparison study. Climate
Dynamics, doi:10.1007/s00382-018-4114-6.

Berthou, S. et al., 2018b: Lagged effects of the Mistral wind on heavy precipitation through ocean-atmosphere coupling
in the region of Valencia (Spain). Climate Dynamics, 51(3), 969-983, doi:10.1007/s00382-016-3153-0.

Besselaar, E.J.M., A. Sanchez-Lorenzo, M. Wild, A.M.G. Klein Tank, and A.T.J. Laat, 2015: Relationship between
sunshine duration and temperature trends across-Europe since the second half of the twentieth century. Journal
of Geophysical Research: Atmospheres, 120(20), 10,810-10,836, doi:10.1002/2015jd023640.

Bessette, D.L. et al., 2017: Building a Values-Informed Mental Model for New Orleans Climate Risk Management.
Risk Analysis, 37(10),,1993-2004, doi:10.1111/risa.12743.

Best, M.J. and C.S.B. Grimmond,2015: Key Conclusions of the First International Urban Land Surface Model
Comparison Project. Bulletin of the American Meteorological Society, 96(5), 805-819, doi:10.1175/bams-d-
14-00122:1.

Best, M.J., C.S.B. Grimmond, and M.G. Villani, 2006: Evaluation of the urban tile in MOSES using surface energy
balance observations. Boundary-Layer Meteorology, 118, 503—525, doi:10.1007/s10546-005-9025-5.

Bethke, I. et al., 2017: Potential volcanic impacts on future climate variability. Nature Climate Change, 7(11), 799-805,
doi:10.1038/nclimate3394.

Beusch, L., L. Gudmundsson, and:S.I. Seneviratne, 2020: Emulating Earth system model temperatures with MESMER:
from global:-mean temperature trajectories to grid-point-level realizations on land. Earth System Dynamics,
11(1), 139-159;doi:10.5194/esd-11-139-2020.

Bevacqua, E., D. Marauny 1. Hobak Haff, M. Widmann, and M. Vrac, 2017: Multivariate statistical modelling of
compound events via pair-copula constructions: analysis of floods in Ravenna (Italy). Hydrology and Earth
System.Sciences, 21(6), 2701-2723, doi:10.5194/hess-21-2701-2017.

Bhave, A.G:;’D. Conway, S. Dessai, and D.A. Stainforth, 2018: Water Resource Planning Under Future Climate and
Socieeconomic Uncertainty in the Cauvery River Basin in Karnataka, India. Water Resources Research, 54(2),
708-728, doi:10.1002/2017wr020970.

Bian, T. et al., 2020: Half-century urban drying in Shijiazhuang City. Environmental Research Communications, 2(7),
75006, doi:10.1088/2515-7620/abal0f.

Biasutti, M. and A. Giannini, 2006: Robust Sahel drying in response to late 20th century forcings. Geophysical
Research Letters, 33(11), L11706, doi:10.1029/2006g1026067.

Bichet, A. and A. Diedhiou, 2018a: Less frequent and more intense rainfall along the coast of the Gulf of Guinea in
West and Central Africa (1981-2014). Climate Research, 76(3), 191-201, doi:10.3354/cr01537.

Bichet, A. and A. Diedhiou, 2018b: West African Sahel has become wetter during the last 30 years, but dry spells are
shorter and more frequent. Climate Research, 75(2), 155-162, doi:10.3354/cr01515.

Do Not Cite, Quote or Distribute 10-129 Total pages: 228


https://dx.doi.org/10.1175/jas-d-13-0240.1
https://dx.doi.org/10.1175/2010jcli3687.1
https://dx.doi.org/10.1088/1748-9326/aab375
https://dx.doi.org/10.5194/ascmo-4-37-2018
https://dx.doi.org/10.1007/s007040170023
https://dx.doi.org/10.1007/s00382-018-4343-8
https://dx.doi.org/10.5194/tc-12-759-2018
https://dx.doi.org/10.1016/j.margeo.2019.105960
https://dx.doi.org/10.1007/s00704-015-1381-6
https://dx.doi.org/10.1029/2018jd029207
https://dx.doi.org/10.1007/s10113-013-0519-2
https://dx.doi.org/10.1002/qj.2355
https://dx.doi.org/10.1007/s00382-018-4114-6
https://dx.doi.org/10.1007/s00382-016-3153-0
https://dx.doi.org/10.1002/2015jd023640
https://dx.doi.org/10.1111/risa.12743
https://dx.doi.org/10.1175/bams-d-14-00122.1
https://dx.doi.org/10.1175/bams-d-14-00122.1
https://dx.doi.org/10.1007/s10546-005-9025-5
https://dx.doi.org/10.1038/nclimate3394
https://dx.doi.org/10.5194/esd-11-139-2020
https://dx.doi.org/10.5194/hess-21-2701-2017
https://dx.doi.org/10.1002/2017wr020970
https://dx.doi.org/10.1088/2515-7620/aba10f
https://dx.doi.org/10.1029/2006gl026067
https://dx.doi.org/10.3354/cr01537
https://dx.doi.org/10.3354/cr01515

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Bindoff, N.L. et al., 2013: Detection and Attribution of Climate Change: from Global to Regional. In: Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change []. Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, pp. 867-952, doi:10.1017/cbo9781107415324.022.

Birner, T., S.M. Davis, and D.J. Seidel, 2014: The changing width of Earth’s tropical belt. Physics Today, 67(12), 38—
44, doi:10.1063/pt.3.2620.

Bittner, M., H. Schmidt, C. Timmreck, and F. Sienz, 2016: Using a large ensemble of simulations to assess the
Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty.
Geophysical Research Letters, 43(17), 9324-9332, d0i:10.1002/2016g1070587.

Black, E., 2012: The influence of the North Atlantic Oscillation and European circulation regimes on the daily to
interannual variability of winter precipitation in Israel. International Journal of Climatology, 32(11), 1654—
1664, doi:10.1002/joc.2383.

Blackport, R. and P.J. Kushner, 2017: Isolating the Atmospheric Circulation Response to Arctic Sea Ice Loss in the
Coupled Climate System. Journal of Climate, 30(6), 2163-2185, doi:10.1175/jcli-d-16-0257.1.

Blackport, R. and J.A. Screen, 2020a: Insignificant effect of Arctic amplification on the amplitude of midlatitude
atmospheric waves. Science Advances, 6(8), eaay2880, doi:10.1126/sciadv.aay2880.

Blackport, R. and J.A. Screen, 2020b: Weakened evidence for mid-latitude impacts of Arctic warming. Nafure Climate
Change, doi:10.1038/s41558-020-00954-y.

Blackport, R., J.A. Screen, K. van der Wiel, and R. Bintanja, 2019: Minimal influence of reduced Arctic sea ice on
coincident cold winters in mid-latitudes. Nature Climate Change, 9(9), 697704, doi: 1L0.1038/s41558-019-
0551-4.

Bladg¢, 1., B. Liebmann, D. Fortuny, and G.J. van Oldenborgh, 2012: Qbserved and simulated impacts of the summer
NAO in Europe: implications for projected drying in the Mediterranean region. Clirmate Dynamics, 39(3—4),
709-727, doi:10.1007/s00382-011-1195-x.

Blamey, R. and C.J.C. Reason, 2007: Relationships between Antarctic sea-ice and South Affican winter rainfall.
Climate Research, 33, 183—-193, do0i:10.3354/cr033183.

Blamey, R.C., S.R. Kolusu, P. Mahlalela, M.C. Todd, and C.J.C:Reason, 2018: The role of regional circulation features
in regulating El Nifio climate impacts over southern Africa: A comparisonof the 2015/2016 drought with
previous events. International Journal of Climatology, 38(11), 4276-4295, doi:10.1002/joc.5668.

Blazquez, J. and S.A. Solman, 2018: Fronts and precipitation in CMIPS models for the austral winter of the Southern
Hemisphere. Climate Dynamics, S0(7-8), 2705-2717,.doi:10.1007/s00382-017-3765-z.

Blenkinsop, S., E. Lewis, S.C. Chan, andH.J. Fowler, 2017: Quality-control of an hourly rainfall dataset and
climatology of extremes for the UK. International Journal of Climatology, 37(2), 722-740,
doi:10.1002/joc.4735.

Bliznak, V., M. Kaspar, and M. Miiller, 2018: Radar-based summer precipitation climatology of the Czech Republic.
International Journal of Climatology, 38(2), 677-691, doi:10.1002/joc.5202.

Boberg, F. and J.H. Christensen; 2012: Overestimation of Mediterranean summer temperature projections due to model
deficiencies. Nature Climate Change, 2(6), 1-4, doi:10.1038/nclimate1454.

Bo¢, J., 2018: Interdependency in Multimodel Climate Projections: Component Replication and Result Similarity.
Geophysical Research Letters, 45(6), 2771-2779, doi:10.1002/2017g1076829.

Boé, J., S. Somot, L. Corre, and P. Nabat, 2020a: Large discrepancies in summer climate change over Europe as
projected by-global and regional climate models: causes and consequences. Climate Dynamics, S4(5-6), 2981—
3002, doi:10.1007/s00382-020=05153-1.

Bo¢, J. et al., 2020b: Past long-term summer warming over western Europe in new generation climate models: role of
large-scale atmosphericcirculation. Environmental Research Letters, 15(8), 084038, doi:10.1088/1748-
9326/ab8a89:

Boer, G.J. et al., 2016:/The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geoscientific Model
Development, 9(10), 3751-3777, doi:10.5194/gmd-9-3751-2016.

Boers, R., TeBrandsma, and A.P. Siebesma, 2017: Impact of aerosols and clouds on decadal trends in all-sky solar
radiation over the Netherlands (1966-2015). Atmospheric Chemistry and Physics, 17(13), 8081-8100,
dois10.5194/acp-17-8081-2017.

Bohm, R. et al., 2010: The early instrumental warm-bias: A solution for long central European temperature series 1760-
2007. Climatic Change, doi:10.1007/s10584-009-9649-4.

Bohme, T. et al., 2011: Long-term evaluation of COSMO forecasting using combined observational data of the GOP
period. Meteorologische Zeitschrift, 20(2), 119—132, doi:10.1127/0941-2948/2011/0225.

Bohnenstengel, S.I., I. Hamilton, M. Davies, and S.E. Belcher, 2014: Impact of anthropogenic heat emissions on
London’s temperatures. Quarterly Journal of the Royal Meteorological Society, 140(679), 687698,
doi:10.1002/qj.2144.

Bohnisch, A., R. Ludwig, and M. Leduc, 2020: Using a nested single-model large ensemble to assess the internal
variability of the North Atlantic Oscillation and its climatic implications for central Europe. Earth System
Dynamics, 11(3), 617-640, doi:10.5194/esd-11-617-2020.

Do Not Cite, Quote or Distribute 10-130 Total pages: 228


https://dx.doi.org/10.1017/cbo9781107415324.022
https://dx.doi.org/10.1063/pt.3.2620
https://dx.doi.org/10.1002/2016gl070587
https://dx.doi.org/10.1002/joc.2383
https://dx.doi.org/10.1175/jcli-d-16-0257.1
https://dx.doi.org/10.1126/sciadv.aay2880
https://dx.doi.org/10.1038/s41558-020-00954-y
https://dx.doi.org/10.1038/s41558-019-0551-4
https://dx.doi.org/10.1038/s41558-019-0551-4
https://dx.doi.org/10.1007/s00382-011-1195-x
https://dx.doi.org/10.3354/cr033183
https://dx.doi.org/10.1002/joc.5668
https://dx.doi.org/10.1007/s00382-017-3765-z
https://dx.doi.org/10.1002/joc.4735
https://dx.doi.org/10.1002/joc.5202
https://dx.doi.org/10.1038/nclimate1454
https://dx.doi.org/10.1002/2017gl076829
https://dx.doi.org/10.1007/s00382-020-05153-1
https://dx.doi.org/10.1088/1748-9326/ab8a89
https://dx.doi.org/10.1088/1748-9326/ab8a89
https://dx.doi.org/10.5194/gmd-9-3751-2016
https://dx.doi.org/10.5194/acp-17-8081-2017
https://dx.doi.org/10.1007/s10584-009-9649-4
https://dx.doi.org/10.1127/0941-2948/2011/0225
https://dx.doi.org/10.1002/qj.2144
https://dx.doi.org/10.5194/esd-11-617-2020

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Boisier, J.P., R. Rondanelli, R.D. Garreaud, and F. Muiloz, 2016: Anthropogenic and natural contributions to the
Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophysical Research Letters,
43(1), 413-421, doi:10.1002/2015g1067265.

Bojinski, S. et al., 2014: The Concept of Essential Climate Variables in Support of Climate Research, Applications, and
Policy. Bulletin of the American Meteorological Society, 95(9), 1431-1443, doi:10.1175/bams-d-13-00047.1.

Bolch, T. et al., 2019: Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region. In: The
Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People [Wester, P., A.
Mishra, A. Mukherji, and A.B. Shrestha (eds.)]. Springer, Cham, Switzerland, pp. 209-255, doi:10.1007/978-
3-319-92288-1 7.

Bollasina, M.A. and Y. Ming, 2013: The general circulation model precipitation bias over the southwestern equatorial
Indian Ocean and its implications for simulating the South Asian monsoon. Climate Dynamics, 40(3—4), 823—
838, doi:10.1007/s00382-012-1347-7.

Bollasina, M.A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic Aerosols and the Weakening of the South Asian
Summer Monsoon. Science, 334(6055), 502—505, doi:10.1126/science.1204994.

Bollmeyer, C. et al., 2015: Towards a high-resolution regional reanalysis for the EuropeantCORDEX domain.
Quarterly Journal of the Royal Meteorological Society, 141(686), 1-15, doi: 10:1002/qj.2486.

Bonekamp, P.N.J., R.J. de Kok, E. Collier, and W.W. Immerzeel, 2019: Contrasting Meteorological Drivers. of the
Glacier Mass Balance Between the Karakoram and Central Himalaya. Frontiers in Earth Science, 7, 107,
doi:10.3389/feart.2019.00107.

Bosilovich, M.G., J.-D. Chern, D. Mocko, F.R. Robertson, and A.M. da Silva, 2015: Evaluating. Observation Influence
on Regional Water Budgets in Reanalyses. Journal of Climate, 28(9), 3631-3649, doi:10.1175/jcli-d-14-
00623.1.

Bozkurt, D. et al., 2019: Dynamical downscaling over the complexterrain of southwest South America: present climate
conditions and added value analysis. Climate Dynamics, 53(11), 6745-6767, doi:10.1007/s00382-019-04959-

Bozkurt, D. et al., 2020: Recent Near-surface Temperature. Trends in the Antarctic Peninsula from Observed,
Reanalysis and Regional Climate Model Data. Advances in Atmospheric Sciences, 37(5), 477-493,
doi:10.1007/s00376-020-9183-x.

Bracegirdle, T.J., P. Hyder, and C.R. Holmes, 2018: CMIPS5 Diversity in Southern Westerly Jet Projections Related to
Historical Sea Ice Area: Strong Link to Strengtheéning and Weak Link to Shift. Journal of Climate, 31(1), 195—
211, doi:10.1175/jcli-d-17-0320.1.

Brands, S., 2017: Which ENSO teleconnections aretobust todinternal atmospheric variability? Geophysical Research
Letters, 44(3), 1483-1493, doi:10.1002/2016¢1071529;

Brands, S., J.M. Gutiérrez, S. Herrera, and A.S. Cofiflo;2012: On the Use of Reanalysis Data for Downscaling. Journal
of Climate, 25(7), 2517-2526, doi:10.1175/jcli-d-11-00251.1.

Briley, L., D. Brown, and S.E: Kalafatis, 2015: Overcoming barriers during the co-production of climate information
for decision-making. Climate Risk Management, 9, 41-49, doi:10.1016/j.crm.2015.04.004.

Brinckmann, S., J. Trentmann, and B. Ahrens, 2013: Homogeneity Analysis of the CM SAF Surface Solar Irradiance
Dataset Derived from Geostationary Satellite Observations. Remote Sensing, 6(1), 352—-378,
doi:10.3390/rs6010352.

Brogli, R., S.L. Serland, N. Kréner; and C. Schir, 2019a: Causes of future Mediterranean precipitation decline depend
on the season:'Environmental Research Letters, 14(11), 114017, doi:10.1088/1748-9326/ab4438.

Brogli, R., N. Kroner, S.L. Serland, D.Liithi, and C. Schér, 2019b: The Role of Hadley Circulation and Lapse-Rate
Changes for the Future’European Summer Climate. Journal of Climate, 32(2), 385—404, doi:10.1175/jcli-d-18-
0431.1.

Brogniez, H. et al., 2016: A review of sources of systematic errors and uncertainties in observations and simulations at
183 GHz: Atmospheric Measurement Techniques, 9(5), 2207-2221, doi:10.5194/amt-9-2207-2016.

Bromwich, D.H.; A.B. Wilson, L.-S. Bai, G.W.K. Moore, and P. Bauer, 2016: A comparison of the regional Arctic
System Reanalysis and the global ERA-Interim Reanalysis for the Arctic. Quarterly Journal of the Royal
Meteorological Society, 142(695), 644—658, doi:10.1002/qj.2527.

Bromwich, D:H. et al., 2018: The Arctic System Reanalysis, Version 2. Bulletin of the American Meteorological
Society, 99(4), 805-828, doi:10.1175/bams-d-16-0215.1.

Brouillet, A. and S. Joussaume, 2020: More perceived but not faster evolution of heat stress than temperature extremes
in the future. Climatic Change, 162(2), 527-544, doi:10.1007/s10584-020-02752-z.

Brown, A. et al., 2012: Unified Modeling and Prediction of Weather and Climate. Bull. Amer. Meteor. Soc., 93, 1865—
1877, doi:10.1175/bams-d-12-00018.1.

Brown, C. and R.L.R.L. Wilby, 2012: An Alternate Approach to Assessing Climate Risks. Eos, Transactions American
Geophysical Union, 93(41), 401-402, doi:10.1029/2012e0410001.

Brown, C., Y. Ghile, M. Laverty, and K. Li, 2012: Decision scaling: Linking bottom-up vulnerability analysis with
climate projections in the water sector. Water Resources Research, 48(9), 1-12, doi:10.1029/2011wr011212.

Brown, J.R., A.F. Moise, and R.A. Colman, 2013: The South Pacific Convergence Zone in CMIP5 simulations of

Do Not Cite, Quote or Distribute 10-131 Total pages: 228


https://dx.doi.org/10.1002/2015gl067265
https://dx.doi.org/10.1175/bams-d-13-00047.1
https://dx.doi.org/10.1007/978-3-319-92288-1_7
https://dx.doi.org/10.1007/978-3-319-92288-1_7
https://dx.doi.org/10.1007/s00382-012-1347-7
https://dx.doi.org/10.1126/science.1204994
https://dx.doi.org/10.1002/qj.2486
https://dx.doi.org/10.3389/feart.2019.00107
https://dx.doi.org/10.1175/jcli-d-14-00623.1
https://dx.doi.org/10.1175/jcli-d-14-00623.1
https://dx.doi.org/10.1007/s00382-019-04959-y
https://dx.doi.org/10.1007/s00382-019-04959-y
https://dx.doi.org/10.1007/s00376-020-9183-x
https://dx.doi.org/10.1175/jcli-d-17-0320.1
https://dx.doi.org/10.1002/2016gl071529
https://dx.doi.org/10.1175/jcli-d-11-00251.1
https://dx.doi.org/10.1016/j.crm.2015.04.004
https://dx.doi.org/10.3390/rs6010352
https://dx.doi.org/10.1088/1748-9326/ab4438
https://dx.doi.org/10.1175/jcli-d-18-0431.1
https://dx.doi.org/10.1175/jcli-d-18-0431.1
https://dx.doi.org/10.5194/amt-9-2207-2016
https://dx.doi.org/10.1002/qj.2527
https://dx.doi.org/10.1175/bams-d-16-0215.1
https://dx.doi.org/10.1007/s10584-020-02752-z
https://dx.doi.org/10.1175/bams-d-12-00018.1
https://dx.doi.org/10.1029/2012eo410001
https://dx.doi.org/10.1029/2011wr011212

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

historical and future climate. Climate Dynamics, 41(7-8), 2179-2197, d0i:10.1007/s00382-012-1591-x.

Brown, J.R., A.F. Moise, R. Colman, and H. Zhang, 2016: Will a Warmer World Mean a Wetter or Drier Australian
Monsoon? Journal of Climate, 29(12), 45774596, doi:10.1175/jcli-d-15-0695.1.

Brown, M.J., 2000: Urban parameterizations for mesoscale meteorological models. In: Mesoscale Atmospheric
Dispersion [Boybeyi, Z. (ed.)]. Wit Press, Southampton, UK, pp. 193-255.

Bruci, E.D., B. Islami, and M. Kamberi, 2016: Third National Communication of the Republic of Albania under the
United Nations Framework Convention on Climate Change. Ministry of Environment of the Republic of
Albania, Tirana, Albania, 294 pp.

Briigger, A., S. Dessai, P. Devine-Wright, T.A. Morton, and N.F. Pidgeon, 2015: Psychological responses to the
proximity of climate change. Nature Climate Change, 5(12), 1031-1037, doi:10.1038/nclimate2760.

Brun, F. et al., 2015: Seasonal changes in surface albedo of Himalayan glaciers from MODIS data and links with the
annual mass balance. The Cryosphere, 9(1), 341-355, doi:10.5194/tc-9-341-2015.

Brunet, M. et al., 2011: The minimization of the screen bias from ancient Western Mediterranean air temperature
records: an exploratory statistical analysis. International Journal of Climatology, 31(12), 1879-1895,
doi:10.1002/joc.2192.

Brunner, L., R. Lorenz, M. Zumwald, and R. Knutti, 2019: Quantifying uncertainty in European climate projections
using combined performance-independence weighting. Environmental Research Letters, 14(12), 124010,
doi:10.1088/1748-9326/ab492f.

Brunner, L. et al., 2020: Comparing Methods to Constrain Future European Climate Projections Using a Consistent
Framework. Journal of Climate, 33(20), 8671-8692, doi:10.1175/j¢li-d=19-0953.1.

Bucchignani, E., L. Cattaneo, H.-J. Panitz, and P. Mercogliano, 2016a: Sensitivity analysis with the regional climate
model COSMO-CLM over the CORDEX-MENA domain. Meteorology and Atmospheric Physics, 128(1), 73—
95, doi:10.1007/s00703-015-0403-3.

Bucchignani, E., P. Mercogliano, G. Rianna, and H.J. Panitz, 2016b:Analysis of ERA-Interim=driven COSMO-CLM
simulations over Middle East — North Africa domain at different spatial resolutions. /nternational Journal of
Climatology, 36(9), 3346-3369, doi:10.1002/joc.4559.

Bucchignani, E., P. Mercogliano, H.J. Panitz, and M. Montesarchio, 2018: Climate change projections for the Middle
East—North Africa domain with COSMO-CEM at different spatial resolutions. Advances in Climate Change
Research, doi:10.1016/j.accre.2018.01.004.

Buckley, M.W. and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic Meridional
Overturning Circulation: A review. Reviews of Geophysics,54(1), 563, doi:10.1002/2015rg000493.

Budikova, D., T.W. Ford, and T.J. Ballinger, 2017:Connections between north-central United States summer
hydroclimatology and Arctic sea ice variability. International Journal of Climatology, 37(12), 4434—4450,
doi:10.1002/j0¢.5097.

Bukovsky, M.S., 2012: Temperature Trends in the NARCCAP Regional Climate Models. Journal of Climate, 25(11),
3985-3991, doi:10.1475/jcli-d-11-00588:1.

Bukovsky, M.S., D.J. Gochis, and L.O. Mearns, 2013: Towards Assessing NARCCAP Regional Climate Model
Credibility for the North-\American Monsoon: Current Climate Simulations. Journal of Climate, 26(22), 8802—
8826, doi:10.1175/jcli-d-12-00538.1.

Bukovsky, M.S., JJA. Thompson, and L.O. Mearns, 2019: Weighting a regional climate model ensemble: Does it make
a difference? Can it makea difference? Climate Research, 77(1), 23—43, doi:10.3354/cr01541.

Bukovsky, M:S., R ReMcCrary, A. Seth, and L.O. Mearns, 2017: A Mechanistically Credible, Poleward Shift in Warm-
Season PrecipitationProjected-for the U.S. Southern Great Plains? Journal of Climate, 30(20), 8275-8298,
doi:10.1175/jcli-d-16-0316.4.

Buontempo, C. et al., 2018: What have we learnt from EUPORIAS climate service prototypes? Climate Services, 9, 21—
32, doi:10.1016/].cliser.2017.06.003.

Burls, N.J. et al., 2019: The Cape Town “Day Zero” drought and Hadley cell expansion. npj Climate and Atmospheric
Science;2(1), 27, doi:10.1038/s41612-019-0084-6.

Butler, A.H4 D.W.J. Thompson, and R. Heikes, 2010: The Steady-State Atmospheric Circulation Response to Climate
Change-like Thermal Forcings in a Simple General Circulation Model. Journal of Climate, 23(13), 3474—
34965do1:10.1175/2010jcli3228.1.

Byrne, M.P. and P.A. O’Gorman, 2018: Trends in continental temperature and humidity directly linked to ocean
warming. Proceedings of the National Academy of Sciences, 115(19), 4863—4868,
doi:10.1073/pnas.1722312115.

Cai, L. et al., 2018: The Polar WRF Downscaled Historical and Projected Twenty-First Century Climate for the Coast
and Foothills of Arctic Alaska. Frontiers in Earth Science, 5, 1-15, doi:10.3389/feart.2017.00111.

Cai, P. et al., 2020: Numerical Study of the Interaction between Oasis and Urban Areas within an Arid Mountains-
Desert System in Xinjiang, China. Atmosphere, 11(1), 85, doi:10.3390/atmos11010085.

Cai, W. et al., 2018: Increased variability of eastern Pacific El Nifio under greenhouse warming. Nature, 564(7735),
201-206, doi:10.1038/s41586-018-0776-9.

Caillouet, L., J.-P. Vidal, E. Sauquet, and B. Graff, 2016: Probabilistic precipitation and temperature downscaling of the

Do Not Cite, Quote or Distribute 10-132 Total pages: 228


https://dx.doi.org/10.1007/s00382-012-1591-x
https://dx.doi.org/10.1175/jcli-d-15-0695.1
https://dx.doi.org/10.1038/nclimate2760
https://dx.doi.org/10.5194/tc-9-341-2015
https://dx.doi.org/10.1002/joc.2192
https://dx.doi.org/10.1088/1748-9326/ab492f
https://dx.doi.org/10.1175/jcli-d-19-0953.1
https://dx.doi.org/10.1007/s00703-015-0403-3
https://dx.doi.org/10.1002/joc.4559
https://dx.doi.org/10.1016/j.accre.2018.01.004
https://dx.doi.org/10.1002/2015rg000493
https://dx.doi.org/10.1002/joc.5097
https://dx.doi.org/10.1175/jcli-d-11-00588.1
https://dx.doi.org/10.1175/jcli-d-12-00538.1
https://dx.doi.org/10.3354/cr01541
https://dx.doi.org/10.1175/jcli-d-16-0316.1
https://dx.doi.org/10.1016/j.cliser.2017.06.003
https://dx.doi.org/10.1038/s41612-019-0084-6
https://dx.doi.org/10.1175/2010jcli3228.1
https://dx.doi.org/10.1073/pnas.1722312115
https://dx.doi.org/10.3389/feart.2017.00111
https://dx.doi.org/10.3390/atmos11010085
https://dx.doi.org/10.1038/s41586-018-0776-9

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Twentieth Century Reanalysis over France. Climate of the Past, 12(3), 635662, doi:10.5194/cp-12-635-2016.

Caillouet, L., J.-P. Vidal, E. Sauquet, B. Graff, and J.-M. Soubeyroux, 2019: SCOPE Climate: a 142-year daily high-
resolution ensemble meteorological reconstruction dataset over France. Earth System Science Data, 11(1),
241-260, doi:10.5194/essd-11-241-2019.

Callahan, B., E. Miles, and D. Fluharty, 1999: Policy implications of climate forecasts for water resources management
in the Pacific Northwest. Policy Sciences, 32(3), 269-293, doi:10.1023/1004604805647.

Caluwaerts, S. et al., 2020: The urban climate of Ghent, Belgium: A case study combining a high-accuracy monitoring
network with numerical simulations. Urban Climate, 31, 100565, doi:10.1016/1.uclim.2019.100565.

Camera, C., A. Bruggeman, P. Hadjinicolaou, S. Pashiardis, and M.A. Lange, 2014: Evaluation of interpolation
techniques for the creation of gridded daily precipitation (1 x 1 km?); Cyprus, 1980-2010. Journal of
Geophysical Research: Atmospheres, 119(2), 693—712, doi:10.1002/2013jd020611.

Camilloni, I. and M. Barrucand, 2012: Temporal variability of the Buenos Aires, Argentina, urban heat island.
Theoretical and Applied Climatology, doi:10.1007/s00704-011-0459-z.

Campbell, T.H. and A.C. Kay, 2014: Solution aversion: On the relation between ideology and motivated disbelief.
Journal of Personality and Social Psychology, 107(5), 809-824, doi:10.1037/a0037963.

Cannon, A.J., 2016: Multivariate Bias Correction of Climate Model Output: Matching Marginal Distributions and
Intervariable Dependence Structure. Journal of Climate, 29(19), 70457064, doi:10.1175/jcli-d=15-0679.1.

Cannon, A.J., 2018: Multivariate quantile mapping bias correction: an N-dimensional probability density function
transform for climate model simulations of multiple variables. Climate-Dynamics, 50(1-2), 31-49,
doi:10.1007/s00382-017-3580-6.

Cannon, A.J., 2020: Reductions in daily continental-scale atmospheric circulation biases between generations of global
climate models: CMIP5 to CMIP6. Environmental Researchd.etters, 15(6), 064006, doi:10.1088/1748-
9326/ab7e4f.

Cannon, A.J., S.R. Sobie, and T.Q. Murdock, 2015: Bias Correction of GCM Precipitation by Quantile Mapping: How
Well Do Methods Preserve Changes in Quantiles and Extremes? Journal of Climate, 28(17), 6938—6959,
doi:10.1175/jcli-d-14-00754.1.

Cao, D., F. Huang, and X. Qie, 2014: Development and Evaluation of detection algorithm for FY-4 Geostationary
Lightning Imager (GLI) measurement. In: Proceedings of XV International Conference on Atmospheric
Electricity, Norman, OK, USA. pp. 1-6.

Cao, L., L. Duan, G. Bala, and K. Caldeira, 2016a: Simulated long-term climate response to idealized solar
geoengineering. Geophysical Research Letters, 43(5), 22092217, doi:10.1002/2016g1068079.

Cao, L., Y. Zhu, G. Tang, F. Yuan, and Z: Yan, 2016b: Climatic warming in China according to a homogenized data set
from 2419 stations. International Journal of Climatology, 36(13), 4384—4392, doi:10.1002/joc.4639.

Capotondi, A. et al., 2015: Understanding ENSO Diversity. Bulletin of the American Meteorological Society, 96(6),
921-938, doi:10.1175/bams-d-13-00117.1.

Cardoso, R.M., P.M.M. Soares, D.C.A; Lima, and'A. Semedo, 2016: The impact of climate change on the Iberian low-
level wind jet: EURO-CORDEX regional.climate simulation. Tellus A: Dynamic Meteorology and
Oceanography; 68(1), 29005, doi:10.3402/tellusa.v68.29005.

Careto, J.A.M., R.M. Cardoso, P.M.M. Seares, and R.M. Trigo, 2018: Land-Atmosphere Coupling in CORDEX-Africa:
Hindcast/Regional*Climate Simulations. Journal of Geophysical Research: Atmospheres, 123(19), 11,048—
11,067, doi:10.1029/2018jd028378.

Casanueva, Au.J. Bedia, S. Herrera, J. Fernandez, and J.M. Gutiérrez, 2018: Direct and component-wise bias correction
of multi-variate climate indices: the percentile adjustment function diagnostic tool. Climatic Change, 147(3—
4), 411-425, doi:10.1007/s10584-018-2167-5.

Casanueva, A. et al., 2020: Testing bias adjustment methods for regional climate change applications under
observationaluncertainty and resolution mismatch. Atmospheric Science Letters, 21(7), doi:10.1002/asl.978.

Cash, D.W. et al.,2003: Knowledge Systems for Sustainable Development. Proceedings of the national academy of
sciences; 100, 80868091, doi:10.1073/pnas.1231332100.

Castruccio, S., Z. Hu, B. Sanderson, A. Karspeck, and D. Hammerling, 2019: Reproducing Internal Variability with
Few Ensemble Runs. Journal of Climate, 32(24), 8511-8522, doi:10.1175/jcli-d-19-0280.1.

Cattiaux, J..and C. Cassou, 2013: Opposite CMIP3/CMIPS5 trends in the wintertime Northern Annular Mode explained
by combined local sea ice and remote tropical influences. Geophysical Research Letters, 40(14), 3682—-3687,
doi:10.1002/grl.50643.

Catto, J.L., C. Jakob, and N. Nicholls, 2015: Can the CMIP5 models represent winter frontal precipitation? Geophysical
Research Letters, 42(20), 8596—8604, doi:10.1002/2015g1066015.

Catto, J.L., N. Nicholls, C. Jakob, and K.L. Shelton, 2014: Atmospheric fronts in current and future climates.
Geophysical Research Letters, 41(21), 7642—7650, do0i:10.1002/201421061943.

Cavazos, T. et al., 2019: Climatic trends and regional climate models intercomparison over the CORDEX-CAM
(Central America, Caribbean, and Mexico) domain. International Journal of Climatology, joc.6276,

doi:10.1002/j0c.6276.
Cavicchia, L., H. von Storch, and S. Gualdi, 2014: A long-term climatology of medicanes. Climate Dynamics, 43(5—6),

Do Not Cite, Quote or Distribute 10-133 Total pages: 228


https://dx.doi.org/10.5194/cp-12-635-2016
https://dx.doi.org/10.5194/essd-11-241-2019
https://dx.doi.org/10.1023/1004604805647
https://dx.doi.org/10.1016/j.uclim.2019.100565
https://dx.doi.org/10.1002/2013jd020611
https://dx.doi.org/10.1007/s00704-011-0459-z
https://dx.doi.org/10.1037/a0037963
https://dx.doi.org/10.1175/jcli-d-15-0679.1
https://dx.doi.org/10.1007/s00382-017-3580-6
https://dx.doi.org/10.1088/1748-9326/ab7e4f
https://dx.doi.org/10.1088/1748-9326/ab7e4f
https://dx.doi.org/10.1175/jcli-d-14-00754.1
https://dx.doi.org/10.1002/2016gl068079
https://dx.doi.org/10.1002/joc.4639
https://dx.doi.org/10.1175/bams-d-13-00117.1
https://dx.doi.org/10.3402/tellusa.v68.29005
https://dx.doi.org/10.1029/2018jd028378
https://dx.doi.org/10.1007/s10584-018-2167-5
https://dx.doi.org/10.1002/asl.978
https://dx.doi.org/10.1073/pnas.1231332100
https://dx.doi.org/10.1175/jcli-d-19-0280.1
https://dx.doi.org/10.1002/grl.50643
https://dx.doi.org/10.1002/2015gl066015
https://dx.doi.org/10.1002/2014gl061943
https://dx.doi.org/10.1002/joc.6276

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

1183-1195, doi:10.1007/s00382-013-1893-7.

Cayan, D. et al., 2013: Future climate: Projected average. In: Assessment of Climate Change in the Southwest United
States: A Report Prepared for the National Climate Assessment [Garfin, G., A. Jardine, R. Merideth, M. Black,
and S. LeRoy (eds.)]. A report by the Southwest Climate Alliance. Island Press, Washington, DC, USA, pp.
101-125, d0i:10.5822/978-1-61091-484-0_6.

Ceppi, P. and T.G. Shepherd, 2019: The Role of the Stratospheric Polar Vortex for the Austral Jet Response to
Greenhouse Gas Forcing. Geophysical Research Letters, 46(12), 6972—6979, doi:10.1029/2019g1082883.

Ceppi, P., G. Zappa, T.G. Shepherd, and J.M. Gregory, 2018: Fast and Slow Components of the Extratropical
Atmospheric Circulation Response to CO2 Forcing. Journal of Climate, 31(3), 1091-1105, doi: 10.1175/jcli-d-
17-0323.1.

Chadwick, R. and P. Good, 2013: Understanding nonlinear tropical precipitation responses to CO2 forcing.
Geophysical Research Letters, 40(18), 4911-4915, doi:10.1002/grl.50932.

Challinor, A., J. Slingo, A. Turner, and T. Wheeler, 2006: Indian Monsoon: Contribution to the Stern Review.
University of Reading, Reading, UK, 3 pp.

Chan, S.C., E.J. Kendon, H.J. Fowler, S. Blenkinsop, and N.M. Roberts, 2014a: Projected<ncreases in summer and
winter UK sub-daily precipitation extremes from high-resolution regional climate models. Environmental
Research Letters, 9(8), 084019, doi:10.1088/1748-9326/9/8/084019.

Chan, S.C. et al., 2014b: The value of high-resolution Met Office regional climate.models in the simulation of
multihourly precipitation extremes. Journal of Climate, 27(16), 6155=6174, doi:10.1175/jcli-d-13-00723.1.

Chan, S.C. et al., 2020: Europe-wide precipitation projections at convection permitting scale with the:.Unified Model.
Climate Dynamics, 55(3—4), 409—428, do0i:10.1007/s00382-02005192-8.

Chandler, R.E., 2020: Multisite, multivariate weather generation based on generalised linear models. Environmental
Modelling & Software, 134, 104867, doi:10.1016/j.envsoft.2020.104867.

Chandrasa, G.T. and A. Montenegro, 2019: Evaluation of regional climate model simulated rainfall over Indonesia and
its application for downscaling future climate projections. International Journal of Climatology, joc.6316,
doi:10.1002/joc.6316.

Chaney, N.W., J. Sheffield, G. Villarini, and E.F. Wood, 2014: Development-of a High-Resolution Gridded Daily
Meteorological Dataset over Sub-Saharan Aftrica: Spatial Analysis of Trends in Climate Extremes. Journal of
Climate, 27(15), 5815-5835, doi:10.1175/jcli-d-13-00423.1.

Chang, E.K.M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global
warming. Journal of Geophysical Research: Atmospheres, 117(D23), n/a—n/a, doi:10.1029/2012jd018578.

Chang, E.K.M., C.-G. Ma, C. Zheng, and’A.M.W. Yau, 2016: Observed and projected decrease in Northern
Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophysical
Research Letters, 43(5), 2200-2208, doi:10.1002/2016g1068172.

Chardon, J., B. Hingray, and A.-C. Favre, 2018: An adaptive two-stage analog/regression model for probabilistic
prediction of small-scale precipitation in'France. Hydrology and Earth System Sciences, 22(1), 265286,
doi:10.5194/hess-22-265-2018.

Charles, S.P., B.C. Bates, P.H. Whetton, and J.P. Hughes, 1999: Validation of downscaling models for changed climate
conditions: case study of southwestern Australia. Climate Research, 12, 1-14, doi:10.3354/cr012001.

Chaudhuri, A.-H., R.M. Ponte, G. Forget, and P. Heimbach, 2013: A Comparison of Atmospheric Reanalysis Surface
Products over the Ocean and Implications for Uncertainties in Air—Sea Boundary Forcing. Journal of Climate,
26(1),.153-170, doi:10.1175/jcli-d-12-00090.1.

Cheema, M.J.M:and W.G.M: Bastiaanssen, 2012: Local calibration of remotely sensed rainfall from the TRMM
satellite for different periods and spatial scales in the Indus Basin. Infernational Journal of Remote Sensing,
33(8), 26032627, doi:10:1080/01431161.2011.617397.

Chen, F. et al., 201 1:The integrated WRF/urban modelling system: development, evaluation, and applications to urban
environmental problems. International Journal of Climatology, 31(2), 273-288, doi:10.1002/joc.2158.

Chen, F. et al., 2012: Research Priorities in Observing and Modeling Urban Weather and Climate. Bulletin of the
American Meteorological Society, 93(11), 1725-1728, doi:10.1175/bams-d-11-00217.1.

Chen, H4sC.-Y Xuy and S. Guo, 2012: Comparison and evaluation of multiple GCMs, statistical downscaling and
hydrological models in the study of climate change impacts on runoff. Journal of Hydrology, 434—435, 3645,
doi: 10.1016/j.jhydrol.2012.02.040.

Chen, H., H. Ma, X. Li, and S. Sun, 2015: Solar influences on spatial patterns of Eurasian winter temperature and
atmospheric general circulation anomalies. Journal of Geophysical Research: Atmospheres, 120(17), 8642—
8657, doi:10.1002/2015jd023415.

Chen, H. et al., 2016: Large-scale urbanization effects on eastern Asian summer monsoon circulation and climate.
Climate Dynamics, 47(1-2), 117-136, doi:10.1007/s00382-015-2827-3.

Chen, H.W., F. Zhang, and R.B. Alley, 2016: The Robustness of Midlatitude Weather Pattern Changes due to Arctic
Sea Ice Loss. Journal of Climate, 29(21), 7831-7849, doi:10.1175/jcli-d-16-0167.1.

Chen, J. and J. Chen, 2018: GlobeLand30: Operational global land cover mapping and big-data analysis. Science China
Earth Sciences, 61(10), 1533-1534, doi:10.1007/s11430-018-9255-3.

Do Not Cite, Quote or Distribute 10-134 Total pages: 228


https://dx.doi.org/10.1007/s00382-013-1893-7
https://dx.doi.org/10.5822/978-1-61091-484-0_6
https://dx.doi.org/10.1029/2019gl082883
https://dx.doi.org/10.1175/jcli-d-17-0323.1
https://dx.doi.org/10.1175/jcli-d-17-0323.1
https://dx.doi.org/10.1002/grl.50932
https://dx.doi.org/10.1088/1748-9326/9/8/084019
https://dx.doi.org/10.1175/jcli-d-13-00723.1
https://dx.doi.org/10.1007/s00382-020-05192-8
https://dx.doi.org/10.1016/j.envsoft.2020.104867
https://dx.doi.org/10.1002/joc.6316
https://dx.doi.org/10.1175/jcli-d-13-00423.1
https://dx.doi.org/10.1029/2012jd018578
https://dx.doi.org/10.1002/2016gl068172
https://dx.doi.org/10.5194/hess-22-265-2018
https://dx.doi.org/10.3354/cr012001
https://dx.doi.org/10.1175/jcli-d-12-00090.1
https://dx.doi.org/10.1080/01431161.2011.617397
https://dx.doi.org/10.1002/joc.2158
https://dx.doi.org/10.1175/bams-d-11-00217.1
https://dx.doi.org/10.1016/j.jhydrol.2012.02.040
https://dx.doi.org/10.1002/2015jd023415
https://dx.doi.org/10.1007/s00382-015-2827-3
https://dx.doi.org/10.1175/jcli-d-16-0167.1
https://dx.doi.org/10.1007/s11430-018-9255-3

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Chen, J. and F.P. Brissette, 2019: Reliability of climate model multi-member ensembles in estimating internal
precipitation and temperature variability at the multi-decadal scale. International Journal of Climatology,
39(2), 843-856, doi:10.1002/joc.5846.

Chen, J. et al., 2020: Impacts of climate change on tropical cyclones and induced storm surges in the Pearl River Delta
region using pseudo-global-warming method. Scientific Reports, 10(1), 1965, doi:10.1038/s41598-020-58824-
8.

Chen, L. and P.A. Dirmeyer, 2019: Global observed and modelled impacts of irrigation on surface temperature.
International Journal of Climatology, 39(5), 2587-2600, doi:10.1002/joc.5973.

Chen, L., J. Francis, and E. Hanna, 2018: The “Warm-Arctic/Cold-continents” pattern during 1901-2010. International
Journal of Climatology, 38(14), 5245-5254, doi:10.1002/joc.5725.

Chen, M. et al., 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. Journal of
Geophysical Research, 113(D4), D04110, doi:10.1029/2007jd009132.

Chen, S. et al., 2019: Added Value of a Dynamical Downscaling Approach for Simulating Precipitation and
Temperature Over Tianshan Mountains Area, Central Asia. Journal of Geophysical Research: Atmospheres,
124(21), 11051-11069, d0i:10.1029/2019jd031016.

Chen, X. and T. Zhou, 2015: Distinct effects of global mean warming and regional sea.surface warming patternon
projected uncertainty in the South Asian summer monsoon. Geophysical Research Letters, 42(21),9433-9439,
doi:10.1002/2015¢1066384.

Chen, X. and S.-J. Jeong, 2018: Irrigation enhances local warming with greatermocturnal warming effects.than daytime
cooling effects. Environmental Research Letters, 13(2), 024005, doi: 10.1088/1748-9326/aa9dea.

Chen, Z. et al., 2020: Global Land Monsoon Precipitation Changes in CMIP6 Projections. Geophysical Research
Letters, 47(14), doi:10.1029/2019¢1086902.

Cheng, X. et al., 2020: Reducing air pollution increases the local diurnal temperature range:“A case study of Lanzhou,
China. Meteorological Applications, 27(4), €1939, doi:10.1002/met. 1939.

Chenoli, S.N., M.Y. Ahmad Mazuki, J. Turner, and A.A. Samah, 2017:Historical and projected changes in the
Southern Hemisphere Sub-tropical Jet during winter from the CMIPS models. Climate Dynamics, 48(1-2),
661-681, doi:10.1007/s00382-016-3102-y.

Cherchi, A., A. Alessandri, S. Masina, and A. Navarra, 2011: Effects of increased CO2 levels on monsoons. Climate
Dynamics, 37(1-2), 83-101, doi:10.1007/s00382-010-0801-7.

Cherchi, A., H. Annamalai, S. Masina, and A. Navarra, 2014: South Asian'summer monsoon and the eastern
Mediterranean climate: The monsoon-desert mechanism in CMIP5 simulations. Journal of Climate,
doi:10.1175/jcli-d-13-00530.1.

Chevuturi, A., N.P. Klingaman, A.G. Turner; and S. Hannah, 2018: Projected Changes in the Asian-Australian
Monsoon Region in 1.5°Csand 2.0°C Global-Warming Scenarios. Earth’s Future, 6(3), 339-358,
doi:10.1002/2017¢f000734:

Chimani, B. et al., 2018: Inter-comparison of methods to homogenize daily relative humidity. International Journal of
Climatology, 38(7), 3106—3122, doi: 10.1002/joc.5488.

Chimani, B. et al., 2020: Compilation of a guideline providing comprehensive information on freely available climate
change data and facilitating their efficient retrieval. Climate Services, 19, 100179,
doi:10.1016/1.cliser2020.100179.

Chiodo, G., J. Ochrlein, L.M. Polvani, J.C. Fyfe, and A.K. Smith, 2019: Insignificant influence of the 11-year solar
cycleron the:North Atlantic Oscillation. Nature Geoscience, 12(2), 94-99, doi:10.1038/s41561-018-0293-3.

Chiriaco, M. et al., 2018: ReOBS:.a new approach to synthesize long-term multi-variable dataset and application to the
SIRTA supersite. Earth System Science Data, 10(2), 919-940, doi:10.5194/essd-10-919-2018.

Cholette, M., R. Laprise, and J. Thériault, 2015: Perspectives for Very High-Resolution Climate Simulations with
Nested Models: [llustration of Potential in Simulating St. Lawrence River Valley Channelling Winds with the
Fifth-Generation Canadian Regional Climate Model. Climate, 3(2), 283-307, doi:10.3390/cli3020283.

Choudhary, A., A.P. Dimri, and P. Maharana, 2018: Assessment of CORDEX-SA experiments in representing
precipitation climatology of summer monsoon over India. Theoretical and Applied Climatology, 134(1-2),
283-307, doi:10.1007/s00704-017-2274-7.

Chow, W.T:L:et al., 2014: A multi-method and multi-scale approach for estimating city-wide anthropogenic heat
fluxes. Atmospheric Environment, 99, 64-76, doi:10.1016/j.atmosenv.2014.09.053.

Christensen, J.H., T.R. Carter, and F. Giorgi, 2002: PRUDENCE employs new methods to assess European climate
change. Eos, Transactions American Geophysical Union, 83(13), 147, doi:10.1029/2002¢0000094.

Christensen, J.H., M.A.D.D. Larsen, O.B. Christensen, M. Drews, and M. Stendel, 2019: Robustness of European
climate projections from dynamical downscaling. Climate Dynamics, 53(7-8), 4857-4869,
doi:10.1007/s00382-019-04831-z.

Christensen, J.H. et al., 2007: Regional Climate Projections. In: Climate Change 2007: The Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller
(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 847-940.

Do Not Cite, Quote or Distribute 10-135 Total pages: 228


https://dx.doi.org/10.1002/joc.5846
https://dx.doi.org/10.1038/s41598-020-58824-8
https://dx.doi.org/10.1038/s41598-020-58824-8
https://dx.doi.org/10.1002/joc.5973
https://dx.doi.org/10.1002/joc.5725
https://dx.doi.org/10.1029/2007jd009132
https://dx.doi.org/10.1029/2019jd031016
https://dx.doi.org/10.1002/2015gl066384
https://dx.doi.org/10.1088/1748-9326/aa9dea
https://dx.doi.org/10.1029/2019gl086902
https://dx.doi.org/10.1002/met.1939
https://dx.doi.org/10.1007/s00382-016-3102-y
https://dx.doi.org/10.1007/s00382-010-0801-7
https://dx.doi.org/10.1175/jcli-d-13-00530.1
https://dx.doi.org/10.1002/2017ef000734
https://dx.doi.org/10.1002/joc.5488
https://dx.doi.org/10.1016/j.cliser.2020.100179
https://dx.doi.org/10.1038/s41561-018-0293-3
https://dx.doi.org/10.5194/essd-10-919-2018
https://dx.doi.org/10.3390/cli3020283
https://dx.doi.org/10.1007/s00704-017-2274-7
https://dx.doi.org/10.1016/j.atmosenv.2014.09.053
https://dx.doi.org/10.1029/2002eo000094
https://dx.doi.org/10.1007/s00382-019-04831-z

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Christensen, J.H. et al., 2013: Climate Phenomena and their Relevance for Future Regional Climate Change. In:
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor,
S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (eds.)]. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, pp. 1217-1308, doi:10.1017/cbo9781107415324.028.

Christensen, O.B. and E. Kjellstrom, 2020: Partitioning uncertainty components of mean climate and climate change in
a large ensemble of European regional climate model projections. Climate Dynamics, 54(9-10), 4293-4308,
doi:10.1007/s00382-020-05229-y.

Christiansen, B., 2013: Changes in Temperature Records and Extremes: Are They Statistically Significant? Journal of
Climate, 26(20), 7863—7875, doi:10.1175/jcli-d-12-00814.1.

Chronis, T., D.E. Raitsos, D. Kassis, and A. Sarantopoulos, 2011: The Summer North Atlantic Oscillation Influence on
the Eastern Mediterranean. Journal of Climate, 24(21), 5584-5596, doi:10.1175/2011jcli3839.1.

Chrysoulakis, N., Z. Mitraka, and N. Gorelick, 2019: Exploiting satellite observations for global surface albedo trends
monitoring. Theoretical and Applied Climatology, 137(1-2), 1171-1179, doi:10.1007/s00704-018-2663-6.

Chrysoulakis, N. et al., 2018: Urban energy exchanges monitoring from space. Scientific Reports, 8(1), 11498,
doi:10.1038/s41598-018-29873-x.

Chubb, T., M.J. Manton, A.D. Peace, and S.P. Bilish, 2015: Estimation of Wind-Induced Losses from aPrecipitation
Gauge Network in the Australian Snowy Mountains. Journal of Hydrometeorology, 16(6), 2619—2638,
doi:10.1175/jhm-d-14-0216.1.

Chug, D. et al., 2020: Observed Evidence for Steep Rise in the Extreme Flow of Western Himalayan Rivers.
Geophysical Research Letters, 47(15), doi:10.1029/2020g1087815.

Coats, S., J.E. Smerdon, B.I. Cook, and R. Seager, 2013: Stationarity of the tropical pacifi¢ teleconnection to North
America in CMIP5/PMIP3 model simulations. Geophysical Research Letters,40(18), 4927-4932,
doi:10.1002/grl.50938.

Cohen, J. et al., 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), 627—
637, doi:10.1038/nge02234.

Cohen, J. et al., 2020: Divergent consensuses on Arctic amplification influefice.on midlatitude severe winter weather.
Nature Climate Change, 10(1), 20-29, doi:10.1038/s41558-019-0662-y.

Cohen, J.L., J.C. Furtado, M.A. Barlow, V.A. Alexeev, and J.E. Cherry, 2012: Arctic warming, increasing snow cover
and widespread boreal winter cooling: Environmental Research Letters, 7(1), 014007, doi:10.1088/1748-
9326/7/1/014007.

Colette, A., R. Vautard, and M. Vrac, 2012: Regional climate'downscaling with prior statistical correction of the global
climate forcing. Geophysical Research Letters, 39(13), n/a—n/a, doi:10.1029/2012¢1052258.

Collins, K. and R. Ison, 2009: Jumping off Arnstein’s ladder: social learning as a new policy paradigm for climate
change adaptation. Environmental Policy and Governance, 19(6), 358-373, doi:10.1002/eet.523.

Collins, M. et al., 2013a: Observational challenges in evaluating climate models. Nature Climate Change, 3(11), 940—
941, doi:10.1038/nclimate2012.

Collins, M. et al., 2013b: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate
Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen,
J. Boschung, A. Nauels, Y. Xia, V. Bex, and M. Midgley (eds.)]. Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, pp. 1029-1136, doi:10.1017/cbo9781107415324.024.

Collins, M. et al;; 2018: Challenges and-opportunities for improved understanding of regional climate dynamics. Nature
Climate Change,.8(2),101-108, doi:10.1038/s41558-017-0059-8.

Collow, T.W., W. Wang, and A. Kumar, 2019: Reduction in Northern Midlatitude 2-m Temperature Variability due to
Arctic Sea Ice Loss. Journal of Climate, 32(16), 5021-5035, doi: 10.1175/jcli-d-18-0692.1.

Compo, G.P. et al;; 20113 The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal Meteorological
Society, 137(654), 1-28, doi:10.1002/qj.776.

Condom, T.<et al., 2020: Climatological and Hydrological Observations for the South American Andes: In situ Stations,
Satellite, and Reanalysis Data Sets. Frontiers in Earth Science, 8, doi:10.3389/feart.2020.00092.

Contractor,S:et al., 2020: Rainfall Estimates on a Gridded Network (REGEN) — a global land-based gridded dataset of
daily/precipitation from 1950 to 2016. Hydrology and Earth System Sciences, 24(2), 919-943,
doi:10.5194/hess-24-919-2020.

Cook, B.I., T.R. Ault, and J.E. Smerdon, 2015a: Unprecedented 21st century drought risk in the American Southwest
and Central Plains. Science Advances, 1(1), €1400082, doi:10.1126/sciadv.1400082.

Cook, B.I., S.P. Shukla, M.J. Puma, and L.S. Nazarenko, 2015b: Irrigation as an historical climate forcing. Climate
Dynamics, 44(5-6), 1715-1730, doi:10.1007/s00382-014-2204-7.

Cook, E.R. et al., 2010: Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-
term palaeoclimate context. Journal of Quaternary Science, 25(1), 48—61, doi:10.1002/jgs.1303.

Cook, K.H. and E.K. Vizy, 2015: Detection and Analysis of an Amplified Warming of the Sahara Desert. Journal of
Climate, 28(16), 65606580, doi:10.1175/jcli-d-14-00230.1.

Do Not Cite, Quote or Distribute 10-136 Total pages: 228


https://dx.doi.org/10.1017/cbo9781107415324.028
https://dx.doi.org/10.1007/s00382-020-05229-y
https://dx.doi.org/10.1175/jcli-d-12-00814.1
https://dx.doi.org/10.1175/2011jcli3839.1
https://dx.doi.org/10.1007/s00704-018-2663-6
https://dx.doi.org/10.1038/s41598-018-29873-x
https://dx.doi.org/10.1175/jhm-d-14-0216.1
https://dx.doi.org/10.1029/2020gl087815
https://dx.doi.org/10.1002/grl.50938
https://dx.doi.org/10.1038/ngeo2234
https://dx.doi.org/10.1038/s41558-019-0662-y
https://dx.doi.org/10.1088/1748-9326/7/1/014007
https://dx.doi.org/10.1088/1748-9326/7/1/014007
https://dx.doi.org/10.1029/2012gl052258
https://dx.doi.org/10.1002/eet.523
https://dx.doi.org/10.1038/nclimate2012
https://dx.doi.org/10.1017/cbo9781107415324.024
https://dx.doi.org/10.1038/s41558-017-0059-8
https://dx.doi.org/10.1175/jcli-d-18-0692.1
https://dx.doi.org/10.1002/qj.776
https://dx.doi.org/10.3389/feart.2020.00092
https://dx.doi.org/10.5194/hess-24-919-2020
https://dx.doi.org/10.1126/sciadv.1400082
https://dx.doi.org/10.1007/s00382-014-2204-7
https://dx.doi.org/10.1002/jqs.1303
https://dx.doi.org/10.1175/jcli-d-14-00230.1

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Cook, K.H. and E.K. Vizy, 2019: Contemporary Climate Change of the African Monsoon Systems. Current Climate
Change Reports, 5(3), 145-159, doi:10.1007/s40641-019-00130-1.

Coppola, E. et al., 2020: A first-of-its-kind multi-model convection permitting ensemble for investigating convective
phenomena over Europe and the Mediterranean. Climate Dynamics, 55(1-2), 3—34, doi:10.1007/s00382-018-
4521-8.

Coppola, E. et al., 2021: Assessment of the European Climate Projections as Simulated by the Large EURO-CORDEX
Regional and Global Climate Model Ensemble. Journal of Geophysical Research: Atmospheres, 126(4),
doi:10.1029/2019jd032356.

Corballis, T., 2019: Populating the Climate. Environmental Philosophy, 16(2), 275-289,
doi:10.5840/envirophil201981284.

Corner, A., L. Whitmarsh, and D. Xenias, 2012: Uncertainty, scepticism and attitudes towards climate change: biased
assimilation and attitude polarisation. Climatic Change, 114(3—4), 463-478, doi:10.1007/s10584-012-0424-6.

Corner, A., E. Markowitz, and N. Pidgeon, 2014: Public engagement with climate change: the role of human values:
Wiley Interdisciplinary Reviews: Climate Change, 5(3), 411422, doi:10.1002/wcc.269.

Coumou, D., J. Lehmann, and J. Beckmann, 2015: The weakening summer circulation in the-Northern Hemisphere
mid-latitudes. Science, 348(6232), 324-327, doi:10.1126/science.1261768.

Coumou, D., G. Di Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of Arctic amplification on mid-
latitude summer circulation. Nature Communications, 9(1), 2959, doi:10:1038/s41467-018-05256-8.

Cramer, W., J. Guiot, and K. Marini, 2020: MedECCe 2020 Summary for Policymakers. In: Climate and
Environmental Change in the Mediterranean Basin — Current Situation-and Risks for the Future. First
Mediterranean Assessment Report []. Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France,
pp- 34.

Cramer, W. et al., 2018: Climate change and interconnected risks to sustainable development in the Mediterranean.
Nature Climate Change, 8(11), 972-980, doi:10.1038/s41558-018-0299-2.

Crook, J. et al., 2019: Assessment of the Representation of West African Storm Lifecycles in Convection-Permitting
Simulations. Earth and Space Science, 2018EA000491, doi:10.1029/2018¢a000491.

Crow, W.T. et al., 2015: Robust estimates of soil moisture and latent heat flux.coupling strength obtained from triple
collocation. Geophysical Research Letters, 42(20), 8415-8423,.doi:10:1002/2015¢1065929.

CTT, 2018: Future Forward: Cape Town Tourism Annual Report 2017/2018.4 pp.

Cuervo-Robayo, A.P. et al., 2014: An update of high-resolution monthly climate surfaces for Mexico. International
Journal of Climatology, 34(7), 2427-24377, doi:10.1002/joc.3848.

Cui, J. et al., 2020: Vegetation forcing modulates global landimonsoon and water resources in a CO2-enriched climate.
Nature Communications, 11(1), 5184, doi:10.1038/s41467-020-18992-7.

Culley, S. et al., 2016: A bottom-up‘approach to identifying the maximum operational adaptive capacity of water
resource systems to a changing climate. Water Resources Research, 52(9), 6751-6768,
doi:10.1002/2015wr018253.

Cumming, G.S., D.H.M. Cumming, and C.L. Redman, 2006: Scale Mismatches in Social-Ecological Systems : Causes,
Consequences,‘and Solutions. Ecology and Society, 11(1), 14.

Cvijanovic, I. et al., 2017: Future loss of Arctic sea-ice cover could drive a substantial decrease in California’s rainfall.
Nature Communications, 8(1), 1947, doi:10.1038/s41467-017-01907-4.

D’Agostino, R., J. Bader, S. Bordoni, D. Ferreira, and J. Jungclaus, 2019: Northern Hemisphere Monsoon Response to
Mid-Holocene Orbital Forcing and Greenhouse Gas-Induced Global Warming. Geophysical Research Letters,
46(3), 15911601, doi:10.1029/201821081589.

Dafka, S. et al.; 2018: On theability of RCMs to capture the circulation pattern of Etesians. Climate Dynamics, 51(5—
6), 1687-1706, doi:10.1007/s00382-017-3977-2.

Dahlgren, P., T. Landelius, P. Kallberg, and S. Gollvik, 2016: A high-resolution regional reanalysis for Europe. Part 1:
Three-dimensional reanalysis with the regional HIgh-Resolution Limited-Area Model (HIRLAM). Quarterly
Journal of the Royal Meteorological Society, 142(698), 2119-2131, doi:10.1002/qj.2807.

Dai, A. and C.E. Bloecker, 2019: Impacts of internal variability on temperature and precipitation trends in large
ensemble simulations by two climate models. Climate Dynamics, 52(1-2), 289—306, doi:10.1007/s00382-018-
4132-4.

Dai, A. and M: Song, 2020: Little influence of Arctic amplification on mid-latitude climate. Nature Climate Change,
10(3), 231-237, d0i:10.1038/s41558-020-0694-3.

Dandou, A., M. Tombrou, E. Akylas, N. Soulakellis, and E. Bossioli, 2005: Development and evaluation of an urban
parameterization scheme in the Penn State/NCAR Mesoscale Model (MMYS). Journal of Geophysical Research
D: Atmospheres, 110, doi:10.1029/2004jd005192.

Daniel, M. et al., 2019: Benefits of explicit urban parameterization in regional climate modeling to study climate and
city interactions. Climate Dynamics, 52(5-6), 2745-2764, doi:10.1007/s00382-018-4289-x.

Daniels, E.E., G. Lenderink, R.W.A. Hutjes, and A.A.M. Holtslag, 2016: Observed urban effects on precipitation along
the Dutch West coast. International Journal of Climatology, 36(4), 2111-2119, doi:10.1002/joc.4458.

Darmaraki, S. et al., 2019: Future evolution of Marine Heatwaves in the Mediterranean Sea. Climate Dynamics,

Do Not Cite, Quote or Distribute 10-137 Total pages: 228


https://dx.doi.org/10.1007/s40641-019-00130-1
https://dx.doi.org/10.1007/s00382-018-4521-8
https://dx.doi.org/10.1007/s00382-018-4521-8
https://dx.doi.org/10.1029/2019jd032356
https://dx.doi.org/10.5840/envirophil201981284
https://dx.doi.org/10.1007/s10584-012-0424-6
https://dx.doi.org/10.1002/wcc.269
https://dx.doi.org/10.1126/science.1261768
https://dx.doi.org/10.1038/s41467-018-05256-8
https://dx.doi.org/10.1038/s41558-018-0299-2
https://dx.doi.org/10.1029/2018ea000491
https://dx.doi.org/10.1002/2015gl065929
https://dx.doi.org/10.1002/joc.3848
https://dx.doi.org/10.1038/s41467-020-18992-7
https://dx.doi.org/10.1002/2015wr018253
https://dx.doi.org/10.1038/s41467-017-01907-4
https://dx.doi.org/10.1029/2018gl081589
https://dx.doi.org/10.1007/s00382-017-3977-2
https://dx.doi.org/10.1002/qj.2807
https://dx.doi.org/10.1007/s00382-018-4132-4
https://dx.doi.org/10.1007/s00382-018-4132-4
https://dx.doi.org/10.1038/s41558-020-0694-3
https://dx.doi.org/10.1029/2004jd005192
https://dx.doi.org/10.1007/s00382-018-4289-x
https://dx.doi.org/10.1002/joc.4458

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

doi:10.1007/s00382-019-04661-z.

Daron, J. et al., 2018: Providing future climate projections using multiple models and methods: insights from the
Philippines. Climatic Change, 148(1-2), 187-203, doi:10.1007/s10584-018-2183-5.

Daron, J.D., K. Sutherland, C. Jack, and B.C. Hewitson, 2014: The role of regional climate projections in managing
complex socio-ecological systems. Regional Environmental Change, 15(1), 1-12, doi:10.1007/s10113-014-
0631-y.

Daron, J.D., S. Lorenz, P. Wolski, R.C. Blamey, and C. Jack, 2015: Interpreting climate data visualisations to inform
adaptation decisions. Climate Risk Management, 10, 17-26, doi:10.1016/j.crm.2015.06.007.

Davini, P., J. Hardenberg, and S. Corti, 2015: Tropical origin for the impacts of the Atlantic Multidecadal Variability on
the Euro-Atlantic climate. Environmental Research Letters, 10(9), 094010, doi:10.1088/1748-
9326/10/9/094010.

Davini, P. et al., 2017: Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations
in the EC-Earth global climate model. Geoscientific Model Development, 10(3), 1383—1402, doi: 10.5194/gind-
10-1383-2017.

Dawson, A. and T.N. Palmer, 2015: Simulating weather regimes: impact of model resolution.and stochastic
parameterization. Climate Dynamics, 44(7), 2177-2193, doi:10.1007/s00382-014-2238-x.

Dayon, G., J. Boé, and E. Martin, 2015: Transferability in the future climate of a statistical downscaling:method. for
precipitation in France. Journal of Geophysical Research: Atmospheres,;120(3), 1023—1043;
doi:10.1002/2014jd022236.

de Bruijn, K.M., L. Cumiskey, R. Ni Dhubhda, M. Hounjet, and W. Hynes, 2016:"Flood vulnerability.of critical
infrastructure in Cork, Ireland. E3S Web of Conferences, 7, 07005; doi:10.4051/e3s¢onf/20160707005.

de Jesus, E.M. et al., 2016: Contribution of cold fronts to secasonal rainfall in simulations ever the southern La Plata
Basin. Climate Research, 68(2-3), 243-255.

de Kok, R.J., P.D.A. Kraaijenbrink, O.A. Tuinenburg, P.N.J. Bonickamp, and W.W. Immerzeel; 2020a: Towards
understanding the pattern of glacier mass balances in High Mountain Asia using regional climatic modelling.
The Cryosphere, 14(9), 3215-3234, doi:10.5194/t¢-14-3215-2020.

de Kok, R.J., P.D.A. Kraaijenbrink, O.A. Tuinenburg, P.N.J. Bonekamp, and"W.W. Immerzeel, 2020b: Towards
understanding the pattern of glacier mass balanees in High Mountain Asiausing regional climatic modelling.
The Cryosphere, 14(9), 3215-3234, doi: 10.5194/tc-14-3215-2020.

de Munck, C. et al., 2013: How much can air conditioning increase air temperatures for a city like Paris, France?
International Journal of Climatology, 33(1), 210-227,.doi:10.1002/joc.3415.

De Troch, R., R. Hamdi, H. Van de Vyver, J.-F. Geleyn, andP. Termonia, 2013: Multiscale Performance of the
ALARO-0 Model for Simulating Extreme Summer Precipitation Climatology in Belgium. Journal of Climate,
26(22), 8895-8915, doi: 10:1175/jcli-d-12-00844.1.

de Vos, L.W., H. Leijnse, A. Overcem, and R. Uijlenhoet, 2019: Quality Control for Crowdsourced Personal Weather
Stations to Enable Operational Rainfall Monitoring. Geophysical Research Letters, 46(15), 8820—8829,
doi:10.1029/201921083731.

DEA, 2013: Long-Term'Adaptation Scenarios Flagship Research Programme (LTAS) for South Africa. Climate Trends
and Scenarios for South Africa.Department of Environmental Affairs (DEA), Pretoria, South Africa, 132 pp.

DEA, 2018: South Africa’s"Third National Communication under the United Nations Framework Convention on
Climate Change. Department of Environmental Affairs (DEA), Pretoria, South Africa, 351 pp.

Dee, D.P. et@l:; 2011 The ERA-Interim reanalysis: Configuration and performance of the data assimilation system.
Quarterly Journal of the Royal Meteorological Society, 137, 553-597, doi:10.1002/qj.828.

DeFlorio, M.J. et al., 2016: Interannual modulation of subtropical Atlantic boreal summer dust variability by ENSO.
Climate Dynamics, 46(1); 585-599, doi:10.1007/s00382-015-2600-7.

Dekens, L., S. Parey, M. Grandjacques, and D. Dacunha-Castelle, 2017: Multivariate distribution correction of climate
model outputs: A generalization of quantile mapping approaches. Environmetrics, 28(6), €2454,
doi:10.1002/env2454.

Dell’Aquilag A. et al., 2018: Evaluation of simulated decadal variations over the Euro-Mediterranean region from
ENSEMBLES to Med-CORDEX. Climate Dynamics, 51(3), 857-876, doi:10.1007/s00382-016-3143-2.

Della-Marta; P.M. and H. Wanner, 2006: A Method of Homogenizing the Extremes and Mean of Daily Temperature
Measurements. Journal of Climate, 19(17), 4179—4197, doi:10.1175/jcli3855.1.

DelSole, T., M.K. Tippett, and J. Shukla, 2011: A Significant Component of Unforced Multidecadal Variability in the
Recent Acceleration of Global Warming. Journal of Climate, 24(3), 909-926, doi:10.1175/2010jcli3659.1.

Delworth, T.L. and F. Zeng, 2014: Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases
and ozone levels. Nature Geoscience, 7(8), 583—587, doi:10.1038/nge02201.

Delworth, T.L., F. Zeng, A. Rosati, G.A. Vecchi, and A.T. Wittenberg, 2015: A Link between the Hiatus in Global
Warming and North American Drought. Journal of Climate, 28(9), 3834—3845, doi:10.1175/jcli-d-14-00616.1.

Demory, M.-E. et al., 2014: The role of horizontal resolution in simulating drivers of the global hydrological cycle.
Climate Dynamics, 42(7), 2201-2225, doi:10.1007/s00382-013-1924-4.

Demory, M.-E. et al., 2020: European daily precipitation according to EURO-CORDEX regional climate models

Do Not Cite, Quote or Distribute 10-138 Total pages: 228


https://dx.doi.org/10.1007/s00382-019-04661-z
https://dx.doi.org/10.1007/s10584-018-2183-5
https://dx.doi.org/10.1007/s10113-014-0631-y
https://dx.doi.org/10.1007/s10113-014-0631-y
https://dx.doi.org/10.1016/j.crm.2015.06.007
https://dx.doi.org/10.1088/1748-9326/10/9/094010
https://dx.doi.org/10.1088/1748-9326/10/9/094010
https://dx.doi.org/10.5194/gmd-10-1383-2017
https://dx.doi.org/10.5194/gmd-10-1383-2017
https://dx.doi.org/10.1007/s00382-014-2238-x
https://dx.doi.org/10.1002/2014jd022236
https://dx.doi.org/10.1051/e3sconf/20160707005
https://dx.doi.org/10.5194/tc-14-3215-2020
https://dx.doi.org/10.5194/tc-14-3215-2020
https://dx.doi.org/10.1002/joc.3415
https://dx.doi.org/10.1175/jcli-d-12-00844.1
https://dx.doi.org/10.1029/2019gl083731
https://dx.doi.org/10.1002/qj.828
https://dx.doi.org/10.1007/s00382-015-2600-7
https://dx.doi.org/10.1002/env.2454
https://dx.doi.org/10.1007/s00382-016-3143-2
https://dx.doi.org/10.1175/jcli3855.1
https://dx.doi.org/10.1175/2010jcli3659.1
https://dx.doi.org/10.1038/ngeo2201
https://dx.doi.org/10.1175/jcli-d-14-00616.1
https://dx.doi.org/10.1007/s00382-013-1924-4

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

(RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison
Project (HighResMIP). Geoscientific Model Development, 13(11), 5485-5506, doi:10.5194/gmd-13-5485-
2020.

Deng, B. et al., 2013: Evaluation of the CLM4 Lake Model at a Large and Shallow Freshwater Lake. Journal of
Hydrometeorology, 14(2), 636—649, doi:10.1175/jhm-d-12-067.1.

Deng, J., A. Dai, and H. Xu, 2020: Nonlinear Climate Responses to Increasing CO2 and Anthropogenic Aerosols
Simulated by CESM1. Journal of Climate, 33(1), 281-301, doi:10.1175/jcli-d-19-0195.1.

Déqué, M. and J.P. Piedelievre, 1995: High resolution climate simulation over Europe. Climate Dynamics, 11(6), 321—
339, doi:10.1007/bf00215735.

Déqué, M. et al., 2012: The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general
circulation models and interannual variability. Climate Dynamics, 38(5-6), 951-964, doi:10.1007/s00382-011-
1053-x.

Deser, C., R.A. Tomas, and L. Sun, 2015: The Role of Ocean—Atmosphere Coupling in the Zonal-Mean Atmospheric
Response to Arctic Sea Ice Loss. Journal of Climate, 28(6), 2168-2186, doi: 10.1175/jeli-d-14-00325.1.

Deser, C., L. Terray, and A.S. Phillips, 2016: Forced and Internal Components of Winter Air-Temperature Trends:.over
North America during the past 50 Years: Mechanisms and Implications. Journal of Climate, 29(6), 2237=2258,
doi:10.1175/jcli-d-15-0304.1.

Deser, C., R. Guo, and F. Lehner, 2017a: The relative contributions of tropical Pacific sea surface temperatures and
atmospheric internal variability to the recent global warming hiatus. Geophysical Research Letters, 44(15),
7945-7954, doi:10.1002/2017¢1074273.

Deser, C., J.W. Hurrell, and A.S. Phillips, 2017b: The role of the North Atlantic Oscillation in European climate
projections. Climate Dynamics, 49(9-10), 3141-3157, doi:10.1007/s00382-016-3502=z.

Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate changeprojections: the role of internal
variability. Climate Dynamics, 38(3—4), 527-546, doi: 10.1007/s00382-010-0977-x.

Deser, C., A.S. Phillips, M.A. Alexander, and B. Smoliak, 2014: Projecting North American Climate over the Next 50
Years: Uncertainty due to Internal Variability. Journal of Climate, 27(6), 2271-2296, doi:10.1175/jcli-d-13-
00451.1.

Deser, C., LR. Simpson, K.A. McKinnon, and A.S. Phillips, 2017c: The Northern Hemisphere Extratropical
Atmospheric Circulation Response to ENSO: How Well Do We Know It and How Do We Evaluate Models
Accordingly? Journal of Climate, 30(13), 5059-5082, doi: 10.1175/jeli-d-16-0844.1.

Deser, C. et al., 2020: Insights from Earth system‘model initial-condition large ensembles and future prospects. Nature
Climate Change, 10(4), 277-286, doi:10.1038/s41558-020-0731-2.

Dessali, S. et al., 2018: Building narratives to.characterise uncertainty in regional climate change through expert
elicitation. Environmental Research Letters, 13(7), 074005, doi: 10.1088/1748-9326/aabedd.

Devanand, A., M. Huang, M. Ashfaq, B. Barik, and S. Ghosh, 2019: Choice of Irrigation Water Management Practice
Affects Indian Summer Monseon Rainfall and Its Extremes. Geophysical Research Letters, 46(15), 9126—
9135, doi:10.1029/2019¢1083875.

Devers, A., J.-P. Vidal, C. Lauvernet, B. Graff, and O. Vannier, 2020: A framework for high-resolution meteorological
surface reanalysis through offline data assimilation in an ensemble of downscaled reconstructions. Quarterly
Journal of the Royal Meteorological Society, 146(726), 153—173, doi:10.1002/qj.3663.

Dey, R., S.C. Lewis, and N.J. Abram, 2019a: Investigating observed northwest Australian rainfall trends in Coupled
Model.Intereomparison Project phase 5 detection and attribution experiments. International Journal of
Climatology, 39(1), 112-127;.d01:10.1002/joc.5788.

Dey, R., S.C. Lewis, J.M._ Arblaster, and N.J. Abram, 2019b: A review of past and projected changes in Australia’s
rainfall. Wiley Interdisciplinary Reviews: Climate Change, ¢00577, doi:10.1002/wcc.577.

Di Capua, G. and D..Coumou, 2016: Changes in meandering of the Northern Hemisphere circulation. Environmental
Research'Letters; 11(9), 094028, doi:10.1088/1748-9326/11/9/094028.

Di Luca, A., R. de Elia, and R. Laprise, 2012: Potential for added value in precipitation simulated by high-resolution
nested Regional Climate Models and observations. Climate Dynamics, 38(5-6), 1229-1247,
doi:10:1007/s00382-011-1068-3.

Di Luca, Ay R. de Elia, and R. Laprise, 2015: Challenges in the Quest for Added Value of Regional Climate Dynamical
Downscaling. Current Climate Change Reports, 10-21, doi:10.1007/s40641-015-0003-9.

Di Luca, A., D. Argiieso, J.P. Evans, R. de Elia, and R. Laprise, 2016: Quantifying the overall added value of
dynamical downscaling and the contribution from different spatial scales. Journal of Geophysical Research:
Atmospheres, 121(4), 1575-1590, doi:10.1002/2015jd024009.

Di Sante, F., E. Coppola, R. Farneti, and F. Giorgi, 2019: Indian Summer Monsoon as simulated by the regional earth
system model RegCM-ES: the role of local air—sea interaction. Climate Dynamics, doi:10.1007/s00382-019-
04612-8.

Diaconescu, E.P. and R. Laprise, 2013: Can added value be expected in RCM-simulated large scales? Climate
Dynamics, 41(7-8), 1769—1800, doi:10.1007/s00382-012-1649-9.

Diaz, L.B. and C.S. Vera, 2017: Austral summer precipitation interannual variability and trends over Southeastern

Do Not Cite, Quote or Distribute 10-139 Total pages: 228


https://dx.doi.org/10.5194/gmd-13-5485-2020
https://dx.doi.org/10.5194/gmd-13-5485-2020
https://dx.doi.org/10.1175/jhm-d-12-067.1
https://dx.doi.org/10.1175/jcli-d-19-0195.1
https://dx.doi.org/10.1007/bf00215735
https://dx.doi.org/10.1007/s00382-011-1053-x
https://dx.doi.org/10.1007/s00382-011-1053-x
https://dx.doi.org/10.1175/jcli-d-14-00325.1
https://dx.doi.org/10.1175/jcli-d-15-0304.1
https://dx.doi.org/10.1002/2017gl074273
https://dx.doi.org/10.1007/s00382-016-3502-z
https://dx.doi.org/10.1007/s00382-010-0977-x
https://dx.doi.org/10.1175/jcli-d-13-00451.1
https://dx.doi.org/10.1175/jcli-d-13-00451.1
https://dx.doi.org/10.1175/jcli-d-16-0844.1
https://dx.doi.org/10.1038/s41558-020-0731-2
https://dx.doi.org/10.1088/1748-9326/aabcdd
https://dx.doi.org/10.1029/2019gl083875
https://dx.doi.org/10.1002/qj.3663
https://dx.doi.org/10.1002/joc.5788
https://dx.doi.org/10.1002/wcc.577
https://dx.doi.org/10.1088/1748-9326/11/9/094028
https://dx.doi.org/10.1007/s00382-011-1068-3
https://dx.doi.org/10.1007/s40641-015-0003-9
https://dx.doi.org/10.1002/2015jd024009
https://dx.doi.org/10.1007/s00382-019-04612-8
https://dx.doi.org/10.1007/s00382-019-04612-8
https://dx.doi.org/10.1007/s00382-012-1649-9

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

South America in CMIPS models. International Journal of Climatology, 37(S1), 681-695,
doi:10.1002/joc.5031.

Diaz, L.B., R.I. Saurral, and C.S. Vera, 2020: Assessment of South America summer rainfall climatology and trends in
a set of global climate models large ensembles. International Journal of Climatology, joc.6643,
doi:10.1002/joc.6643.

Dienst, M., J. Lindén, E. Engstrom, and J. Esper, 2017: Removing the relocation bias from the 155-year Haparanda
temperature record in Northern Europe. International Journal of Climatology, 37(11), 4015-4026,
doi:10.1002/joc.4981.

Dienst, M., J. Lindén, Saladié, and J. Esper, 2019: Detection and elimination of UHI effects in long temperature records
from villages — A case study from Tivissa, Spain. Urban Climate, 27, 372-383,
doi:10.1016/j.uclim.2018.12.012.

Dieppois, B. et al., 2019: Southern African summer-rainfall variability, and its teleconnections, on interannual to
interdecadal timescales in CMIP5 models. Climate Dynamics, 53(5-6), 3505-3527, doi:10.1007/s00382-019-
04720-5.

Diffenbaugh, N.S. and F. Giorgi, 2012: Climate change hotspots in the CMIP5 global climate.model ensemble.
Climatic Change, 114(3—4), 813—-822, doi:10.1007/s10584-012-0570-x.

Diffenbaugh, N.S., D.L. Swain, and D. Touma, 2015: Anthropogenic warming has increased drought risk in California.
Proceedings of the National Academy of Sciences, 112(13), 3931-3936,d0i:10.1073/pnas. 1422385 1'12.

Dileepkumar, R., K. AchutaRao, and T. Arulalan, 2018: Human influence on sub-regional surfaceair temperature
change over India. Scientific Reports, 8(1), 8967, doi:10.1038/s41598-018=27185-8.

Dimri, A.P., D. Kumar, A. Choudhary, and P. Maharana, 2018: Future changes over the Himalayas: Mean temperature.
Global and Planetary Change, 162, 235-251, doi:10.1016/j.gloplacha.2018.01.014.

Ding, Q., E.J. Steig, D.S. Battisti, and J.M. Wallace, 2012: Influence of the Tropics on.the Southefrn Annular Mode.
Journal of Climate, 25(18), 6330-6348, doi:10.1175/jcli-d-11-00523.1.

Ding, Q. et al., 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland.
Nature, 509(7499), 209-212, doi: 10.1038/naturel3260.

Dinku, T., K. Hailemariam, R. Maidment, E. Tarnavsky, and S.:*Connor, 2014:.Combined use of satellite estimates and
rain gauge observations to generate high-quality historical rainfall time series over Ethiopia. International
Journal of Climatology, 34(7), 2489-2504, doi:10.1002/joc.3855.

Dittus, A.J., D.J. Karoly, S.C. Lewis, L. Alexander, and M.G. Donat, 2016:-A Multiregion Model Evaluation and
Attribution Study of Historical Changesin the Area Affected by Temperature and Precipitation Extremes.
Journal of Climate, 29(23), 8285-8299,.doi:10.1175/]cli-d-16-0164.1.

Dittus, A.J. et al., 2020: Sensitivity of Historical Climate Simulations to Uncertain Aerosol Forcing. Geophysical
Research Letters, 47(13),.doi:10.1029/2019g1085806.

Dixon, K.W. et al., 2016: Evaluating the stationarity assumption in statistically downscaled climate projections: is past
performance an indicator.of future results? Climatic Change, 135(3—4), 395-408, doi:10.1007/s10584-016-
1598-0.

Djenontin, I.N.S. and AiM. Meadow, 2018: The art of co-production of knowledge in environmental sciences and
management: lessons from international practice. Environmental Management, 61(6), 885-903,
doi:10.1007/s00267=018-1028-3.

Doan, Q., H. Kusaka, and Q.B. Ho;2016: Impact of future urbanization on temperature and thermal comfort index in a
developing tropical city: Ho Chi Minh City. Urban Climate, 17, 20-31, doi:10.1016/j.uclim.2016.04.003.

Dobor, L. and T: Hlasny, 2018: Choice-of reference climate conditions matters in impact studies: Case of bias-corrected
CORDEX data set. International Journal of Climatology, doi:10.1002/joc.5930.

Dobriyal, P., A. Qureshi, R.'Badola, and S.A. Hussain, 2012: A review of the methods available for estimating soil
moisture and-its implications for water resource management. Journal of Hydrology, 458—459, 110-117,
doi:10.1016/j4hvdro1.2012.06.021.

Dogar, M.M. and T. Sato; 2019: Regional Climate Response of Middle Eastern, African, and South Asian Monsoon
Regions to Explosive Volcanism and ENSO Forcing. Journal of Geophysical Research: Atmospheres,
124(14), 7580-7598, doi:10.1029/2019;d030358.

Donat, M.G#;"A.J. Pitman, and O. Angg¢lil, 2018: Understanding and Reducing Future Uncertainty in Midlatitude Daily
Heat Extremes Via Land Surface Feedback Constraints. Geophysical Research Letters, 45(19), 10,627-10,636,
doi:10.1029/2018¢1079128.

Donat, M.G. et al., 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the
twentieth century: The HadEX?2 dataset. Journal of Geophysical Research: Atmospheres, 118(5), 2098-2118,
doi:10.1002/jgrd.50150.

Donat, M.G. et al., 2014: Changes in extreme temperature and precipitation in the Arab region: long-term trends and
variability related to ENSO and NAO. International Journal of Climatology, 34(3), 581-592,
doi:10.1002/joc.3707.

Done, J.M., G.J. Holland, C.L. Bruyere, L.R. Leung, and A. Suzuki-Parker, 2015: Modeling high-impact weather and
climate: lessons from a tropical cyclone perspective. Climatic Change, 129(3—4), 381-395,

Do Not Cite, Quote or Distribute 10-140 Total pages: 228


https://dx.doi.org/10.1002/joc.5031
https://dx.doi.org/10.1002/joc.6643
https://dx.doi.org/10.1002/joc.4981
https://dx.doi.org/10.1016/j.uclim.2018.12.012
https://dx.doi.org/10.1007/s00382-019-04720-5
https://dx.doi.org/10.1007/s00382-019-04720-5
https://dx.doi.org/10.1007/s10584-012-0570-x
https://dx.doi.org/10.1073/pnas.1422385112
https://dx.doi.org/10.1038/s41598-018-27185-8
https://dx.doi.org/10.1016/j.gloplacha.2018.01.014
https://dx.doi.org/10.1175/jcli-d-11-00523.1
https://dx.doi.org/10.1038/nature13260
https://dx.doi.org/10.1002/joc.3855
https://dx.doi.org/10.1175/jcli-d-16-0164.1
https://dx.doi.org/10.1029/2019gl085806
https://dx.doi.org/10.1007/s10584-016-1598-0
https://dx.doi.org/10.1007/s10584-016-1598-0
https://dx.doi.org/10.1007/s00267-018-1028-3
https://dx.doi.org/10.1016/j.uclim.2016.04.003
https://dx.doi.org/10.1002/joc.5930
https://dx.doi.org/10.1016/j.jhydrol.2012.06.021
https://dx.doi.org/10.1029/2019jd030358
https://dx.doi.org/10.1029/2018gl079128
https://dx.doi.org/10.1002/jgrd.50150
https://dx.doi.org/10.1002/joc.3707

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

doi:10.1007/s10584-013-0954-6.

Dong, B. and A. Dai, 2015: The influence of the Interdecadal Pacific Oscillation on Temperature and Precipitation over
the Globe. Climate Dynamics, 45(9), 2667-2681, doi:10.1007/s00382-015-2500-x.

Dong, B. and R. Sutton, 2015: Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nature
Climate Change, 5, 757-760, doi:10.1038/nclimate2664.

Dong, B., R.T. Sutton, and L. Shaffrey, 2017: Understanding the rapid summer warming and changes in temperature
extremes since the mid-1990s over Western Europe. Climate Dynamics, 48(5), 1537-1554,
doi:10.1007/s00382-016-3158-8.

Dong, B., R.T. Sutton, T. Woollings, and K. Hodges, 2013: Variability of the North Atlantic summer storm track:
mechanisms and impacts on European climate. Environmental Research Letters, 8(3), 034037,
doi:10.1088/1748-9326/8/3/034037.

Dong, B., R.T. Sutton, E. Highwood, and L. Wilcox, 2014: The impacts of European and Asian anthropogenic sulfur
dioxide emissions on Sahel rainfall. Journal of Climate, 27, 7000-7017, doi:10.1175/jcli-d-13-00769.1.

Dong, B., A. Dai, M. Vuille, and O.E. Timm, 2018: Asymmetric Modulation of ENSO Teleconnections by the
Interdecadal Pacific Oscillation. Journal of Climate, 31(18), 7337—7361, doi: 10. k175/jcli=d-17-0663.1.

Dong, L. and M.J. McPhaden, 2017: Why Has the Relationship between Indian and Pacific Ocean Decadal Variability
Changed in Recent Decades? Journal of Climate, 30(6), 1971-1983, doi:10:1175/jeli-d-16-0313.1.

Dong-feng, Z., H.A.N. Zhen-yu, and S.H.I. Ying, 2017: ScienceDirect Comparison of climate projections between
driving CSIRO-MK3 . 6 . 0 and downscaling simulation of RegCM4 .4.over China. Advances in Climate
Change Research, 8(4), 245-255, doi:10.1016/j.accre.2017.10.001.

Dosio, A., 2016: Projections of climate change indices of temperature and-precipitation from‘an ensemble of bias-
adjusted high-resolution EURO-CORDEX regional climate models. Journal of Geophysical Research:
Atmospheres, 121(10), 5488—5511, doi:10.1002/2015jd024411.

Dosio, A., 2017: Projection of temperature and heat waves for Africa'with an ensemble of CORDEX Regional Climate
Models. Climate Dynamics, 49(1-2), 493-519, doi:10.1007/s00382-016-3355-5.

Dosio, A. and E.M. Fischer, 2018: Will Half a Degree Make a Difference? Robust Projections of Indices of Mean and
Extreme Climate in Europe Under 1.5°C, 2°C, and 3°C.Global Watming. Geophysical Research Letters, 45(2),
935-944, doi:10.1002/2017¢1076222.

Dosio, A., P. Paruolo, and R. Rojas, 2012: Bias cotrection of the ENSEMBLES high resolution climate change
projections for use by impact models:“Analysis of the climate change signal. Journal of Geophysical Research:
Atmospheres, 117(D17), n/a—n/a, doi:10:1029/2012jd017968.

Dosio, A., H.-J. Panitz, M. Schubert-Frisius, and D, Liithi, 2015: Dynamical downscaling of CMIP5 global circulation
models over CORDEX-Africa with. COSMO-CLM: evaluation over the present climate and analysis of the
added value. Climate Dynamics, 44(9-10), 2637-2661, doi:10.1007/s00382-014-2262-x.

Dosio, A. et al., 2019: What canswe know about future precipitation in Africa? Robustness, significance and added
value of projections froma large ensemble of regional climate models. Climate Dynamics, 53(9-10), 5833—
5858, doi:10.1007/s00382-019-04900<3.

Dosio, A. et al., 2020: A'tale of two futures: contrasting scenarios of future precipitation for West Africa from an
ensemble of regional climate models. Environmental Research Letters, 15(6), 064007, doi:10.1088/1748-
9326/ab74de.

Dou, J. and S. Miao, 2017: Impact of mass human migration during Chinese New Year on Beijing urban heat island.
InternationalJournal of Climatology, 37(11), 4199—4210, doi:10.1002/joc.5061.

Douville, H., A.-Voldoire, and O. Geoffroy, 2015: The recent global warming hiatus: What is the role of Pacific
variability? Geophysical Research Letters, 42(3), 880888, doi:10.1002/2014g1062775.

Douville, H., Y. Peings, and D. Saint-Martin, 2017: Snow-(N)AO relationship revisited over the whole twentieth
century. Geophysical Research Letters, 44(1), 569-577, doi:10.1002/2016g1071584.

Doyle, M.E., R.I. Saurral;and V.R. Barros, 2012: Trends in the distributions of aggregated monthly precipitation over
the La Plata Basin. International Journal of Climatology, 32(14), 2149-2162, doi:10.1002/joc.2429.
Driouech, F4 K. EIRhaz, W. Moufouma-Okia, K. Arjdal, and S. Balhane, 2020: Assessing Future Changes of Climate
Extreme Events in the CORDEX-MENA Region Using Regional Climate Model ALADIN-Climate. Earth

Systems and Environment, doi:10.1007/s41748-020-00169-3.

Driscoll, S., A Bozzo, L.J. Gray, A. Robock, and G. Stenchikov, 2012: Coupled Model Intercomparison Project 5
(CMIP5) simulations of climate following volcanic eruptions. Journal of Geophysical Research: Atmospheres,
117(D17), doi:10.1029/2012jd017607.

Drobinski, P. et al., 2018: North-western Mediterranean sea-breeze circulation in a regional climate system model.
Climate Dynamics, 51(3), 1077-1093, doi:10.1007/s00382-017-3595-z.

Drouard, M. and T. Woollings, 2018: Contrasting Mechanisms of Summer Blocking Over Western Eurasia.
Geophysical Research Letters, 45(21), 12,040—12,048, doi:10.1029/2018¢1079894.

Drugg, T., P. Nabat, M. Mallet, and S. Somot, 2019: Model simulation of ammonium and nitrate aerosols distribution in
the Euro-Mediterranean region and their radiative and climatic effects over 1979-2016. Atmospheric
Chemistry and Physics, 19(6), 3707-3731, doi:10.5194/acp-19-3707-2019.

Do Not Cite, Quote or Distribute 10-141 Total pages: 228


https://dx.doi.org/10.1007/s10584-013-0954-6
https://dx.doi.org/10.1007/s00382-015-2500-x
https://dx.doi.org/10.1038/nclimate2664
https://dx.doi.org/10.1007/s00382-016-3158-8
https://dx.doi.org/10.1088/1748-9326/8/3/034037
https://dx.doi.org/10.1175/jcli-d-13-00769.1
https://dx.doi.org/10.1175/jcli-d-17-0663.1
https://dx.doi.org/10.1175/jcli-d-16-0313.1
https://dx.doi.org/10.1016/j.accre.2017.10.001
https://dx.doi.org/10.1002/2015jd024411
https://dx.doi.org/10.1007/s00382-016-3355-5
https://dx.doi.org/10.1002/2017gl076222
https://dx.doi.org/10.1029/2012jd017968
https://dx.doi.org/10.1007/s00382-014-2262-x
https://dx.doi.org/10.1007/s00382-019-04900-3
https://dx.doi.org/10.1088/1748-9326/ab7fde
https://dx.doi.org/10.1088/1748-9326/ab7fde
https://dx.doi.org/10.1002/joc.5061
https://dx.doi.org/10.1002/2014gl062775
https://dx.doi.org/10.1002/2016gl071584
https://dx.doi.org/10.1002/joc.2429
https://dx.doi.org/10.1007/s41748-020-00169-3
https://dx.doi.org/10.1029/2012jd017607
https://dx.doi.org/10.1007/s00382-017-3595-z
https://dx.doi.org/10.1029/2018gl079894
https://dx.doi.org/10.5194/acp-19-3707-2019

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Dubrovsky, M., R. Huth, H. Dabhi, and M.W. Rotach, 2019: Parametric gridded weather generator for use in present
and future climates: focus on spatial temperature characteristics. Theoretical and Applied Climatology,
doi:10.1007/s00704-019-03027-z.

DuchEne, F. et al., 2020: A Statistical-Dynamical Methodology to Downscale Regional Climate Projections to Urban
Scale. Journal of Applied Meteorology and Climatology, 59(6), 1109—1123, doi:10.1175/jamc-d-19-0104.1.

Duchene et al., 9999: A statistical-dynamical methodology to downscale regional climate projections to urban scale.
Journal of Applied Meteorology and Climatology, (submitted.

Ducrocq, V. et al., 2014: HyMeX-SOP1: The Field Campaign Dedicated to Heavy Precipitation and Flash Flooding in
the Northwestern Mediterranean. Bulletin of the American Meteorological Society, 95(7), 1083—-1100,
doi:10.1175/bams-d-12-00244.1.

Dumitrescu, A., M.-V. Birsan, and A. Manea, 2016: Spatio-temporal interpolation of sub-daily (6 h) precipitation over
Romania for the period 1975-2010. International Journal of Climatology, 36(3), 1331-1343,
doi:10.1002/joc.4427.

Dunn, R.J.H., K.M. Willett, D.E. Parker, and L. Mitchell, 2016: Expanding HadISD: quality-controlled, sub-daily
station data from 1931. Geoscientific Instrumentation, Methods and Data Systems;5(2), 473-491,
doi:10.5194/¢i-5-473-2016.

Dupont, S. and P.G. Mestayer, 2006: Parameterization of the urban energy budget with the submesoscale soil model.
Journal of Applied Meteorology and Climatology, doi:10.1175/jam241741.

DWA, 2013: Metropolitan Municipality Non-Revenue / Water Loss Assessment=Department of Water Affairs (DWA),
Republic of South Africa, 82 pp.

DWAF, 2007: Western Cape Water Supply System: Reconciliation Strategy. P WMA 19/000/00/0507, Department of
Water Affairs and Forestry (DWAF), South Africa, 160 pp.

Eade, R. et al., 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world?
Geophysical Research Letters, 41(15), 5620-5628, doi:10.1002/201421061146.

Ehmele, F., L.-A. Kautz, H. Feldmann, and J.G. Pinto, 2020: Long-termvariance of heavy precipitation across central
Europe using a large ensemble of regional climate.model simulations. Earth System Dynamics, 11(2), 469—
490, doi:10.5194/esd-11-469-2020.

Ehret, U., E. Zehe, V. Wulfmeyer, K. Warrach-Sagi,and.J. Liebert, 2012: HESS Opinions ”Should we apply bias
correction to global and regional climate model data?”. Hydrology and Earth System Sciences, 16(9), 3391—
3404, doi:10.5194/hess-16-3391-2012:

Eisenack, K. et al., 2014: Explaining and overcoming barriers torclimate change adaptation. Nature Climate Change,
4(10), 867-872, doi:10.1038/nclimate2350:

Ekstrom, M., M.R. Grose, and P.H. Whetton; 2015: An appraisal of downscaling methods used in climate change
research. Wiley Interdisciplinary Reviews: Climate Change, 6(3), 301-319, doi:10.1002/wcc.339.

Elagib, N.A., 2011: Evolution of urban heat island in'Khartoum. International Journal of Climatology, 31(9), 1377—
1388, doi:10.1002/j0€.2159.

Emile-Geay, J., R. Seager, M.A: Cang, E.R. Cook, and G.H. Haug, 2008: Volcanoes and ENSO over the Past
Millennium. Journal of Climate, 21(13), 3134-3148, doi:10.1175/2007jcli1884.1.

Endo, H., A. Kitoh, and H. Ueda, 2018: A Unique Feature of the Asian Summer Monsoon Response to Global
Warming: The Role'of Different Land—Sea Thermal Contrast Change between the Lower and Upper
Troposphere. SOLA, 14, 57—63, doi:10.2151/s0la.2018-010.

Endris, H.S.@tal., 2013 Assessment of the Performance of CORDEX Regional Climate Models in Simulating East
African'Rainfall. Journal of Climate, 26(21), 8453-8475, doi:10.1175/jcli-d-12-00708.1.

Endris, H.S. etal., 2016: Teleconnection responses in multi-GCM driven CORDEX RCMs over Eastern Africa.
Climate Dynamics, 46(9-10), 28212846, doi:10.1007/s00382-015-2734-7.

Engelbrecht, F.A., J.E:McGregor, and C.J. Engelbrecht, 2009: Dynamics of the Conformal-Cubic Atmospheric Model
projected climate-change signal over southern Africa. International Journal of Climatology, 29(7), 10131033,
doi:10.1002/joc.4742.

England, M:H. et al.; 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming
hiatus. Nature Climate Change, 4(3), 222227, doi:10.1038/nclimate2106.

England, M:R:; L.M. Polvani, L. Sun, and C. Deser, 2020: Tropical climate responses to projected Arctic and Antarctic
sea-ice loss. Nature Geoscience, 13(4), 275-281, doi:10.1038/s41561-020-0546-9.

Erdin, R., C. Frei, and H.R. Kiinsch, 2012: Data Transformation and Uncertainty in Geostatistical Combination of
Radar and Rain Gauges. Journal of Hydrometeorology, 13(4), 1332—-1346, doi:10.1175/jhm-d-11-096.1.

Erfanian, A. and G. Wang, 2018: Explicitly Accounting for the Role of Remote Oceans in Regional Climate Modeling
of South America. Journal of Advances in Modeling Earth Systems, 10(10), 24082426,
doi:10.1029/2018ms001444.

Erlandsen, H.B., K.M. Parding, R. Benestad, A. Mezghani, and M. Pontoppidan, 2020: A Hybrid Downscaling
Approach for Future Temperature and Precipitation Change. Journal of Applied Meteorology and Climatology,
59(11), 1793-1807, doi:10.1175/jamc-d-20-0013.1.

Espinoza, V., D.E. Waliser, B. Guan, D.A. Lavers, and F.M. Ralph, 2018: Global Analysis of Climate Change

Do Not Cite, Quote or Distribute 10-142 Total pages: 228


https://dx.doi.org/10.1007/s00704-019-03027-z
https://dx.doi.org/10.1175/jamc-d-19-0104.1
https://dx.doi.org/10.1175/bams-d-12-00244.1
https://dx.doi.org/10.1002/joc.4427
https://dx.doi.org/10.5194/gi-5-473-2016
https://dx.doi.org/10.1175/jam2417.1
https://dx.doi.org/10.1002/2014gl061146
https://dx.doi.org/10.5194/esd-11-469-2020
https://dx.doi.org/10.5194/hess-16-3391-2012
https://dx.doi.org/10.1038/nclimate2350
https://dx.doi.org/10.1002/wcc.339
https://dx.doi.org/10.1002/joc.2159
https://dx.doi.org/10.1175/2007jcli1884.1
https://dx.doi.org/10.2151/sola.2018-010
https://dx.doi.org/10.1175/jcli-d-12-00708.1
https://dx.doi.org/10.1007/s00382-015-2734-7
https://dx.doi.org/10.1002/joc.1742
https://dx.doi.org/10.1038/nclimate2106
https://dx.doi.org/10.1038/s41561-020-0546-9
https://dx.doi.org/10.1175/jhm-d-11-096.1
https://dx.doi.org/10.1029/2018ms001444
https://dx.doi.org/10.1175/jamc-d-20-0013.1

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Projection Effects on Atmospheric Rivers. Geophysical Research Letters, 45(9), 4299-4308,
doi:10.1029/2017g1076968.

Evan, A.T., C. Flamant, M. Gaetani, and F. Guichard, 2016: The past, present and future of African dust. Nature,
531(7595), 493495, doi:10.1038/naturel 7149.

Evans, J.P. et al., 2014: Design of a regional climate modelling projection ensemble experiment — NARCIiM.
Geoscientific Model Development, 7(2), 621-629, doi:10.5194/gmd-7-621-2014.

Evans, S., S. Malyshev, P. Ginoux, and E. Shevliakova, 2019: The Impacts of the Dust Radiative Effect on Vegetation
Growth in the Sahel. Global Biogeochemical Cycles, n/a(n/a), doi:10.1029/2018gb006128.

Evin, G, A.-C. Favre, and B. Hingray, 2018: Stochastic generation of multi-site daily precipitation focusing on extreme
events. Hydrology and Earth System Sciences, 22(1), 655—672, doi:10.5194/hess-22-655-2018.

Evin, G. et al., 2019: Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using
Data Augmentation. Journal of Climate, 32(8), 2423-2440, doi:10.1175/jcli-d-18-0606.1.

Eyring, V. et al., 2016a: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental
design and organization. Geoscientific Model Development, 9(5), 1937-1958, d0i:10.5194/gmd-9-1937-2016.

Eyring, V. et al., 2016b: ESMValTool (v1.0) — a community diagnostic and performance metrics tool for routine
evaluation of Earth system models in CMIP. Geoscientific Model Development;9(5), 17471802,
doi:10.5194/gmd-9-1747-2016.

Eyring, V. et al., 2019: Taking climate model evaluation to the next level. Nature«Climate Change, 9(2), 102—110,
doi:10.1038/s41558-018-0355-y.

Ezber, Y., O. Lutfi Sen, T. Kindap, and M. Karaca, 2007: Climatic effects of urbanization in istanbul: a statistical and
modeling analysis. International Journal of Climatology, 27(5);667-679,.doi:10.1002/joc.1420.

Fabiano, F. et al., 2020: Euro-Atlantic weather Regimes in the PRIMAVERA coupled climate simulations: impact of
resolution and mean state biases on model performance. Climate Dynamics, 54(11); 5031-5048,
doi:10.1007/s00382-020-05271-w.

Falco, M. et al., 2018: Assessment of CORDEX simulations over South’/America: added value on seasonal climatology
and resolution considerations. Climate Dynamics;doi:10.1007/s00382-018-4412-z.

Fallah, B. et al., 2018: Towards high-resolution climate reconstruction using an off-line data assimilation and COSMO-
CLM 5.00 model. Climate of the Past, 14(9), 1345-1360, doi: 10.5194/cp-14-1345-2018.

Farinotti, D., W.W. Immerzeel, R.J. de Kok, D.J. Quincey, and A. Dehecq; 2020: Manifestations and mechanisms of
the Karakoram glacier Anomaly. Nature Geoscience, 13(1), 8—16;d0i:10.1038/s41561-019-0513-5.

Favre, A., B. Hewitson, C. Lennard, R. Cerezo-Mota, and M. Tadross, 2013: Cut-off Lows in the South Africa region
and their contribution to precipitation. Cliniate Dynamicsy 41(9-10), 2331-2351, doi:10.1007/s00382-012-
1579-6.

Feng, X., B. Huang, B.P. Kirtman, J.L. Kinter, and L.S.-Chiu, 2017: A multi-model analysis of the resolution influence
on precipitation climatology in the Gulf Stream region. Climate Dynamics, 48(5—6), 1685—1704,
doi:10.1007/s00382-016-3167-7.

Ferguson, J.O. et al., 2016: Analyzing the Adaptive Mesh Refinement (AMR) Characteristics of a High-Order 2D
Cubed-Sphere Shallow-Water Model. Monthly Weather Review, 144(12), 4641-4666, doi:10.1175/mwr-d-16-
0197.1.

Fernandes, L.G. and R.R. Rodrigues, 2018: Changes in the patterns of extreme rainfall events in southern Brazil.
International Journal of Climatology, 38(3), 1337—1352, doi:10.1002/joc.5248.

Fernandez, J et al., 2019: Consistency of climate change projections from multiple global and regional model
intercomparison projects. Climate Dynamics, 52, 1139—1156, doi:10.1007/s00382-018-4181-8.

Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn, 2011: Regional Climate Models Add Value to Global
Model Data: A Review and Selected Examples. Bulletin of the American Meteorological Society, 92(9), 1181—
1192, doi: 10:1175/201 1bams3061.1.

Fettweis, X. et al.;2020: GrSMBMIP: intercomparison of the modelled 1980-2012 surface mass balance over the
Greenland Ice Sheet. The Cryosphere, 14(11), 3935-3958, doi:10.5194/tc-14-3935-2020.

Fick, S.E. and R.J. Hijmans, 2017: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas.
International Journal of Climatology, 37(12), 4302—4315, doi:10.1002/joc.5086.

Fiedler, S., B-Stevens, and T. Mauritsen, 2017: On the sensitivity of anthropogenic aerosol forcing to model-internal
variability and parameterizing a Twomey effect. Journal of Advances in Modeling Earth Systems, 9(2), 1325—
1341, doi:10.1002/2017ms000932.

Fiedler, S. et al., 2019: Anthropogenic aerosol forcing — insights from multiple estimates from aerosol-climate models
with reduced complexity. Atmospheric Chemistry and Physics, 19(10), 6821-6841, doi:10.5194/acp-19-6821-
2019.

Finney, D.L. et al., 2019: Implications of Improved Representation of Convection for the East Africa Water Budget
Using a Convection-Permitting Model. Journal of Climate, 32(7), 2109-2129, doi:10.1175/jcli-d-18-0387.1.

Fischer, E.M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nature
Climate Change, 3(12), 1033-1038, doi:10.1038/nclimate2051.

Fita, L., J.P. Evans, D. Argiieso, A. King, and Y. Liu, 2017: Evaluation of the regional climate response in Australia to

Do Not Cite, Quote or Distribute 10-143 Total pages: 228


https://dx.doi.org/10.1029/2017gl076968
https://dx.doi.org/10.1038/nature17149
https://dx.doi.org/10.5194/gmd-7-621-2014
https://dx.doi.org/10.1029/2018gb006128
https://dx.doi.org/10.5194/hess-22-655-2018
https://dx.doi.org/10.1175/jcli-d-18-0606.1
https://dx.doi.org/10.5194/gmd-9-1937-2016
https://dx.doi.org/10.5194/gmd-9-1747-2016
https://dx.doi.org/10.1038/s41558-018-0355-y
https://dx.doi.org/10.1002/joc.1420
https://dx.doi.org/10.1007/s00382-020-05271-w
https://dx.doi.org/10.1007/s00382-018-4412-z
https://dx.doi.org/10.5194/cp-14-1345-2018
https://dx.doi.org/10.1038/s41561-019-0513-5
https://dx.doi.org/10.1007/s00382-012-1579-6
https://dx.doi.org/10.1007/s00382-012-1579-6
https://dx.doi.org/10.1007/s00382-016-3167-7
https://dx.doi.org/10.1175/mwr-d-16-0197.1
https://dx.doi.org/10.1175/mwr-d-16-0197.1
https://dx.doi.org/10.1002/joc.5248
https://dx.doi.org/10.1007/s00382-018-4181-8
https://dx.doi.org/10.1175/2011bams3061.1
https://dx.doi.org/10.5194/tc-14-3935-2020
https://dx.doi.org/10.1002/joc.5086
https://dx.doi.org/10.1002/2017ms000932
https://dx.doi.org/10.5194/acp-19-6821-2019
https://dx.doi.org/10.5194/acp-19-6821-2019
https://dx.doi.org/10.1175/jcli-d-18-0387.1
https://dx.doi.org/10.1038/nclimate2051

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

large-scale climate modes in the historical NARCIiM simulations. Climate Dynamics, 49(7-8), 28152829,
doi:10.1007/s00382-016-3484-x.

Fitzpatrick, R.G.J. et al., 2020: What Drives the Intensification of Mesoscale Convective Systems over the West
African Sahel under Climate Change? Journal of Climate, 33(8), 3151-3172, doi:10.1175/jcli-d-19-0380.1.

Flaounas, E., P. Drobinski, and S. Bastin, 2013: Dynamical downscaling of IPSL-CM5 CMIPS5 historical simulations
over the Mediterranean: benefits on the representation of regional surface winds and cyclogenesis. Climate
Dynamics, 40(9-10), 24972513, doi:10.1007/s00382-012-1606-7.

Flaounas, E. et al., 2012: Assessment of gridded observations used for climate model validation in the Mediterranean
region: the HyMeX and MED-CORDEX framework. Environmental Research Letters, 7(2), 024017,
doi:10.1088/1748-9326/7/2/024017.

Flaounas, E. et al., 2018: Assessment of an ensemble of ocean—atmosphere coupled and uncoupled regional climate
models to reproduce the climatology of Mediterranean cyclones. Climate Dynamics, 51(3), 1023-1040,
doi:10.1007/s00382-016-3398-7.

Flato, G. et al., 2014: Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change []. Cambridge University Press, Cambridge, United Kingdom and New-York, NY, USA, pp. 741=866,
doi:10.1017/cbo9781107415324.020.

Fletcher, C.G. and P.J. Kushner, 2011: The Role of Linear Interference in the Annular Mode Response to Tropical SST
Forcing. Journal of Climate, 24(3), 778-794, doi:10.1175/2010jcli3735.1.

Florczyk, A.J. et al., 2019: GHSL Data Package 2019. EUR 29788 EN, Publications Office of the European Union,
Luxembourg, 32 pp., doi:10.2760/290498.

Flettum, K. and Gjerstad, 2017: Narratives in climate change discourse. Wiley Interdisciplinary Reviews: Climate
Change, 8(1), €429, doi:10.1002/wcc.429.

Folland, C.K. et al., 2009: The Summer North Atlantic Oscillation: Past, Present, and Future. Journal of Climate, 22(5),
1082-1103, doi:10.1175/2008jcli2459.1.

Forsythe, N., H.J. Fowler, X.F. Li, S. Blenkinsop, and D. Pritchard, 2017: Karakoram temperature and glacial melt
driven by regional atmospheric circulation variability. Nature Climate Change, 7(9), 664—670,
doi:10.1038/nclimate3361.

Fosser, G., S. Khodayar, and P. Berg, 2015: Benefit of convection permitting climate model simulations in the
representation of convective precipitation. Climate Dynamics, 44(1-2), 45—60, doi:10.1007/s00382-014-2242-
1.

Fosser, G., S. Khodayar, and P. Berg, 2017: Climate change in thenext.30 years: What can a convection-permitting
model tell us that we did not already know? Climate Dynamics, 48(5-6), 1987-2003, doi:10.1007/s00382-016-
3186-4.

Fox-Rabinovitz, M., J. C6té, B. Dugas, M. Déqué, and J.L.. McGregor, 2006: Variable resolution general circulation
models: Stretched-grid model intercomparison project (SGMIP). Journal of Geophysical Research, 111(D16),
D16104, doi:10.1029/2005jd006520.

Fox-Rabinovitz, M. et al., 2008: Stretched-grid Model Intercomparison Project: decadal regional climate simulations
with enhanced variable and uniform-resolution GCMs. Meteorology and Atmospheric Physics, 100(1-4), 159—
178, doi:10.1007/500703-008-0301-z.

Frame, J. and M. Killick, 2007: Integrated water resource planning in the city of Cape Town. Water SA4, 30(5),
doi:10.43 14/wsa.v30i5.5188.

Francis, J.A. and S.J: Vavrus;2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes.
Geophysical ResearchLetters, 39(6), doi:10.1029/2012¢1051000.

Francis, J.A. and S.J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming.
Environmental Research Letters, 10(1), 014005, doi:10.1088/1748-9326/10/1/014005.

Francis, J.A., S.J. ¥avrus; and J. Cohen, 2017: Amplified Arctic warming and mid-latitude weather: new perspectives
on emerging connections. Wiley Interdisciplinary Reviews: Climate Change, 8(5), €474, doi:10.1002/wcc.474.

Frangois, B.sM. Vrac, A.J. Cannon, Y. Robin, and D. Allard, 2020: Multivariate bias corrections of climate
simulations: which benefits for which losses? Earth System Dynamics, 11(2), 537-562, doi:10.5194/esd-11-
537-2020.

Frankcombe, .M., M.H. England, M.E. Mann, and B.A. Steinman, 2015: Separating internal variability from the
externally forced climate response. Journal of Climate, 28(20), 8184-8202, doi:10.1175/jcli-d-15-0069.1.

Franke, J., S. Bronnimann, J. Bhend, and Y. Brugnara, 2017: A monthly global paleo-reanalysis of the atmosphere from
1600 to 2005 for studying past climatic variations. Scientific data, 4, 170076, doi:10.1038/sdata.2017.76.

Frei, C., 2014: Interpolation of temperature in a mountainous region using nonlinear profiles and non-Euclidean
distances. International Journal of Climatology, 1605, 1585-1605, doi:10.1002/joc.3786.

Frei, C. et al., 2003: Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the
European Alps. Journal of Geophysical Research: Atmospheres, 108(D3), n/a—n/a, doi:10.1029/2002jd002287.

Froidevaux, P., L. Schlemmer, J. Schmidli, W. Langhans, and C. Schér, 2014: Influence of the Background Wind on
the Local Soil Moisture—Precipitation Feedback. Journal of the Atmospheric Sciences, T1(2), 782-799,

Do Not Cite, Quote or Distribute 10-144 Total pages: 228


https://dx.doi.org/10.1007/s00382-016-3484-x
https://dx.doi.org/10.1175/jcli-d-19-0380.1
https://dx.doi.org/10.1007/s00382-012-1606-7
https://dx.doi.org/10.1088/1748-9326/7/2/024017
https://dx.doi.org/10.1007/s00382-016-3398-7
https://dx.doi.org/10.1017/cbo9781107415324.020
https://dx.doi.org/10.1175/2010jcli3735.1
https://dx.doi.org/10.2760/290498
https://dx.doi.org/10.1002/wcc.429
https://dx.doi.org/10.1175/2008jcli2459.1
https://dx.doi.org/10.1038/nclimate3361
https://dx.doi.org/10.1007/s00382-014-2242-1
https://dx.doi.org/10.1007/s00382-014-2242-1
https://dx.doi.org/10.1007/s00382-016-3186-4
https://dx.doi.org/10.1007/s00382-016-3186-4
https://dx.doi.org/10.1029/2005jd006520
https://dx.doi.org/10.1007/s00703-008-0301-z
https://dx.doi.org/10.4314/wsa.v30i5.5188
https://dx.doi.org/10.1029/2012gl051000
https://dx.doi.org/10.1088/1748-9326/10/1/014005
https://dx.doi.org/10.1002/wcc.474
https://dx.doi.org/10.5194/esd-11-537-2020
https://dx.doi.org/10.5194/esd-11-537-2020
https://dx.doi.org/10.1175/jcli-d-15-0069.1
https://dx.doi.org/10.1038/sdata.2017.76
https://dx.doi.org/10.1002/joc.3786
https://dx.doi.org/10.1029/2002jd002287

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

doi:10.1175/jas-d-13-0180.1.

Frost, A.J. etal., 2011: A comparison of multi-site daily rainfall downscaling techniques under Australian conditions.
Journal of Hydrology, 408(1-2), 1-18, doi:10.1016/j.jhydrol.2011.06.021.

Friih, B. et al., 2011: Estimation of Climate-Change Impacts on the Urban Heat Load Using an Urban Climate Model
and Regional Climate Projections. Journal of Applied Meteorology and Climatology, 50(1), 167—184,
doi:10.1175/2010jamc2377.1.

Fu, G., S.P. Charles, F.H.S. Chiew, M. Ekstrom, and N.J. Potter, 2018: Uncertainties of statistical downscaling from
predictor selection: Equifinality and transferability. Atmospheric Research, 203, 130-140,
doi:10.1016/j.atmosres.2017.12.008.

Fujibe, F., 2009: Detection of urban warming in recent temperature trends in Japan. International Journal of
Climatology, 29(12), 1811-1822, doi:10.1002/joc.1822.

Fukui, S., T. Iwasaki, K. Saito, H. Seko, and M. Kunii, 2018: A Feasibility Study on the High-Resolution Regional
Reanalysis over Japan Assimilating Only Conventional Observations as an Alternative to the Dynamical
Downscaling. Journal of the Meteorological Society of Japan. Ser. II, 96(6), 565-585,doi:10.2151/jmsj.2018-
056.

Fumiére, Q. et al., 2019: Extreme rainfall in Mediterranean France during the fall: added-value of the CNRM-AROME
Convection-Permitting Regional Climate Model. Climate Dynamics, doi:10:1007/s00382-019-04898-8.

Gadgil, S.S. and S.S. Gadgil, 2006: The Indian monsoon, GDP and agriculture. Economic & Political Weekly,
doi:10.2307/4418949.

Gaertner, M. et al., 2018: Simulation of medicanes over the Mediterranean Sea in‘airegional climate model ensemble:
impact of ocean—atmosphere coupling and increased resolution..Climate Dynamics,51(3), 1041-1057,
doi:10.1007/s00382-016-3456-1.

Gaetani, M. and E. Mohino, 2013: Decadal prediction of the sahelian precipitation in CMIPS simulations. Journal of
Climate, 26, 7708-7719, doi:10.1175/jcli-d-12-00635. 1.

Gaetani, M., S. Janicot, M. Vrac, A.M. Famien, and B. Sultan, 2020: Robust assessment of the time of emergence of
precipitation change in West Africa. Scientific Reports, 10(1), 7670, doi:10.1038/s41598-020-63782-2.

Gallant, A.J.E., S.J. Phipps, D.J. Karoly, A.B. Mullan, and A.M:Lorrey, 2013: Nonstationary Australasian
Teleconnections and Implications for Paleoclimate Reconstructions. Journal of Climate, 26(22), 8827—8849,
doi:10.1175/jcli-d-12-00338.1.

Gallie, D., M. Petersen, L. Booley, and Y. Tiwe, 2018: EPIC: Economic Performance Indicators for Cape Town —
2018: Quarter 4. Organisational Policy.and Planning Department of the City of Cape Town, Cape Town,
South Africa, 20 pp.

Galmarini, S. et al., 2019: Adjusting climate:model bias for agricultural impact assessment: How to cut the mustard.
Climate Services, doi:10.1016/j.cliser.2019.01.004.

Ganeshan, M. and R. Murtugudde, 2015: Nocturnal propagating thunderstorms may favor urban hot-spots”: A model-
based study over Minneapolis. Urban Climate, 14,606—621, doi:10.1016/j.uclim.2015.10.005.

Ganeshan, M., R. Murtugudde; and M.L. Imhoff, 2013: A multi-city analysis of the UHI-influence on warm season
rainfall. Urban Climate, 6, 1-23, doi:10.1016/j.uclim.2013.09.004.

Gangopadhyay, S., T. Pruitt, L. Brekke, and D. Raff, 2011: Hydrologic projections for the western United States. Eos,
Transactions American Geophysical Union, 92(48), 441-442, doi:10.1029/2011e0480001.

Gao, C.C. and Y.J. Gao, 2018: Revisited Asian Monsoon Hydroclimate Response to Volcanic Eruptions. Journal of
Geophysical-Research: Atmospheres, 123(15), 7883-7896, doi:10.1029/2017jd027907.

Gao, M. et al.; 2016 Modeling study of the 2010 regional haze event in the North China Plain. Atmospheric Chemistry
and Physics, 16(3), 1673—-1691, doi:10.5194/acp-16-1673-2016.

Garcia-Diez, M., J. Fernandez, and R. Vautard, 2015: An RCM multi-physics ensemble over Europe: multi-variable
evaluation toravoid error compensation. Climate Dynamics, 45(11-12), 3141-3156, doi: 10.1007/s00382-015-
2529-x.

Garcia-Villada, L.P., M.G. Donat, O. Angélil, and A.S. Taschetto, 2020: Temperature and precipitation responses to El
Nifio-Southern Oscillation in a hierarchy of datasets with different levels of observational constraints. Climate
Dynamics,/55(9-10), 2351-2376, doi:10.1007/s00382-020-05389-x.

Garfinkel, €:1:; D.W. Waugh, and L.M. Polvani, 2015: Recent Hadley cell expansion: The role of internal atmospheric
variability in reconciling modeled and observed trends. Geophysical Research Letters, 42(24), 10,824-10,831,
doi1:10.1002/2015¢1066942.

Garfinkel, C.I. et al., 2020: The Role of Zonally Averaged Climate Change in Contributing to Intermodel Spread in
CMIP5 Predicted Local Precipitation Changes. Journal of Climate, 33(3), 1141-1154, doi:10.1175/jcli-d-19-
0232.1.

Gastineau, G., J. Garcia-Serrano, and C. Frankignoul, 2017: The Influence of Autumnal Eurasian Snow Cover on
Climate and Its Link with Arctic Sea Ice Cover. Journal of Climate, 30(19), 7599-7619, doi:10.1175/jcli-d-16-
0623.1.

Gautam, R., N.C. Hsu, W.K.-M. Lau, and T.J. Yasunari, 2013: Satellite observations of desert dust-induced Himalayan
snow darkening. Geophysical Research Letters, 40(5), 988—993, doi:10.1002/grl.50226.

Do Not Cite, Quote or Distribute 10-145 Total pages: 228


https://dx.doi.org/10.1175/jas-d-13-0180.1
https://dx.doi.org/10.1016/j.jhydrol.2011.06.021
https://dx.doi.org/10.1175/2010jamc2377.1
https://dx.doi.org/10.1016/j.atmosres.2017.12.008
https://dx.doi.org/10.1002/joc.1822
https://dx.doi.org/10.2151/jmsj.2018-056
https://dx.doi.org/10.2151/jmsj.2018-056
https://dx.doi.org/10.1007/s00382-019-04898-8
https://dx.doi.org/10.2307/4418949
https://dx.doi.org/10.1007/s00382-016-3456-1
https://dx.doi.org/10.1175/jcli-d-12-00635.1
https://dx.doi.org/10.1038/s41598-020-63782-2
https://dx.doi.org/10.1175/jcli-d-12-00338.1
https://dx.doi.org/10.1016/j.cliser.2019.01.004
https://dx.doi.org/10.1016/j.uclim.2015.10.005
https://dx.doi.org/10.1016/j.uclim.2013.09.004
https://dx.doi.org/10.1029/2011eo480001
https://dx.doi.org/10.1029/2017jd027907
https://dx.doi.org/10.5194/acp-16-1673-2016
https://dx.doi.org/10.1007/s00382-015-2529-x
https://dx.doi.org/10.1007/s00382-015-2529-x
https://dx.doi.org/10.1007/s00382-020-05389-x
https://dx.doi.org/10.1002/2015gl066942
https://dx.doi.org/10.1175/jcli-d-19-0232.1
https://dx.doi.org/10.1175/jcli-d-19-0232.1
https://dx.doi.org/10.1175/jcli-d-16-0623.1
https://dx.doi.org/10.1175/jcli-d-16-0623.1
https://dx.doi.org/10.1002/grl.50226

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

GCOS, 2015: Status of the Global Observing System for Climate. Global Climate Observing System (GCOS)
Secretariat, c/o World Meteorological Organization (WMO), Geneva, Switzerland, 353 pp.

Gentry, M.S. and G.M. Lackmann, 2010: Sensitivity of Simulated Tropical Cyclone Structure and Intensity to
Horizontal Resolution. Monthly Weather Review, 138(3), 688—704, doi:10.1175/2009mwr2976.1.

Georgakakos, A. et al., 2014: Ch. 3: Water Resources. In: Climate Change Impacts in the United States: The Third
National Climate Assessment [Melillo, .M., T.C. Richmond, and G. Yohe (eds.)]. U.S. Global Change
Research Program, pp. 69-112, doi:10.7930/j0g44n6t.

Georgescu, M., M. Moustaoui, A. Mahalov, and J. Dudhia, 2013: Summer-time climate impacts of projected
megapolitan expansion in Arizona. Nature Climate Change, 3(1), 37—41, doi:10.1038/nclimate1656.

Gervais, M., L.B. Tremblay, J.R. Gyakum, and E. Atallah, 2014: Representing Extremes in a Daily Gridded
Precipitation Analysis over the United States: Impacts of Station Density, Resolution, and Gridding Methods.
Journal of Climate, 27(14), 5201-5218, doi:10.1175/jcli-d-13-00319.1.

Gevaert, A.L, D.G. Miralles, R.A.M. de Jeu, J. Schellekens, and A.J. Dolman, 2018: Soil Moisture-Temperature
Coupling in a Set of Land Surface Models. Journal of Geophysical Research: Atmospheres,
doi:10.1002/2017jd027346.

Ghosh, R., W.A. Miiller, J. Bachr, and J. Bader, 2017: Impact of observed North Atlantic.multidecadal variations:to
European summer climate: a linear baroclinic response to surface heating. Climate Dynamics, 48(11-12),
3547-3563, doi:10.1007/s00382-016-3283-4.

Giannini, A. and A. Kaplan, 2019: The role of aerosols and greenhouse gases_in-Sahel drought andirecovery. Climatic
Change, 152(3—4), 449-466, doi:10.1007/s10584-018-2341-9.

Giannini, A. et al., 2013: A unifying view of climate change in the Sahellinking intra-seasonal, interannual and longer
time scales. Environmental Research Letters, 8(2), 024010, doi:10.1088/1748-9326/8/2/024010.

Giesen, R.H. and J. Oerlemans, 2013: Climate-model induced differences in the 21st century global and regional glacier
contributions to sea-level rise. Climate Dynamics, 41(11—12), 3283-3300, doi: 10.1007/s00382-013-1743-7.

Gillett, N.P. et al., 2016: The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to
CMIP6. Geoscientific Model Development, 9(10);,3685-3697, doi:10.5194/gmd-9-3685-2016.

Ginoux, P., J. Prospero, T. Gill, N. Hsu, and M. Zhao, 2012: Global-scale attribution of anthropogenic and natural dust
sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50,
3005, doi:10.1029/2012rg000388.

Giorgi, F., 2019: Thirty Years of Regional Climate Modeling: Where Are'We and Where Are We Going next? Journal
of Geophysical Research: Atmospheres,;2018JD030094, doi:10.1029/2018jd030094.

Giorgi, F., 2020: Producing actionable climate change information for regions: the distillation paradigm and the 3R
framework. The European Physical Journal Plus, 135(5), 435, doi:10.1140/epjp/s13360-020-00453-1.

Giorgi, F. and X. Bi, 2009: Time of emergence (TOE). of GHG-forced precipitation change hot-spots. Geophysical
Research Letters, 36(6), L06709, doi:10.1029/2009g1037593.

Giorgi, F. and W.J. Gutowski; 2015: Regional Dynamical Downscaling and the CORDEX Initiative. Annual Review of
Environment and Resources; 40(1), 467-490, doi:10.1146/annurev-environ-102014-021217.

Giorgi, F., C. Jones, and G.R. Asrar, 2009: Addressing climate information needs at the regional level: the CORDEX
framework. WMO Bulletin, 58(3), 175-183.

Giorgi, F. et al., 2016: Enhanced summer convective rainfall at Alpine high elevations in response to climate warming.
Nature Geoscience, 9(8), 584589, doi:10.1038/nge02761.

Giot, O. et al.;2016:Validation of the ALARO-0 model within the EURO-CORDEX framework. Geoscientific Model
Development, 9(3), 1143-11525'doi:10.5194/gmd-9-1143-2016.

Gleckler, P. etal., 2016: A More Powerful Reality Test for Climate Models. Eos, 97, doi:10.1029/2016e0051663.

Glinton, M.R., S.L. Gray, J.M. Chagnon, and C.J. Morcrette, 2017: Modulation of precipitation by conditional
symmetric instability release. Atmospheric Research, 185, 186—201, doi:10.1016/j.atmosres.2016.10.013.

Glotter, M. et al., 2014: Evaluating the utility of dynamical downscaling in agricultural impacts projections.
Proceedings of the National Academy of Sciences, 111(24), 8776—8781, doi:10.1073/pnas.1314787111.

Gobiet, A., M. Suklitsch, and G. Heinrich, 2015: The effect of empirical-statistical correction of intensity-dependent
model errors on the temperature climate change signal. Hydrology and Earth System Sciences, 19(10), 4055—
4066;doi:10.5194/hess-19-4055-2015.

Goldberg, M.H., S. Linden, M.T. Ballew, S.A. Rosenthal, and A. Leiserowitz, 2019: The role of anchoring in
judgments about expert consensus. Journal of Applied Social Psychology, 49(3), 192-200,
doi:10.1111/jasp.12576.

Golosov, S., I. Zverev, E. Shipunova, and A. Terzhevik, 2018: Modified parameterization of the vertical water
temperature profile in the FLake model. Tellus A: Dynamic Meteorology and Oceanography, 70(1), 1-7,
doi:10.1080/16000870.2018.1441247.

Gong, D. and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophysical Research Letters, 26(4), 459462,
doi:10.1029/199921900003.

Gong, H., L. Wang, W. Chen, and R. Wu, 2019: Attribution of the East Asian Winter Temperature Trends During
1979-2018: Role of External Forcing and Internal Variability. Geophysical Research Letters, 46(19), 10874—

Do Not Cite, Quote or Distribute 10-146 Total pages: 228


https://dx.doi.org/10.1175/2009mwr2976.1
https://dx.doi.org/10.7930/j0g44n6t
https://dx.doi.org/10.1038/nclimate1656
https://dx.doi.org/10.1175/jcli-d-13-00319.1
https://dx.doi.org/10.1002/2017jd027346
https://dx.doi.org/10.1007/s00382-016-3283-4
https://dx.doi.org/10.1007/s10584-018-2341-9
https://dx.doi.org/10.1088/1748-9326/8/2/024010
https://dx.doi.org/10.1007/s00382-013-1743-7
https://dx.doi.org/10.5194/gmd-9-3685-2016
https://dx.doi.org/10.1029/2012rg000388
https://dx.doi.org/10.1029/2018jd030094
https://dx.doi.org/10.1140/epjp/s13360-020-00453-1
https://dx.doi.org/10.1029/2009gl037593
https://dx.doi.org/10.1146/annurev-environ-102014-021217
https://dx.doi.org/10.1038/ngeo2761
https://dx.doi.org/10.5194/gmd-9-1143-2016
https://dx.doi.org/10.1029/2016eo051663
https://dx.doi.org/10.1016/j.atmosres.2016.10.013
https://dx.doi.org/10.1073/pnas.1314787111
https://dx.doi.org/10.5194/hess-19-4055-2015
https://dx.doi.org/10.1111/jasp.12576
https://dx.doi.org/10.1080/16000870.2018.1441247
https://dx.doi.org/10.1029/1999gl900003

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

10881, doi:10.1029/2019¢1084154.

Gong, T., S.B. Feldstein, and S. Lee, 2020: Rossby Wave Propagation from the Arctic into the Midlatitudes: Does It
Arise from In Situ Latent Heating or a Trans-Arctic Wave Train? Journal of Climate, 33(9), 3619-3633,
doi:10.1175/jcli-d-18-0780.1.

Gonzalez, P.L.M., L. Goddard, and A.M. Greene, 2013: Twentieth-century summer precipitation in South Eastern
South America: comparison of gridded and station data. International Journal of Climatology, 33(13), 2923—
2928, doi:10.1002/joc.3633.

Good, P. et al., 2015: Nonlinear regional warming with increasing CO2 concentrations. Nature Climate Change, 5(2),
138-142, doi:10.1038/nclimate2498.

Good, P. et al., 2016: Large differences in regional precipitation change between a first and second 2 K of global
warming. Nature Communications, 7(1), 13667, doi:10.1038/ncomms13667.

Goodman, S.J., T.J. Schmit, J. Daniels, W. Denig, and K. Metcalf, 2018: GOES: Past, Present, and Future. In:
Comprehensive Remote Sensing Vol. I [Liang, S. (ed.)]. Elsevier, Oxford, UK, pp. 119-149,
doi:10.1016/b978-0-12-409548-9.10315-x.

Goosse, H., 2017: Reconstructed and simulated temperature asymmetry between continentsin.both hemispheres over
the last centuries. Climate Dynamics, 48(5), 1483—1501, doi:10.1007/s00382-016-3154-z.

Goosse, H. et al., 2012: The role of forcing and internal dynamics in explaining the “Medieval Climate Anomaly”.
Climate Dynamics, 39(12), 28472866, doi:10.1007/s00382-012-1297-0:

Gorddard, R., M.J. Colloff, R.M. Wise, D. Ware, and M. Dunlop, 2016: Envirenmental Science &:Policy Values , rules
and knowledge : Adaptation as change in the decision context. Environmental Science.and Policy, 57, 60—69,
doi:10.1016/j.envsci.2015.12.004.

Goss, M., S.B. Feldstein, and S. Lee, 2016: Stationary Wave Interference and Its Relation‘to Tropical Convection and
Arctic Warming. Journal of Climate, 29(4), 1369—1389, doi:10.1175/jcli-d-1520267.1.

Goswami, B.N., V. Venugopal, D. Sangupta, M.S. Madhusoodanan, and P.K. Xavier, 2006: Increasing trend of extreme
rain events over India in a warming environment. Science, 314(5804), 1442—1445,
doi:10.1126/science.1132027.

Goudenhoofdt, E. and L. Delobbe, 2016: Generation and Verification of Rainfall Estimates from 10-Yr Volumetric
Weather Radar Measurements. Journal of Hydrometeorology, 17(4), 1223=1242, doi:10.1175/jhm-d-15-
0166.1.

Gray, L.J. et al., 2013: A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather
patterns. Journal of Geophysical Research: Atmospheres, 118(24), 13,405-413,420,
doi:10.1002/2013jd020062.

Griffin, D. and K.J. Anchukaitis, 2014: How:unusual is the 2012-2014 California drought? Geophysical Research
Letters, 41(24), 9017-9023, doi:10.1002/2014¢1062433.

Grimm, A.M. and R.G. Tedeschi, 2009: ENSO and Extreme Rainfall Events in South America. Journal of Climate,
22(7), 1589-1609, doi:10:1175/2008;cli2429.1.

Grimm, A.M. and J.P.J. Saboia; 2015 Interdecadal Variability of the South American Precipitation in the Monsoon
Season. Journal of Climate, 28(2), 755—775,.doi:10.1175/jcli-d-14-00046.1.

Grimmond, C.S.B. et al;; 2010: The International Urban Energy Balance Models Comparison Project: First Results
from Phase 1. Journal of Applied Meteorology and Climatology, 49(6), 1268—1292,
doi:10.1175/2010jamc2354.1.

Grimmond, C:S.B. etal;, 2011: Initial results from Phase 2 of the international urban energy balance model comparison.
International Journal of Climatology, 31(2), 244-272, doi:10.1002/joc.2227.

Grise, K.M., S:M. Davis, P.W. Staten, and O. Adam, 2018: Regional and Seasonal Characteristics of the Recent
Expansion of the Tropies:' Journal of Climate, 31(17), 6839—6856, doi:10.1175/jcli-d-18-0060.1.

Grise, K.M. et al., 2019: Recent Tropical Expansion: Natural Variability or Forced Response? Journal of Climate,
32(5), 1551-1571, doi:10.1175/jcli-d-18-0444.1.

Grossman-Clarke; S.; S. Schubert, and D. Fenner, 2017: Urban effects on summertime air temperature in Germany
under climate change. International Journal of Climatology, 37(2), 905-917, doi:10.1002/joc.4748.

GrotjahnsR. etal., 2016: North American extreme temperature events and related large scale meteorological patterns: a
review of statistical methods, dynamics, modeling, and trends. Climate Dynamics, 46(3—4), 1151-1184,
doi: 10.1007/s00382-015-2638-6.

Gu, H. et al., 2018: High-resolution ensemble projections and uncertainty assessment of regional climate change over
China in CORDEX East Asia. Hydrology and Earth System Sciences, 22(5), 3087-3103, doi:10.5194/hess-22-
3087-2018.

Gualdi, S. et al., 2013: The CIRCE Simulations: Regional Climate Change Projections with Realistic Representation of
the Mediterranean Sea. Bulletin of the American Meteorological Society, 94(1), 65-81, doi:10.1175/bams-d-
11-00136.1.

Gubler, S. etal., 2017: The influence of station density on climate data homogenization. International Journal of
Climatology, 37(13), 4670-4683, doi:10.1002/joc.5114.

Guemas, V. et al., 2013: The Indian Ocean: The Region of Highest Skill Worldwide in Decadal Climate Prediction.

Do Not Cite, Quote or Distribute 10-147 Total pages: 228


https://dx.doi.org/10.1029/2019gl084154
https://dx.doi.org/10.1175/jcli-d-18-0780.1
https://dx.doi.org/10.1002/joc.3633
https://dx.doi.org/10.1038/nclimate2498
https://dx.doi.org/10.1038/ncomms13667
https://dx.doi.org/10.1016/b978-0-12-409548-9.10315-x
https://dx.doi.org/10.1007/s00382-016-3154-z
https://dx.doi.org/10.1007/s00382-012-1297-0
https://dx.doi.org/10.1016/j.envsci.2015.12.004
https://dx.doi.org/10.1175/jcli-d-15-0267.1
https://dx.doi.org/10.1126/science.1132027
https://dx.doi.org/10.1175/jhm-d-15-0166.1
https://dx.doi.org/10.1175/jhm-d-15-0166.1
https://dx.doi.org/10.1002/2013jd020062
https://dx.doi.org/10.1002/2014gl062433
https://dx.doi.org/10.1175/2008jcli2429.1
https://dx.doi.org/10.1175/jcli-d-14-00046.1
https://dx.doi.org/10.1175/2010jamc2354.1
https://dx.doi.org/10.1002/joc.2227
https://dx.doi.org/10.1175/jcli-d-18-0060.1
https://dx.doi.org/10.1175/jcli-d-18-0444.1
https://dx.doi.org/10.1002/joc.4748
https://dx.doi.org/10.1007/s00382-015-2638-6
https://dx.doi.org/10.5194/hess-22-3087-2018
https://dx.doi.org/10.5194/hess-22-3087-2018
https://dx.doi.org/10.1175/bams-d-11-00136.1
https://dx.doi.org/10.1175/bams-d-11-00136.1
https://dx.doi.org/10.1002/joc.5114

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Journal of Climate, 26(3), 726—739, doi: 10.1175/jcli-d-12-00049.1.

Guido, Z., C. Knudson, D. Campbell, and J. Tomlinson, 2020: Climate information services for adaptation: what does it
mean to know the context? Climate and Development, 12(5), 395-407, doi:10.1080/17565529.2019.1630352.

Guillod, B.P., B. Orlowsky, D.G. Miralles, A.J. Teuling, and S.I. Seneviratne, 2015: Reconciling spatial and temporal
soil moisture effects on afternoon rainfall. Nature Communications, 6, doi:10.1038/ncomms7443.

Guimberteau, M., K. Laval, A. Perrier, and J. Polcher, 2012: Global effect of irrigation and its impact on the onset of
the Indian summer monsoon. Climate Dynamics, 39(6), 1329-1348, doi:10.1007/s00382-011-1252-5.

Gula, J. and W.R. Peltier, 2012: Dynamical Downscaling over the Great Lakes Basin of North America Using the WRF
Regional Climate Model: The Impact of the Great Lakes System on Regional Greenhouse Warming. Journal
of Climate, 25(21), 7723-7742, doi:10.1175/jcli-d-11-00388.1.

Guldberg, A., E. Kaas, M. Deque, S. Yang, and S. Thorsen, 2005: Reduction of systematic errors by empirical model
correction: impact on seasonal prediction skill. Tellus A, 57(4), 575588, doi:10.1111/1.1600-
0870.2005.00120.x.

Gulizia, C. and I. Camilloni, 2015: Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate
models to represent precipitation in South America. International Journal of Climatology; 35(4), 583-595,
doi:10.1002/joc.4005.

Gultepe, 1., 2015: Chapter Three — Mountain Weather: Observation and Modeling. In: Advances in Geophysics Vol. 56
[Dmowska, R. (ed.)]. Elsevier, pp. 229-312, doi:10.1016/bs.agph.2015.01.001.

Gultepe, 1. et al., 2014: Roundhouse (RND) Mountain Top Research Site: Measurements and Uncertainties for Winter
Alpine Weather Conditions. Pure and Applied Geophysics, 171(1),59-85;.doi:10.1007/s00024-012-0582-5.

Guo, D. and H. Wang, 2012: The significant climate warming in the northern Tibetan Plateau and its possible causes.
International Journal of Climatology, 32(12), 17751781, dei:10.1002/j0c.2388.

Guo, D., J. Sun, K. Yang, N. Pepin, and Y. Xu, 2019: Revisiting Recent Elevation-Dependent Warming on the Tibetan
Plateau Using Satellite-Based Data Sets. Journal of Geophysical Research: Atmospheres, 124(15), 8511-8521,
doi:10.1029/2019jd030666.

Guo, H. et al., 2017: Systematical Evaluation of Satellite Precipitation Estimates Over Central Asia Using an Improved
Error-Component Procedure. Journal of Geophysical Research: Atmespheres, 122(20), 10,906-910,927,
doi:10.1002/2017jd026877.

Guo, L., A.G. Turner, and E.J. Highwood, 2015: Impacts of 20th century aerosol emissions on the South Asian
monsoon in the CMIPS models. Atmospheric.Chemistry and Physics; 15(11), 6367-6378, doi:10.5194/acp-15-
6367-2015.

Guo, L., A.G. Turner, and E.J. Highwood; 2016: Local and remote impacts of aerosol species on indian summer
monsoon rainfall in a GCM. Journal of Climate, 29(19), 6937-6955, doi:10.1175/jcli-d-15-0728.1.

Guo, R., C. Deser, L. Terray, and E:'Lehner, 2019: Human Influence on Winter Precipitation Trends (1921-2015) over
North America and Eurasia Revealed by Dynamical Adjustment. Geophysical Research Letters, 46(6), 3426—
3434, doi:10.1029/2018¢1081316.

Gustafsson and V. Ramanathan;2016: Convergence on climate warming by black carbon aerosols. Proceedings of the
National Academy of Sciences, 113(16), 4243—4245, doi:10.1073/pnas.1603570113.

Gutiérrez, C. et al., 2018: Impact of aerosols on the spatiotemporal variability of photovoltaic energy production in the
Euro-Mediterranean area. Solar Energy, 174, 1142-1152, doi:10.1016/].solener.2018.09.085.

Gutiérrez, C. et al., 2020: Future eyolution of surface solar radiation and photovoltaic potential in Europe: investigating
the tole of aerosols. Environmental Research Letters, 15(3), 034035, doi:10.1088/1748-9326/ab6666.

Gutiérrez, J.M., D. San-Martin, S. Brands, R. Manzanas, and S. Herrera, 2013: Reassessing Statistical Downscaling
Techniques for Their Robust Application under Climate Change Conditions. Journal of Climate, 26(1), 171—
188, doi:10.1175/jeli-d=14-00687.1.

Gutiérrez, J.M. et al.;2019: An intercomparison of a large ensemble of statistical downscaling methods over Europe:
Results from the' VALUE perfect predictor cross-validation experiment. International Journal of Climatology,
39(9), 3750-3785, doi:10.1002/joc.5462.

Gutmann, Ecet al., 2014: An intercomparison of statistical downscaling methods used for water resource assessments in
the United States. Water Resources Research, 50(9), 71677186, doi:10.1002/2014wr015559.

Gutmann, E:D: et al., 2018: Changes in hurricanes from a 13-Yr convection-permitting pseudo- global warming
simulation. Journal of Climate, doi:10.1175/jcli-d-17-0391.1.

Gutowski, W.J. et al., 2016: WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for
CMIP6. Geoscientific Model Development, 9(11), 4087-4095, doi:10.5194/gmd-9-4087-2016.

Gutowski, W.J. et al., 2020: The Ongoing Need for High-Resolution Regional Climate Models: Process Understanding
and Stakeholder Information. Bulletin of the American Meteorological Society, 101(5), E664—E683,
doi:10.1175/bams-d-19-0113.1.

Ha, K.-J., B.-H. Kim, E.-S. Chung, J.C.L. Chan, and C.-P. Chang, 2020: Major factors of global and regional monsoon
rainfall changes: natural versus anthropogenic forcing. Environmental Research Letters, 15(3), 034055,
doi:10.1088/1748-9326/ab7767.

Haarsma, R.J., F. Selten, and G.J. van Oldenborgh, 2013a: Anthropogenic changes of the thermal and zonal flow

Do Not Cite, Quote or Distribute 10-148 Total pages: 228


https://dx.doi.org/10.1175/jcli-d-12-00049.1
https://dx.doi.org/10.1080/17565529.2019.1630352
https://dx.doi.org/10.1038/ncomms7443
https://dx.doi.org/10.1007/s00382-011-1252-5
https://dx.doi.org/10.1175/jcli-d-11-00388.1
https://dx.doi.org/10.1111/j.1600-0870.2005.00120.x
https://dx.doi.org/10.1111/j.1600-0870.2005.00120.x
https://dx.doi.org/10.1002/joc.4005
https://dx.doi.org/10.1016/bs.agph.2015.01.001
https://dx.doi.org/10.1007/s00024-012-0582-5
https://dx.doi.org/10.1002/joc.2388
https://dx.doi.org/10.1029/2019jd030666
https://dx.doi.org/10.1002/2017jd026877
https://dx.doi.org/10.5194/acp-15-6367-2015
https://dx.doi.org/10.5194/acp-15-6367-2015
https://dx.doi.org/10.1175/jcli-d-15-0728.1
https://dx.doi.org/10.1029/2018gl081316
https://dx.doi.org/10.1073/pnas.1603570113
https://dx.doi.org/10.1016/j.solener.2018.09.085
https://dx.doi.org/10.1088/1748-9326/ab6666
https://dx.doi.org/10.1175/jcli-d-11-00687.1
https://dx.doi.org/10.1002/joc.5462
https://dx.doi.org/10.1002/2014wr015559
https://dx.doi.org/10.1175/jcli-d-17-0391.1
https://dx.doi.org/10.5194/gmd-9-4087-2016
https://dx.doi.org/10.1175/bams-d-19-0113.1
https://dx.doi.org/10.1088/1748-9326/ab7767

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

structure over Western Europe and Eastern North Atlantic in CMIP3 and CMIPS5 models. Climate Dynamics,
41(9-10), 2577-2588, d0i:10.1007/s00382-013-1734-8.

Haarsma, R.J., F.M. Selten, and S.S. Drijthout, 2015: Decelerating Atlantic meridional overturning circulation main
cause of future west European summer atmospheric circulation changes. Environmental Research Letters,
10(9), 094007, doi:10.1088/1748-9326/10/9/094007.

Haarsma, R.J. et al., 2013b: More hurricanes to hit western Europe due to global warming. Geophysical Research
Letters, 40(9), 1783—1788, doi:10.1002/grl.50360.

Haarsma, R.J. et al., 2016: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6.
Geoscientific Model Development, 9(11), 41854208, doi:10.5194/gmd-9-4185-2016.

Haas, R. and J.G. Pinto, 2012: A combined statistical and dynamical approach for downscaling large-scale footprints of
European windstorms. Geophysical Research Letters, 39(23), n/a—n/a, doi:10.1029/2012¢1054014.

Haasnoot, M. et al., 2020: Adaptation to uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the
coastal adaptation strategy of the Netherlands. Environmental Research Letters, 15(3), 034007,
doi:10.1088/1748-9326/ab666¢.

Haberlie, A.M., W.S. Ashley, and T.J. Pingel, 2015: The effect of urbanisation on the climatology of thunderstorm
initiation. Quarterly Journal of the Royal Meteorological Society, 141(688), 663—675, doi:10.1002/qj.2499.

Haeffelin, M. et al., 2005: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Annales
Geophysicae, 23(2), 253-275, doi:10.5194/angeo-23-253-2005.

Haerter, J.O., S. Hagemann, C. Moseley, and C. Piani, 2011: Climate model bias correction and the role of timescales.
Hydrology and Earth System Sciences, 15(3), 1065-1079, doi:10.5194/hess-15-1065-2011.

Haga, C. et al., 2020: Scenario Analysis of Renewable Energy—Biodiversity Nexuses Using a Forest Landscape Model.
Frontiers in Ecology and Evolution, 8, 1-15, doi:10.3389/fev0.2020.00155.

Hagemann, S. et al., 2013: Climate change impact on available water resources obtained using multiple global climate
and hydrology models. Earth System Dynamics, 4(1), 129-144, doi:10.5194/esd=4-129-2013.

Hagishima, A., J. Tanimoto, and K.I. Narita, 2005: Intercomparisons of €xperimental convective heat transfer
coefficients and mass transfer coefficients of urban surfaces. Boundary-Layer Meteorology, 117, 551-576,
doi:10.1007/s10546-005-2078-7.

Hahn, A. et al., 2016: Holocene paleo-climatic record from the South African Namaqualand mudbelt: A source to sink
approach. Quaternary International, 404;121-135, doi:10.1016/f.quaint.2015.10.017.

Haiden, T. et al., 2011: The Integrated Nowcasting through Comprehensive Analysis (INCA) System and Its Validation
over the Eastern Alpine Region. Weather and Forecasting, 26(2), 166—183, doi:10.1175/2010waf2222451.1.

Haimberger, L., C. Tavolato, and S. Sperka, 2012: Homogenization of the Global Radiosonde Temperature Dataset
through Combined Comparison with Reanalysis Background Series and Neighboring Stations. Journal of
Climate, 25(23), 8108-8131, doi:10.1175/jcli-d=1.1-00668.1.

Hakim, G.J. et al., 2016: The last millennium climate reanalysis project: Framework and first results. Journal of
Geophysical Research: Atmospheres, 121(12), 67456764, doi:10.1002/2016jd024751.

Halenka, T. et al., 2019: On the comparison of urban canopy effects parameterisation. International Journal of
Environment and Pollution, 65(1-3), 177-194, doi:10.1504/ijep.2019.101840.

Hall, A., 2014: Projecting regional change. Science, 346(6216), 1461-1462, doi:10.1126/science.aaa0629.

Hall, A., P. Cox, €. Huntingford, and S. Klein, 2019: Progressing emergent constraints on future climate change.
Nature Climate Change, 9(4), 269278, doi:10.1038/s41558-019-0436-6.

Hallegatte, S;;C. Green, R.J. Nicholls, and J. Corfee-Morlot, 2013: Future flood losses in major coastal cities. Nature
Climate Change, 3(9), 802—806, doi:10.1038/nclimate1979.

Hamada, A. and Y.N. Takayabu, 2018: Large-Scale Environmental Conditions Related to Midsummer Extreme Rainfall
Events around Japan in.the TRMM Region. Journal of Climate, 31(17), 6933-6945, doi:10.1175/jcli-d-17-
0632.1.

Hamdi, R., 2010: Estimating Urban Heat Island Effects on the Temperature Series of Uccle (Brussels, Belgium) Using
Remote Sensing/Data and a Land Surface Scheme. Remote Sensing, 2(12), 27732784,
dois10.3390/rs2122773.

Hamdi, Re-and V. Masson, 2008: Inclusion of a Drag Approach in the Town Energy Balance (TEB) Scheme: Offline
1D Evaluation in a Street Canyon. Journal of Applied Meteorology and Climatology, 47(10), 2627-2644,
doi: 10.1175/2008jamc1865.1.

Hamdi, R., H. Van de Vyver, and P. Termonia, 2012: New cloud and microphysics parameterisation for use in high-
resolution dynamical downscaling: application for summer extreme temperature over Belgium. International
Journal of Climatology, 32(13), 2051-2065, doi:10.1002/joc.2409.

Hamdi, R., H. Van de Vyver, R. De Troch, and P. Termonia, 2014: Assessment of three dynamical urban climate
downscaling methods: Brussels’s future urban heat island under an A1B emission scenario. International
Journal of Climatology, 34(4), 978999, doi:10.1002/joc.3734.

Hamdi, R. et al., 2016: Evolution of urban heat wave intensity for the Brussels Capital Region in the ARPEGE-Climat
A1B scenario. Urban Climate, 17, 176195, doi:10.1016/j.uclim.2016.08.001.

Hamdji, R. et al., 2020: The State-of-the-Art of Urban Climate Change Modeling and Observations. Earth Systems and

Do Not Cite, Quote or Distribute 10-149 Total pages: 228


https://dx.doi.org/10.1007/s00382-013-1734-8
https://dx.doi.org/10.1088/1748-9326/10/9/094007
https://dx.doi.org/10.1002/grl.50360
https://dx.doi.org/10.5194/gmd-9-4185-2016
https://dx.doi.org/10.1029/2012gl054014
https://dx.doi.org/10.1088/1748-9326/ab666c
https://dx.doi.org/10.1002/qj.2499
https://dx.doi.org/10.5194/angeo-23-253-2005
https://dx.doi.org/10.5194/hess-15-1065-2011
https://dx.doi.org/10.3389/fevo.2020.00155
https://dx.doi.org/10.5194/esd-4-129-2013
https://dx.doi.org/10.1007/s10546-005-2078-7
https://dx.doi.org/10.1016/j.quaint.2015.10.017
https://dx.doi.org/10.1175/2010waf2222451.1
https://dx.doi.org/10.1175/jcli-d-11-00668.1
https://dx.doi.org/10.1002/2016jd024751
https://dx.doi.org/10.1504/ijep.2019.101840
https://dx.doi.org/10.1126/science.aaa0629
https://dx.doi.org/10.1038/s41558-019-0436-6
https://dx.doi.org/10.1038/nclimate1979
https://dx.doi.org/10.1175/jcli-d-17-0632.1
https://dx.doi.org/10.1175/jcli-d-17-0632.1
https://dx.doi.org/10.3390/rs2122773
https://dx.doi.org/10.1175/2008jamc1865.1
https://dx.doi.org/10.1002/joc.2409
https://dx.doi.org/10.1002/joc.3734
https://dx.doi.org/10.1016/j.uclim.2016.08.001

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Environment, 4(4), 631-646, doi:10.1007/s41748-020-00193-3.

Han, F., K.H. Cook, and E.K. Vizy, 2019: Changes in intense rainfall events and dry periods across Africa in the
twenty-first century. Climate Dynamics, doi:10.1007/s00382-019-04653-z.

Han, W. et al., 2020: The mechanisms and seasonal differences of the impact of aerosols on daytime surface urban heat
island effect. Atmospheric Chemistry and Physics, 20(11), 6479-6493, doi:10.5194/acp-20-6479-2020.

Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global Surface Temperature Change. Reviews of Geophysics, 48(4),
RG4004, doi:10.1029/2010rg000345.

Harris, 1., P.D. Jones, T.J. Osborn, and D.H. Lister, 2014: Updated high-resolution grids of monthly climatic
observations - the CRU TS3.10 Dataset. International Journal of Climatology, 34(3), 623—642,
doi:10.1002/joc.3711.

Harris, L.M. and S.-J. Lin, 2013: A Two-Way Nested Global-Regional Dynamical Core on the Cubed-Sphere Grid.
Monthly Weather Review, 141(1), 283-306, doi: 10.1175/mwr-d-11-00201.1.

Hart, N.C.G., R. Washington, and R.A. Stratton, 2018: Stronger Local Overturning in Convective-Permitting Regional
Climate Model Improves Simulation of the Subtropical Annual Cycle. Geophysical Research Letters, 45(20),
doi:10.1029/2018¢1079563.

Hart, P.S. and E.C. Nisbet, 2012: Boomerang Effects in Science Communication: How-Motivated Reasoning and
Identity Cues Amplify Opinion Polarization About Climate Mitigation Policies. Communication Research,
39(6), 701-723, doi:10.1177/0093650211416646.

Hartmann, D.L. et al., 2013: Observations: Atmosphere and surface. In: Climate.Change 2013 thePhysical Science
Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor; S.K. Allen, J. Boschung; A. Nauels, Y. Xia,
V. Bex, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, pp. 159-254, doi:10.1017/cbo9781107415324.008.

Harvey, B.J., P. Cook, L.C. Shaffrey, and R. Schiemann, 2020: The Response of the Northern Hemisphere Storm
Tracks and Jet Streams to Climate Change in the CMIP3, CMIPS, and CMIP6 Climate Models. Journal of
Geophysical Research: Atmospheres, 125(23), doi:10.1029/2020jd03270.1.

Hassanzadeh, P., Z. Kuang, and B.F. Farrell, 2014: Responses of midlatitude'blocks and wave amplitude to changes in
the meridional temperature gradient in an idealized dry GCM. Geophysical Research Letters, 41(14), 5223—
5232, doi:10.1002/2014¢1060764.

Hassim, M.E.E.E., T.P. Lane, and W.W. Grabowski, 2016: The diurnal cyele of rainfall over New Guinea in
convection-permitting WRF simulations. Atmospheric Chemistry and Physics, 16(1), 161-175,
doi:10.5194/acp-16-161-2016.

Hasson, S., V. Lucarini, and S. Pascale, 2013: Hydrological cyecle over South and Southeast Asian river basins as
simulated by PCMDI/CMIP3 experiments. Earth.System Dynamics, 4(2), 199-217, doi:10.5194/esd-4-199-
2013.

Hasson, S., J. Bohner, and V.-Lucarini; 2017: Prevailing climatic trends and runoff response from Hindukush—
Karakoram—Himalaya, upper Indus Basin. Earth System Dynamics, 8(2), 337-355, doi:10.5194/esd-8-337-
2017.

Haszpra, T., M. Herein, and T. ' Bodai, 2020: Investigating ENSO and its teleconnections under climate change in an
ensemble view — amew perspective. Earth System Dynamics, 11(1), 267-280, doi: 10.5194/esd-11-267-2020.

Hatchett, B.J., D. Koracin, J.F. Mejia, and D.P. Boyle, 2016: Assimilating urban heat island effects into climate
projections. Journal of Arid Environments, 128, 59—64, doi:10.1016/j.jaridenv.2016.01.007.

Hauser, M., R. Orth, and S.I..Seneviratne, 2016: Role of soil moisture versus recent climate change for the 2010 heat
wave in western Russia. Geophysical Research Letters, 43(6), 2819—2826, doi:10.1002/2016g1068036.

Hauser, M., R. Orth, and S.I.. Seneviratne, 2017: Investigating soil moisture—climate interactions with prescribed soil
moisture experiments: an assessment with the Community Earth System Model (version 1.2). Geoscientific
Model Development, 10(4), 1665-1677, doi:10.5194/gmd-10-1665-2017.

Hausfather, Z., Ki Cowtan, M.J. Menne, and C.N. Williams Jr., 2016: Evaluating the impact of U.S. Historical
Climatology Network homogenization using the U.S. Climate Reference Network. Geophysical Research
Letters, 43(4), 1695-1701, doi:10.1002/2015¢1067640.

Hausfather,Z: et al., 2013: Quantifying the effect of urbanization on u.s. Historical climatology network temperature
records. Journal of Geophysical Research Atmospheres, 118(2), 481-494, doi:10.1029/2012jd018509.

Hawkins, E. and R. Sutton, 2012: Time of emergence of climate signals. Geophysical Research Letters, 39(1), n/a—n/a,
doi:10.1029/2011g1050087.

Hawkins, E. et al., 2014: Uncertainties in the timing of unprecedented climates. Nature, 511(7507), E3—-ES,
doi:10.1038/nature13523.

Hawkins, E. et al., 2020: Observed Emergence of the Climate Change Signal: From the Familiar to the Unknown.
Geophysical Research Letters, 47(6), doi:10.1029/2019¢1086259.

Haylock, M.R. et al., 2008: A European daily high-resolution gridded data set of surface temperature and precipitation
for 1950-2006. Journal of Geophysical Research, 113(D20), D20119, doi:10.1029/2008jd010201.

Haywood, J.M., A. Jones, N. Bellouin, and D. Stephenson, 2013: Asymmetric forcing from stratospheric aerosols

Do Not Cite, Quote or Distribute 10-150 Total pages: 228


https://dx.doi.org/10.1007/s41748-020-00193-3
https://dx.doi.org/10.1007/s00382-019-04653-z
https://dx.doi.org/10.5194/acp-20-6479-2020
https://dx.doi.org/10.1029/2010rg000345
https://dx.doi.org/10.1002/joc.3711
https://dx.doi.org/10.1175/mwr-d-11-00201.1
https://dx.doi.org/10.1029/2018gl079563
https://dx.doi.org/10.1177/0093650211416646
https://dx.doi.org/10.1017/cbo9781107415324.008
https://dx.doi.org/10.1029/2020jd032701
https://dx.doi.org/10.1002/2014gl060764
https://dx.doi.org/10.5194/acp-16-161-2016
https://dx.doi.org/10.5194/esd-4-199-2013
https://dx.doi.org/10.5194/esd-4-199-2013
https://dx.doi.org/10.5194/esd-8-337-2017
https://dx.doi.org/10.5194/esd-8-337-2017
https://dx.doi.org/10.5194/esd-11-267-2020
https://dx.doi.org/10.1016/j.jaridenv.2016.01.007
https://dx.doi.org/10.1002/2016gl068036
https://dx.doi.org/10.5194/gmd-10-1665-2017
https://dx.doi.org/10.1002/2015gl067640
https://dx.doi.org/10.1029/2012jd018509
https://dx.doi.org/10.1029/2011gl050087
https://dx.doi.org/10.1038/nature13523
https://dx.doi.org/10.1029/2019gl086259
https://dx.doi.org/10.1029/2008jd010201

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

impacts Sahelian rainfall. Nature Climate Change, 3(7), 660—-665, doi:10.1038/nclimate1857.

Hazeleger, W. et al., 2015: Tales of future weather. Nature Climate Change, 5(2), 107—113, doi:10.1038/nclimate2450.

He, B.-J., J. Wang, H. Liu, and G. Ulpiani, 2021: Localized synergies between heat waves and urban heat islands:
Implications on human thermal comfort and urban heat management. Environmental Research, 193, 110584,
doi:10.1016/j.envres.2020.110584.

Heaney, A., E. Little, S. Ng, and J. Shaman, 2016: Meteorological variability and infectious disease in Central Africa: a
review of meteorological data quality. Annals of the New York Academy of Sciences, 1382(1), 31-43,
doi:10.1111/nyas.13090.

Hegdahl, T.J., K. Engeland, M. Miiller, and J. Sillmann, 2020: An Event-Based Approach to Explore Selected Present
and Future Atmospheric River—Induced Floods in Western Norway. Journal of Hydrometeorology, 21(9),
2003-2021, doi:10.1175/jhm-d-19-0071.1.

Hegerl, G. et al., 2010: Good Practice Guidance Paper on Detection and Attribution Related to Anthropogenic Climate
Change. In: Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Detection
and Attribution of Anthropogenic Climate Change [Stocker, T.F., C.B. Field, D. Qin, V. Barros, G.-K.
Plattner, M. Tignor, P.M. Midgley, and K.L. Ebi (eds.)]. Working Group I Technical Support Unit, University
of Bern, Bern, Switzerland, pp. 1-8.

Heinrich, G., A. Gobiet, and T. Mendlik, 2014: Extended regional climate model projections for Europe-until the mid-
twentyfirst century: combining ENSEMBLES and CMIP3. Climate Dynamics, 42(1-2), 521535,
doi:10.1007/s00382-013-1840-7.

Held, .M. and B.J. Soden, 2006: Robust Responses of the Hydrological Cycle to:Global Warming. Journal of Climate,
19(21), 56865699, doi:10.1175/jcli3990.1.

Hellwig, J., K. Stahl, M. Ziese, and A. Becker, 2018: The impact of the resolution of meteorological data sets on
catchment-scale precipitation and drought studies. International Journal of Climatology,38(7), 3069—3081,
doi:10.1002/joc.5483.

Hempel, S., K. Frieler, L. Warszawski, J. Schewe, and F. Piontek, 2013:"A trend-preserving bias correction — the ISI-
MIP approach. Earth System Dynamics, 4(2), 219-236, doi:10.5194/esd=4-219-2013.

Hendon, H.H., E.-P. Lim, and H. Nguyen, 2014: Seasonal Variations of Subtropical Precipitation Associated with the
Southern Annular Mode. Journal of Climate, 27(9), 3446-3460, doi:10.1175/jcli-d-13-00550.1.

Henrich, J., S. Heine, and A. Norenzayan, 2010a: Beyond WEIRD: Towards a broad-based behavioral science.
Behavioral and Brain Sciences, 33(2-3), 111135, doi:10.1017/50140525x10000725.

Henrich, J., S.J. Heine, and A. Norenzayan, 2010b: The weirdest people in the world? Behavioral and Brain Sciences,
33(2-3), 61-83, doi:10.1017/s0140525%0999152x.

Herein, M., G. Droétos, T. Haszpra, J. Marfy,.and T. T¢l, 2017: The theory of parallel climate realizations as a new
framework for teleconnection analysis. Scientifie.Reports, T(1), 44529, doi:10.1038/srep44529.

Herger, N., B.M. Sanderson, and R. Knutti, 2015: Improved pattern scaling approaches for the use in climate impact
studies. Geophysical Research Letters, 42(9),3486-3494, doi:10.1002/2015¢1063569.

Hermanson, L. et al., 2020: Robust Multiyear Climate Impacts of Volcanic Eruptions in Decadal Prediction Systems.
Journal of Geophysical Research: Atmospheres, 125(9), €2019JD031739, doi:10.1029/2019jd031739.

Hernandez-Diaz, L., O. Nikiéma, R. Laprise, K. Winger, and S. Dandoy, 2019: Effect of empirical correction of sea-
surface temperature biases on the CRCMS5-simulated climate and projected climate changes over North
America. Climate Dynamics, 53(1-2), 453—-476, doi:10.1007/s00382-018-4596-2.

Hernandez-Diaz, L. et-al., 2013: Climate simulation over CORDEX Africa domain using the fifth-generation Canadian
Regional Climate Model (CREMS). Climate Dynamics, 40(5-6), 1415-1433, doi:10.1007/s00382-012-1387-z.

Herrera, S., J. Fernandez, and J.M. Gutiérrez, 2016: Update of the Spain02 gridded observational dataset for EURO-
CORDEX evaluation: assessing the effect of the interpolation methodology. International Journal of
Climatology;36(2), 900-908, doi:10.1002/joc.4391.

Herrera, S. et al., 2019: Uncertainty in gridded precipitation products: Influence of station density, interpolation method
and grid resolution. International Journal of Climatology, 39(9), 3717-3729, doi:10.1002/joc.5878.

Herrmann, M., S. Somot, S. Calmanti, C. Dubois, and F. Sevault, 2011: Representation of spatial and temporal
variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical
downscaling: impact of the regional climate model configuration. Natural Hazards and Earth System Science,
11(7), 1983-2001, doi:10.5194/nhess-11-1983-2011.

Hertig, E., C. Beck, H. Wanner, and J. Jacobeit, 2015: A review of non-stationarities in climate variability of the last
century with focus on the North Atlantic—-European sector. Earth-Science Reviews, 147, 1-17,
doi:10.1016/j.earscirev.2015.04.009.

Hertig, E. et al., 2019: Comparison of statistical downscaling methods with respect to extreme events over Europe:
Validation results from the perfect predictor experiment of the COST Action VALUE. International Journal of
Climatology, 39(9), 38463867, doi:10.1002/joc.5469.

Hertwig, D., M. Ng, S. Grimmond, P.L. Vidale, and P.C. McGuire, 2021: High-resolution global climate simulations:
representation of cities. International Journal of Climatology, n/a(n/a), doi:10.1002/joc.7018.

Hewitson, B., K. Waagsaether, J. Wohland, K. Kloppers, and T. Kara, 2017: Climate information websites: an evolving

Do Not Cite, Quote or Distribute 10-151 Total pages: 228


https://dx.doi.org/10.1038/nclimate1857
https://dx.doi.org/10.1038/nclimate2450
https://dx.doi.org/10.1016/j.envres.2020.110584
https://dx.doi.org/10.1111/nyas.13090
https://dx.doi.org/10.1175/jhm-d-19-0071.1
https://dx.doi.org/10.1007/s00382-013-1840-7
https://dx.doi.org/10.1175/jcli3990.1
https://dx.doi.org/10.1002/joc.5483
https://dx.doi.org/10.5194/esd-4-219-2013
https://dx.doi.org/10.1175/jcli-d-13-00550.1
https://dx.doi.org/10.1017/s0140525x10000725
https://dx.doi.org/10.1017/s0140525x0999152x
https://dx.doi.org/10.1038/srep44529
https://dx.doi.org/10.1002/2015gl063569
https://dx.doi.org/10.1029/2019jd031739
https://dx.doi.org/10.1007/s00382-018-4596-2
https://dx.doi.org/10.1007/s00382-012-1387-z
https://dx.doi.org/10.1002/joc.4391
https://dx.doi.org/10.1002/joc.5878
https://dx.doi.org/10.5194/nhess-11-1983-2011
https://dx.doi.org/10.1016/j.earscirev.2015.04.009
https://dx.doi.org/10.1002/joc.5469
https://dx.doi.org/10.1002/joc.7018

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

landscape. WIREs Climate Change, 8(5), €470, doi:10.1002/wcc.470.

Hewitson, B. et al., 2014: Regional context. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B:
Regional Aspects. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir,
M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R.
Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, pp. 1133-1197, doi:10.1017/cbo9781107415386.001.

Hewitson, B.C., J. Daron, R.G. Crane, M.F. Zermoglio, and C. Jack, 2014: Interrogating empirical-statistical
downscaling. Climatic Change, 122(4), 539-554, doi:10.1007/s10584-013-1021-z.

Hewitt, C., S. Mason, and D. Walland, 2012: The Global Framework for Climate Services. Nature Climate Change, 2,
831.

Hewitt, C.D. and J.A. Lowe, 2018: Toward a European Climate Prediction System. Bulletin of the American
Meteorological Society, 99(10), 1997-2001, doi:10.1175/bams-d-18-0022.1.

Hewitt, C.D. et al., 2020: Making Society Climate Resilient: International Progress under the Global Framework for
Climate Services. Bulletin of the American Meteorological Society, 101(2), E237<E252, doi:10.1175/bams-d=
18-0211.1.

Hibino, K. and I. Takayabu, 2016: A Trade-Off Relation between Temporal and Spatial Averaging Scales on Future
Precipitation Assessment. Journal of the Meteorological Society of Japan. Ser. II, 94A, 121134,
doi:10.2151/jmsj.2015-056.

Hibino, K., I. Takayabu, Y. Wakazuki, and T. Ogata, 2018: Physical Responses. of Convective Heavy Rainfall to Future
Warming Condition: Case Study of the Hiroshima Event. Frontiers in Earth Science, 6, 35,
doi:10.3389/feart.2018.00035.

Hiebl, J. and C. Frei, 2016: Daily temperature grids for Austria since 1961 - concept , cteation and applicability. Theor
Appl Climatol, 161-178, d0i:10.1007/s00704-015-1411-4.

Hill, S.A., 2019: Theories for Past and Future Monsoon Rainfall Changes. Current Climate Change Reports, 5(3), 160—
171, doi:10.1007/s40641-019-00137-8.

Hirose, M., Y.N. Takayabu, A. Hamada, S. Shige, and M.K. Yamamoto, 2017: Spatial contrast of geographically
induced rainfall observed by TRMM PR. Journal of Climate, 30(11), 41654184, doi:10.1175/jcli-d-16-
0442.1.

Hirota, N., Y.N. Takayabu, M. Watanabe, and M. Kimoto, 2011: Precipitation reproducibility over tropical oceans and
its relationship to the double ITCZ problem in CMIP3.and MIROCS climate models. Journal of Climate,
24(18), 48594873, doi:10.1175/2011j¢li4156.1.

Hirota, N., Y.N. Takayabu, M. Watanabe, M. Kimoto, and M. Chikira, 2014: Role of convective entrainment in spatial
distributions of and temporal variations in preeipitation over tropical oceans. Journal of Climate, 27(23),
8707-8723, doi:10.1175/j¢li-d-13-00701.1.

Hirsch, A.L. et al., 2018: Modelled biophysical impacts of conservation agriculture on local climates. Global Change
Biology, doi:10.111 1/gcb.14362.

Hoback Haff, 1., A. Frigessi, and D. Maraun, 2015: How well do regional climate models simulate the spatial
dependence of precipitation? An'application of pair-copula constructions. Journal of Geophysical Research:
Atmospheres, 120(7), 2624-2646, doi:10.1002/2014jd022748.

Hock, R. et al., 2019: High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate [Portner, H.-O., D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K.
Mintenbeck; A. Alegria, M. Nicolai, A. Okem, J. Petzold, B. Rama, and N.M. Weyer (eds.)]. In Press, pp.
131-202.

Hoegh-Guldberg, O. et al., 2018: Impacts of 1.5°C of Global Warming on Natural and Human Systems. In: Global
Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial
levels and related global greenhouse gas emission pathways, in the context of strengthening the global
response.to the threat of climate change, [Masson-Delmotte, V., P. Zhai, H.-O. Pértner, D. Roberts, J. Skea,
P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X.
Zhou, M.L.Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press, pp. 175-311.

Hoell, A., M:"Hoerling, J. Eischeid, X.-W. Quan, and B. Liebmann, 2017: Reconciling Theories for Human and Natural
Attribution of Recent East Africa Drying. Journal of Climate, 30(6), 1939-1957, doi:10.1175/jcli-d-16-0558.1.

Hoffmann, P., R. Schoetter, and K.H. Schliinzen, 2018: Statistical-dynamical downscaling of the urban heat island in
Hamburg, Germany. Meteorologische Zeitschrift, 27(2), 89109, doi:10.1127/metz/2016/0773.

Hofstra, N., M. Haylock, M. New, P. Jones, and C. Frei, 2008: Comparison of six methods for the interpolation of
daily, European climate data. Journal of Geophysical Research, 113(D21), D21110,
doi:10.1029/2008jd010100.

Ho-Hagemann, H.T.M. et al., 2017: Effects of air-sea coupling over the North Sea and the Baltic Sea on simulated
summer precipitation over Central Europe. Climate Dynamics, 49(11-12), 3851-3876, doi:10.1007/s00382-
017-3546-8.

Hong, S.-Y. and M. Kanamitsu, 2014: Dynamical downscaling: Fundamental issues from an NWP point of view and

Do Not Cite, Quote or Distribute 10-152 Total pages: 228


https://dx.doi.org/10.1002/wcc.470
https://dx.doi.org/10.1017/cbo9781107415386.001
https://dx.doi.org/10.1007/s10584-013-1021-z
https://dx.doi.org/10.1175/bams-d-18-0022.1
https://dx.doi.org/10.1175/bams-d-18-0211.1
https://dx.doi.org/10.1175/bams-d-18-0211.1
https://dx.doi.org/10.2151/jmsj.2015-056
https://dx.doi.org/10.3389/feart.2018.00035
https://dx.doi.org/10.1007/s00704-015-1411-4
https://dx.doi.org/10.1007/s40641-019-00137-8
https://dx.doi.org/10.1175/jcli-d-16-0442.1
https://dx.doi.org/10.1175/jcli-d-16-0442.1
https://dx.doi.org/10.1175/2011jcli4156.1
https://dx.doi.org/10.1175/jcli-d-13-00701.1
https://dx.doi.org/10.1111/gcb.14362
https://dx.doi.org/10.1002/2014jd022748
https://dx.doi.org/10.1175/jcli-d-16-0558.1
https://dx.doi.org/10.1127/metz/2016/0773
https://dx.doi.org/10.1029/2008jd010100
https://dx.doi.org/10.1007/s00382-017-3546-8
https://dx.doi.org/10.1007/s00382-017-3546-8

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

recommendations. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 83—104, doi:10.1007/s13143-014-
0029-2.

Hope, P. et al., 2014: A Comparison of Automated Methods of Front Recognition for Climate Studies: A Case Study in
Southwest Western Australia. Monthly Weather Review, 142(1), 343363, doi:10.1175/mwr-d-12-00252.1.

Horton, P. and S. Brénnimann, 2019: Impact of global atmospheric reanalyses on statistical precipitation downscaling.
Climate Dynamics, 52(9-10), 5189-5211, doi:10.1007/s00382-018-4442-6.

Hoskins, B., 2013: The potential for skill across the range of the seamless weather-climate prediction problem: A
stimulus for our science. Quarterly Journal of the Royal Meteorological Society, 139(672), 573584,
doi:10.1002/qj.1991.

Hoskins, B. and T. Woollings, 2015: Persistent Extratropical Regimes and Climate Extremes. Current Climate Change
Reports, 1(3), 115-124, d0i:10.1007/s40641-015-0020-8.

Hu, Y., S. Maskey, and S. Uhlenbrook, 2013a: Downscaling daily precipitation over the Yellow River source region in
China: a comparison of three statistical downscaling methods. Theoretical and Applied Climatology, 112(3-4),
447-460, doi:10.1007/s00704-012-0745-4.

Hu, Y., L. Tao, and J. Liu, 2013b: Poleward expansion of the Hadley circulation in CMIPS simulations. Advances.in
Atmospheric Sciences, 30(3), 790795, doi:10.1007/s00376-012-2187-4.

Huang, B. etal., 2015: Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part L::Upgrades and
Intercomparisons. Journal of Climate, 28(3), 911-930, doi:10.1175/jcli-d-14-00006.1.

Huang, J. et al., 2017: Dryland climate change: Recent progress and challenges=Reviews of Geophysics, 55(3), 719—
778, doi:10.1002/2016rg000550.

Huang, X., A.M. Rhoades, P.A. Ullrich, and C.M. Zarzycki, 2016: An evaluation of the variable-resolution CESM for
modeling California’s climate. Journal of Advances in Modeling Earth Systems, 8(1), 345369,
doi:10.1002/2015ms000559.

Huang, X. et al., 2020a: South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation.
Science Advances, 6(11), 1-10, doi:10.1126/sciadv.aay6546.

Huang, X. et al., 2020b: The Recent Decline and Recovery.of Indian Summer Monsoon Rainfall: Relative Roles of
External Forcing and Internal Variability. Journal of Climate, JCLI-D-19-0833.1, doi:10.1175/jcli-d-19-
0833.1.

Huffman, G.J. et al., 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear,
Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology, 8(1), 38-55,
doi:10.1175/jhm560.1.

Huffman, G.J. et al., 2014: Algorithm Theoretical Basis Document (ATBD) NASA Global Precipitation Measurement
(GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). .

Huguenin, MLF. et al., 2020: Lack of Change in the Projected Frequency and Persistence of Atmospheric Circulation
Types Over Central Europe. Geophysical Résearch Letters, 47(9), doi:10.1029/2019g1086132.

Hulme, M., 2001: Climatic perspectives on Sahelian desiccation: 1973-1998. Global Environmental Change, 11(1),
19-29, doi:10.1016/50959-3780(00)00042-x.

Humphrey, V., L. Gudmundsson, and S.I. Seneviratne, 2017: A global reconstruction of climate-driven subdecadal
water storage variability. Geophysical Research Letters, 44(5), 2300-2309, doi:10.1002/2017g1072564.

Hunt, K.M.R. andJ.K. Fletcher, 2019: The telationship between Indian monsoon rainfall and low-pressure systems.
Climate Dynamics, 53(3—4), 1859-1871, doi:10.1007/s00382-019-04744-x.

Hunt, K.M.R:;;A.G. Turner, and L.C. Shaffrey, 2019: Falling Trend of Western Disturbances in Future Climate
Simulations: Journal of Climate, 32(16), 5037-5051, doi:10.1175/jcli-d-18-0601.1.

Hurrell, J. et al; 2009: A Unified Modeling Approach to Climate System Prediction. Bulletin of the American
Meteorological Society;90(12), 1819-1832, doi:10.1175/2009bams2752.1.

Hurwitz, M.M. et al.;2014: Extra-tropical atmospheric response to ENSO in the CMIP5 models. Climate Dynamics,
43(12), 33673376, doi:10.1007/s00382-014-2110-z.

Huth, R. et al., 2015: Comparative validation of statistical and dynamical downscaling models on a dense grid in central
Europe: temperature. Theoretical and Applied Climatology, 120(3—4), 533553, doi:10.1007/s00704-014-
1190-3.

Hwang, Y.-T:; D.M.W. Frierson, and S.M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of
tropical precipitation in the late 20th century. Geophysical Research Letters, 40(11), 2845-2850,
doi:10.1002/grl.50502.

Ichinose, T., K. Shimodozono, and K. Hanaki, 1999: Impact of anthropogenic heat on urban climate in Tokyo.
Atmospheric Environment, 33(24-25), 3897-3909, doi:10.1016/s1352-2310(99)00132-6.

lizumi, T., M.A. Semenov, M. Nishimori, Y. Ishigooka, and T. Kuwagata, 2012: ELPIS-JP: a dataset of local-scale
daily climate change scenarios for Japan. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 370(1962), 1121-1139, doi:10.1098/rsta.2011.0305.

Iles, C. and G. Hegerl, 2017: Role of the North Atlantic Oscillation in decadal temperature trends. Environmental
Research Letters, 12(11), 114010, doi:10.1088/1748-9326/aa9152.

Illing, S., C. Kadow, H. Pohlmann, and C. Timmreck, 2018: Assessing the impact of a~future volcanic eruption on

Do Not Cite, Quote or Distribute 10-153 Total pages: 228


https://dx.doi.org/10.1007/s13143-014-0029-2
https://dx.doi.org/10.1007/s13143-014-0029-2
https://dx.doi.org/10.1175/mwr-d-12-00252.1
https://dx.doi.org/10.1007/s00382-018-4442-6
https://dx.doi.org/10.1002/qj.1991
https://dx.doi.org/10.1007/s40641-015-0020-8
https://dx.doi.org/10.1007/s00704-012-0745-4
https://dx.doi.org/10.1007/s00376-012-2187-4
https://dx.doi.org/10.1175/jcli-d-14-00006.1
https://dx.doi.org/10.1002/2016rg000550
https://dx.doi.org/10.1002/2015ms000559
https://dx.doi.org/10.1126/sciadv.aay6546
https://dx.doi.org/10.1175/jcli-d-19-0833.1
https://dx.doi.org/10.1175/jcli-d-19-0833.1
https://dx.doi.org/10.1175/jhm560.1
https://dx.doi.org/10.1029/2019gl086132
https://dx.doi.org/10.1016/s0959-3780(00)00042-x
https://dx.doi.org/10.1002/2017gl072564
https://dx.doi.org/10.1007/s00382-019-04744-x
https://dx.doi.org/10.1175/jcli-d-18-0601.1
https://dx.doi.org/10.1175/2009bams2752.1
https://dx.doi.org/10.1007/s00382-014-2110-z
https://dx.doi.org/10.1007/s00704-014-1190-3
https://dx.doi.org/10.1007/s00704-014-1190-3
https://dx.doi.org/10.1002/grl.50502
https://dx.doi.org/10.1016/s1352-2310(99)00132-6
https://dx.doi.org/10.1098/rsta.2011.0305
https://dx.doi.org/10.1088/1748-9326/aa9152

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

decadal predictions. Earth System Dynamics, 9(2), 701-715, doi:10.5194/esd-9-701-2018.

Immerzeel, W.W., N. Wanders, A.F. Lutz, J.M. Shea, and M.F.P. Bierkens, 2015: Reconciling high-altitude
precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrology and Earth System
Sciences, 19(11), 4673—-4687, doi:10.5194/hess-19-4673-2015.

Inatsu, M. et al., 2015: Multi-GCM by multi-RAM experiments for dynamical downscaling on summertime climate
change in Hokkaido. Atmospheric Science Letters, 16(3), 297-304, doi: 10.1002/as12.557.

Inoue, T. et al., 2016: The Vietnam Gridded Precipitation (VnGP) Dataset: Construction and Validation. SOLA,
doi:10.2151/s01a.2016-057.

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change. [Core Writing Team, R.K. Pachauri,
and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

IPCC, 2018a: Annex I: Glossary [Matthews, J.B.R. (ed.)]. In: Global Warming of 1.5°C. An IPCC Special Report on
the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas
emission pathways, in the context of strengthening the global response to the threat of climate change,
[Masson-Delmotte, V., P. Zhai, H.-O. Portner, D. Roberts, J. Skea, P.R. Shukla, A=Pirani, W. Moufouma-
Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M:L. Gomis, E. Lonnoy, T:
Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press, pp. 541-562.

IPCC, 2018b: Global Warming of 1.5°C. An IPCC Special Report on the impacts:of global warming of.1.5°C above
pre-industrial levels and related global greenhouse gas emission pathways, in the context.of strengthening the
global response to the threat of climate change. [Masson-Delmotte, V., P:Zhai, H.-O. Pértner, D. Roberts, J.
Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S.Connors; J.B.R. Matthews, Y.
Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press, 616 pp.

IPCC, 2019a: Climate Change and Land: an IPCC special report on'climate change, desertification, land degradation,
sustainable land management, food security, and greenhouse'gas fluxes in terrestrial ecosystems. [Shukla, P.R.,
J. Skea, E.C. Buendia, V. Masson-Delmotte, H.-O. Portner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R.
Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi;.M. Pathak, J. Petzold, J.P. Pereira, P. Vyas, E. Huntley, K.
Kissick, M. Belkacemi, and J. Malley (eds.)]. In Press,"896 pp.

IPCC, 2019b: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. [Portner, H.-O., D.C. Roberts,
V. Masson-Delmotte, P. Zhai, M. Tignor; E. Poloczanska, K. Mintenbeck, A. Alegria, M. Nicolai, A. Okem, J.
Petzold, B. Rama, and N.M. Weyer (eds.)]. In Press, 755 pp.

Ishii, M. and N. Mori, 2020: d4PDF: large-ensemble and high-resolution climate simulations for global warming risk
assessment. Progress in Earth and Planetary Science, 7(1), 58, doi:10.1186/s40645-020-00367-7.

Ishizaki, N. and I. Takayabu, 2009: On the Warming Events over Toyama Plain by Using NHRCM. SOLA, 5§, 129-132,
doi:10.2151/s01a.2009-033¢

Isotta, F.A., R. Vogel, and C. Frei, 2015: Evaluation of European regional reanalyses and downscalings for
precipitation in the Alpine region. Meteorologische Zeitschrift, 24(1), 15-37, doi:10.1127/metz/2014/0584.

Isotta, F.A. et al., 2014: The climate of daily precipitation in the Alps : development and analysis of a high-resolution
grid dataset from pan-Alpine rain-gauge data. International Journal of Climatology, 1675, 1657-1675,
doi:10.1002/joe.3794.

Ivanov, M., K. Warrach-Sagi, and V. Wulfmeyer, 2017: Field significance of performance measures in the context of
regional climate model evaluation. Part 1: temperature. Theoretical and Applied Climatology, 1-19,
doi:10.1007/s00704-017-2100-2;

Ivanov, M., K. Warrach-Sagi;and. V.-Wulfmeyer, 2018: Field significance of performance measures in the context of
regional climate model'evaluation. Part 2: precipitation. Theoretical and Applied Climatology, 132(1-2), 239—
261, doi:10.1007/s00704<017-2077-x.

Jack, C.D., R. Jones,Iu: Burgin, and J. Daron, 2020: Climate risk narratives: An iterative reflective process for co-
producing and integrating climate knowledge. Climate Risk Management, 29, 100239,
doi:10.1016/).ctm.2020.100239.

Jack, C.D., J. Marsham, D.P. Rowell, and R.G. Jones, 2021: Climate Information: Towards Transparent Distillation. In:
Climate Risk in Africa: Adaptation and Resilience [Conway, D. and K. Vincent (eds.)]. Palgrave Macmillan,
Cham, Switzerland, pp. 17-35, doi:10.1007/978-3-030-61160-6_2.

Jackson, L.C.et al., 2015: Global and European climate impacts of a slowdown of the AMOC in a high resolution
GCM. Climate Dynamics, 45(11-12), 3299—3316, doi:10.1007/s00382-015-2540-2.

Jacob, D. et al., 2014: EURO-CORDEX: new high-resolution climate change projections for European impact research.
Regional Environmental Change, 14(2), 563-578, doi:10.1007/s10113-013-0499-2.

Jacob, D. et al., 2018: Climate Impacts in Europe Under +1.5°C Global Warming. Earth’s Future, 6(2), 264-285,
doi:10.1002/2017¢f000710.

Jacobeit, J., E. Hertig, S. Seubert, and K. Lutz, 2014: Statistical downscaling for climate change projections in the
Mediterranean region: methods and results. Regional Environmental Change, 14(5), 1891-1906,
doi:10.1007/s10113-014-0605-0.

Jaiser, R. et al., 2016: Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations.

Do Not Cite, Quote or Distribute 10-154 Total pages: 228


https://dx.doi.org/10.5194/esd-9-701-2018
https://dx.doi.org/10.5194/hess-19-4673-2015
https://dx.doi.org/10.1002/asl2.557
https://dx.doi.org/10.2151/sola.2016-057
https://dx.doi.org/10.1186/s40645-020-00367-7
https://dx.doi.org/10.2151/sola.2009-033
https://dx.doi.org/10.1127/metz/2014/0584
https://dx.doi.org/10.1002/joc.3794
https://dx.doi.org/10.1007/s00704-017-2100-2
https://dx.doi.org/10.1007/s00704-017-2077-x
https://dx.doi.org/10.1016/j.crm.2020.100239
https://dx.doi.org/10.1007/978-3-030-61160-6_2
https://dx.doi.org/10.1007/s00382-015-2540-2
https://dx.doi.org/10.1007/s10113-013-0499-2
https://dx.doi.org/10.1002/2017ef000710
https://dx.doi.org/10.1007/s10113-014-0605-0

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Journal of Geophysical Research: Atmospheres, 121(13), 7564—7577, doi:10.1002/2015jd024679.

Janicke, B. et al., 2017: Urban-rural differences in near-surface air temperature as resolved by the Central Europe
Refined analysis (CER): sensitivity to planetary boundary layer schemes and urban canopy models.
International Journal of Climatology, 37(4), 2063-2079, doi:10.1002/joc.4835.

Jenkner, J. et al., 2009: Detection and climatology of fronts in a high-resolution model reanalysis over the Alps.
Meteorological Applications, n/a—n/a, doi:10.1002/met.142.

Jerez, S. et al., 2018: Impact of evolving greenhouse gas forcing on the warming signal in regional climate model
experiments. Nature Communications, 9(1), 1304, doi:10.1038/s41467-018-03527-y.

Jermey, P.M. and R.J. Renshaw, 2016: Precipitation representation over a two-year period in regional reanalysis.
Quarterly Journal of the Royal Meteorological Society, 142(696), 1300-1310, doi:10.1002/qj.2733.

Ji, F., Z. Wu, J. Huang, and E.P. Chassignet, 2014: Evolution of land surface air temperature trend. Nature Climate
Change, 4(6), 462—466, doi:10.1038/nclimate2223.

Jia, G. et al., 2019: Land—climate interactions. In: Climate Change and Land: an IPCC special report on climate
change, desertification, land degradation, sustainable land management, food security, and greenhouse gas
fluxes in terrestrial ecosystems [Shukla, P.R., J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Portner;
D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M.
Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J. Malley (eds.)]. In
Press, pp. 131-248.

Jiang, J., T. Zhou, X. Chen, and L. Zhang, 2020: Future changes in precipitation,over. Central Asiasbased on CMIP6
projections. Environmental Research Letters, 15(5), 54009, doi: 10.1088/1748-9326/ab7d03.

Jiang, X. et al., 2015: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model
physics in climate simulations. Journal of Geophysical Research: Atmospheres, 120(10), 47184748,
doi:10.1002/2014jd022375.

Jiménez-Guerrero, P. et al., 2013: Mean fields and interannual variability in RCM simulations.over Spain: the ESCENA
project. Climate Research, 57(3), 201-220, doi:10.3354/ct01165.

Jin, Q. and C. Wang, 2017: A revival of Indian summer monsoon rainfall since 2002. Nature Climate Change, 7(8),
587-594, doi:10.1038/nclimate3348.

Jin, Q., Z.-L. Yang, and J. Wei, 2016: High sensitivity of Indian summer monseon to Middle East dust absorptive
properties. Scientific Reports, 6(1), 30690, doi:10.1038/srep30690.

Johnson, F. and A. Sharma, 2012: A nesting model for bias correction of variability at multiple time scales in general
circulation model precipitation simulations. Water Resources Research, 48(1), doi:10.1029/2011wr010464.

Johnson, S.J. et al., 2016: The resolution.sensitivity0f the South Asian monsoon and Indo-Pacific in a global 0.35°
AGCM. Climate Dynamics, 46(3—4), 807-831, doi:10.1007/s00382-015-2614-1.

Jones, A.D., W.D. Collins, and M.S. Torn, 2013: On the-additivity of radiative forcing between land use change and
greenhouse gases. Geophysical Research Letters, 40(15), 4036—4041, doi:10.1002/grl.50754.

Jones, P., 2016: The reliability of global and hemiSpheric surface temperature records. Advances in Atmospheric
Sciences, 33(3), 269-282, doi:10.1007/s00376-015-5194-4.

Journée, M., C. Delvaux, and C. Bertrand, 2015: Precipitation climate maps of Belgium. Advances in Science and
Research, 12(1), 73-78, doi:10.5194/asr-12-73-2015.

Jovanovic, B., R. Smalley, B: Timbal, and S: Siems, 2017: Homogenized monthly upper-air temperature data set for
Australia. International Journal of Climatology, 37(7), 3209-3222, doi:10.1002/j0c.4909.

Joyce, R.J., J.E. Janowiak, P.A. Arkin, and P. Xie, 2004: CMORPH: A Method that Produces Global Precipitation
Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. Journal of
Hydrometeorology, 5(3), 487-503, doi:10.1175/1525-7541(2004)005<0487:camtpg>2.0.c0:2.

Junquas, C., C.S. Vera, L. Li, andH. Le Treut, 2013: Impact of projected SST changes on summer rainfall in
southeastern-South America. Climate Dynamics, 40(7-8), 1569-1589, doi:10.1007/s00382-013-1695-y.

Junquas, C., L. Liy C.S: Vera, H. Le Treut, and K. Takahashi, 2016: Influence of South America orography on
summertime precipitation in Southeastern South America. Climate Dynamics, 46(11-12), 3941-3963,
dois10.1007/s00382-015-2814-8.

Jury, M.W.; S.'Herrera, J.M. Gutiérrez, and D. Barriopedro, 2018: Blocking representation in the ERA-Interim driven
EURO-CORDEX RCMs. Climate Dynamics, 52, 3291-3306, doi:10.1007/s00382-018-4335-8.

Kaczmarska, J., V. Isham, and C. Onof, 2014: Point process models for fine-resolution rainfall. Hydrological Sciences
Journal, 59(11), 1972-1991, doi:10.1080/02626667.2014.925558.

Kahan, D.M., 2012: Ideology, Motivated Reasoning, and Cognitive Reflection: An Experimental Study. SSRN
Electronic Journal, 8(4), 407—424, doi:10.2139/ssrn.2182588.

Kahan, D.M., 2013: Making Climate-Science Communication Evidence-Based — All the Way Down. In: Culture,
Politics and Climate Change (Culture, P edition) [Boykoff, M. and D. Crow (eds.)]. Routledge Press, pp. 1—-
19, doi:10.2139/ssrn.2216469.

Kahn, B.H., S.L. Nasiri, M.M. Schreier, and B.A. Baum, 2011: Impacts of subpixel cloud heterogeneity on infrared
thermodynamic phase assessment. Journal of Geophysical Research: Atmospheres, 116(D20),
doi:10.1029/2011jd015774.

Do Not Cite, Quote or Distribute 10-155 Total pages: 228


https://dx.doi.org/10.1002/2015jd024679
https://dx.doi.org/10.1002/joc.4835
https://dx.doi.org/10.1002/met.142
https://dx.doi.org/10.1038/s41467-018-03527-y
https://dx.doi.org/10.1002/qj.2733
https://dx.doi.org/10.1038/nclimate2223
https://dx.doi.org/10.1088/1748-9326/ab7d03
https://dx.doi.org/10.1002/2014jd022375
https://dx.doi.org/10.3354/cr01165
https://dx.doi.org/10.1038/nclimate3348
https://dx.doi.org/10.1038/srep30690
https://dx.doi.org/10.1029/2011wr010464
https://dx.doi.org/10.1007/s00382-015-2614-1
https://dx.doi.org/10.1002/grl.50754
https://dx.doi.org/10.1007/s00376-015-5194-4
https://dx.doi.org/10.5194/asr-12-73-2015
https://dx.doi.org/10.1002/joc.4909
https://dx.doi.org/10.1175/1525-7541(2004)005%3c0487:camtpg%3e2.0.co;2
https://dx.doi.org/10.1007/s00382-013-1695-y
https://dx.doi.org/10.1007/s00382-015-2814-8
https://dx.doi.org/10.1007/s00382-018-4335-8
https://dx.doi.org/10.1080/02626667.2014.925558
https://dx.doi.org/10.2139/ssrn.2182588
https://dx.doi.org/10.2139/ssrn.2216469
https://dx.doi.org/10.1029/2011jd015774

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Kahya, E., 2011: The Impacts of NAO on the Hydrology of the Eastern Mediterranean. , 5771, doi:10.1007/978-94-
007-1372-7_5.

Kaiser-Weiss, A.K. et al., 2019: Added value of regional reanalyses for climatological applications. Environmental
Research Communications, 1(7), 071004, doi:10.1088/2515-7620/ab2ec3.

Kajino, M. et al., 2017: Synergy between air pollution and urban meteorological changes through aerosol-radiation-
diffusion feedback-A case study of Beijing in January 2013. Atmospheric Environment, 171, 98—110,
doi:10.1016/j.atmosenv.2017.10.018.

Kalnay, E. et al., 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological
Society, 77(3), 437471, doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2.

Kanada, S., K. Tsuboki, H. Aiki, S. Tsujino, and I. Takayabu, 2017a: Future Enhancement of Heavy Rainfall Events
Associated with a Typhoon in the Midlatitude Regions. SOLA, 13, 246251, doi:10.2151/so0la.2017-045.

Kanada, S. et al., 2017b: Impacts of SST Patterns on Rapid Intensification of Typhoon Megi (2010). Journal of
Geophysical Research: Atmospheres, 122(24), 13,245-13,262, doi:10.1002/2017jd027252.

Kanamaru, H. and M. Kanamitsu, 2007: Scale-Selective Bias Correction in a Downscaling of Global Analysis Using a
Regional Model. Monthly Weather Review, 135(2), 334-350, doi:10.1175/mwr3294.1.

Kanemaru, K., T. Kubota, T. Iguchi, Y.N. Takayabu, and R. Oki, 2017: Development of a precipitation climaterecord
from spaceborne precipitation radar data. Part I: Mitigation of the effects of switching to redundancy
electronics in the TRMM precipitation radar. Journal of Atmospheric and Oceanic/ Technology, 34(9),2043—
2057, doi:10.1175/jtech-d-17-0026.1.

Kang, S.M., C. Deser, and L.M. Polvani, 2013: Uncertainty in Climate Change Projections of the Hadley Circulation:
The Role of Internal Variability. Journal of Climate, 26(19), 75417554, doi:10.1175/jcli-d-12-00788.1.

Kaplan, A. et al., 1998: Analyses of global sea surface temperature 1856-1991. JOURNAL OF GEOPHYSICAL
RESEARCH, d0i:10.1029/97ic01736.

Kaplan, S., M. Georgescu, N. Alfasi, and 1. Kloog, 2017: Impact of future urbanization on a hot summer: a case study
of Israel. Theoretical and Applied Climatology, 128(1-2), 325<341, doi:10.1007/s00704-015-1708-3.
Karmalkar, A. and R.S. Bradley, 2017: Consequences of Global Warming of 1.5°C and 2°C for Regional Temperature
and Precipitation Changes in the Contiguous United States. PLOS ONE, 12(1), e0168697,

doi:10.1371/journal.pone.0168697.

Karnauskas, K.B., C.-F. Schleussner, J.P. Donnelly, and K.J. Anchukaitis, 2018: Freshwater stress on small island
developing states: population projections and aridity changes at 1.5 and 2°C. Regional Environmental Change,
18(8), 22732282, doi:10.1007/s10113-018-1331-9.

Kasoar, M., D. Shawki, and A. Voulgarakis, 2018: Similar spatial-patterns of global climate response to aerosols from
different regions. npj Climate and Atmospheric Science, 1(1), 12, doi:10.1038/s41612-018-0022-z.

Kaspar, F. et al., 2020: Regional atmospheric reanalysis-activities at Deutscher Wetterdienst: review of evaluation
results and application examples with a focus on renewable energy. Advances in Science and Research, 17,
115-128, doi:10.5194/asr=17-115-2020,

Kathayat, G. et al., 2016: Indian'monsoon variability on millennial-orbital timescales. Scientific Reports, 6(1), 24374,
doi:10.1038/srep24374.

Katzfey, J., H. Schliizen, P. Hoffmann, and M. Thatcher, 2020: How an urban parameterization affects a high-resolution
global climate simulation. Quarterly Journal of the Royal Meteorological Society, n/a(n/a),
doi:10.1002/qj.3874.

Kawase, H. etal., 2012: Downscaling of Snow Cover Changes in the Late 20th Century Using a Past Climate
Simulation'Method over Central Japan. SOLA, 8, 61-64, do0i:10.2151/s0la.2012-016.

Kawase, H. et al., 2013: Altitude dependency of future snow cover changes over Central Japan evaluated by a regional
climate model. Journal of Geophysical Research Atmospheres, doi:10.1002/2013jd020429.

Kawazoe, S. and W.J=Gutowski, 2013: Regional, Very Heavy Daily Precipitation in NARCCAP Simulations. Journal
of Hydrometeorology, 14(4), 1212—-1227, doi:10.1175/jhm-d-12-068.1.

Kay, J.E. et al., 2015: The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource
for«Studying Climate Change in the Presence of Internal Climate Variability. Bulletin of the American
Meteorological Society, 96(8), 1333—1349, doi:10.1175/bams-d-13-00255.1.

Kayano, M:T:and R. Andreoli, 2007: Relations of South American summer rainfall interannual variations with the
Pacific Decadal Oscillation. International Journal of Climatology, 27(4), 531-540, doi:10.1002/joc.1417.

Kayano, M.T. and V.B. Capistrano, 2014: How the Atlantic multidecadal oscillation (AMO) modifies the ENSO
influence on the South American rainfall. International Journal of Climatology, 34(1), 162—178,
doi:10.1002/joc.3674.

Keller, D.E. et al., 2015: Implementation and validation of a Wilks-type multi-site daily precipitation generator over a
typical Alpine river catchment. Hydrology and Earth System Sciences, 19(5), 2163-2177, doi:10.5194/hess-
19-2163-2015.

Keller, M. et al., 2016: Evaluation of convection-resolving models using satellite data: The diurnal cycle of summer
convection over the Alps. Meteorologische Zeitschrift, 25(2), 165-179, doi:10.1127/metz/2015/0715.

Keller, M. et al., 2018: The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison

Do Not Cite, Quote or Distribute 10-156 Total pages: 228


https://dx.doi.org/10.1007/978-94-007-1372-7_5
https://dx.doi.org/10.1007/978-94-007-1372-7_5
https://dx.doi.org/10.1088/2515-7620/ab2ec3
https://dx.doi.org/10.1016/j.atmosenv.2017.10.018
https://dx.doi.org/10.1175/1520-0477(1996)077%3c0437:tnyrp%3e2.0.co;2
https://dx.doi.org/10.2151/sola.2017-045
https://dx.doi.org/10.1002/2017jd027252
https://dx.doi.org/10.1175/mwr3294.1
https://dx.doi.org/10.1175/jtech-d-17-0026.1
https://dx.doi.org/10.1175/jcli-d-12-00788.1
https://dx.doi.org/10.1029/97jc01736
https://dx.doi.org/10.1007/s00704-015-1708-3
https://dx.doi.org/10.1371/journal.pone.0168697
https://dx.doi.org/10.1007/s10113-018-1331-9
https://dx.doi.org/10.1038/s41612-018-0022-z
https://dx.doi.org/10.5194/asr-17-115-2020
https://dx.doi.org/10.1038/srep24374
https://dx.doi.org/10.1002/qj.3874
https://dx.doi.org/10.2151/sola.2012-016
https://dx.doi.org/10.1002/2013jd020429
https://dx.doi.org/10.1175/jhm-d-12-068.1
https://dx.doi.org/10.1175/bams-d-13-00255.1
https://dx.doi.org/10.1002/joc.1417
https://dx.doi.org/10.1002/joc.3674
https://dx.doi.org/10.5194/hess-19-2163-2015
https://dx.doi.org/10.5194/hess-19-2163-2015
https://dx.doi.org/10.1127/metz/2015/0715

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

between convection-parameterizing and convection-resolving models. Atmospheric Chemistry and Physics,
18(8), 52535264, doi:10.5194/acp-18-5253-2018.

Kendon, E.J. et al., 2014: Heavier summer downpours with climate change revealed by weather forecast resolution
model. Nature Climate Change, 4, 570, doi:10.1038/nclimate2258.

Kendon, E.J. et al., 2017: Do Convection-Permitting Regional Climate Models Improve Projections of Future
Precipitation Change? Bulletin of the American Meteorological Society, 98(1), 79-93, doi:10.1175/bams-d-15-
0004.1.

Kendon, E.J. et al., 2019: Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale.
Nature Communications, 10(1), 1794, doi:10.1038/s41467-019-09776-9.

Kennel, C.F. and E. Yulaeva, 2020: Influence of Arctic sea-ice variability on Pacific trade winds. Proceedings of the
National Academy of Sciences, 117(6), 2824-2834, doi:10.1073/pnas.1717707117.

Kerkhoff, C., H.R. Kiinsch, and C. Schér, 2014: Assessment of Bias Assumptions for Climate Models. Journal of
Climate, 27(17), 6799-6818, doi:10.1175/jcli-d-13-00716.1.

Kerr, Y.H. et al., 2012: The SMOS Soil Moisture Retrieval Algorithm. /[EEE Transactions on Geoscience and Remote
Sensing, 50(5), 1384-1403, doi:10.1109/tgrs.2012.2184548.

Kharin, V., G.J. Boer, W.J. Merryfield, J.F. Scinocca, and W.-S. Lee, 2012: Statistical adjustment of decadal
predictions in a changing climate. Geophysical Research Letters, 39(19), n/a—n/a, doi:10.1029/2012¢1052647.

Khodri, M. et al., 2017: Tropical explosive volcanic eruptions can trigger El Nifio:by cooling tropical‘Africa. Nature
Communications, 8(1), 778, doi:10.1038/s41467-017-00755-6.

Khouider, B. et al., 2020: A Novel Method for Interpolating Daily Station Rainfall'Data Using a.Stochastic Lattice
Model. Journal of Hydrometeorology, 21(5), 909-933, doi:10.1475/ihm-d<19-0143.

Kida, H., T. Koide, H. Sasaki, and M. Chiba, 1991: A New Approach«or Coupling a Limited Area Model to a GCM for
Regional Climate Simulations. Journal of the Meteorological Society of Japan. Ser:'II, 69(6), 723—728,
doi:10.2151/jmsj1965.69.6_723.

Kidd, C. et al., 2017: So, How Much of the Earth’s Surface Is Covered by Rain Gauges? Bulletin of the American
Meteorological Society, 98(1), 6978, doi: 10.1175/bams-d-14-00283.1.

Kiem, A.S. et al., 2020: Learning from the past — Using palaeoclimate data to-better understand and manage drought in
South East Queensland (SEQ), Australia. Journal of Hydrology. Regional Studies, 29, 100686,
doi:10.1016/.ejrh.2020.100686.

Killick, R., M.I. Knight, G.P. Nason, and I.A. Eckley, 2020: The local partial autocorrelation function and some
applications. Electronic Journal of Statistics, 14(2), 3268—3314; doi:10.1214/20-¢js1748.

Kim, B.-M. et al., 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications,
5(1), 4646, doi:10.1038/ncomms5646.

Kim, D., M.-S. Ahn, L.-S. Kang, and A.D. Del Genio, 2015: Role of Longwave Cloud—Radiation Feedback in the
Simulation of the Madden—Julian Oscillation. Journal of Climate, 28(17), 6979-6994, doi:10.1175/jcli-d-14-
00767.1.

Kim, H., Y.K. Kim, S.K. Song, and H:-W. Lee,2016: Impact of future urban growth on regional climate changes in the
Seoul Metropolitan AreayKorea. Science of the Total Environment, 571, 355-363,
doi:10.1016/j.seitotenv.2016.054046.

Kim, J. and S.K. Park, 2016:"Uncertainties in calculating precipitation climatology in East Asia. Hydrology and Earth
System Sciences, 20(2), 651-658, doi:10.5194/hess-20-651-2016.

Kim, J. et al52015: Uncertainties in estimating spatial and interannual variations in precipitation climatology in the
India-Tibet region from multiple gridded precipitation datasets. International Journal of Climatology, 35(15),
4557-4573, doi: 10.1002/joc:4306.

Kim, Y.H., S.K. Min, D.A. Stone,H. Shiogama, and P. Wolski, 2018: Multi-model event attribution of the summer
2013 heat wave in Korea. Weather and Climate Extremes, 20, 33—44, doi:10.1016/1.wace.2018.03.004.

King, A.D. et al., 2015: The timing of anthropogenic emergence in simulated climate extremes. Environmental
Research Letters, 10(9), 094015, doi:10.1088/1748-9326/10/9/094015.

Kirchengast; G., T. Kabas, A. Leuprecht, C. Bichler, and H. Truhetz, 2014: WegenerNet: A Pioneering High-Resolution
Network for Monitoring Weather and Climate. Bulletin of the American Meteorological Society, 95(2), 227—
242;doi:10.1175/bams-d-11-00161.1.

Kirtman, B.P.et al., 2014: Near-term Climate Change: Projections and Predictability. In: Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J.
Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge,
United Kingdom and NewYork, NY, USA, pp. 953-1028, doi:10.1017/cbo9781107415324.023.

Kitoh, A., 2017: The Asian Monsoon and its Future Change in Climate Models: A Review. Journal of the
Meteorological Society of Japan. Ser. 11, 95(1), 7-33, d0i:10.2151/jmsj.2017-002.

Kitoh, A. and O. Arakawa, 2016: Reduction in the east—west contrast in water budget over the Tibetan Plateau under a
future climate. Hydrological Research Letters, 10(4), 113—118, doi:10.3178/hrl.10.113.

Kjellstrom, E., R. Ddscher, and H.E.M. Meier, 2005: Atmospheric response to different sea surface temperatures in the

Do Not Cite, Quote or Distribute 10-157 Total pages: 228


https://dx.doi.org/10.5194/acp-18-5253-2018
https://dx.doi.org/10.1038/nclimate2258
https://dx.doi.org/10.1175/bams-d-15-0004.1
https://dx.doi.org/10.1175/bams-d-15-0004.1
https://dx.doi.org/10.1038/s41467-019-09776-9
https://dx.doi.org/10.1073/pnas.1717707117
https://dx.doi.org/10.1175/jcli-d-13-00716.1
https://dx.doi.org/10.1109/tgrs.2012.2184548
https://dx.doi.org/10.1029/2012gl052647
https://dx.doi.org/10.1038/s41467-017-00755-6
https://dx.doi.org/10.1175/jhm-d-19-0143.1
https://dx.doi.org/10.2151/jmsj1965.69.6_723
https://dx.doi.org/10.1175/bams-d-14-00283.1
https://dx.doi.org/10.1016/j.ejrh.2020.100686
https://dx.doi.org/10.1214/20-ejs1748
https://dx.doi.org/10.1038/ncomms5646
https://dx.doi.org/10.1175/jcli-d-14-00767.1
https://dx.doi.org/10.1175/jcli-d-14-00767.1
https://dx.doi.org/10.1016/j.scitotenv.2016.05.046
https://dx.doi.org/10.5194/hess-20-651-2016
https://dx.doi.org/10.1002/joc.4306
https://dx.doi.org/10.1016/j.wace.2018.03.004
https://dx.doi.org/10.1088/1748-9326/10/9/094015
https://dx.doi.org/10.1175/bams-d-11-00161.1
https://dx.doi.org/10.1017/cbo9781107415324.023
https://dx.doi.org/10.2151/jmsj.2017-002
https://dx.doi.org/10.3178/hrl.10.113

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Baltic Sea: coupled versus uncoupled regional climate model experiments. Hydrology Research, 36(4-5), 397—
409, doi:10.2166/nh.2005.0030.

Kjellstrom, E. et al., 2013: Emerging regional climate change signals for Europe under varying large-scale circulation
conditions. Climate Research, 56(2), 103—119, doi:10.3354/cr01146.

Kjellstrom, E. et al., 2018: European climate change at global mean temperature increases of 1.5 and 2°C above pre-
industrial conditions as simulated by the EURO-CORDEX regional climate models. Earth System Dynamics,
9(2), 459478, doi:10.5194/esd-9-459-2018.

Klaver, R., R. Haarsma, P.L. Vidale, and W. Hazeleger, 2020: Effective resolution in high resolution global
atmospheric models for climate studies. Atmospheric Science Letters, 21(4), doi:10.1002/as1.952.

Klein, F. and H. Goosse, 2018: Reconstructing East African rainfall and Indian Ocean sea surface temperatures over the
last centuries using data assimilation. Climate Dynamics, 50(11), 3909-3929, doi:10.1007/s00382-017-3853-0.

Knist, S. et al., 2017: Land-atmosphere coupling in EURO-CORDEX evaluation experiments. Journal of Geophysical
Research: Atmospheres, 122(1), 79-103, doi:10.1002/2016jd025476.

Knutson, T.R. and F. Zeng, 2018: Model Assessment of Observed Precipitation Trends over Land Regions: Detectable
Human Influences and Possible Low Bias in Model Trends. Journal of Climate, 31(12), 46174637,
doi:10.1175/jcli-d-17-0672.1.

Knutson, T.R., F. Zeng, and A.T. Wittenberg, 2013: Multimodel Assessment of Regional Surface Temperature Trends:
CMIP3 and CMIP5 Twentieth-Century Simulations. Journal of Climate;26(22), 8709-8743; doi:10.1175/jcli-
d-12-00567.1.

Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there.
Geophysical Research Letters, 40(6), 1194—1199, doi:10.1002/grk.50256.

Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G.A. Meehl, 2010: Challenges in combining projections from multiple
climate models. Journal of Climate, 23(10), 2739-2758, doi:10.1175/2009jcli336 L.

Kobayashi, S. et al., 2015: The JRA-55 Reanalysis: General Specifications and Basic Characteristics. Journal of the
Meteorological Society of Japan. Ser. 11, 93(1), 5—48, d0i:10.2151/jmsj.2015-001.

Kochendorfer, J. et al., 2017: The quantification and correction of wind-induced precipitation measurement errors.
Hydrology and Earth System Sciences, 21(4), 1973—1989, doi:10.5194/hess-21-1973-2017.

Koenigk, T. et al., 2020: On the contribution of internal'climate variability to European future climate trends. Tellus A:
Dynamic Meteorology and Oceanography, 72(1), 1-17, doi:10.1080/16000870.2020.1788901.

Kok, K. et al., 2014: European participatory scenario development: strengthening the link between stories and models.
Climatic Change, 128(3—4), 187-200, do1:10.1007/s10584-014-1143-y.

Kolstad, E.W. and J.A. Screen, 2019: Nonstationary Relationship Between Autumn Arctic Sea Ice and the Winter North
Atlantic Oscillation. Geophysical Research Letters, 46(13), 7583—7591, doi:10.1029/2019g1083059.

Kornhuber, K., V. Petoukhov, S. Petri, S. Rahmstorf, and-D. Coumou, 2017: Evidence for wave resonance as a key
mechanism for generating high-amplitude quasi-stationary waves in boreal summer. Climate Dynamics, 49(5—
6), 1961-1979, doi:10.1007/s00382-016<3399-6.

Kosaka, Y. and S.P. Xie, 2013:Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature,
doi:10.1038/nature12534+

Kosaka, Y. and S.-P. Xie, 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nature
Geoscience, 9(9), 669-673, doi:10.1038/ngeo2770.

Kotlarski, S., D. Liithi, and C. Schir, 2015: The elevation dependency of 21st century European climate change: an
RCMensemble perspective. International Journal of Climatology, 35(13), 3902-3920, doi:10.1002/joc.4254.

Kotlarski, S., D.Jacob, R. Podzun, and-F. Paul, 2010: Representing glaciers in a regional climate model. Climate
Dynamics, 34(1),27-46, doi:10.1007/s00382-009-0685-6.

Kotlarski, S. et al., 2014: Regional climate modeling on European scales: a joint standard evaluation of the EURO-
CORDEX RCM ensemble. Geoscientific Model Development, 7(4), 1297-1333, doi:10.5194/gmd-7-1297-
2014.

Kotlarski, S. et ali, 2019: Observational uncertainty and regional climate model evaluation: A pan-European
perspective. International Journal of Climatology, 39(9), 3730-3749, doi:10.1002/joc.5249.

Kouroutzoglou, J. et al., 2015: On the dynamics of a case study of explosive cyclogenesis in the Mediterranean.
Meteorology and Atmospheric Physics, 127(1), 49-73, doi:10.1007/s00703-014-0357-x.

Kraaijenbrink; P.D.A., M.F.P. Bierkens, A.F. Lutz, and W.W. Immerzeel, 2017: Impact of a global temperature rise of
1.5 degrees Celsius on Asia’s glaciers. Nature, 549(7671), 257260, doi:10.1038/nature23878.

Kridhenmann S., A. and Walter, and Brienen S., and Imbery F., and and Matzarakis A, 2018: High-resolution grids of
hourly meteorological variables for Germany. Theoretical and Applied Climatology, 131(3), 899-926,
doi:10.1007/s00704-016-2003-7.

Krayenhoff, E.S., M. Moustaoui, A.M. Broadbent, V. Gupta, and M. Georgescu, 2018: Diurnal interaction between
urban expansion, climate change and adaptation in US cities. Nature Climate Change, 8(12), 1097-1103,
doi:10.1038/s41558-018-0320-9.

Kretschmer, M., G. Zappa, and T.G. Shepherd, 2020: The role of Barents—Kara sea ice loss in projected polar vortex
changes. Weather and Climate Dynamics, 1(2), 715-730, doi:10.5194/wcd-1-715-2020.

Do Not Cite, Quote or Distribute 10-158 Total pages: 228


https://dx.doi.org/10.2166/nh.2005.0030
https://dx.doi.org/10.3354/cr01146
https://dx.doi.org/10.5194/esd-9-459-2018
https://dx.doi.org/10.1002/asl.952
https://dx.doi.org/10.1007/s00382-017-3853-0
https://dx.doi.org/10.1002/2016jd025476
https://dx.doi.org/10.1175/jcli-d-17-0672.1
https://dx.doi.org/10.1175/jcli-d-12-00567.1
https://dx.doi.org/10.1175/jcli-d-12-00567.1
https://dx.doi.org/10.1002/grl.50256
https://dx.doi.org/10.1175/2009jcli3361.1
https://dx.doi.org/10.2151/jmsj.2015-001
https://dx.doi.org/10.5194/hess-21-1973-2017
https://dx.doi.org/10.1080/16000870.2020.1788901
https://dx.doi.org/10.1007/s10584-014-1143-y
https://dx.doi.org/10.1029/2019gl083059
https://dx.doi.org/10.1007/s00382-016-3399-6
https://dx.doi.org/10.1038/nature12534
https://dx.doi.org/10.1038/ngeo2770
https://dx.doi.org/10.1002/joc.4254
https://dx.doi.org/10.1007/s00382-009-0685-6
https://dx.doi.org/10.5194/gmd-7-1297-2014
https://dx.doi.org/10.5194/gmd-7-1297-2014
https://dx.doi.org/10.1002/joc.5249
https://dx.doi.org/10.1007/s00703-014-0357-x
https://dx.doi.org/10.1038/nature23878
https://dx.doi.org/10.1007/s00704-016-2003-7
https://dx.doi.org/10.1038/s41558-018-0320-9
https://dx.doi.org/10.5194/wcd-1-715-2020

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Kretschmer, M., D. Coumou, J.F. Donges, and J. Runge, 2016: Using Causal Effect Networks to Analyze Different
Arctic Drivers of Midlatitude Winter Circulation. Journal of Climate, 29(11), 4069—4081, doi:10.1175/jcli-d-
15-0654.1.

Kretschmer, M. et al., 2018: More-Persistent Weak Stratospheric Polar Vortex States Linked to Cold Extremes. Bulletin
of the American Meteorological Society, 99(1), 49—60, doi:10.1175/bams-d-16-0259.1.

Krinner, G. and C. Genthon, 1998: GCM simulations of the Last Glacial Maximum surface climate of Greenland and
Antarctica. Climate Dynamics, 14(10), 741-758, doi:10.1007/s003820050252.

Krinner, G. and M.G. Flanner, 2018: Striking stationarity of large-scale climate model bias patterns under strong
climate change. Proceedings of the National Academy of Sciences, 115(38), 9462-9466,
doi:10.1073/pnas.1807912115.

Krinner, G., C. Largeron, M. Ménégoz, C. Agosta, and C. Brutel-Vuilmet, 2014: Oceanic Forcing of Antarctic Climate
Change: A Study Using a Stretched-Grid Atmospheric General Circulation Model. Journal of Climate, 27(15),
5786-5800, doi:10.1175/jcli-d-13-00367.1.

Krinner, G., J. Beaumet, V. Favier, M. Déqué, and C. Brutel-Vuilmet, 2019: Empirical Run-Time Bias Correction for
Antarctic Regional Climate Projections With a Stretched-Grid AGCM. Journal of Advances in Modeling Earth
Systems, 11(1), 64-82, doi:10.1029/2018ms001438.

Krinner, G., V. Kharin, R. Roehrig, J. Scinocca, and F. Codron, 2020: Historically-based run-time bias corrections
substantially improve model projections of 100 years of future climate change. Communications Earth &
Environment, 1(1), 29, doi:10.1038/s43247-020-00035-0.

Krishnamurthy, L. and V. Krishnamurthy, 2014: Influence of PDO on South' Asian'summer monsoon:and monsoon—
ENSO relation. Climate Dynamics, 42(9-10), 2397-2410, doi: 10:1007/s00382-013-1856-z

Krishnamurthy, L. and V. Krishnamurthy, 2016: Teleconnections of Indian monsoon rainfall with AMO and Atlantic
tripole. Climate Dynamics, 46(7), 22692285, doi:10.1007/s00382-015-2701-3.

Krishnan, R. et al., 2013: Will the South Asian monsoon overturaiingCirculation stabilize any further? Climate
Dynamics, 40(1-2), 187-211, doi:10.1007/s00382-012-1317-0:

Krishnan, R. et al., 2016: Deciphering the desiccation trend.of the South Asian mensoon hydroclimate in a warming
world. Climate Dynamics, 47(3—4), 1007-1027, doi:10:1007/s00382=015-2886-5.

Krishnan, R. et al., 2019a: Non-monsoonal precipitationiresponse over the Western'Himalayas to climate change.
Climate Dynamics, 52(7-8), 4091-4109,doi:10.1007/s00382-018-4357-2.

Krishnan, R. et al., 2019b: Unravelling Climate' Change in the Hindu Kush*Himalaya: Rapid Warming in the Mountains
and Increasing Extremes. In: The Hindu Kush Himalaya Assessment: Mountains, Climate Change,
Sustainability and People [Wester, P., A. Mishra, A¢ Mukherji, and A.B. Shrestha (eds.)]. Springer, Cham,
Switzerland, pp. 57-97, doi:10.1007/978-3-319-922881 3.

Krishnan, R., J. Sanjay, C. Gnanase¢lan, M. Mujumdar;A. Kulkarni, and S. Chakraborty (eds.), 2020: 4Assessment of
Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MoES), Government of
India. Springer, Singapore, 226 pp., doi:10.1007/978-981-15-4327-2.

Kroner, N. et al., 2017: Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory
and application to the European summer climate. Climate Dynamics, 48(9-10), 3425-3440,
doi:10.1007/s00382-016-3276-3¢

Kruger, A.C. and M.P. Nxumalo, 2017: Historical rainfall trends in South Africa: 1921-2015. Water SA, 43(2), 285,
doi:10.4314/wsa.v43i2.12%

Kruk, M.C. etal., 2017 Engaging with Users of Climate Information and the Coproduction of Knowledge. Weather,
Climate, and Society; 9(4), 839-849, doi:10.1175/wcas-d-16-0127.1.

Kuang, W., 2019: New evidences on-anomalous phenomenon of buildings in regulating urban climate from
observations in Beijing; China. Earth and space science, minor revi.

Kuang, W. et al., 2021: Global observation of urban expansion and land-cover dynamics using satellite big-data.
Science Bulletin, 66(4), 297-300, doi:10.1016/1.s¢ib.2020.10.022.

Kubota, T. et al., 2007: Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP
Project: Production and Validation. /EEE Transactions on Geoscience and Remote Sensing,
doi:10:1109/tgrs.2007.895337.

Kucharski, F:;1.-S. Kang, D. Straus, and M.P. King, 2010: Teleconnections in the Atmosphere and Oceans. Bulletin of
the American Meteorological Society, 91(3), 381-383, doi:10.1175/2009bams2834.1.

Kumar, N., B.P. Yadav, S. Gahlot, and M. Singh, 2015: Winter frequency of western disturbances and precipitation
indices over Himachal Pradesh, India: 1977-2007. Atmésfera, 28(1), 63—70, doi:10.20937/atm.2015.28.01.06.

Kumar, S., J.L. Kinter, Z. Pan, and J. Sheffield, 2016: Twentieth century temperature trends in CMIP3, CMIPS5, and
CESM-LE climate simulations: Spatial-temporal uncertainties, differences, and their potential sources. Journal
of Geophysical Research: Atmospheres, 121(16), 9561-9575, doi:10.1002/2015jd024382.

Kurihara, Y., H. Murakami, and M. Kachi, 2016: Sea surface temperature from the new Japanese geostationary
meteorological Himawari-8 satellite. Geophysical Research Letters, 43(3), 1234—1240,
doi:10.1002/2015¢1067159.

Kusaka, H., M. Hara, and Y. Takane, 2012a: Urban Climate Projection by the WRF Model at 3-km Horizontal Grid

Do Not Cite, Quote or Distribute 10-159 Total pages: 228


https://dx.doi.org/10.1175/jcli-d-15-0654.1
https://dx.doi.org/10.1175/jcli-d-15-0654.1
https://dx.doi.org/10.1175/bams-d-16-0259.1
https://dx.doi.org/10.1007/s003820050252
https://dx.doi.org/10.1073/pnas.1807912115
https://dx.doi.org/10.1175/jcli-d-13-00367.1
https://dx.doi.org/10.1029/2018ms001438
https://dx.doi.org/10.1038/s43247-020-00035-0
https://dx.doi.org/10.1007/s00382-013-1856-z
https://dx.doi.org/10.1007/s00382-015-2701-3
https://dx.doi.org/10.1007/s00382-012-1317-0
https://dx.doi.org/10.1007/s00382-015-2886-5
https://dx.doi.org/10.1007/s00382-018-4357-2
https://dx.doi.org/10.1007/978-3-319-92288-1_3
https://dx.doi.org/10.1007/978-981-15-4327-2
https://dx.doi.org/10.1007/s00382-016-3276-3
https://dx.doi.org/10.4314/wsa.v43i2.12
https://dx.doi.org/10.1175/wcas-d-16-0127.1
https://dx.doi.org/10.1016/j.scib.2020.10.022
https://dx.doi.org/10.1109/tgrs.2007.895337
https://dx.doi.org/10.1175/2009bams2834.1
https://dx.doi.org/10.20937/atm.2015.28.01.06
https://dx.doi.org/10.1002/2015jd024382
https://dx.doi.org/10.1002/2015gl067159

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Increment: Dynamical Downscaling and Predicting Heat Stress in the 2070’s August for Tokyo, Osaka, and
Nagoya Metropolises. Journal of the Meteorological Society of Japan. Ser. 11, 90B(0), 47-63,
doi:10.2151/jmsj.2012-b04.

Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric
models: Comparison with multi-layer and slab models. Boundary-Layer Meteorology, 101, 329-358,
doi:10.1023/a:1019207923078.

Kusaka, H., A. Suzuki-Parker, T. Aoyagi, S.A. Adachi, and Y. Yamagata, 2016: Assessment of RCM and urban
scenarios uncertainties in the climate projections for August in the 2050s in Tokyo. Climatic Change, 137(3—
4), 427-438, doi:10.1007/s10584-016-1693-2.

Kusaka, H. et al., 2012b: Numerical Simulation of Urban Heat Island Effect by the WRF Model with 4-km Grid
Increment: An Inter-Comparison Study between the Urban Canopy Model and Slab Model. Journal of the
Meteorological Society of Japan. Ser. II, d0i:10.2151/jmsj.2012-b03.

Kushnir, Y. et al., 2019: Towards operational predictions of the near-term climate. Nature Climate Change, 9(2), 94—
101, doi:10.1038/s41558-018-0359-7.

Kusunoki, S., T. Ose, and M. Hosaka, 2020: Emergence of unprecedented climate changedn-projected future
precipitation. Scientific Reports, 10(1), 4802, doi:10.1038/s41598-020-61792-8:

Laaha, G. et al., 2016: A three-pillar approach to assessing climate impacts on low flows. Hydrology and Earth System
Sciences, 20(9), 3967-3985, doi:10.5194/hess-20-3967-2016.

Laat, A.T.J. and M. Crok, 2013: A Late 20th Century European Climate Shift:-Fingerprint of Regional Brightening?
Atmospheric and Climate Sciences, 03(03), 291-300, doi:10.4236/acs.2013.33031.

Lackmann, G.M., 2015: Hurricane Sandy before 1900 and after 2100. Bulletin of the American Meteorological Society,
96(4), 547-560, doi:10.1175/bams-d-14-00123.1.

Laepple, T. and P. Huybers, 2014: Ocean surface temperature variability: Large model=data‘differences at decadal and
longer periods. Proceedings of the National Academy of Sciences, 111(47), 16682—16687,
doi:10.1073/pnas.1412077111.

Lafaysse, M., B. Hingray, A. Mezghani, J. Gailhard, and L. Terray, 2014: Internal variability and model uncertainty
components in future hydrometeorological projections®The Alpine Durance basin. Water Resources Research,
50(4), 3317-3341, d0i:10.1002/2013wr014897:

Lagabrielle, E., A.T. Lombard, J.M. Harris, and T:C. Livingstone, 2018: Multi-scale multi-level marine spatial
planning: A novel methodological approach applied in south africa. PLoS ONE, 13(7), 1-29,
doi:10.1371/journal.pone.0192582.

LaJoie, E. and T. DelSole, 2016: Changes in Internal Variability due to,Anthropogenic Forcing: A New Field
Significance Test. Journal of Climate, 29(15), 5547-5560, doi:10.1175/jcli-d-15-0718.1.

Laloyaux, P. et al., 2018: CERA-20C: A Coupled Reanalysis of the Twentieth Century. Journal of Advances in
Modeling Earth Systems, 10(5), 1172—1195,doi:10.1029/2018ms001273.

Lamb, M., 2017: Ethics for Climate Change Communicators. In: Oxford Research Encyclopedia of Climate Science.
Oxford University Press, Oxford, UKy doi:10.1093/acrefore/9780190228620.013.564.

Lange, S., 2019: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0).
Geoscientific Model Development, 12(7), 3055-3070, doi:10.5194/gmd-12-3055-2019.

Langenbrunner, Biand J.D:"Neelin, 2013: Analyzing ENSO Teleconnections in CMIP Models as a Measure of Model
Fidelity in Simulating Precipitation. Journal of Climate, 26(13), 4431-4446, doi:10.1175/jcli-d-12-00542.1.

Langendijk, G:S., D."Rechid, and D. Jacob, 2019a: Urban Areas and Urban-Rural Contrasts under Climate Change:
What Does the EURO-CORDEX Ensemble Tell Us? — Investigating near Surface Humidity in Berlin and Its
Surroundings. Atmosphere,10(12), doi:10.3390/atmos10120730.

Langendijk, G.S. et al., 2019b: Three Ways Forward to Improve Regional Information for Extreme Events: An Early
Career Perspective. Frontiers in Environmental Science, 7, doi:10.3389/fenvs.2019.00006.

Langhans, W., J. Schmidli, O. Fuhrer, S. Bieri, and C. Schér, 2013: Long-Term Simulations of Thermally Driven Flows
and Orographic Convection at Convection-Parameterizing and Cloud-Resolving Resolutions. Journal of
Applied Meteorology and Climatology, 52(6), 1490-1510, doi:10.1175/jamc-d-12-0167.1.

Langodan;'S., L. Cavaleri, J. Portilla, Y. Abualnaja, and I. Hoteit, 2020: Can we extrapolate climate in an inner basin?
The'case of the Red Sea. Global and Planetary Change, 188, 103151, doi:10.1016/j.gloplacha.2020.103151.

Langodan, S. et al., 2017: The climatology of the Red Sea - part 1: the wind. International Journal of Climatology,
37(13), 4509—4517, doi:10.1002/joc.5103.

Laprise, R., 2014: Comment on “The added value to global model projections of climate change by dynamical
downscaling: A case study over the continental U.S. using the GISS-ModelE2 and WRF models” by Racherla
et al.. Journal of Geophysical Research: Atmospheres, 119(7), 3877-3881, doi:10.1002/20137d019945.

Laprise, R. et al., 2013: Climate projections over CORDEX Africa domain using the fifth-generation Canadian
Regional Climate Model (CRCMS). Climate Dynamics, 41(11-12), 32193246, doi:10.1007/s00382-012-
1651-2.

Larsen, M.A.D., J.H. Christensen, M. Drews, M.B. Butts, and J.C. Refsgaard, 2016: Local control on precipitation in a
fully coupled climate-hydrology model. Scientific Reports, 6(1), 22927, doi:10.1038/srep22927.

Do Not Cite, Quote or Distribute 10-160 Total pages: 228


https://dx.doi.org/10.2151/jmsj.2012-b04
https://dx.doi.org/10.1023/a:1019207923078
https://dx.doi.org/10.1007/s10584-016-1693-2
https://dx.doi.org/10.2151/jmsj.2012-b03
https://dx.doi.org/10.1038/s41558-018-0359-7
https://dx.doi.org/10.1038/s41598-020-61792-8
https://dx.doi.org/10.5194/hess-20-3967-2016
https://dx.doi.org/10.4236/acs.2013.33031
https://dx.doi.org/10.1175/bams-d-14-00123.1
https://dx.doi.org/10.1073/pnas.1412077111
https://dx.doi.org/10.1002/2013wr014897
https://dx.doi.org/10.1371/journal.pone.0192582
https://dx.doi.org/10.1175/jcli-d-15-0718.1
https://dx.doi.org/10.1029/2018ms001273
https://dx.doi.org/10.1093/acrefore/9780190228620.013.564
https://dx.doi.org/10.5194/gmd-12-3055-2019
https://dx.doi.org/10.1175/jcli-d-12-00542.1
https://dx.doi.org/10.3390/atmos10120730
https://dx.doi.org/10.3389/fenvs.2019.00006
https://dx.doi.org/10.1175/jamc-d-12-0167.1
https://dx.doi.org/10.1016/j.gloplacha.2020.103151
https://dx.doi.org/10.1002/joc.5103
https://dx.doi.org/10.1002/2013jd019945
https://dx.doi.org/10.1007/s00382-012-1651-2
https://dx.doi.org/10.1007/s00382-012-1651-2
https://dx.doi.org/10.1038/srep22927

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Latif, M., A. Hannachi, and F.S. Syed, 2018: Analysis of rainfall trends over Indo-Pakistan summer monsoon and
related dynamics based on CMIP5 climate model simulations. International Journal of Climatology, 38, e577—
€595, doi:10.1002/joc.5391.

Lau, K.-M. and K.-M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and
circulation. Geophysical Research Letters, 33(21), L21810, doi:10.1029/2006g1027546.

Lau, W.K.M. and K.M. Kim, 2018: Impact of snow darkening by deposition of light-absorbing aerosols on snow cover
in the Himalayas-Tibetan Plateau and influence on the Asian summer monsoon: A possible mechanism for the
blanford hypothesis. Atmosphere, 9(11), doi:10.3390/atmos9110438.

Lau, W.K.M,, J.J. Shi, W.K. Tao, and K.M. Kim, 2016: What would happen to Superstorm Sandy under the influence
of a substantially warmer Atlantic Ocean? Geophysical Research Letters, 43(2), 802—811,
doi:10.1002/2015¢1067050.

Lavaysse, C., C. Flamant, A. Evan, S. Janicot, and M. Gaetani, 2016: Recent climatological trend of the Saharan heat
low and its impact on the West African climate. Climate Dynamics, 47(11), 3479—3498, doi:10.1007/s00382-
015-2847-z.

Lawal, K.A. et al., 2016: 13. The late onset of the 2015 wet season in Nigeria. Bulletin of the-American Meteorological
Society, 97(12), S63-S69, doi:10.1175/bams-d-16-0131.1.

Lawrimore, J.H. et al., 2011: An overview of the Global Historical Climatology Network monthly mean-temperature
data set, version 3. Journal of Geophysical Research: Atmospheres, 116(D19), doi:10.1029/2011jd016187.

Le Roy, B., A. Lemonsu, and R. Schoetter, 2021: A statistical-dynamical downscaling methodology for the urban heat
island applied to the EURO-CORDEX ensemble. Climate Dynamics, dei:10.1007/s00382-020-05600-z.

Lebeaupin Brossier, C., S. Bastin, K. Béranger, and P. Drobinski, 2015: Regional mesoscaleair—sea coupling impacts
and extreme meteorological events role on the Mediterranean Sea water budget. Climate Dynamics, 44(3—4),
1029-1051, doi:10.1007/s00382-014-2252-z.

Lebel, T. and A. Ali, 2009: Recent trends in the Central and Western-Sahel rainfall regime (1990-2007). Journal of
Hydrology, 375(1-2), 52—64, doi:10.1016/j.jhydrol.2008.11.030.

Leduc, M. et al., 2019: The ClimEx Project: A 50-Member.Ensemble of Climate Change Projections at 12-km
Resolution over Europe and Northeastern North America with the Canadian Regional Climate Model
(CRCMY). Journal of Applied Meteorology-and.Climatology, 58(4), 663—693, doi:10.1175/jamc-d-18-0021.1.

Lee, C. and L. Whitely Binder, 2010: Assessing Pacific Northwest Water Resources Stakeholder Data Needs. In: Final
Report for the Columbia Basin Climate Change Scenarios Project. Climate Impacts Group, Center for Science
in the Earth System, Joint Institute for the Study of the;/Atmosphere and Ocean, University of Washington,
Seattle, Washington, USA, pp. 12.

Lee, H.T., A. Gruber, R.G. Ellingson, and I.\Laszlo, 2007: Development of the HIRS outgoing longwave radiation
climate dataset. Journal of Atmospheric and Oceanic Technology, 24, 2029-2047,
doi:10.1175/2007jtecha989. 1«

Lee, J., K.R. Sperber, P.J. Gleckler, C.J.W. Bonfils, and K.E. Taylor, 2019: Quantifying the agreement between
observed and simulated extratropical modes of interannual variability. Climate Dynamics, 52(7-8), 4057—
4089, doi:10.1007/s00382-018-4355-4.

Lee, J.-W. and S.-Y. Hong, 2014: Potential for added value to downscaled climate extremes over Korea by increased
resolution of a regional climate model. Theoretical and Applied Climatology, 117(3—4), 667-677,
doi:10.1007/s00704-013-1034-6.

Lee, J.-W. etaal., 2015 Development and implementation of river-routing process module in a regional climate model
and its evaluation inKorean river basins. Journal of Geophysical Research: Atmospheres, 120(10), 4613—
4629,'doi:10.1002/20147d022698.

Lee, S., 2014: A theory for polar.amplification from a general circulation perspective. Asia-Pacific Journal of
AtmosphericSciences, 50(1), 31-43, doi:10.1007/s13143-014-0024-7.

Lee, S.-H. et al., 2016:/Impacts of in-canyon vegetation and canyon aspect ratio on the thermal environment of street
canyons: numerical investigation using a coupled WRF-VUCM model. Quarterly Journal of the Royal
Meteorological Society, 142(699), 2562-2578, doi:10.1002/qj.2847.

LeGrande;A.N., K./ Tsigaridis, and S.E. Bauer, 2016: Role of atmospheric chemistry in the climate impacts of
stratospheric volcanic injections. Nature Geoscience, 9(9), 652—655, doi:10.1038/nge02771.

Lehner, F., C.Deser, and L. Terray, 2017a: Toward a New Estimate of “Time of Emergence” of Anthropogenic
Warming: Insights from Dynamical Adjustment and a Large Initial-Condition Model Ensemble. Journal of
Climate, 30(19), 7739-7756, doi:10.1175/jcli-d-16-0792.1.

Lehner, F., C. Deser, L.R. Simpson, and L. Terray, 2018: Attributing the U.S. Southwest’s Recent Shift Into Drier
Conditions. Geophysical Research Letters, 45(12), 6251-6261, doi:10.1029/201821078312.

Lehner, F., E.R. Wahl, A.W. Wood, D.B. Blatchford, and D. Llewellyn, 2017b: Assessing recent declines in Upper Rio
Grande runoff efficiency from a paleoclimate perspective. Geophysical Research Letters, 44(9), 4124-4133,
doi:10.1002/2017¢1073253.

Lehner, F. et al., 2020: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth
System Dynamics, 11(2), 491-508, doi: 10.5194/esd-11-491-2020.

Do Not Cite, Quote or Distribute 10-161 Total pages: 228


https://dx.doi.org/10.1002/joc.5391
https://dx.doi.org/10.1029/2006gl027546
https://dx.doi.org/10.3390/atmos9110438
https://dx.doi.org/10.1002/2015gl067050
https://dx.doi.org/10.1007/s00382-015-2847-z
https://dx.doi.org/10.1007/s00382-015-2847-z
https://dx.doi.org/10.1175/bams-d-16-0131.1
https://dx.doi.org/10.1029/2011jd016187
https://dx.doi.org/10.1007/s00382-020-05600-z
https://dx.doi.org/10.1007/s00382-014-2252-z
https://dx.doi.org/10.1016/j.jhydrol.2008.11.030
https://dx.doi.org/10.1175/jamc-d-18-0021.1
https://dx.doi.org/10.1175/2007jtecha989.1
https://dx.doi.org/10.1007/s00382-018-4355-4
https://dx.doi.org/10.1007/s00704-013-1034-6
https://dx.doi.org/10.1002/2014jd022698
https://dx.doi.org/10.1007/s13143-014-0024-7
https://dx.doi.org/10.1002/qj.2847
https://dx.doi.org/10.1038/ngeo2771
https://dx.doi.org/10.1175/jcli-d-16-0792.1
https://dx.doi.org/10.1029/2018gl078312
https://dx.doi.org/10.1002/2017gl073253
https://dx.doi.org/10.5194/esd-11-491-2020

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Lelieveld, J. et al., 2016: Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st
century. Climatic Change, 137, 245-260, doi:10.1007/s10584-016-1665-6.

Lemos, M.C., C.J. Kirchhoff, and V. Ramprasad, 2012: Narrowing the climate information usability gap. Nature
Climate Change, 2(11), 789-794, doi:10.1038/nclimate1614.

Lempert, R.J. and M.T. Collins, 2007: Managing the Risk of Uncertain Threshold Responses: Comparison of Robust,
Optimum, and Precautionary Approaches. Risk Analysis, 27(4), 1009-1026, doi:10.1111/1.1539-
6924.2007.00940.x.

Lempert, R.J., D.G. Groves, S.W. Popper, and S.C. Bankes, 2006: A General, Analytic Method for Generating Robust
Strategies and Narrative Scenarios. Management Science, 52(4), 514-528, doi:10.1287/mnsc.1050.0472.

Lenz, C.J., B. Friih, and F.D. Adalatpanah, 2017: Is there potential added value in COSMO-CLM forced by ERA
reanalysis data? Climate Dynamics, 49(11-12), 4061-4074, doi:10.1007/s00382-017-3562-8.

Letcher, T.W. and J.R. Minder, 2017: The Simulated Response of Diurnal Mountain Winds to Regionally Enhanced
Warming Caused by the Snow Albedo Feedback. Journal of the Atmospheric Sciences, 74(1), 49-67,
doi:10.1175/jas-d-16-0158.1.

Levine, P.A., J.T. Randerson, S.C. Swenson, and D.M. Lawrence, 2016: Evaluating the strength of the land-atmosphere
moisture feedback in Earth system models using satellite observations. Hydrology and Earth System Sciences,
20(12), 48374856, doi:10.5194/hess-20-4837-2016.

Levy, A.A.L., M. Jenkinson, W. Ingram, and M. Allen, 2014a: Correcting precipitation feature location.in general
circulation models. Journal of Geophysical Research: Atmospheres, 119(23), 13,350-13,369,
doi:10.1002/2014jd022357.

Levy, A.A.L. etal., 2013: Can correcting feature location in simulated mean climate improve agreement on projected
changes? Geophysical Research Letters, 40(2), 354-358, doiz10.1002/201221053964.

Levy, A.A.L. et al., 2014b: Increasing the detectability of external influence on precipitation’by correcting feature
location in GCMs. Journal of Geophysical Research: Atmospheres, 119(22), 12,466-12,478,
doi:10.1002/2014jd022358.

Li, B., Y. Chen, and X. Shi, 2020: Does elevation dependent warming exist in high mountain Asia? Environmental
Research Letters, 15(2), 024012, doi:10.1088/1748-9326/ab6d7f.

Li, B. et al., 2016: The contribution of China’s emissions.to global climate forcing. Nature, 531(7594), 357-361,
doi:10.1038/maturel 7165.

Li, C., T. Zhao, and K. Ying, 2016: Effects of anthropogenic aerosols on temperature changes in China during the
twentieth century based on CMIPS models. Theoretical and Applied Climatology, doi:10.1007/s00704-015-
1527-6.

Li, C, T. Zhao, and K. Ying, 2017: Quantifying the contributions of anthropogenic and natural forcings to climate
changes over arid-semiarid areas during 1946-2005. Climatic Change, 144(3), 505-517, d0i:10.1007/s10584-
017-2028-7.

Li, D. and Z. Xiao, 2018: Can‘solar cycle modulate the ENSO effect on the Pacific/North American pattern? Journal of
Atmospheric and Solar-Terrestrial Physies, 167, 30-38, doi:10.1016/].jastp.2017.10.007.

Li, D. et al., 2019: Urban heat island: Aerodynamics or imperviousness? Science Advances, 5(4),
doi:10.1126/sciadv.aau4299.

Li, F., Y.J. Orsolini, H. Wang, Y. Gao, and S. He, 2018: Atlantic Multidecadal Oscillation Modulates the Impacts of
Arctic Sea Ice Decline. Geophysical Research Letters, 45(5), 2497-2506, doi:10.1002/2017g1076210.

Li, G., S.-P. Xie, C. He; and Z. Chen, 2017: Western Pacific emergent constraint lowers projected increase in Indian
summer monsoon rainfall. Nature Climate Change, 7(10), 708—712, doi:10.1038/nclimate3387.

Li, H.,, J.E. Haugen, and C.Y. Xu, 2018: Precipitation pattern in the Western Himalayas revealed by four datasets.
Hydrology and Earth System Sciences, 22(10), 5097-5110, doi:10.5194/hess-22-5097-2018.

Li, K., H. Liao, Y. Mao, and D.A. Ridley, 2016: Source sector and region contributions to concentration and direct
radiative forcing of black carbon in China. Atmospheric Environment, 124, 351-366,
doi:10.1016/.atmosenv.2015.06.014.

Li, Q., W. Dong, and P. Jones, 2020: Continental scale surface air temperature variations: Experience derived from the
Chinese region. Earth-Science Reviews, 200, 102998, doi:10.1016/j.earscirev.2019.102998.

Li, X. and M:Ting, 2017: Understanding the Asian summer monsoon response to greenhouse warming: the relative
roles.of direct radiative forcing and sea surface temperature change. Climate Dynamics, 49(7-8), 2863-2880,
doi:10.1007/s00382-016-3470-3.

Li, X., C. Mitra, L. Dong, and Q. Yang, 2018: Understanding land use change impacts on microclimate using Weather
Research and Forecasting (WRF) model. Physics and Chemistry of the Earth, Parts A/B/C, 103, 115-126,
doi:10.1016/j.pce.2017.01.017.

Li, Y., S. Schubert, J.P. Kropp, and D. Rybski, 2020a: On the influence of density and morphology on the Urban Heat
Island intensity. Nature Communications, 11(1), 2647, doi:10.1038/s41467-020-16461-9.

Li, Y. et al., 2020b: Strong Intensification of Hourly Rainfall Extremes by Urbanization. Geophysical Research Letters,
47(14), €2020GL088758, doi:10.1029/2020¢1088758.

Li, Z. et al., 2016: Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54(4), 866—929,

Do Not Cite, Quote or Distribute 10-162 Total pages: 228


https://dx.doi.org/10.1007/s10584-016-1665-6
https://dx.doi.org/10.1038/nclimate1614
https://dx.doi.org/10.1111/j.1539-6924.2007.00940.x
https://dx.doi.org/10.1111/j.1539-6924.2007.00940.x
https://dx.doi.org/10.1287/mnsc.1050.0472
https://dx.doi.org/10.1007/s00382-017-3562-8
https://dx.doi.org/10.1175/jas-d-16-0158.1
https://dx.doi.org/10.5194/hess-20-4837-2016
https://dx.doi.org/10.1002/2014jd022357
https://dx.doi.org/10.1002/2012gl053964
https://dx.doi.org/10.1002/2014jd022358
https://dx.doi.org/10.1088/1748-9326/ab6d7f
https://dx.doi.org/10.1038/nature17165
https://dx.doi.org/10.1007/s00704-015-1527-6
https://dx.doi.org/10.1007/s00704-015-1527-6
https://dx.doi.org/10.1007/s10584-017-2028-7
https://dx.doi.org/10.1007/s10584-017-2028-7
https://dx.doi.org/10.1016/j.jastp.2017.10.007
https://dx.doi.org/10.1126/sciadv.aau4299
https://dx.doi.org/10.1002/2017gl076210
https://dx.doi.org/10.1038/nclimate3387
https://dx.doi.org/10.5194/hess-22-5097-2018
https://dx.doi.org/10.1016/j.atmosenv.2015.06.014
https://dx.doi.org/10.1016/j.earscirev.2019.102998
https://dx.doi.org/10.1007/s00382-016-3470-3
https://dx.doi.org/10.1016/j.pce.2017.01.017
https://dx.doi.org/10.1038/s41467-020-16461-9
https://dx.doi.org/10.1029/2020gl088758

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

doi:10.1002/2015rg000500.

Li, Z.-X., 1999: Ensemble Atmospheric GCM Simulation of Climate Interannual Variability from 1979 to 1994.
Journal of Climate, 12(4), 986—-1001, doi:10.1175/1520-0442(1999)012<0986:cagsoc>2.0.c0:2.

Liang, P. and Y. Ding, 2017: The long-term variation of extreme heavy precipitation and its link to urbanization effects
in Shanghai during 1916-2014. Advances in Atmospheric Sciences, 34(3), 321-334, doi:10.1007/s00376-016-
6120-0.

Liao, W., D. Wang, X. Liu, G. Wang, and J. Zhang, 2017: Estimated influence of urbanization on surface warming in
Eastern China using time-varying land use data. International Journal of Climatology, 37(7), 3197-3208,
doi:10.1002/joc.4908.

Lim, E.-P. et al., 2016: The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall.
Geophysical Research Letters, 43(13), 7160-7167, doi:10.1002/2016g1069453.

Lim, H.-G. et al., 2016: Threshold of the volcanic forcing that leads the El Nifio-like warming in the last millennium:
results from the ERIK simulation. Climate Dynamics, 46(11), 3725-3736, doi:10.1007/s00382-015-2799-3.

Lima, D.C.A. et al., 2019: How Will a Warming Climate Affect the Benguela Coastal Low-Level Wind Jet? Journal of
Geophysical Research: Atmospheres, 124(9), 5010-5028, doi:10.1029/2018jd029574.

Lin, G., H. Wan, K. Zhang, Y. Qian, and S.J. Ghan, 2016: Can nudging be used to quantify model sensitivities in
precipitation and cloud forcing? Journal of Advances in Modeling Earth Systems, 8(3), 1073—1091,
doi:10.1002/2016ms000659.

Lin, M. and P. Huybers, 2019: If Rain Falls in India and No One Reports It, Are;Historical Trendsdn Monsoon
Extremes Biased? Geophysical Research Letters, doi:10.1029/2018g1079709.

Lin, N. and K. Emanuel, 2016: Grey swan tropical cyclones. Nature Climate Change, 6(1), 106—111,
doi:10.1038/nclimate2777.

Lindau, R. and V. Venema, 2018a: On the reduction of trend errors’by the ANOVA joint correction scheme used in
homogenization of climate station records. International Journal of Climatology, 38(14), 52555271,
doi:10.1002/joc.5728.

Lindau, R. and V.K.C. Venema, 2018b: The joint influence of break and noise variance on the break detection
capability in time series homogenization. Advances in Statistical Climatology, Meteorology and
Oceanography, 4(1/2), 1-18, doi:10.5194/as¢me-4-1-2018.

Lionello, P. and L. Scarascia, 2018: The relation between climate change in the Mediterranean region and global
warming. Regional Environmental Change, 18(5), 1481-1493, doi:10.1007/s10113-018-1290-1.

Lionello, P. and L. Scarascia, 2020: The relation.of climate extremes with global warming in the Mediterranean region
and its north versus south contrast. Regional Environmental Change, 20(1), 31, doi:10.1007/s10113-020-
01610-z.

Lionello, P. et al., 2012: Introduction: Mediterranean Climate — Background Information. In: The Climate of the
Mediterranean Region [Lionello, P. (ed.)]. Elsevier, Oxford, UK, pp. xxxv—xc, doi:10.1016/b978-0-12-
416042-2.00012-4.

Lionello, P. et al., 2016: Objective climatology of eyclones in the Mediterranean region: a consensus view among
methods with different system identification.and tracking criteria. Tellus A: Dynamic Meteorology and
Oceanography, 68(1), 29391, doi:10.3402/tellusa.v68.29391.

Liu, F. et al., 2016: Global monsoon precipitation responses to large volcanic eruptions. Scientific Reports, 6(1), 24331,
doi:10.1038/srep24331.

Liu, F. et al.;2018a: Divergent El Nifio responses to volcanic eruptions at different latitudes over the past millennium.
Climate Dynamics, 50(9-10);:3799-3812, doi:10.1007/s00382-017-3846-z.

Liu, F. et al., 2018b: How.Do Tropical, Northern Hemispheric, and Southern Hemispheric Volcanic Eruptions Affect
ENSO Under Difterent Initial Ocean Conditions? Geophysical Research Letters, 2018GL080315,
doi:10.1029/2018¢1080315.

Liu, L., R. Zhang,sand Z. Zuo, 2016: The Relationship between Soil Moisture and LAI in Different Types of Soil in
Central Eastern China. Journal of Hydrometeorology, 17(11), 2733-2742, doi:10.1175/jhm-d-15-0240.1.

Liu, L. et al4.2018:'A PDRMIP Multimodel Study on the Impacts of Regional Aerosol Forcings on Global and
Regional Precipitation. Journal of Climate, 31(11), 44294447, doi:10.1175/jcli-d-17-0439.1.

Liu, W,, S.-P"Xie, Z. Liu, and J. Zhu, 2017: Overlooked possibility of a collapsed Atlantic Meridional Overturning
Circulation in warming climate. Science Advances, 3(1), 1601666, doi:10.1126/sciadv.1601666.

Liu, W. et al., 2018: Global drought and severe drought-affected populations in 1.5 and 2°C warmer worlds. Earth
System Dynamics, 9(1), 267-283, doi:10.5194/esd-9-267-2018.

Liu, Y., F. Chen, T. Warner, and J. Basara, 2006: Verification of a Mesoscale Data-Assimilation and Forecasting
System for the Oklahoma City Area during the Joint Urban 2003 Field Project. Journal of Applied
Meteorology and Climatology, 45(7), 912-929, doi:10.1175/jam2383.1.

Liu, Z., K. Yoshimura, N.H. Buenning, and X. He, 2014: Solar cycle modulation of the Pacific-North American
teleconnection influence on North American winter climate. Environmental Research Letters, 9(2), 24004,
doi:10.1088/1748-9326/9/2/024004.

Livezey, R.E., KY. Vinnikov, M.M. Timofeyeva, R. Tinker, and H.M. van den Dool, 2007: Estimation and

Do Not Cite, Quote or Distribute 10-163 Total pages: 228


https://dx.doi.org/10.1002/2015rg000500
https://dx.doi.org/10.1175/1520-0442(1999)012%3c0986:eagsoc%3e2.0.co;2
https://dx.doi.org/10.1007/s00376-016-6120-0
https://dx.doi.org/10.1007/s00376-016-6120-0
https://dx.doi.org/10.1002/joc.4908
https://dx.doi.org/10.1002/2016gl069453
https://dx.doi.org/10.1007/s00382-015-2799-3
https://dx.doi.org/10.1029/2018jd029574
https://dx.doi.org/10.1002/2016ms000659
https://dx.doi.org/10.1029/2018gl079709
https://dx.doi.org/10.1038/nclimate2777
https://dx.doi.org/10.1002/joc.5728
https://dx.doi.org/10.5194/ascmo-4-1-2018
https://dx.doi.org/10.1007/s10113-018-1290-1
https://dx.doi.org/10.1007/s10113-020-01610-z
https://dx.doi.org/10.1007/s10113-020-01610-z
https://dx.doi.org/10.1016/b978-0-12-416042-2.00012-4
https://dx.doi.org/10.1016/b978-0-12-416042-2.00012-4
https://dx.doi.org/10.3402/tellusa.v68.29391
https://dx.doi.org/10.1038/srep24331
https://dx.doi.org/10.1007/s00382-017-3846-z
https://dx.doi.org/10.1029/2018gl080315
https://dx.doi.org/10.1175/jhm-d-15-0240.1
https://dx.doi.org/10.1175/jcli-d-17-0439.1
https://dx.doi.org/10.1126/sciadv.1601666
https://dx.doi.org/10.5194/esd-9-267-2018
https://dx.doi.org/10.1175/jam2383.1
https://dx.doi.org/10.1088/1748-9326/9/2/024004

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Extrapolation of Climate Normals and Climatic Trends. Journal of Applied Meteorology and Climatology,
46(11), 1759-1776, doi:10.1175/2007jamc1666.1.

Lloyd, E.A. and T.G. Shepherd, 2020: Environmental catastrophes, climate change, and attribution. Annals of the New
York Academy of Sciences, 1469(1), 105-124, doi:10.1111/nyas.14308.

Lloyd, E.A., M. Bukovsky, and L.O. Mearns, 2020: An analysis of the disagreement about added value by regional
climate models. Synthese, doi:10.1007/s11229-020-02821-x.

Logothetis, 1., K. Tourpali, S. Misios, and P. Zanis, 2020: Etesians and the summer circulation over East Mediterranean
in Coupled Model Intercomparison Project Phase 5 simulations: Connections to the Indian summer monsoon.
International Journal of Climatology, 40(2), 1118—1131, doi:10.1002/joc.6259.

Lokoshchenko, M.A., 2017: Urban Heat Island and Urban Dry Island in Moscow and Their Centennial Changes.
Journal of Applied Meteorology and Climatology, 56(10), 2729-2745, doi:10.1175/jamc-d-16-0383.1.

Long, S.-M., S.-P. Xie, X.-T. Zheng, and Q. Liu, 2014: Fast and Slow Responses to Global Warming: Sea Surface
Temperature and Precipitation Patterns. Journal of Climate, 27(1), 285-299, doi:10.1175/jcli-d-13-00297.1.

Longino, H.E., 2004: How Values Can Be Good for Science. In: Science, Values, and Objectivity [Machamer, P. and G.
Wolters (eds.)]. Pittsburgh University Press, Pittsburgh, PA, USA, pp. 127-142, d0i:10.2307/j.cttSvkg7t.11.

Lorenz, P. and D. Jacob, 2005: Influence of regional scale information on the global circulation: A two-way nesting
climate simulation. Geophysical Research Letters, 32(18), n/a—n/a, doi:10.1029/2005¢102335 1.

Lorenz, P. and D. Jacob, 2010: Validation of temperature trends in the ENSEMBLES regional climate model runs
driven by ERA40. Climate Research, 44(2-3), 167-177, doi:10.3354/e00973.

Lorenz, R. et al., 2016: Influence of land-atmosphere feedbacks on temperature and precipitation.extremes in the
GLACE-CMIPS ensemble. Journal of Geophysical Research: Atmospheres, 121(2); 607—623,
doi:10.1002/2015jd024053.

Lourengo, T.C., R. Swart, H. Goosen, and R. Street, 2016: The rise’of demand-driven climate services. Nature Climate
Change, 6(1), 13—14, doi:10.1038/nclimate2836.

Lovino, M.A., O. Miiller, E.H. Berbery, and G. Miiller, 2018: Evaluation of CMIP5 retrospective simulations of
temperature and precipitation in northeastern Argentina. /nternational Journal of Climatology, 38(S1), e1158—
el1175, doi:10.1002/joc.5441.

Lowry, D.P. and C. Morrill, 2019: Is the Last Glacial'Maximum a reverse analog for future hydroclimate changes in the
Americas? Climate Dynamics, 52(7-8), 4407-4427, doi:10.1007/s00382-018-4385-y.

Lucas, C., B. Timbal, and H. Nguyen, 2014: The expanding tropics: a critical assessment of the observational and
modeling studies. Wiley Interdisciplinary Reviews: Climate.Change, 5(1), 89—112, doi:10.1002/wcc.251.

Lucas-Picher, P., R. Laprise, and K. Winger, 2017: Evidence©of added value in North American regional climate model
hindcast simulations using ever-increasing horizontal resolutions. Climate Dynamics, 48(7-8), 2611-2633,
doi:10.1007/s00382-016-3227+z.

Lucas-Picher, P. et al., 2011: Can Regional Climate Models Represent the Indian Monsoon? Journal of
Hydrometeorology, 12(5); 849-868, doi:10.1175/2011jhm1327.1.

Luo, N., Y. Guo, Z. Gao, K. Chen, and J. Chou; 2020: Assessment of CMIP6 and CMIP5 model performance for
extreme temperature in China. Atmospheric and Oceanic Science Letters, 13(6), 589-597,
doi:10.1080/16742834.2020.1808430.

Ma, S. et al., 2017a: The impact of an urban canopy and anthropogenic heat fluxes on Sydney’s climate. International
Journal of Climatology, 37, 255-270, doi:10.1002/joc.5001.

Ma, S. et al.;2017b: Detectable. Anthropogenic Shift toward Heavy Precipitation over Eastern China. Journal of
Climate, 30(4), 1381-1396, doi:10.1175/jcli-d-16-0311.1.

Macias, D., E. Garcia-Gorriz, and A.-Stips, 2013: Understanding the Causes of Recent Warming of Mediterranean
Waters. How Much Could Be Attributed to Climate Change? PLoS ONE, 8(11), 81591,
doi:10.13714jeurnal.pone.0081591.

Macias, D., E. Garcia-Gotriz, A. Dosio, A. Stips, and K. Keuler, 2018: Obtaining the correct sea surface temperature:
bias correction of regional climate model data for the Mediterranean Sea. Climate Dynamics, 51(3), 1095—
1117, doi:10.1007/s00382-016-3049-z.

MacKellar;N.,; M. New, and C. Jack, 2014: Observed and modelled trends in rainfall and temperature for South Africa:
1960=2010. South African Journal of Science, 110(7/8), 1-13, doi:10.1590/sajs.2014/20130353.

MacLeod, D.A., H.L. Cloke, F. Pappenberger, and A. Weisheimer, 2016: Improved seasonal prediction of the hot
summer of 2003 over Europe through better representation of uncertainty in the land surface. Quarterly
Journal of the Royal Meteorological Society, 142(694), 79-90, doi:10.1002/qj.2631.

Madhusoodhanan, C.G., K. Shashikanth, T.I. Eldho, and S. Ghosh, 2018: Can statistical downscaling improve
consensus among CMIP5 models for Indian summer monsoon rainfall projections? International Journal of
Climatology, 38(5), 2449-2461, doi:10.1002/joc.5352.

Madsen, M.S., P.L. Langen, F. Boberg, and J.H. Christensen, 2017: Inflated Uncertainty in Multimodel-Based Regional
Climate Projections. Geophysical Research Letters, 44(22), 11,606-11,613, doi:10.1002/2017g1075627.

Mabher, N., D. Matei, S. Milinski, and J. Marotzke, 2018: ENSO Change in Climate Projections: Forced Response or
Internal Variability? Geophysical Research Letters, 45(20), doi:10.1029/2018g1079764.

Do Not Cite, Quote or Distribute 10-164 Total pages: 228


https://dx.doi.org/10.1175/2007jamc1666.1
https://dx.doi.org/10.1111/nyas.14308
https://dx.doi.org/10.1007/s11229-020-02821-x
https://dx.doi.org/10.1002/joc.6259
https://dx.doi.org/10.1175/jamc-d-16-0383.1
https://dx.doi.org/10.1175/jcli-d-13-00297.1
https://dx.doi.org/10.2307/j.ctt5vkg7t.11
https://dx.doi.org/10.1029/2005gl023351
https://dx.doi.org/10.3354/cr00973
https://dx.doi.org/10.1002/2015jd024053
https://dx.doi.org/10.1038/nclimate2836
https://dx.doi.org/10.1002/joc.5441
https://dx.doi.org/10.1007/s00382-018-4385-y
https://dx.doi.org/10.1002/wcc.251
https://dx.doi.org/10.1007/s00382-016-3227-z
https://dx.doi.org/10.1175/2011jhm1327.1
https://dx.doi.org/10.1080/16742834.2020.1808430
https://dx.doi.org/10.1002/joc.5001
https://dx.doi.org/10.1175/jcli-d-16-0311.1
https://dx.doi.org/10.1371/journal.pone.0081591
https://dx.doi.org/10.1007/s00382-016-3049-z
https://dx.doi.org/10.1590/sajs.2014/20130353
https://dx.doi.org/10.1002/qj.2631
https://dx.doi.org/10.1002/joc.5352
https://dx.doi.org/10.1002/2017gl075627
https://dx.doi.org/10.1029/2018gl079764

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Maher, N. et al., 2019: The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System
Variability. Journal of Advances in Modeling Earth Systems, 11(7), 2050-2069, doi:10.1029/2019ms001639.

Mahlalela, P.T., R.C. Blamey, and C.J.C. Reason, 2019: Mechanisms behind early winter rainfall variability in the
southwestern Cape, South Africa. Climate Dynamics, 53, 21-39, doi:10.1007/s00382-018-4571-y.

Mahlstein, 1., G. Hegerl, and S. Solomon, 2012: Emerging local warming signals in observational data. Geophysical
Research Letters, 39(21), n/a—n/a, doi:10.1029/2012¢1053952.

Mahlstein, I., R. Knutti, S. Solomon, and R.W. Portmann, 2011: Early onset of significant local warming in low latitude
countries. Environmental Research Letters, 6(3), 034009, doi:10.1088/1748-9326/6/3/034009.

Mahmood, R. et al., 2014: Land cover changes and their biogeophysical effects on climate. International Journal of
Climatology, 34(4), 929-953, doi:10.1002/joc.3736.

Mahmood, S. et al., 2018: Indian monsoon data assimilation and analysis regional reanalysis: Configuration and
performance. Atmospheric Science Letters, 19(3), €808, doi:10.1002/asl.808.

Maidment, R.I1., R.P. Allan, and E. Black, 2015: Recent observed and simulated changes in precipitation over Africa.
Geophysical Research Letters, 42(19), 8155-8164, do0i:10.1002/2015g1065765.

Maidment, R.I. et al., 2014: The 30 year TAMSAT African Rainfall Climatology And Timeseries (TARCAT) data set:
Journal of Geophysical Research: Atmospheres, 119(18), 10, 610-619, 644, doi:10.1002/2014jd021927.

Makondo, C.C. and D.S.G. Thomas, 2018: Climate change adaptation: Linking indigenous knowledge with western
science for effective adaptation. Environmental Science and Policy, 88, 83-91,
doi:10.1016/j.envsci.2018.06.014.

Mallard, M.S., C.G. Nolte, O.R. Bullock, T.L. Spero, and J. Gula, 2014: Using a-coupled lake model with WRF for
dynamical downscaling. Journal of Geophysical Research: Atmospheres, 119(12), 7193-7208,
doi:10.1002/2014jd021785.

Mallet, M. et al., 2016: Overview of the Chemistry-Aerosol Meditefranean Experiment/Aerosol Direct Radiative
Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign. Atmospheric
Chemistry and Physics, 16(2), 455-504, doi:10.5194/acp-16-455-2016.

Man, W. and T. Zhou, 2014: Response of the East Asian summer monsoon to large volcanic eruptions during the last
millennium. Chinese Science Bulletin, 59(31), 4123-4129, doi:10.1007/s11434-014-0404-5.

Mankin, J.S., F. Lehner, S. Coats, and K.A. McKinnon, 2020: The Value of Initial Condition Large Ensembles to
Robust Adaptation Decision-Making. Earth’s Future, 8(10), doi:10.1029/2020ef001610.

Mann, M.E. et al., 2017: Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme
Weather Events. Scientific Reports, 1(1); 45242, doi:10:1038/step45242.

Mann, M.E. et al., 2018: Projected changes in persistent extreme summer weather events: The role of quasi-resonant
amplification. Science Advances, 4(10), caat3272, doi1:10.1126/sciadv.aat3272.

Manz, B. et al., 2016: High-resolution satellite-gauge merged precipitation climatologies of the Tropical Andes. Journal
of Geophysical Research: Atmospheres, 121(3), 1190-1207, doi:10.1002/2015jd023788.

Manzanas, R. and J.M. Gutiérrez, 2019: Process-conditioned bias correction for seasonal forecasting: a case-study with
ENSO in Peru. Climate Dynamics, 52(3—4), 1673—1683, doi:10.1007/s00382-018-4226-z.

Manzanas, R., L.K. Amekudzi, Ki.Preko, S. Herrera, and J.M. Gutiérrez, 2014: Precipitation variability and trends in
Ghana: An intercomparison of observational and reanalysis products. Climatic Change, 124(4), 805-819,
doi:10.1007/s10584=014-1100-9.

Manzanas, R., L. Fiwa, C. Vanya, H. Kanamaru, and J.M. Gutiérrez, 2020: Statistical downscaling or bias adjustment?
A case study-involving implausible climate change projections of precipitation in Malawi. Climatic Change,
doi: 10.1007/s10584-020-02867-3.

Manzanas, R. et al., 2015; Statistical. Downscaling in the Tropics Can Be Sensitive to Reanalysis Choice: A Case Study
for Precipitation in the Philippines. Journal of Climate, 28(10), 4171-4184, doi:10.1175/jcli-d-14-00331.1.

Manzini, E. et al., 2014: Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to
stratosphere-troposphere coupling. Journal of Geophysical Research: Atmospheres, 119(13), 7979-7998,
doi:10.1002/20137d021403.

Maraun, D.,22012: Nonstationarities of regional climate model biases in European seasonal mean temperature and
precipitation sums. Geophysical Research Letters, 39(6), n/a—n/a, doi:10.1029/2012¢g1051210.

Maraun, D.52013a: Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue. Journal of
Climate, 26(6), 2137-2143, doi:10.1175/jcli-d-12-00821.1.

Maraun, D., 2013b: When will trends in European mean and heavy daily precipitation emerge? Environmental
Research Letters, 8(1), 014004, doi:10.1088/1748-9326/8/1/014004.

Maraun, D., 2016: Bias Correcting Climate Change Simulations - a Critical Review. Current Climate Change Reports,
2(4), 211220, doi:10.1007/s40641-016-0050-x.

Maraun, D. and M. Widmann, 2018a: Cross-validation of bias-corrected climate simulations is misleading. Hydrology
and Earth System Sciences, 22(9), 4867-4873, doi:10.5194/hess-22-4867-2018.

Maraun, D. and M. Widmann, 2018b: Statistical Downscaling and Bias Correction for Climate Research. Cambridge
University Press, Cambridge, United Kingdom and NewYork, NY, USA, 360 pp.,
doi:10.1017/9781107588783.

Do Not Cite, Quote or Distribute 10-165 Total pages: 228


https://dx.doi.org/10.1029/2019ms001639
https://dx.doi.org/10.1007/s00382-018-4571-y
https://dx.doi.org/10.1029/2012gl053952
https://dx.doi.org/10.1088/1748-9326/6/3/034009
https://dx.doi.org/10.1002/joc.3736
https://dx.doi.org/10.1002/asl.808
https://dx.doi.org/10.1002/2015gl065765
https://dx.doi.org/10.1002/2014jd021927
https://dx.doi.org/10.1016/j.envsci.2018.06.014
https://dx.doi.org/10.1002/2014jd021785
https://dx.doi.org/10.5194/acp-16-455-2016
https://dx.doi.org/10.1007/s11434-014-0404-5
https://dx.doi.org/10.1029/2020ef001610
https://dx.doi.org/10.1038/srep45242
https://dx.doi.org/10.1126/sciadv.aat3272
https://dx.doi.org/10.1002/2015jd023788
https://dx.doi.org/10.1007/s00382-018-4226-z
https://dx.doi.org/10.1007/s10584-014-1100-9
https://dx.doi.org/10.1007/s10584-020-02867-3
https://dx.doi.org/10.1175/jcli-d-14-00331.1
https://dx.doi.org/10.1002/2013jd021403
https://dx.doi.org/10.1029/2012gl051210
https://dx.doi.org/10.1175/jcli-d-12-00821.1
https://dx.doi.org/10.1088/1748-9326/8/1/014004
https://dx.doi.org/10.1007/s40641-016-0050-x
https://dx.doi.org/10.5194/hess-22-4867-2018
https://dx.doi.org/10.1017/9781107588783

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Maraun, D., M. Widmann, and J.M. Gutiérrez, 2019a: Statistical downscaling skill under present climate conditions: A
synthesis of the VALUE perfect predictor experiment. International Journal of Climatology, 39(9), 3692—
3703, doi:10.1002/joc.5877.

Maraun, D. et al., 2015: VALUE: A framework to validate downscaling approaches for climate change studies. Earth’s
Future, 3(1), 1-14, doi:10.1002/2014ef000259.

Maraun, D. et al., 2017: Towards process-informed bias correction of climate change simulations. Nature Climate
Change, 7(11), 664—773, doi:10.1038/nclimate3418.

Maraun, D. et al., 2019b: The VALUE perfect predictor experiment: Evaluation of temporal variability. International
Journal of Climatology, 39(9), 37863818, doi:10.1002/joc.5222.

Marchau, V.A.W.J., W.E. Walker, P.J.T.M. Bloemen, and S.W. Popper (eds.), 2019: Decision Making under Deep
Uncertainty: From Theory to Practice. Springer, Cham, Switzerland, 405 pp., doi:10.1007/978-3-030-05252-
2.

Marengo, J.A., M. Rusticucci, O. Penalba, and M. Renom, 2010: An intercomparison of observed and simulated
extreme rainfall and temperature events during the last half of the twentieth century: part 2: historical trends.
Climatic Change, 98(3—4), 509-529, do0i:10.1007/s10584-009-9743-7.

Mariotti, A. and A. Dell’ Aquila, 2012: Decadal climate variability in the Mediterranean-region: roles of large-scale
forcings and regional processes. Climate Dynamics, 38(5-6), 1129-1145, d61:10.1007/s00382-011-1056-7.

Mariotti, A., Y. Pan, N. Zeng, and A. Alessandri, 2015: Long-term climate change in the Mediterranean region.in the
midst of decadal variability. Climate Dynamics, 44(5-6), 1437-1456,.doi:10.1007/s00382-015-2487-3.

Marteau, R., Y. Richard, B. Pohl, C.C. Smith, and T. Castel, 2015: High-resolutionrainfall variability simulated by the
WRF RCM: application to eastern France. Climate Dynamics, 44(3—4), 1093—-1107,doi:10.1007/s00382-014-
2125-5.

Martilli, A., A. Clappier, and M.W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models.
Boundary-Layer Meteorology, 104(2), 261-304, doi:10:1023/a:1016099921195.

Martin, E., B. Timbal, and E. Brun, 1996: Downscaling of general circulation model outputs: simulation of the snow
climatology of the French Alps and sensitivity to.climate change. Climate Dynamics, 13(1), 45-56,
doi:10.1007/s003820050152.

Martin, E.R. and C.D. Thorncroft, 2014: The impact-ofthe AMO on the.-West African monsoon annual cycle. Quarterly
Journal of the Royal Meteorological Society, 140, 31-46, doi:10.1002/qj.2107.

Martin, E.R. and C. Thorncroft, 2015: Representation of African Easterly Waves in CMIP5 Models. Journal of Climate,
28(19), 77027715, doi:10.1175/jcli-d-15-0145.1.

Martin, E.R., C. Thorncroft, and B.B.B. Booth, 2014: The Multidecadal Atlantic SST-Sahel Rainfall Teleconnection in
CMIP5 Simulations. Journal of Climate, 27(2), 784—806, doi:10.1175/jcli-d-13-00242.1.

Martin, G.M. et al., 2017: Understanding the West African. Monsoon from the analysis of diabatic heating distributions
as simulated by climate models. Journal of Advances in Modeling Earth Systems, 9(1), 239-270,
doi:10.1002/2016ms000697.

Martin-Gémez, V. and M. Barteiro, 2016: Analysis of oceans’ influence on spring time rainfall variability over
Southeastern South America during the 20th century. International Journal of Climatology, 36(3), 1344—1358,
doi:10.1002/joc.4428.

Martin-Gémez, Viand M. Barreiro, 2017: Effect of future climate change on the coupling between the tropical oceans
and precipitation over Southeastern South America. Climatic Change, 141(2), 315-329, d0i:10.1007/s10584-
01621888-6:

Martynov, A.; L: Sushama, R: Laprise; K. Winger, and B. Dugas, 2012: Interactive lakes in the Canadian Regional
Climate Model, version 5: the role of lakes in the regional climate of North America. Tellus A: Dynamic
Meteorology and Oceanography, 64(1), 16226, doi:10.3402/tellusa.v64i0.16226.

Marvel, K. et al., 2015: Do responses to different anthropogenic forcings add linearly in climate models? Environmental
Research'Letters; 10(10), 104010, doi:10.1088/1748-9326/10/10/104010.

Marzeion, B., J.G. Cogley, K. Richter, and D. Parkes, 2014: Attribution of global glacier mass loss to anthropogenic
and natural causes. Science, 345(6199), 919-921, doi:10.1126/science.1254702.

Masson, Dwand C. Frei, 2014: Spatial analysis of precipitation in a high-mountain region : exploring methods with
multi=scale topographic predictors and circulation types. Hydrol. Earth Syst. Sci.,, 18, 4543-4563,
doi: 10.5194/hess-18-4543-2014.

Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer
Meteorology, 94(3), 357-397, doi:10.1023/a:1002463829265.

Masson, V., 2006: Urban surface modeling and the meso-scale impact of cities. Theoretical and Applied Climatology,
84, 3545, doi:10.1007/s00704-005-0142-3.

Masson, V., A. Lemonsu, J. Hidalgo, and J. Voogt, 2020: Urban Climates and Climate Change. Annual Review of
Environment and Resources, 45(1), 411-444, doi:10.1146/annurev-environ-012320-083623.

Masson, V. et al., 2014: Adapting cities to climate change: A systemic modelling approach. Urban Climate, 10(P2),
407-429, d0i:10.1016/j.uclim.2014.03.004.

Massonnet, F., O. Bellprat, V. Guemas, and F.J. Doblas-Reyes, 2016: Using climate models to estimate the quality of

Do Not Cite, Quote or Distribute 10-166 Total pages: 228


https://dx.doi.org/10.1002/joc.5877
https://dx.doi.org/10.1002/2014ef000259
https://dx.doi.org/10.1038/nclimate3418
https://dx.doi.org/10.1002/joc.5222
https://dx.doi.org/10.1007/978-3-030-05252-2
https://dx.doi.org/10.1007/978-3-030-05252-2
https://dx.doi.org/10.1007/s10584-009-9743-7
https://dx.doi.org/10.1007/s00382-011-1056-7
https://dx.doi.org/10.1007/s00382-015-2487-3
https://dx.doi.org/10.1007/s00382-014-2125-5
https://dx.doi.org/10.1007/s00382-014-2125-5
https://dx.doi.org/10.1023/a:1016099921195
https://dx.doi.org/10.1007/s003820050152
https://dx.doi.org/10.1002/qj.2107
https://dx.doi.org/10.1175/jcli-d-15-0145.1
https://dx.doi.org/10.1175/jcli-d-13-00242.1
https://dx.doi.org/10.1002/2016ms000697
https://dx.doi.org/10.1002/joc.4428
https://dx.doi.org/10.1007/s10584-016-1888-6
https://dx.doi.org/10.1007/s10584-016-1888-6
https://dx.doi.org/10.3402/tellusa.v64i0.16226
https://dx.doi.org/10.1088/1748-9326/10/10/104010
https://dx.doi.org/10.1126/science.1254702
https://dx.doi.org/10.5194/hess-18-4543-2014
https://dx.doi.org/10.1023/a:1002463829265
https://dx.doi.org/10.1007/s00704-005-0142-3
https://dx.doi.org/10.1146/annurev-environ-012320-083623
https://dx.doi.org/10.1016/j.uclim.2014.03.004

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

global observational data sets. Science, 354(6311), 452—455, doi:10.1126/science.aaf6369.

Mathur, R. and K. AchutaRao, 2020: A modelling exploration of the sensitivity of the India’s climate to irrigation.
Climate Dynamics, 54(3—4), 1851-1872, doi:10.1007/s00382-019-05090-8.

Matte, D., M.A.D. Larsen, O.B. Christensen, and J.H. Christensen, 2019: Robustness and Scalability of Regional
Climate Projections Over Europe. Frontiers in Environmental Science, 6, 163, doi:10.3389/fenvs.2018.00163.

Maule, C.F., T. Mendlik, and O.B. Christensen, 2017: The effect of the pathway to a two degrees warmer world on the
regional temperature change of Europe. Climate Services, 7,3—11, doi:10.1016/j.cliser.2016.07.002.

Maure, G. et al., 2018: The southern African climate under 1.5°C and 2°C of global warming as simulated by CORDEX
regional climate models. Environmental Research Letters, 13(6), 065002, doi:10.1088/1748-9326/aab190.

Maurer, E.P. and D.W. Pierce, 2014: Bias correction can modify climate model simulated precipitation changes without
adverse effect on the ensemble mean. Hydrology and Earth System Sciences, 18(3), 915-925,
doi:10.5194/hess-18-915-2014.

May, W., 2011: The sensitivity of the Indian summer monsoon to a global warming of 2°C with respect to pre-
industrial times. Climate Dynamics, 37(9-10), 1843—1868, doi:10.1007/s00382-010-0942-8.

Mayer, M., L. Haimberger, J.M. Edwards, and P. Hyder, 2017: Toward Consistent Diagnosties.of the Coupled
Atmosphere and Ocean Energy Budgets. Journal of Climate, 30(22), 9225-9246, doi: 10.1175/jcli-d-17=
0137.1.

McCarthy, M.P., M.J. Best, and R.A. Betts, 2010: Climate change in cities due toiglobal warming and urban effects.
Geophysical Research Letters, 37(9), doi:10.1029/2010g1042845.

McCarthy, M.P., C. Harpham, C.M. Goodess, and P.D. Jones, 2012: Simulating climate change.in UK cities using a
regional climate model, HadRM3. International Journal of Climatology, 32(12), 18751888,
doi:10.1002/joc.2402.

McCrary, R.R., D.A. Randall, and C. Stan, 2014: Simulations of the West African Monsoon ‘with a Superparameterized
Climate Model. Part II: African Easterly Waves. Journal of Climate, 27(22), 8323-8341, doi:10.1175/jcli-d-
13-00677.1.

McCusker, K.E. et al., 2017: Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas
forcing. Geophysical Research Letters, 44(15), 7955—7964, doi:10:1002/2017¢1074327.

McDermid, S.S., L.O. Mearns, and A.C. Ruane, 2017 Representing agriculturein Earth System Models: Approaches
and priorities for development. Journal of Advances in Modeling Earth Systems, 9(5), 22302265,
doi:10.1002/2016ms000749.

McDonald, R.I., H.Y. Chai, and B.R. Newell, 2015: Personal experience.and the ‘psychological distance’ of climate
change: An integrative review. Journal of Environmental Psychology, 44, 109—118,
doi:10.1016/1.jenvp.2015.10.003.

McGregor, H., 2018: Regional climate goes global. Nature Geoscience, 11(1), 18—19, doi:10.1038/s41561-017-0046-8.

McGregor, J.L., 2015: Recent developments in variable-resolution global climate modelling. Climatic Change, 129(3—
4), 369-380, doi:10.1007/s10584-013-0866-5.

McGregor, S. et al., 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming.
Nature Climate Change, 4(10), 888—892, doi:10.1038/nclimate2330.

McKinnon, K.A. and C. Deser, 2018: Intérnal Variability and Regional Climate Trends in an Observational Large
Ensemble. Journalof Climate, 31(17), 6783—6802, doi: 10.1175/jcli-d-17-0901.1.

McKinnon, K.A., A. Poppick, E. Dunn-Sigouin, and C. Deser, 2017: An “Observational Large Ensemble” to Compare
Observed and'Modeled Temperature Trend Uncertainty due to Internal Variability. Journal of Climate, 30(19),
75857598, doi:10.1175/jcli=d=16-0905.1.

McLandress, C. et al., 2010: Separating the Dynamical Effects of Climate Change and Ozone Depletion. Part I:
Southern Hemisphere Stratosphere. Journal of Climate, 23(18), 5002—5020, doi:10.1175/2010jcli3586.1.

McLeod, J., M. Shepherd, and C.E. Konrad, 2017: Spatio-temporal rainfall patterns around Atlanta, Georgia and
possible relationships to urban land cover. Urban Climate, 21, 27-42, doi:10.1016/j.uclim.2017.03.004.

McNeall, D. et al;; 2016: The impact of structural error on parameter constraint in a climate model. Earth System
Dynamics, 7(4), 917-935, doi:10.5194/esd-7-917-2016.

McPherson; R/A., 2013: High-Resolution Surface Observations for Climate Monitoring. In: Climate Variability —
Regional and Thematic Patterns [Tarhule, A. (ed.)]. InTechOpen, London, UK, doi:10.5772/56044.
McSweeney, C.F. and R.G. Jones, 2013: No consensus on consensus: the challenge of finding a universal approach to
measuring and mapping ensemble consistency in GCM projections. Climatic Change, 119(3—4), 617-629,

doi:10.1007/s10584-013-0781-9.

McSweeney, C.F., R.G. Jones, R.W. Lee, and D.P. Rowell, 2015: Selecting CMIP5 GCMs for downscaling over
multiple regions. Climate Dynamics, 44(11-12), 3237-3260, doi:10.1007/s00382-014-2418-8.

Mearns, L.O. et al., 2012: The North American Regional Climate Change Assessment Program. Bulletin of the
American Meteorological Society, 93(9), 1337-1362, doi:10.1175/bams-d-11-00223.1.

Mearns, L.O. et al., 2013: Climate change projections of the North American Regional Climate Change Assessment
Program (NARCCAP). Climatic Change, 120(4), doi:10.1007/s10584-013-0831-3.

Meehl, G.A., A. Hu, J.M. Arblaster, J. Fasullo, and K.E. Trenberth, 2013: Externally Forced and Internally Generated

Do Not Cite, Quote or Distribute 10-167 Total pages: 228


https://dx.doi.org/10.1126/science.aaf6369
https://dx.doi.org/10.1007/s00382-019-05090-8
https://dx.doi.org/10.3389/fenvs.2018.00163
https://dx.doi.org/10.1016/j.cliser.2016.07.002
https://dx.doi.org/10.1088/1748-9326/aab190
https://dx.doi.org/10.5194/hess-18-915-2014
https://dx.doi.org/10.1007/s00382-010-0942-8
https://dx.doi.org/10.1175/jcli-d-17-0137.1
https://dx.doi.org/10.1175/jcli-d-17-0137.1
https://dx.doi.org/10.1029/2010gl042845
https://dx.doi.org/10.1002/joc.2402
https://dx.doi.org/10.1175/jcli-d-13-00677.1
https://dx.doi.org/10.1175/jcli-d-13-00677.1
https://dx.doi.org/10.1002/2017gl074327
https://dx.doi.org/10.1002/2016ms000749
https://dx.doi.org/10.1016/j.jenvp.2015.10.003
https://dx.doi.org/10.1038/s41561-017-0046-8
https://dx.doi.org/10.1007/s10584-013-0866-5
https://dx.doi.org/10.1038/nclimate2330
https://dx.doi.org/10.1175/jcli-d-17-0901.1
https://dx.doi.org/10.1175/jcli-d-16-0905.1
https://dx.doi.org/10.1175/2010jcli3586.1
https://dx.doi.org/10.1016/j.uclim.2017.03.004
https://dx.doi.org/10.5194/esd-7-917-2016
https://dx.doi.org/10.5772/56044
https://dx.doi.org/10.1007/s10584-013-0781-9
https://dx.doi.org/10.1007/s00382-014-2418-8
https://dx.doi.org/10.1175/bams-d-11-00223.1
https://dx.doi.org/10.1007/s10584-013-0831-3

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Decadal Climate Variability Associated with the Interdecadal Pacific Oscillation. Journal of Climate, 26(18),
7298-7310, doi:10.1175/jcli-d-12-00548.1.

MEEN, 2018: 7th National Communication and 3rd Biennial Report under the United Nations Framework Convention
on Climate Change. Ministry of Environment and Energy (MEEN), Greece, 461 pp.

Meher, J. K., L. Das, R.E. Benestad, and A. Mezghani, 2018: Analysis of winter rainfall change statistics over the
Western Himalaya: the influence of internal variability and topography. International Journal of Climatology,
38, e475-e496, doi:10.1002/joc.5385.

Mehrotra, R., J.P. Evans, A. Sharma, and B. Sivakumar, 2014: Evaluation of downscaled daily rainfall hindcasts over
Sydney, Australia using statistical and dynamical downscaling approaches. Hydrology Research, 45(2), 226—
249, doi:10.2166/nh.2013.094.

Meier, F., D. Fenner, T. Grassmann, M. Otto, and D. Scherer, 2017: Crowdsourcing air temperature from citizen
weather stations for urban climate research. Urban Climate, 19, 170—191, doi:10.1016/1.uclim.2017.01.006.

Meinke, H., R. Nelson, P. Kokic, R. Stone, and R. Selvaraju, 2006: Actionable climate knowledge: from analysis to
synthesis. Climate Research, 33(1), 101-110, doi:10.3354/cr033101.

Menary, M.B. et al., 2018: Preindustrial Control Simulations With HadGEM3-GC3.1 for CMIP6. Journal of Advances
in Modeling Earth Systems, 10(12), 3049—3075, doi:10.1029/2018ms001495.

Mendlik, T. and A. Gobiet, 2016: Selecting climate simulations for impact studies based on multivariate patterns of
climate change. Climatic Change, 135(3—4), 381-393, doi:10.1007/s10584-015-1582-0.

Meénégoz, M., R. Bilbao, O. Bellprat, V. Guemas, and F.J. Doblas-Reyes, 2018a: Forecasting the climate tesponse to
volcanic eruptions: prediction skill related to stratospheric aerosol forcing: Environmental Research Letters,
13(6), 64022, doi:10.1088/1748-9326/aac4db.

Ménégoz, M. et al., 2018b: Role of the Atlantic Multidecadal Variability in modulating theé climate response to a
Pinatubo-like volcanic eruption. Climate Dynamics, 51(5); 1863—1883, doi:10:1007/s00382-017-3986-1.

Menne, M.J., 1. Durre, R.S. Vose, B.E. Gleason, and T.G. Houston, 2012: An Overview of the Global Historical
Climatology Network-Daily Database. Journal of Atmospheric’and Oceanic Technology, 29(7), 897-910,
doi:10.1175/jtech-d-11-00103.1.

Menne, M.J., C.N. Williams, B.E. Gleason, J.J. Rennie, and J.H:Lawrimore,2018: The Global Historical Climatology
Network Monthly Temperature Dataset, Version 4. Journal of Climate; 31(24), 9835-9854, doi:10.1175/jcli-d-
18-0094.1.

Merchant, C.J. et al., 2017: Uncertainty information in climate data records-from Earth observation. Earth System
Science Data, 9(2), 511-527, doi:10.5194/essd-9-511-2017.

Meredith, E.P., D. Maraun, V.A. Semenov, and W.Park, 2015a: Evidence for added value of convection-permitting
models for studying changes in extreme precipitation. Journal of Geophysical Research: Atmospheres,
120(24), 12500-12513, doi:10.1002/2015jd024238.

Meredith, E.P., V.A. Semenov, D. Maraun, W. Park, and A. Chernokulsky, 2015b: Crucial role of Black Sea warming
in amplifying the 2012 Krymsk precipitation extreme. Nature Geoscience, 8(8), 615-619,
doi:10.1038/nge02483«

Mesinger, F. et al., 2006: North American regional reanalysis. Bulletin of the American Meteorological Society,
doi:10.1175/bams-87-3-343.

Mestre, O., C. Gruber, C. Prieur, H. Caussinus, and S. Jourdain, 2011: SPLIDHOM: A Method for Homogenization of
Daily Temperature Obseryations. Journal of Applied Meteorology and Climatology, 50(11), 23432358,
doi:10.1175/2011jamc2641.1.

Mezghani, A. and BrHingray, 2009: A.combined downscaling-disaggregation weather generator for stochastic
generation of multisite hourly weather variables over complex terrain: Development and multi-scale validation
for the Upper Rhone River basin. Journal of Hydrology, 377(3—4), 245-260,
doi:10.1016/xjhydrol.2009.08.033.

Michel, S. et al., 2018:/Reconstructing climatic modes of variability from proxy records: sensitivity to the
methodological approach. Geoscientific Model Development Discussions, 2018, 1-48, doi:10.5194/gmd-2018-
21k

Migliavacea, M. et al., 2013: Modeling biomass burning and related carbon emissions during the 21st century in
Europe. Journal of Geophysical Research: Biogeosciences, 118(4), 1732—1747, doi:10.1002/201372002444.

Milinski, S., N. Maher, and D. Olonscheck, 2020: How large does a large ensemble need to be? Earth System
Dynamics, 11(4), 885-901, doi:10.5194/esd-11-885-2020.

Millan, M.M., 2014: Extreme hydrometeorological events and climate change predictions in Europe. Journal of
Hydrology, 518, 206224, doi:10.1016/j.jhydrol.2013.12.041.

Miller, R.L., P. Knippertz, C. Pérez Garcia-Pando, J.P. Perlwitz, and I. Tegen, 2014: Impact of Dust Radiative Forcing
upon Climate. In: Mineral Dust [Knippertz, P. and J.-B.W. Stuut (eds.)]. Springer, Dordrecht, The
Netherlands, pp. 327-357, d0i:10.1007/978-94-017-8978-3 13.

Minder, J.R., T.W. Letcher, and S.M.K. Skiles, 2016: An evaluation of high-resolution regional climate model
simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow-
albedo feedback. Journal of Geophysical Research: Atmospheres, 121(15), 9069-9088,

Do Not Cite, Quote or Distribute 10-168 Total pages: 228


https://dx.doi.org/10.1175/jcli-d-12-00548.1
https://dx.doi.org/10.1002/joc.5385
https://dx.doi.org/10.2166/nh.2013.094
https://dx.doi.org/10.1016/j.uclim.2017.01.006
https://dx.doi.org/10.3354/cr033101
https://dx.doi.org/10.1029/2018ms001495
https://dx.doi.org/10.1007/s10584-015-1582-0
https://dx.doi.org/10.1088/1748-9326/aac4db
https://dx.doi.org/10.1007/s00382-017-3986-1
https://dx.doi.org/10.1175/jtech-d-11-00103.1
https://dx.doi.org/10.1175/jcli-d-18-0094.1
https://dx.doi.org/10.1175/jcli-d-18-0094.1
https://dx.doi.org/10.5194/essd-9-511-2017
https://dx.doi.org/10.1002/2015jd024238
https://dx.doi.org/10.1038/ngeo2483
https://dx.doi.org/10.1175/bams-87-3-343
https://dx.doi.org/10.1175/2011jamc2641.1
https://dx.doi.org/10.1016/j.jhydrol.2009.08.033
https://dx.doi.org/10.5194/gmd-2018-211
https://dx.doi.org/10.5194/gmd-2018-211
https://dx.doi.org/10.1002/2013jg002444
https://dx.doi.org/10.5194/esd-11-885-2020
https://dx.doi.org/10.1016/j.jhydrol.2013.12.041
https://dx.doi.org/10.1007/978-94-017-8978-3_13

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

doi:10.1002/2016jd024995.

Mindlin, J. et al., 2020: Storyline description of Southern Hemisphere midlatitude circulation and precipitation response
to greenhouse gas forcing. Climate Dynamics, 54(9-10), 43994421, doi:10.1007/s00382-020-05234-1.

Ming, J., Z. Du, C. Xiao, X. Xu, and D. Zhang, 2012: Darkening of the mid-Himalaya glaciers since 2000 and the
potential causes. Environmental Research Letters, 7(1), 014021, doi:10.1088/1748-9326/7/1/014021.

Ming, Y. and V. Ramaswamy, 2011: A Model Investigation of Aerosol-Induced Changes in Tropical Circulation.
Journal of Climate, 24(19), 5125-5133, doi:10.1175/2011jcli4108.1.

Miralles, D.G., A.J. Teuling, C.C. van Heerwaarden, and J. Vila-Guerau de Arellano, 2014: Mega-heatwave
temperatures due to combined soil desiccation and atmospheric heat accumulation. Nature Geoscience, 7, 345,
doi:10.1038/ngeo2141.

Mironov, D. et al., 2010: Implementation of the lake parameterisation scheme FLake into numerical weather prediction
model COSMO. Boreal environment research, 15, 218-230.

Mishra, S.K., S. Sahany, and P. Salunke, 2018: CMIP5 vs. CORDEX over the Indian region: how much do we benefit
from dynamical downscaling? Theoretical and Applied Climatology, 133(3—4), 1133—1141,
doi:10.1007/s00704-017-2237-z.

Mishra, V., 2015: Climatic uncertainty in Himalayan water towers. Journal of Geophysical Research: Atmospheres,
120(7), 2689-2705, doi:10.1002/2014jd022650.

Mitchell, D. et al., 2017: Assessing mid-latitude dynamics in extreme event attribution systems. Climate Dynamics,
doi:10.1007/s00382-016-3308-z.

Mizuta, R. et al., 2017: Over 5,000 Years of Ensemble Future Climate Simulations by 60-km Global and 20-km
Regional Atmospheric Models. Bulletin of the American Meteorological Society, 98(7), 1383—1398,
doi:10.1175/bams-d-16-0099.1.

MJO Working Group, 2009: MJO Simulation Diagnostics. Journal of Climate, 22(11),3006-3030,
doi:10.1175/2008jcli2731.1.

MoARE, 2016: Climate Change Risk Assessment The Cyprus Climate Change Risk Assessment. , 1-165.

MoE, 2016: Troisieme Communication Nationale du Maroc a la Convention Cadre des Nations Unies sur les
Changements Climatiques. Ministére de I’Energie, des'Mines, de 1’Eau et de1’Environnement, Rabat,
Morocco, 295 pp.

MOoE/UNDP/GEF, 2019: Lebanon’s Third Biennial Update Report (BUR) to the UNFCCC. Ministry of Environment
(Lebanon), Beirut, Lebanon, 231 pp.

MOoEP, 2018: Israel’s third National Communication on Climate Change. Ministry of Environmental Protection
(MoEP), Israel, 59 pp.

MoEU, 2018: Seventh National Communication of Turkey under the United Nations Framework Convention on Climate
Change. Ministry of Environment and Urbanization (MoEU), Republic of Turkey, 265 pp.

Moezzi, M., K.B. Janda, and S. Rotmann, 2017: Using stories, narratives, and storytelling in energy and climate change
research. Energy Research & Social Science, 31, 1-10, doi:10.1016/j.erss.2017.06.034.

Mohino, E., N. Keenlyside, andH. Pohlmann,2016: Decadal prediction of Sahel rainfall: where does the skill (or lack
thereof) come from? Climate Dynamics, 47(11), 3593-3612, doi:10.1007/s00382-016-3416-9.

Monerie, P.-A., E. Sanchez-Gomez, and J. Boé¢, 2017a: On the range of future Sahel precipitation projections and the
selection/of a sub-sample of CMIP5 models for impact studies. Climate Dynamics, 48(7-8), 2751-2770,
doi:10.1007/s00382-016-3236-y.

Monerie, P.-Ax; E. Sanchez-Gomez, B. Pohl, J. Robson, and B. Dong, 2017b: Impact of internal variability on
projectionsof Sahelprecipitation change. Environmental Research Letters, 12(11), 114003, doi:10.1088/1748-
9326/aa8cda.

Monerie, P.-A., J. Robson, B. Dong, D.L.R. Hodson, and N.P. Klingaman, 2019: Effect of the Atlantic Multidecadal
Variability en.the Global Monsoon. Geophysical Research Letters, 46, 1765-1775,
doi:10.1029/2018¢1080903.

Montroull, N.B.,; R.I. Saurral, and [.A. Camilloni, 2018: Hydrological impacts in La Plata basin under 1.5, 2 and 3°C
global warming above the pre-industrial level. International Journal of Climatology, 38(8), 3355-3368,
doi:10:1002/j0oc.5505.

Mori, M., Y- Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto, 2019: A reconciled estimate of the influence of
Arctic sea-ice loss on recent Eurasian cooling. Nature Climate Change, 9(2), 123—-129, doi:10.1038/s41558-
018-0379-3.

Mori, N. et al., 2014: Local amplification of storm surge by super typhoon Haiyan in Leyte Gulf. Geophys. Res. Lett.,
41, 5106-5113, doi:10.1002/2014¢l060689.

Morrill, C., D.P. Lowry, and A. Hoell, 2018: Thermodynamic and Dynamic Causes of Pluvial Conditions During the
Last Glacial Maximum in Western North America. Geophysical Research Letters, 45(1), 335-345,
doi:10.1002/2017¢1075807.

Morton, T.A., A. Rabinovich, D. Marshall, and P. Bretschneider, 2011: The future that may (or may not) come: How
framing changes responses to uncertainty in climate change communications. Global Environmental Change,
21(1), 103-109, doi:10.1016/j.gloenvcha.2010.09.013.

Do Not Cite, Quote or Distribute 10-169 Total pages: 228


https://dx.doi.org/10.1002/2016jd024995
https://dx.doi.org/10.1007/s00382-020-05234-1
https://dx.doi.org/10.1088/1748-9326/7/1/014021
https://dx.doi.org/10.1175/2011jcli4108.1
https://dx.doi.org/10.1038/ngeo2141
https://dx.doi.org/10.1007/s00704-017-2237-z
https://dx.doi.org/10.1002/2014jd022650
https://dx.doi.org/10.1007/s00382-016-3308-z
https://dx.doi.org/10.1175/bams-d-16-0099.1
https://dx.doi.org/10.1175/2008jcli2731.1
https://dx.doi.org/10.1016/j.erss.2017.06.034
https://dx.doi.org/10.1007/s00382-016-3416-9
https://dx.doi.org/10.1007/s00382-016-3236-y
https://dx.doi.org/10.1088/1748-9326/aa8cda
https://dx.doi.org/10.1088/1748-9326/aa8cda
https://dx.doi.org/10.1029/2018gl080903
https://dx.doi.org/10.1002/joc.5505
https://dx.doi.org/10.1038/s41558-018-0379-3
https://dx.doi.org/10.1038/s41558-018-0379-3
https://dx.doi.org/10.1002/2014gl060689
https://dx.doi.org/10.1002/2017gl075807
https://dx.doi.org/10.1016/j.gloenvcha.2010.09.013

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Moss, R.H., 2016: Assessing decision support systems and levels of confidence to narrow the climate information
“usability gap”. Climatic Change, 135(1), 143—155, d0i:10.1007/s10584-015-1549-1.

Muerth, M.J. et al., 2013: On the need for bias correction in regional climate scenarios to assess climate change impacts
on river runoff. Hydrology and Earth System Sciences, 17(3), 1189—-1204, do0i:10.5194/hess-17-1189-2013.

Mukheibir, P. and G. Ziervogel, 2007: Developing a Municipal Adaptation Plan (MAP) for climate change: the city of
Cape Town. Environment and Urbanization, 19(1), 143—158, doi:10.1177/0956247807076912.

Muller, C.L., L. Chapman, C.S.B. Grimmond, D.T. Young, and X. Cai, 2013: Sensors and the city: a review of urban
meteorological networks. International Journal of Climatology, 33(7), 1585-1600, doi:10.1002/joc.3678.

Muller, M., 2018: Cape Town’s drought: don’t blame climate change. Nature, 559(7713), 174-176,
doi:10.1038/d41586-018-05649-1.

Mulwa, C., P. Marenya, D.B. Rahut, and M. Kassie, 2017: Response to climate risks among smallholder farmers in
Malawi: A multivariate probit assessment of the role of information, household demographics, and farm
characteristics. Climate Risk Management, 16, 208-221, doi:10.1016/j.crm.2017.01.002.

Munday, C. and R. Washington, 2018: Systematic Climate Model Rainfall Biases over Southern Africa: Links to
Moisture Circulation and Topography. Journal of Climate, 31(18), 7533—7548, doi:10.1175/jcli-d-18-0008.1:

Mussetti, G. et al., 2020: COSMO-BEP-Tree v1.0: a coupled urban climate model with-explicit representation of street
trees. Geoscientific Model Development, 13(3), 1685-1710, doi:10.5194/gmd-13-1685-2020.

Nabat, P., S. Somot, M. Mallet, A. Sanchez-Lorenzo, and M. Wild, 2014: Contribution of anthropogenic sulfate
aerosols to the changing Euro-Mediterranean climate since 1980. Geophysical Research Letters, 41(15), 5605—
5611, doi:10.1002/2014¢1060798.

Nabat, P. et al., 2015: Dust aerosol radiative effects during summer 2012simulated'with a coupled regional aerosol—
atmosphere—ocean model over the Mediterranean. Atmospheric Chemistry and Physics, 15(6), 3303-3326,
doi:10.5194/acp-15-3303-2015.

Nabat, P. et al., 2020: Modulation of radiative aerosols effects by atmospheric circulation over.the Euro-Mediterranean
region. Atmospheric Chemistry and Physics, 20(14), 8315-8349, doi:10.5194/acp-20-8315-2020.

Naidu, P.D. et al., 2020: Coherent response of the Indian Monsoon Rainfall to Atlantic Multi-decadal Variability over
the last 2000 years. Scientific Reports, 10(1), 1302, doi:10.1038/s41598-020-58265-3.

Nakamura, T. et al., 2015: A negative phase shift of the'winter AO/NAQ due tothe'recent Arctic sea-ice reduction in
late autumn. Journal of Geophysical Reséarch: Atmospheres, 120(8), 3209-3227, doi:10.1002/2014jd022848.

Nath, R., Y. Luo, W. Chen, and X. Cui, 2018: On the contribution of internal variability and external forcing factors to
the Cooling trend over the Humid Subtropical Indo-Gangetic Plain in India. Scientific Reports, 8(1), 18047,
doi:10.1038/s41598-018-363115.

Nazemi, A. and H.S. Wheater, 2015: On inclusion of water resource management in Earth system models — Part 1:
Problem definition and representation of water-demand. Hydrology and Earth System Sciences, 19(1), 33—-61,
doi:10.5194/hess-19-33-2015¢

Nelson, B.R., O.P. Prat, D.-J..Seo,-and E. Habib, 2016: Assessment and Implications of NCEP Stage IV Quantitative
Precipitation Estimates for Product Intercomparisons. Weather and Forecasting, 31(2), 371-394,
doi:10.1175/waf-d-14-00412.1.

Neu, U. etal., 2013: IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking
Algorithms. Bulletin of the American Meteorological Society, 94(4), 529-547, doi:10.1175/bams-d-11-
00154.1.

Neukom, R.;N. Steiger, J.J. Gémez-Navarro, J. Wang, and J.P. Werner, 2019: No evidence for globally coherent warm
and cold periods over the preindustrial Common Era. Nature, 571(7766), 550—554, doi:10.1038/s41586-019-
1401-2.

Newman, M. et al., 2016: The Pacific decadal oscillation, revisited. Journal of Climate, doi:10.1175/jcli-d-15-0508.1.

Nguyen, K.C., J.J. Katzfey, J. Riedl, and A. Troccoli, 2017: Potential impacts of solar arrays on regional climate and on
array efficiency. International Journal of Climatology, 37(11), 4053-4064, doi:10.1002/joc.4995.

Nguyen, P. et al.; 2019: The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite
precipitation data. Scientific Data, 6(1), 180296, doi:10.1038/sdata.2018.296.

Nguyen, T:=H., S.-K.. Min, S. Paik, and D. Lee, 2018: Time of emergence in regional precipitation changes: an updated
assessment using the CMIP5 multi-model ensemble. Climate Dynamics, 51(9—10), 3179-3193,
doi: 10.1007/s00382-018-4073-y.

Nicholson, S.E., 2013: The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual
Variability. ISRN Meteorology, 2013, 1-32, doi:10.1155/2013/453521.

Nicholson, S.E., A.H. Fink, and C. Funk, 2018: Assessing recovery and change in West Africa’s rainfall regime from a
161-year record. International Journal of Climatology, 38(10), 3770-3786, doi:10.1002/joc.5530.

Nigam, S. and M. Bollasina, 2010: “Elevated heat pump” hypothesis for the aerosol-monsoon hydroclimate link:
“Grounded” in observations? Journal of Geophysical Research, 115(D16), D16201,
doi:10.1029/2009jd013800.

Nightingale, J. et al., 2019: Ten Priority Science Gaps in Assessing Climate Data Record Quality. Remote Sensing ,
11(8), doi:10.3390/rs11080986.

Do Not Cite, Quote or Distribute 10-170 Total pages: 228


https://dx.doi.org/10.1007/s10584-015-1549-1
https://dx.doi.org/10.5194/hess-17-1189-2013
https://dx.doi.org/10.1177/0956247807076912
https://dx.doi.org/10.1002/joc.3678
https://dx.doi.org/10.1038/d41586-018-05649-1
https://dx.doi.org/10.1016/j.crm.2017.01.002
https://dx.doi.org/10.1175/jcli-d-18-0008.1
https://dx.doi.org/10.5194/gmd-13-1685-2020
https://dx.doi.org/10.1002/2014gl060798
https://dx.doi.org/10.5194/acp-15-3303-2015
https://dx.doi.org/10.5194/acp-20-8315-2020
https://dx.doi.org/10.1038/s41598-020-58265-3
https://dx.doi.org/10.1002/2014jd022848
https://dx.doi.org/10.1038/s41598-018-36311-5
https://dx.doi.org/10.5194/hess-19-33-2015
https://dx.doi.org/10.1175/waf-d-14-00112.1
https://dx.doi.org/10.1175/bams-d-11-00154.1
https://dx.doi.org/10.1175/bams-d-11-00154.1
https://dx.doi.org/10.1038/s41586-019-1401-2
https://dx.doi.org/10.1038/s41586-019-1401-2
https://dx.doi.org/10.1175/jcli-d-15-0508.1
https://dx.doi.org/10.1002/joc.4995
https://dx.doi.org/10.1038/sdata.2018.296
https://dx.doi.org/10.1007/s00382-018-4073-y
https://dx.doi.org/10.1155/2013/453521
https://dx.doi.org/10.1002/joc.5530
https://dx.doi.org/10.1029/2009jd013800
https://dx.doi.org/10.3390/rs11080986

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Nikiema, P.M. et al., 2017: Multi-model CMIP5 and CORDEX simulations of historical summer temperature and
precipitation variabilities over West Africa. International Journal of Climatology, 37(5), 2438-2450,
doi:10.1002/joc.4856.

Nikulin, G. et al., 2012: Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations.
Journal of Climate, 25(18), 60576078, doi:10.1175/jcli-d-11-00375.1.

Nissan, H., G. Muifioz, and S.J. Mason, 2020: Targeted model evaluations for climate services: A case study on heat
waves in Bangladesh. Climate Risk Management, 28, 100213, doi:10.1016/j.crm.2020.100213.

Nitu, R. etal., 2018: WMO Solid Precipitation Intercomparison Experiment (SPICE) (2012 - 2015). Instruments and
Observing Methods Report No. 131, World Meteorological Organization (WMO), Geneva, Switzerland, 1445
pp.

Noél, B. et al., 2018: Modelling the climate and surface mass balance of polar ice sheets using RACMO?2 — Part 1:
Greenland (1958-2016). The Cryosphere, 12(3), 811-831, doi:10.5194/tc-12-811-2018.

Norstrom, A. et al., 2020: Principles for knowledge co-production in sustainability research. Nature Sustainability, 3(3),
182-190, doi:10.1038/s41893-019-0448-2.

Notaro, M., V. Bennington, and S. Vavrus, 2015: Dynamically Downscaled Projections of Lake-Effect Snow in the
Great Lakes Basin*,+. Journal of Climate, 28(4), 1661-1684, doi:10.1175/jcli=d-14-00467.1.

Notaro, M. et al., 2013: Influence of the Laurentian Great Lakes on Regional Climate*. Journal of Climate,26(3), 789—
804, doi:10.1175/jcli-d-12-00140.1.

Notz, D., 2015: How well must climate models agree with observations? Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 373(2052),20140164,
doi:10.1098/rsta.2014.0164.

O, S. and U. Foelsche, 2019: Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge
network. Hydrology and Earth System Sciences, 23(7), 2863-2875, doi:10.5194/hess-23-2863-2019.

O’Higgins, T., A.A. Nogueira, and A.IL Lillebg, 2019: A simple<patial typology for assessment of complex coastal
ecosystem services across multiple scales. Science of the Total Environment, 649, 1452—1466,
doi:10.1016/j.scitotenv.2018.08.420.

O’Reilly, C.H., 2018: Interdecadal variability of the ENSO teleconnection to'the wintertime North Pacific. Climate
Dynamics, 51(9-10), 3333-3350, doi: 10.1007/s00382-018-4081 -y.

O’Reilly, C.H., T. Woollings, and L. Zanna, 2017: The Dynamical Influence of the Atlantic Multidecadal Oscillation on
Continental Climate. Journal of Climate, 30(18); 7213—7230, doiz10.1175/jcli-d-16-0345.1.

O’Reilly, C.H., D.J. Befort, and A. Weisheimer, 2020: Calibrating large-ensemble European climate projections using
observational data. Earth System Dynamics, 11(4), 1033=1049, doi:10.5194/esd-11-1033-2020.

O’Reilly, C.H., T. Woollings, L. Zanna, and:A. Weisheimer, 2019: An Interdecadal Shift of the Extratropical
Teleconnection From the Tropical Pacific During Boreal Summer. Geophysical Research Letters, 46(22),
13379-13388, doi:10.1029/2019¢1084079.

Obermann, A. et al., 2018: Mistral.and Tramontane wind speed and wind direction patterns in regional climate
simulations. Climate Dynamics, 51(3); 1059-1076, doi:10.1007/s00382-016-3053-3.

Ochsner, T.E. et al., 2013: State of the Art in Large-Scale Soil Moisture Monitoring. Soil Science Society of America
Journal, 77(6), 1888, doi:10.2136/ss52j2013.03.0093.

Ogawa, F. et al., 2018: Evaluating Impacts of Recent Arctic Sea Ice Loss on the Northern Hemisphere Winter Climate
Change. Geophysical Research Letters, 45(7), 3255-3263, doi:10.1002/2017g1076502.

Ohki, M. et al:;,.2019:=Flood Area Detection Using ALOS-2 PALSAR-2 Data for the 2015 Heavy Rainfall Disaster in
the Kanto and Tohoku Area,Japan. Journal of The Remote Sensing Society of Japan, 39, 43-55.

Okamoto, K., T. Ushio, T. Iguchi, N+Takahashi, and K. Iwanami, 2005: The global satellite mapping of precipitation
(GSMaP) project. Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005.
IGARSS 0545, 3414-3416, doi: 10.1109/igarss.2005.1526575.

Oleson, K., 2012: Contrasts between Urban and rural climate in CCSM4 CMIP5 climate change scenarios. Journal of
Climate, 25(5), 1390-1412, doi:10.1175/jcli-d-11-00098.1.

Oleson, K.W., G.B. Bonan, J. Feddema, and T. Jackson, 2011: An examination of urban heat island characteristics in a
global climate model. International Journal of Climatology, 31(12), 1848—1865, doi:10.1002/joc.2201.

Olonscheck;D. and D. Notz, 2017: Consistently Estimating Internal Climate Variability from Climate Model
Simulations. Journal of Climate, 30(23), 9555-9573, doi:10.1175/jcli-d-16-0428.1.

Olonscheck, D., T. Mauritsen, and D. Notz, 2019: Arctic sea-ice variability is primarily driven by atmospheric
temperature fluctuations. Nature Geoscience, 12(6), 430-434, doi:10.1038/s41561-019-0363-1.

Orlanski, I., 1975: A Rational Subdivision of Scales for Atmospheric Processes. Bulletin of the American
Meteorological Society, 56(5), 527-530.

Ortega, P. et al., 2015: A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature,
523(7558), 71-74, doi:10.1038/nature14518.

Osborn, T.J. and P.D. Jones, 2014: The CRUTEM4 land-surface air temperature data set: construction, previous
versions and dissemination via Google Earth. Earth System Science Data, 6(1), 61-68, doi:10.5194/essd-6-61-
2014.

Do Not Cite, Quote or Distribute 10-171 Total pages: 228


https://dx.doi.org/10.1002/joc.4856
https://dx.doi.org/10.1175/jcli-d-11-00375.1
https://dx.doi.org/10.1016/j.crm.2020.100213
https://dx.doi.org/10.5194/tc-12-811-2018
https://dx.doi.org/10.1038/s41893-019-0448-2
https://dx.doi.org/10.1175/jcli-d-14-00467.1
https://dx.doi.org/10.1175/jcli-d-12-00140.1
https://dx.doi.org/10.1098/rsta.2014.0164
https://dx.doi.org/10.5194/hess-23-2863-2019
https://dx.doi.org/10.1016/j.scitotenv.2018.08.420
https://dx.doi.org/10.1007/s00382-018-4081-y
https://dx.doi.org/10.1175/jcli-d-16-0345.1
https://dx.doi.org/10.5194/esd-11-1033-2020
https://dx.doi.org/10.1029/2019gl084079
https://dx.doi.org/10.1007/s00382-016-3053-3
https://dx.doi.org/10.2136/sssaj2013.03.0093
https://dx.doi.org/10.1002/2017gl076502
https://dx.doi.org/10.1109/igarss.2005.1526575
https://dx.doi.org/10.1175/jcli-d-11-00098.1
https://dx.doi.org/10.1002/joc.2201
https://dx.doi.org/10.1175/jcli-d-16-0428.1
https://dx.doi.org/10.1038/s41561-019-0363-1
https://dx.doi.org/10.1038/nature14518
https://dx.doi.org/10.5194/essd-6-61-2014
https://dx.doi.org/10.5194/essd-6-61-2014

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Osborn, T.J. et al., 2021: Land Surface Air Temperature Variations Across the Globe Updated to 2019: The CRUTEMS
Data Set. Journal of Geophysical Research: Atmospheres, 126(2), €2019JD032352,
doi:10.1029/2019jd032352.

Ose, T., 2019: Future Changes in Summertime East Asian Monthly Precipitation in CMIP5 and Their Dependence on
Present-Day Model Climatology. Journal of the Meteorological Society of Japan. Ser. II, 97(5), 10411053,
doi:10.2151/jmsj.2019-055.

Ose, T., Y. Takaya, S. Maeda, and T. Nakaegawa, 2020: Resolution of Summertime East Asian Pressure Pattern and
Southerly Monsoon Wind in CMIP5 Multi-model Future Projections. Journal of the Meteorological Society of
Japan. Ser. 11, 98(5), 927-944, doi:10.2151/jmsj.2020-047.

Osso, A., L. Shaffrey, B. Dong, and R. Sutton, 2019: Impact of air—sea coupling on Northern Hemisphere summer
climate and the monsoon—desert teleconnection. Climate Dynamics, 53(7-8), 5063—5078, doi:10.1007/s00382-
019-04846-6.

Otto, F.E.L. et al., 2015: Factors Other Than Climate Change, Main Drivers of 2014/15 Water Shortage in Southeast
Brazil. Bulletin of the American Meteorological Society, 96(12), S35-S40, doi:10.1175/bams-d-15-00120.1.

Otto, F.E.L. et al., 2016: The attribution question. Nature Climate Change, 6(9), 813—816;doi:10.1038/nclimate3089.

Otto, F.E.L. et al., 2018: Anthropogenic influence on the drivers of the Western Cape drought 2015-2017.
Environmental Research Letters, 13(12), 124010, doi:10.1088/1748-9326/aae919.

Otto, J. et al., 2016: Uncertainty: Lessons Learned for Climate Services. Bulletin of the American Meteorological
Society, 97(12), ES265-ES269, doi:10.1175/bams-d-16-0173.1.

Oudar, T., J. Cattiaux, and H. Douville, 2020: Drivers of the Northern Extratropical Eddy-Driven Jet Change in CMIP5
and CMIP6 Models. Geophysical Research Letters, 47(8), doi:10:1029/201921086695.

Overeem, A. et al., 2013: Crowdsourcing urban air temperatures fromsmartphone batterytemperatures. Geophysical
Research Letters, 40(15), 4081-4085, doi:10.1002/grl.50786.

Overland, J.E. et al., 2016: Nonlinear response of mid-latitude weather to the changing Atctic.Nature Climate Change,
6(11), 992-999, doi:10.1038/nclimate3121.

Oyler, J.W., A. Ballantyne, K. Jencso, M. Sweet, and S.W. Running, 2015: Creating a topoclimatic daily air
temperature dataset for the conterminous United Statesusing homogenized station data and remotely sensed
land skin temperature. International Journal of Climatology, 35(9), 2258-2279, doi:10.1002/joc.4127.

Ozturk, T., M.T. Turp, M. Tiirkes, and M.L. Kurnaz, 2018: Future projections of temperature and precipitation
climatology for CORDEX-MENA domain using' RegCM4.4. Afmospheric Research, 206, 87-107,
doi:10.1016/j.atmosres.2018.02.009.

Paegle, J.N. and K.C. Mo, 2002: Linkages between.Summer Rainfall Variability over South America and Sea Surface
Temperature Anomalies. Journal of Climate, 15(12), 1389-1407, doi:10.1175/1520-
0442(2002)015<1389:1bst#0>2.0.c0;2.

Pai, D.S., L. Sridhar, M.R. Badwaik; and M. Rajeevan, 2015: Analysis of the daily rainfall events over India using a
new long period (1901-2010) high resolution (0.25° x 0.25°) gridded rainfall data set. Climate Dynamics,
45(3-4), 755-776, d0i:10.1007/s00382-014-2307-1.

Pai, D.S. et al., 2014: Dévelopment of a new high spatial resolution (0.25° % 0.25°) long period (1901-2010) daily
gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65(1),
1-18.

Palazzi, E., J. von Hardenberg, and’A. Provenzale, 2013: Precipitation in the Hindu-Kush Karakoram Himalaya:
Observations-and future scenarios. Journal of Geophysical Research: Atmospheres, 118(1), 85-100,
doi: 10.1029/2012jd018697.

Palazzi, E., J. von Hardenberg, S. Terzago, and A. Provenzale, 2015: Precipitation in the Karakoram-Himalaya: a
CMIPS view. Climate Dynamics, 45(1-2), 21-45, doi:10.1007/s00382-014-2341-z.

Pall, P. et al., 2017: Diagnosing conditional anthropogenic contributions to heavy Colorado rainfall in September 2013.
Weather and Climate Extremes, 17, 1-6, doi:10.1016/j.wace.2017.03.004.

Palmer, T.N., 2013: Climate extremes and the role of dynamics. Proceedings of the National Academy of Sciences,
110(14), 52815282, doi:10.1073/pnas.1303295110.

Palmer, T:N., 2016:/A personal perspective on modelling the climate system. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 472(2188), 20150772, doi:10.1098/rspa.2015.0772.

Palmer, T.N., 2019: Stochastic weather and climate models. Nature Reviews Physics, 1(7), 463—471,
doi:10.1038/s42254-019-0062-2.

Panthou, G. et al., 2018: Rainfall intensification in tropical semi-arid regions: the Sahelian case. Environmental
Research Letters, 13(6), 064013, doi:10.1088/1748-9326/aac334.

Panziera, L., M. Gabella, U. Germann, and O. Martius, 2018: A 12-year radar-based climatology of daily and sub-daily
extreme precipitation over the Swiss Alps. International Journal of Climatology, 38(10), 3749-3769,
doi:10.1002/joc.5528.

Parastatidis, D., Z. Mitraka, N. Chrysoulakis, and M. Abrams, 2017: Online Global Land Surface Temperature
Estimation from Landsat. Remote Sensing, 9(12), 1208, doi:10.3390/rs9121208.

Park, B.-J. et al., 2017: Long-Term Warming Trends in Korea and Contribution of Urbanization: An Updated

Do Not Cite, Quote or Distribute 10-172 Total pages: 228


https://dx.doi.org/10.1029/2019jd032352
https://dx.doi.org/10.2151/jmsj.2019-055
https://dx.doi.org/10.2151/jmsj.2020-047
https://dx.doi.org/10.1007/s00382-019-04846-6
https://dx.doi.org/10.1007/s00382-019-04846-6
https://dx.doi.org/10.1175/bams-d-15-00120.1
https://dx.doi.org/10.1038/nclimate3089
https://dx.doi.org/10.1088/1748-9326/aae9f9
https://dx.doi.org/10.1175/bams-d-16-0173.1
https://dx.doi.org/10.1029/2019gl086695
https://dx.doi.org/10.1002/grl.50786
https://dx.doi.org/10.1038/nclimate3121
https://dx.doi.org/10.1002/joc.4127
https://dx.doi.org/10.1016/j.atmosres.2018.02.009
https://dx.doi.org/10.1175/1520-0442(2002)015%3c1389:lbsrvo%3e2.0.co;2
https://dx.doi.org/10.1175/1520-0442(2002)015%3c1389:lbsrvo%3e2.0.co;2
https://dx.doi.org/10.1007/s00382-014-2307-1
https://dx.doi.org/10.1029/2012jd018697
https://dx.doi.org/10.1007/s00382-014-2341-z
https://dx.doi.org/10.1016/j.wace.2017.03.004
https://dx.doi.org/10.1073/pnas.1303295110
https://dx.doi.org/10.1098/rspa.2015.0772
https://dx.doi.org/10.1038/s42254-019-0062-2
https://dx.doi.org/10.1088/1748-9326/aac334
https://dx.doi.org/10.1002/joc.5528
https://dx.doi.org/10.3390/rs9121208

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Assessment. Journal of Geophysical Research: Atmospheres, 122(20), 10,610-637,654,
doi:10.1002/2017jd027167.

Park, J.Y., J. Bader, and D. Matei, 2016: Anthropogenic Mediterranean warming essential driver for present and future
Sahel rainfall. Nature Climate Change, doi:10.1038/nclimate3065.

Park, J.-Y., J. Bader, and D. Matei, 2015: Northern-hemispheric differential warming is the key to understanding the
discrepancies in the projected Sahel rainfall. Nature Communications, 6(1), 5985, doi:10.1038/ncomms6985.

Parker, D.E., 1994: Effects of changing exposure of thermometers at land stations. International Journal of
Climatology, 14(1), 1-31, d0i:10.1002/j0c.3370140102.

Parker, D.E., 2010: Urban heat island effects on estimates of observed climate change. WIREs Climate Change, 1(1),
123-133, doi:10.1002/wce.21.

Parker, W.S., 2009: I[I-Confirmation and Adequacy-for-Purpose in Climate Modelling. Aristotelian Society
Supplementary Volume, 83(1), 233-249, doi:10.1111/].1467-8349.2009.00180.x.

Parker, W.S. and G. Lusk, 2019: Incorporating User Values into Climate Services. Bulletin of the American
Meteorological Society, 100(9), 1643-1650, doi:10.1175/bams-d-17-0325.1.

Patricola, C.M. and M.F. Wehner, 2018: Anthropogenic influences on major tropical cyclone.events. Nature,
563(7731), 339-346, doi:10.1038/s41586-018-0673-2.

Paul, S. et al., 2016: Weakening of Indian Summer Monsoon Rainfall due to Changes in Land Use Land Cover.
Scientific Reports, 6, doi:10.1038/srep32177.

Pausata, F.S.R., L. Chafik, R. Caballero, and D.S. Battisti, 2015: Impacts of high-latitude volcanic:eruptions on ENSO
and AMOC. Proceedings of the National Academy of Sciences, 112(45);13784—13788,
doi:10.1073/pnas.1509153112.

Pearce, W., S. Niederer, S.M. Ozkula, and N. Sanchez Querubin, 2019: The social media life of climate change:
Platforms, publics, and future imaginaries. Wiley Interdisciplinary Reviews: Climate Change, 10(2), €569,
doi:10.1002/wce.569.

Pedro, J.B. et al., 2016: Southern Ocean deep convection as a driver of Antarctic warming events. Geophysical
Research Letters, 43(5), 2192-2199, doi:10.1002/2016g1067861.

Peings, Y., 2019: Ural Blocking as a Driver of Early-Winter Stratospheric Warmings.-Geophysical Research Letters,
46(10), 54605468, doi:10.1029/2019¢1082097.

Peings, Y., J. Cattiaux, S.J. Vavrus, and G. Magnusdottir, 2018: Projected squeezing of the wintertime North-Atlantic
jet. Environmental Research Letters, 13(7), 074016, doi: 10.1088/1748-9326/aacc79.

Peings, Y., H. Douville, J. Colin, D. Martin, and.G. Magnusdottir, 2017::Snow-(N)AO Teleconnection and Its
Modulation by the Quasi-Biennial Oscillation. Journal of Climate, 30(24), 10211-10235, doi: 10.1175/jcli-d-
17-0041.1.

Penalba, O.C. and F.A. Robledo, 2010: Spatial and temporal variability of the frequency of extreme daily rainfall
regime in the La Plata Basin during the 20th' century. Climatic Change, 98(3), 531-550, d0i:10.1007/s10584-
009-9744-6.

Pendergrass, A.G., R. Knutti, F: Lehner, C. Deser, and B.M. Sanderson, 2017: Precipitation variability increases in a
warmer climatg. Scientifi¢ Reports, 7(1), 17966, doi:10.1038/s41598-017-17966-y.

Peng, D., T. Zhou, L. Zhang, and L. Zou; 2019: Detecting human influence on the temperature changes in Central Asia.
Climate Dynamics;53(7-8), 45534568, doi:10.1007/s00382-019-04804-2.

Peng, L. et al., 2018: Wind weakening in a dense high-rise city due to over nearly five decades of urbanization.
Building and-Environment, 138, 207-220, doi:10.1016/j.buildenv.2018.04.037.

Pepin, N. et al., 2015: Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5(5),
424-430, doi:10.1038/nclimate2563.

Pepler, A., A. Coutts-Smith, and.B. Timbal, 2014: The role of East Coast Lows on rainfall patterns and inter-annual
variability across the East Coast of Australia. International Journal of Climatology, 34(4), 1011-1021,
doi:10.1002/j0¢:3741.

Pepler, A.S., L. Alexander, J.P. Evans, and S.C. Sherwood, 2016: Zonal winds and southeast Australian rainfall in
global and regional climate models. Climate Dynamics, 46(1-2), 123—133, doi:10.1007/s00382-015-2573-6.

Perkins-Kirkpatrick; S.E., E.M. Fischer, O. Angélil, and P.B. Gibson, 2017: The influence of internal climate variability
on‘heatwave frequency trends. Environmental Research Letters, 12(4), 044005, doi:10.1088/1748-
9326/aa63fe.

Perry, S.J., S. McGregor, A. Gupta, and M.H. England, 2017: Future Changes to El Nifio-Southern Oscillation
Temperature and Precipitation Teleconnections. Geophysical Research Letters, 44(20), 10,608-10,616,
doi:10.1002/2017g1074509.

Petoukhov, V., S. Rahmstorf, S. Petri, and H.J. Schellnhuber, 2013: Quasiresonant amplification of planetary waves and
recent Northern Hemisphere weather extremes. Proceedings of the National Academy of Sciences, 110(14),
5336-5341, doi:10.1073/pnas. 12220001 10.

Petrie, R.E., L.C. Shaffrey, and R.T. Sutton, 2015: Atmospheric Impact of Arctic Sea Ice Loss in a Coupled Ocean—
Atmosphere Simulation. Journal of Climate, 28(24), 9606-9622, doi:10.1175/jcli-d-15-0316.1.

Pettenger, M.E. (ed.), 2016: The Social Construction of Climate Change. Routledge, London, UK, 280 pp.,

Do Not Cite, Quote or Distribute 10-173 Total pages: 228


https://dx.doi.org/10.1002/2017jd027167
https://dx.doi.org/10.1038/nclimate3065
https://dx.doi.org/10.1038/ncomms6985
https://dx.doi.org/10.1002/joc.3370140102
https://dx.doi.org/10.1002/wcc.21
https://dx.doi.org/10.1111/j.1467-8349.2009.00180.x
https://dx.doi.org/10.1175/bams-d-17-0325.1
https://dx.doi.org/10.1038/s41586-018-0673-2
https://dx.doi.org/10.1038/srep32177
https://dx.doi.org/10.1073/pnas.1509153112
https://dx.doi.org/10.1002/wcc.569
https://dx.doi.org/10.1002/2016gl067861
https://dx.doi.org/10.1029/2019gl082097
https://dx.doi.org/10.1088/1748-9326/aacc79
https://dx.doi.org/10.1175/jcli-d-17-0041.1
https://dx.doi.org/10.1175/jcli-d-17-0041.1
https://dx.doi.org/10.1007/s10584-009-9744-6
https://dx.doi.org/10.1007/s10584-009-9744-6
https://dx.doi.org/10.1038/s41598-017-17966-y
https://dx.doi.org/10.1007/s00382-019-04804-2
https://dx.doi.org/10.1016/j.buildenv.2018.04.037
https://dx.doi.org/10.1038/nclimate2563
https://dx.doi.org/10.1002/joc.3741
https://dx.doi.org/10.1007/s00382-015-2573-6
https://dx.doi.org/10.1088/1748-9326/aa63fe
https://dx.doi.org/10.1088/1748-9326/aa63fe
https://dx.doi.org/10.1002/2017gl074509
https://dx.doi.org/10.1073/pnas.1222000110
https://dx.doi.org/10.1175/jcli-d-15-0316.1

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

doi:10.4324/9781315552842.

Pfeifroth, U. et al., 2018: Satellite-based trends of solar radiation and cloud parameters in Europe. Advances in Science
and Research, 15, 31-37, doi:10.5194/asr-15-31-2018.

Pham, T., J. Brauch, B. Friih, and B. Ahrens, 2017: Simulation of snowbands in the Baltic Sea area with the coupled
atmosphere-ocean-ice model COSMO-CLM/NEMO. Meteorologische Zeitschrift, 26(1), 71-82,
doi:10.1127/metz/2016/0775.

Pham, T., J. Brauch, B. Friih, and B. Ahrens, 2018: Added decadal prediction skill with the coupled regional climate
model COSMO-CLM/NEMO. Meteorologische Zeitschrift, 27(5), 391-399, doi:10.1127/metz/2018/0872.

Philipona, R., K. Behrens, and C. Ruckstuhl, 2009: How declining aerosols and rising greenhouse gases forced rapid
warming in Europe since the 1980s. Geophysical Research Letters, 36(2), L02806, doi:10.1029/200821036350.

Philippon, N., M. Rouault, Y. Richard, and A. Favre, 2012: The influence of ENSO on winter rainfall in South Africa.
International Journal of Climatology, 32(15), 23332347, doi:10.1002/joc.3403.

Photiadou, C., B. van den Hurk, A. van Delden, and A. Weerts, 2016: Incorporating circulation statistics in bias
correction of GCM ensembles: hydrological application for the Rhine basin. Climate Dynamics, 46(1-2), 187—
203, doi:10.1007/s00382-015-2578-1.

Pichelli, E. et al., 2021: The first multi-model ensemble of regional climate simulations-at kilometer-scale résolution
part 2: historical and future simulations of precipitation. Climate Dynamics,/doi:10.1007/s00382-021-05657-4.

Piennaar, L.O.U.W. and J.O.H.A.N.N. Boonzaaier, 2018: Drought Policy Brief: Western Cape Agriculture. Bureau for
Food and Agriculture Policy, Die Wilgers, South Africa, 17 pp.

Pierce, D.W., D.R. Cayan, and B.L. Thrasher, 2014: Statistical Downscaling Using:Localized Constructed Analogs
(LOCA). Journal of Hydrometeorology, 15(6), 2558-2585, doi:40.1175/jhm-d-14-0082.1.

Pierce, D.W., D.R. Cayan, E.P. Maurer, J.T. Abatzoglou, and K.C. Hegewisch, 2015: Improved Bias Correction
Techniques for Hydrological Simulations of Climate Change. Journal of Hydrometeorology, 16(6), 2421—
2442, doi:10.1175/jhm-d-14-0236.1.

Pietikdinen, J.-P. et al., 2018: The regional climate model REMO (¥2015) coupled with the 1-D freshwater lake model
FLake (v1): Fenno-Scandinavian climate and lakes. Geoscientific Model Development, 11(4), 1321-1342,
doi:10.5194/gmd-11-1321-2018.

Pinto, L., C. Jack, and B. Hewitson, 2018: Process-based:model evaluation and projections over southern Africa from
Coordinated Regional Climate Downscaling Experiment and Coupled Model Intercomparison Project Phase 5
models. International Journal of Climatology, 38(11), 4251-4261;doi:10.1002/joc.5666.

Piovano, E.L., D. Ariztegui, S.M. Bernasconi, and J.A. McKenzie, 2004: Stable isotopic record of hydrological changes
in subtropical Laguna Mar Chiquita (Argentina) over thelast 230 years. The Holocene, 14(4), 525-535,
doi:10.1191/0959683604h1729rp.

Pisaric, M.F.J. et al., 2011: Impacts‘of a recent storm surge on an Arctic delta ecosystem examined in the context of the
last millennium. Proceedings of the National Academy of Sciences, 108(22), 8960—-8965,
doi:10.1073/pnas.1048527108.

Plant, R.S. and J.-I. Yano (eds.); 2015: Parameterization of Atmospheric Convection. World Scientific, 1132 pp.,
doi:10.1142/p1005.

Planton, S. et al., 2012: The Climate of the Mediterranean Region in Future Climate Projections. In: The Climate of the
Mediterranean Region [Lionello, P. (ed.)]. Elsevier, Oxford, UK, pp. 449-502, doi:10.1016/b978-0-12-
416042-2.00008-2.

Poan, E.D., PxGachonyR. Laprise, R. Aider, and G. Dueymes, 2018: Investigating added value of regional climate
modeling in North Americanswinter storm track simulations. Climate Dynamics, 50(5-6), 1799-1818,
doi:10.1007/s00382-017-3723-9.

Pokhrel, Y.N., N. Hanasaki, Y. Wada, and H. Kim, 2016: Recent progresses in incorporating human land-water
managementinto global land surface models toward their integration into Earth system models. Wiley
Interdisciplinary Reviews: Water, 3(4), 548-574, doi:10.1002/wat2.1150.

Polade, S.D., A. Gershunov, D.R. Cayan, M.D. Dettinger, and D.W. Pierce, 2013: Natural climate variability and
teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models.
Geophysical Research Letters, 40(10), 22962301, doi:10.1002/grl.50491.

Polcher, J.,.M. Piles, E. Gelati, A. Barella-Ortiz, and M. Tello, 2016: Comparing surface-soil moisture from the SMOS
mission and the ORCHIDEE land-surface model over the Iberian Peninsula. Remote Sensing of Environment,
174, 69-81, doi:10.1016/j.rse.2015.12.004.

Poli, P. et al., 2016a: Recent Advances in Satellite Data Rescue. Bulletin of the American Meteorological Society, 98(7),
1471-1484, doi:10.1175/bams-d-15-00194.1.

Poli, P. et al., 2016b: ERA-20C: An Atmospheric Reanalysis of the Twentieth Century. Journal of Climate, 29(11),
4083-4097, doi:10.1175/jcli-d-15-0556.1.

Polson, D., M. Bollasina, G.C. Hegerl, and L.J. Wilcox, 2014: Decreased monsoon precipitation in the Northern
Hemisphere due to anthropogenic aerosols. Geophysical Research Letters, 41(16), 6023—6029,
doi:10.1002/2014¢1060811.

Pontoppidan, M. et al., 2019: Large-scale regional model biases in the extratropical North Atlantic storm track and

Do Not Cite, Quote or Distribute 10-174 Total pages: 228


https://dx.doi.org/10.4324/9781315552842
https://dx.doi.org/10.5194/asr-15-31-2018
https://dx.doi.org/10.1127/metz/2016/0775
https://dx.doi.org/10.1127/metz/2018/0872
https://dx.doi.org/10.1029/2008gl036350
https://dx.doi.org/10.1002/joc.3403
https://dx.doi.org/10.1007/s00382-015-2578-1
https://dx.doi.org/10.1007/s00382-021-05657-4
https://dx.doi.org/10.1175/jhm-d-14-0082.1
https://dx.doi.org/10.1175/jhm-d-14-0236.1
https://dx.doi.org/10.5194/gmd-11-1321-2018
https://dx.doi.org/10.1002/joc.5666
https://dx.doi.org/10.1191/0959683604hl729rp
https://dx.doi.org/10.1073/pnas.1018527108
https://dx.doi.org/10.1142/p1005
https://dx.doi.org/10.1016/b978-0-12-416042-2.00008-2
https://dx.doi.org/10.1016/b978-0-12-416042-2.00008-2
https://dx.doi.org/10.1007/s00382-017-3723-9
https://dx.doi.org/10.1002/wat2.1150
https://dx.doi.org/10.1002/grl.50491
https://dx.doi.org/10.1016/j.rse.2015.12.004
https://dx.doi.org/10.1175/bams-d-15-00194.1
https://dx.doi.org/10.1175/jcli-d-15-0556.1
https://dx.doi.org/10.1002/2014gl060811

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

impacts on downstream precipitation. Quarterly Journal of the Royal Meteorological Society, qj.3588,
doi:10.1002/qj.3588.

Porter, J.J. and S. Dessai, 2017: Mini-me: Why do climate scientists’ misunderstand users and their needs?
Environmental Science & Policy, 77, 9—14, doi:10.1016/j.envsci.2017.07.004.

Power, S.B. and F.P.D. Delage, 2018: El Nifio—Southern Oscillation and Associated Climatic Conditions around the
World during the Latter Half of the Twenty-First Century. Journal of Climate, 31(15), 6189-6207,
doi:10.1175/jcli-d-18-0138.1.

Praetorius, S., M. Rugenstein, G. Persad, and K. Caldeira, 2018: Global and Arctic climate sensitivity enhanced by
changes in North Pacific heat flux. Nature Communications, 9(1), 3124, doi:10.1038/s41467-018-05337-8.

Prakash, S. et al., 2015: Seasonal intercomparison of observational rainfall datasets over India during the southwest
monsoon season. International Journal of Climatology, 35(9), 23262338, doi:10.1002/joc.4129.

Prasanna, V., 2016: Assessment of South Asian Summer Monsoon Simulation in CMIP5-Coupled Climate Models
During the Historical Period (1850--2005). Pure and Applied Geophysics, 173(4), 1379-1402,
doi:10.1007/s00024-015-1126-6.

Prein, A.F. and A. Gobiet, 2017: Impacts of uncertainties in European gridded precipitation-observations on regional
climate analysis. International Journal of Climatology, 37(1), 305-327, doi: 10-1002/joc.4706.

Prein, A.F., G.J. Holland, R.M. Rasmussen, M.P. Clark, and M.R. Tye, 2016a: Running dry: The U.S. Southwest’s drift
into a drier climate state. Geophysical Research Letters, 43(3), 1272—1279, doi:10.1002/2015g1066727.

Prein, A.F., M.S. Bukovsky, L.O. Mearns, C.L. Bruyére, and J.M. Done, 2019:-Simulating North American Weather
Types With Regional Climate Models. Frontiers in Environmental Science, 7, 36,
doi:10.3389/fenvs.2019.00036.

Prein, A.F. et al., 2013a: Added value of convection permitting seasonal simulations. Climiate Dynamics, 41(9-10),
2655-2677, doi:10.1007/s00382-013-1744-6.

Prein, A.F. et al., 2013b: Importance of Regional Climate Model Grid Spacing for the Simulation of Heavy
Precipitation in the Colorado Headwaters. Journal of Climate,26(13), 4848-4857, doi:10.1175/jcli-d-12-
00727.1.

Prein, A.F. et al., 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and
challenges. Reviews of Geophysics, 53(2), 323=361, doi:10.1002/2014rg000475.

Prein, A.F. et al., 2016b: Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high
benefits? Climate Dynamics, 46(1-2);383—412,doi:10.1007/s00382-015-2589-y.

Prein, A.F. et al., 2017: Increased rainfall volume'from future convective storms in the US. Nature Climate Change,
7(12), 880-884, doi:10.1038/s41558-017-0007-7.

Prodhomme, C. et al., 2016: Benefits of increasing the model resolution for the seasonal forecast quality in EC-earth.
Journal of Climate, 29(24), doi:10.1175/jcli-d=16-0117.1.

Prospero, J.M., P. Ginoux, O. Torres, S.E. Nicholson, and T.E. Gill, 2002: Environmental characterization of global
sources of atmospheric soil dust identified with the' Nimbus 7 Total Ozone Mapping Spectrometer (TOMS)
absorbing aerosol product. Reviews of Geophysics, 40(1), 2-31, doi:10.1029/2000rg000095.

Prudhomme, C., R.L. Wilby, S. Crooks, A.L. Kay, and N.S. Reynard, 2010: Scenario-neutral approach to climate
change impact studies: Application to flood risk. Journal of Hydrology, 390(3—4), 198-209,
doi:10.1016/1.jhydrel.2010.06.043.

Pryor, S.C. and A.N. Hahmann, 2019: Downscaling Wind. In: Oxford Research Encyclopedia of Climate Science.
Oxford University Press, Oxford, UK, doi:10.1093/acrefore/9780190228620.013.730.

Pu, B. and P. Ginoux, 2018: How reliable are CMIP5 models in simulating dust optical depth? Atmospheric Chemistry
and Physics, 18(16),:12491-12510, doi:10.5194/acp-18-12491-2018.

Purich, A., T. Cowan, S.-K.'Min; and W. Cai, 2013: Autumn Precipitation Trends over Southern Hemisphere
Midlatitudes-as Simulated by CMIP5 Models. Journal of Climate, 26(21), 8341-8356, doi:10.1175/jcli-d-13-
00007.1.

Qasmi, S., E. Sanchez-Gomez, Y. Ruprich-Robert, J. Bo¢, and C. Cassou, 2021: Modulation of the Occurrence of
Heatwaves over the Euro-Mediterranean Region by the Intensity of the Atlantic Multidecadal Variability.
Journal of Climate, 34(3), 10991114, doi: 10.1175/jcli-d-19-0982.1.

Qian, C., 2016; Disentangling the urbanization effect, multi-decadal variability, and secular trend in temperature in
eastern China during 1909-2010. Atmospheric Science Letters, 17(2), 177-182, doi:10.1002/asl.640.

Qian, C. and T. Zhou, 2014: Multidecadal variability of North China aridity and its relationship to PDO during 1900-
2010. Journal of Climate, 27(3), 1210-1222, doi:10.1175/jcli-d-13-00235.1.

Qiao, L. et al.,, 2014: Climate Change and Hydrological Response in the Trans-State Oologah Lake Watershed—
Evaluating Dynamically Downscaled NARCCAP and Statistically Downscaled CMIP3 Simulations with VIC
Model. Water Resources Management, 28(10), 3291-3305, doi:10.1007/s11269-014-0678-z.

Qin, J., K. Yang, S. Liang, and X. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan
Plateau. Climatic Change, 97(1), 321, doi:10.1007/s10584-009-9733-9.

Quesada, B., R. Vautard, P. Yiou, M. Hirschi, and S.I. Seneviratne, 2012: Asymmetric European summer heat
predictability from wet and dry southern winters and springs. Nature Climate Change, 2(10), 736-741,

Do Not Cite, Quote or Distribute 10-175 Total pages: 228


https://dx.doi.org/10.1002/qj.3588
https://dx.doi.org/10.1016/j.envsci.2017.07.004
https://dx.doi.org/10.1175/jcli-d-18-0138.1
https://dx.doi.org/10.1038/s41467-018-05337-8
https://dx.doi.org/10.1002/joc.4129
https://dx.doi.org/10.1007/s00024-015-1126-6
https://dx.doi.org/10.1002/joc.4706
https://dx.doi.org/10.1002/2015gl066727
https://dx.doi.org/10.3389/fenvs.2019.00036
https://dx.doi.org/10.1007/s00382-013-1744-6
https://dx.doi.org/10.1175/jcli-d-12-00727.1
https://dx.doi.org/10.1175/jcli-d-12-00727.1
https://dx.doi.org/10.1002/2014rg000475
https://dx.doi.org/10.1007/s00382-015-2589-y
https://dx.doi.org/10.1038/s41558-017-0007-7
https://dx.doi.org/10.1175/jcli-d-16-0117.1
https://dx.doi.org/10.1029/2000rg000095
https://dx.doi.org/10.1016/j.jhydrol.2010.06.043
https://dx.doi.org/10.1093/acrefore/9780190228620.013.730
https://dx.doi.org/10.5194/acp-18-12491-2018
https://dx.doi.org/10.1175/jcli-d-13-00007.1
https://dx.doi.org/10.1175/jcli-d-13-00007.1
https://dx.doi.org/10.1175/jcli-d-19-0982.1
https://dx.doi.org/10.1002/asl.640
https://dx.doi.org/10.1175/jcli-d-13-00235.1
https://dx.doi.org/10.1007/s11269-014-0678-z
https://dx.doi.org/10.1007/s10584-009-9733-9

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

doi:10.1038/nclimate1536.

Rackow, T. et al., 2018: Towards multi-resolution global climate modeling with ECHAMG6-FESOM. Part II: climate
variability. Climate Dynamics, 50(7), 2369-2394, doi:10.1007/s00382-016-3192-6.

Rajbhandari, R., A.B. Shrestha, A. Kulkarni, S.K. Patwardhan, and S.R. Bajracharya, 2015: Projected changes in
climate over the Indus river basin using a high resolution regional climate model (PRECIS). Climate
Dynamics, 44(1-2), 339-357, doi:10.1007/s00382-014-2183-8.

Rajczak, J. and C. Schir, 2017: Projections of Future Precipitation Extremes Over Europe: A Multimodel Assessment
of Climate Simulations. Journal of Geophysical Research: Atmospheres, 122(20), 10,773-10,800,
doi:10.1002/2017jd027176.

Rajeevan, M. and J. Bhate, 2009: A High Resolution Daily Gridded rainfall dataset (1971-2005) for Mesoscale
Meteorological Studies. Current Science, 96(4), 558—562.

Rajeevan, M., J. Bhate, J.D. Kale, and B. Lal, 2006: High resolution daily gridded rainfall data for the Indian region:
Analysis of break and active monsoon spells. Current Science, doi:10.1007/s12040-007-0019-1.

Ramarao, M.V.S., R. Krishnan, J. Sanjay, and T.P. Sabin, 2015: Understanding land surface response to changing
South Asian monsoon in a warming climate. Earth System Dynamics, 6(2), 569—582;.doi:10.5194/esd-6-569-
2015.

Ramos, A.M. et al., 2019: From Amazonia to southern Africa: atmospheric moisture/transport through low-level jets
and atmospheric rivers. Annals of the New York Academy of Sciences, 1436(1), 217-230,
doi:10.1111/nyas.13960.

Rasmijn, L.M. et al., 2018: Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture
constraints. Nature Climate Change, 8(5), 381-385, doi:10.1038/s41558-018-0114-0.

Rasmussen, R. et al., 2012: How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test
Bed. Bulletin of the American Meteorological Society, 93(6), 811-829, doi:10:1175/bams-d-11-00052.1.

Rity, O., J. Réisénen, and J.S. Ylhéisi, 2014: Evaluation of delta’change and bias correction methods for future daily
precipitation: intermodel cross-validation using ENSEMBLES simulations. Climaté Dynamics, 42(9-10),
2287-2303, doi:10.1007/s00382-014-2130-8.

Raymond, F., A. Ullmann, Y. Tramblay, P. Drobinski, and P. Camberlin, 2019: Evolution of Mediterranean extreme
dry spells during the wet season under climate'change. Regional Environmental Change, 19(8), 2339-2351,
doi:10.1007/s10113-019-01526-3.

Re, M. and V.R. Barros, 2009: Extreme rainfalls in SE South America. Climatic Change, 96(1-2), 119—136,
doi:10.1007/s10584-009-9619-x.

Reason, C.J.C. and D. Jagadheesha, 2005: Relationships between South. Atlantic SST Variability and Atmospheric
Circulation over the South Afiican Region during Austral Winter. Journal of Climate, 18(16), 3339—3355,
doi:10.1175/jcli3474.1.

Reason, C.J.C. and M. Rouault, 2005:Links between the Antarctic Oscillation and winter rainfall over western South
Africa. Geophysical Research:.Letters, 32(7), L07705, doi:10.1029/2005¢1022419.

Reboita, M.S., R.P. da Rocha, M.R. de Souza,and M. Llopart, 2018: Extratropical cyclones over the southwestern
South Atlantic/Ocean: HadGEM2-ES and RegCM4 projections. International Journal of Climatology, 38(6),
2866-2879, doi:10.1002/joc.5468.

Redon, E.C., A. Lemonsu, V. Masson, B. Merille, and M. Musy, 2017: Implementation of street trees within the solar
radiative exchange parameterization of TEB in SURFEX v8.0. Geoscientific Model Development, 10(1), 385—
4115doi: 10:5494/gmd-10-385-2017.

Reichstein, M. et al;2019: Deep learning and process understanding for data-driven Earth system science. Nature,
566(7743), 195-204,,d01:10:1038/s41586-019-0912-1.

Ren, Y., L. Song, Y. Xiao, and L. Du, 2019: Underestimated interannual variability of East Asian summer rainfall
under climate.change. Theoretical and Applied Climatology, 135, 911-920, doi:10.1007/s00704-018-2398-4.

Ren, Y.-Y. et al., 2017: Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan
region over the last 100-plus years. Advances in Climate Change Research, 8(3), 148—156,
doial0.1016/j.accre.2017.08.001.

Rennie, JJwetal., 2014: The international surface temperature initiative global land surface databank: monthly
temperature data release description and methods. Geoscience Data Journal, 1(2), 75-102, doi:10.1002/gdj3.8.

Reszler, C., M.B. Switanek, and H. Truhetz, 2018: Convection-permitting regional climate simulations for representing
floods in small- and medium-sized catchments in the Eastern Alps. Natural Hazards and Earth System
Sciences, 18(10), 2653-2674, doi:10.5194/nhess-18-2653-2018.

Rhoades, A.M., A.D. Jones, and P.A. Ullrich, 2018: Assessing Mountains as Natural Reservoirs With a Multimetric
Framework. Earth’s Future, 6(9), 1221-1241, doi:10.1002/2017ef000789.

Ribes, A. and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part II: application to
global near-surface temperature. Climate Dynamics, 41(11-12), 28372853, doi:10.1007/s00382-013-1736-6.

Ribes, A. et al., 2019: Observed increase in extreme daily rainfall in the French Mediterranean. Climate Dynamics,
52(1-2), 1095-1114, doi:10.1007/s00382-018-4179-2.

Riboldi, J., F. Lott, F. D’Andrea, and G. Riviére, 2020: On the Linkage Between Rossby Wave Phase Speed,

Do Not Cite, Quote or Distribute 10-176 Total pages: 228


https://dx.doi.org/10.1038/nclimate1536
https://dx.doi.org/10.1007/s00382-016-3192-6
https://dx.doi.org/10.1007/s00382-014-2183-8
https://dx.doi.org/10.1002/2017jd027176
https://dx.doi.org/10.1007/s12040-007-0019-1
https://dx.doi.org/10.5194/esd-6-569-2015
https://dx.doi.org/10.5194/esd-6-569-2015
https://dx.doi.org/10.1111/nyas.13960
https://dx.doi.org/10.1038/s41558-018-0114-0
https://dx.doi.org/10.1175/bams-d-11-00052.1
https://dx.doi.org/10.1007/s00382-014-2130-8
https://dx.doi.org/10.1007/s10113-019-01526-3
https://dx.doi.org/10.1007/s10584-009-9619-x
https://dx.doi.org/10.1175/jcli3474.1
https://dx.doi.org/10.1029/2005gl022419
https://dx.doi.org/10.1002/joc.5468
https://dx.doi.org/10.5194/gmd-10-385-2017
https://dx.doi.org/10.1038/s41586-019-0912-1
https://dx.doi.org/10.1007/s00704-018-2398-4
https://dx.doi.org/10.1016/j.accre.2017.08.001
https://dx.doi.org/10.1002/gdj3.8
https://dx.doi.org/10.5194/nhess-18-2653-2018
https://dx.doi.org/10.1002/2017ef000789
https://dx.doi.org/10.1007/s00382-013-1736-6
https://dx.doi.org/10.1007/s00382-018-4179-2

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Atmospheric Blocking, and Arctic Amplification. Geophysical Research Letters, 47(19),
doi:10.1029/2020g1087796.

Rice, J.L., C.A. Woodhouse, and J.J. Lukas, 2009: Science and Decision Making: Water Management and Tree-Ring
Data in the Western United States. JAWRA Journal of the American Water Resources Association, 45(5),
1248-1259, doi:10.1111/1.1752-1688.2009.00358.x.

Ridley, D.A., C.L. Heald, and J.M. Prospero, 2014: What controls the recent changes in African mineral dust aerosol
across the Atlantic? Atmospheric Chemistry and Physics, 14(11), 5735-5747, doi:10.5194/acp-14-5735-2014.

Rienecker, M.M. et al., 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications.
Journal of Climate, 24(14), 3624-3648, doi:10.1175/jcli-d-11-00015.1.

Robaa, S.M., 2013: Some aspects of the urban climates of Greater Cairo Region, Egypt. International Journal of
Climatology, 33(15), 3206-3216, doi:10.1002/joc.3661.

Roberts, M.J. et al., 2018: The Benefits of Global High Resolution for Climate Simulation: Process Understanding and
the Enabling of Stakeholder Decisions at the Regional Scale. Bulletin of the American Meteorological Society,
99(11), 2341-2359, doi:10.1175/bams-d-15-00320.1.

Robeson, S.M., 2015: Revisiting the recent California drought as an extreme value. Geophysical Research Letters,
42(16), 6771-6779, doi:10.1002/2015g1064593.

Robin, Y., M. Vrac, P. Naveau, and P. Yiou, 2019: Multivariate stochastic bias corrections with optimal:transport.
Hydrology and Earth System Sciences, 23(2), 773-786, doi:10.5194/hess-23-773-2019.

Robins, S.,2019: ‘Day Zero’, Hydraulic Citizenship and the Defence of the Commons in Cape Town: A Case Study of
the Politics of Water and its Infrastructures (2017-2018). Journal of Southern African Studies, 1-25,
doi:10.1080/03057070.2019.1552424.

Robledo, F., C. Vera, and O. Penalba, 2020: Multi-scale features of the co-variability between global sea surface
temperature anomalies and daily extreme rainfall in Argentina. International Journal of Climatology, 40(9),
4289-4299, doi:10.1002/joc.6462.

Robledo, F.A., C. Vera, and O.C. Penalba, 2016: Influence of the large-scale climate variability on daily rainfall
extremes over Argentina. International Journal of Climatology, 36(1), 412423, doi:10.1002/joc.4359.

Robson, J., P. Ortega, and R. Sutton, 2016: A reversal of climatic trends in the North Atlantic since 2005. Nature
Geoscience, 9(7), 513-517, doi:10.1038/nge62727.

Rodriguez-Fonseca, B. et al., 2015: Variability and Predictability of West African Droughts: A Review on the Role of
Sea Surface Temperature Anomalies. Journal of Climate, 28(10);4034-4060, doi:10.1175/jcli-d-14-00130.1.

Rodwell, M.J. and B.J. Hoskins, 1996: Monsoons and.the dynamics of deserts. Quarterly Journal of the Royal
Meteorological Society, 122(534), 1385-1404, doi: 10.1002/qj.49712253408.

Roehrig, R., D. Bouniol, F. Guichard, F. Hourdin, and J.-L. Redelsperger, 2013: The Present and Future of the West
African Monsoon: A Process-Oriented Assessment of CMIPS Simulations along the AMMA Transect. Journal
of Climate, 26(17), 6471-6505, doi:10.1175/jcli-d-12-00505.1.

Rohrer, M. et al., 2018: Representation of Extratropical Cyclones, Blocking Anticyclones, and Alpine Circulation
Types in Multiple Reanalyses and Model Simulations. Journal of Climate, 31(8), 3009-3031, doi:10.1175/jcli-
d-17-0350.1.

Rojas, R., L. Feyen, A. Dosio, and D. Bavera, 2011: Improving pan-European hydrological simulation of extreme
events through statistical bias correction of RCM-driven climate simulations. Hydrology and Earth System
Sciences, 15(8), 2599-2620, doi:10.5194/hess-15-2599-2011.

Ropelewski,(C.F. and:M.S. Halpert, 1987; Global and Regional Scale Precipitation Patterns Associated with the El
Nino/Southern Oscillation. Monthly Weather Review, 115(8), 1606—1626, doi:10.1175/1520-
0493(1987)115<1606:garspp>2.0.co;2.

Rosenzweig, C. and P. Neofotis, 2013: Detection and attribution of anthropogenic climate change impacts. Wiley
Interdisciplinary Reviews: Climate Change, 4(2), 121-150, doi:10.1002/wcc.209.

Rossler, O. et al., 2019a: Challenges to link climate change data provision and user needs: Perspective from the COST-
action VALUE. dnternational Journal of Climatology, 39(9), 3704-3716, doi:10.1002/joc.5060.

Rossler, O. et al., 2019b: Evaluating the added value of the new Swiss climate scenarios for hydrology: An example
from the Thur catchment. Climate Services, 13, 1-13, doi:10.1016/j.cliser.2019.01.001.

Rostkier-Edelstein, D. et al., 2014: Towards a high-resolution climatography of seasonal precipitation over Israel.
International Journal of Climatology, 34(6), 1964—1979, doi:10.1002/joc.3814.

Rotstayn, L.D., M.A. Collier, D.T. Shindell, and O. Boucher, 2015: Why Does Aerosol Forcing Control Historical
Global-Mean Surface Temperature Change in CMIP5 Models? Journal of Climate, 28(17), 6608—6625,
doi:10.1175/jcli-d-14-00712.1.

Rouault, M., B. Pohl, and P. Penven, 2010: Coastal oceanic climate change and variability from 1982 to 2009 around
South Africa. African Journal of Marine Science, 32(2), 237-246, doi:10.2989/1814232x.2010.501563.

Rowell, D.P. and R.G. Jones, 2006: Causes and uncertainty of future summer drying over Europe. Climate Dynamics,
27(2-3), 281-299, doi:10.1007/s00382-006-0125-9.

Roxy, M.K. et al., 2015: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea
thermal gradient. Nature Communications, 6(1), 7423, doi:10.1038/ncomms8423.

Do Not Cite, Quote or Distribute 10-177 Total pages: 228


https://dx.doi.org/10.1029/2020gl087796
https://dx.doi.org/10.1111/j.1752-1688.2009.00358.x
https://dx.doi.org/10.5194/acp-14-5735-2014
https://dx.doi.org/10.1175/jcli-d-11-00015.1
https://dx.doi.org/10.1002/joc.3661
https://dx.doi.org/10.1175/bams-d-15-00320.1
https://dx.doi.org/10.1002/2015gl064593
https://dx.doi.org/10.5194/hess-23-773-2019
https://dx.doi.org/10.1080/03057070.2019.1552424
https://dx.doi.org/10.1002/joc.6462
https://dx.doi.org/10.1002/joc.4359
https://dx.doi.org/10.1038/ngeo2727
https://dx.doi.org/10.1175/jcli-d-14-00130.1
https://dx.doi.org/10.1002/qj.49712253408
https://dx.doi.org/10.1175/jcli-d-12-00505.1
https://dx.doi.org/10.1175/jcli-d-17-0350.1
https://dx.doi.org/10.1175/jcli-d-17-0350.1
https://dx.doi.org/10.5194/hess-15-2599-2011
https://dx.doi.org/10.1175/1520-0493(1987)115%3c1606:garspp%3e2.0.co;2
https://dx.doi.org/10.1175/1520-0493(1987)115%3c1606:garspp%3e2.0.co;2
https://dx.doi.org/10.1002/wcc.209
https://dx.doi.org/10.1002/joc.5060
https://dx.doi.org/10.1016/j.cliser.2019.01.001
https://dx.doi.org/10.1002/joc.3814
https://dx.doi.org/10.1175/jcli-d-14-00712.1
https://dx.doi.org/10.2989/1814232x.2010.501563
https://dx.doi.org/10.1007/s00382-006-0125-9
https://dx.doi.org/10.1038/ncomms8423

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Ruckstuhl, C. et al., 2008: Aerosol and cloud effects on solar brightening and the recent rapid warming. Geophysical
Research Letters, 35(12), 112708, doi:10.1029/2008g1034228.

Ruiz-Ramos, M. et al., 2016: Comparing correction methods of RCM outputs for improving crop impact projections in
the Iberian Peninsula for 21st century. Climatic Change, 134(1-2), 283297, doi:10.1007/s10584-015-1518-8.

Rummukainen, M., 2016: Added value in regional climate modeling. Wiley Interdisciplinary Reviews: Climate Change,
7(1), 145-159, doi:10.1002/wcc.378.

Ruprich-Robert, Y. et al., 2017: Assessing the Climate Impacts of the Observed Atlantic Multidecadal Variability Using
the GFDL CM2.1 and NCAR CESM1 Global Coupled Models. Journal of Climate, 30(8), 2785-2810,
doi:10.1175/jcli-d-16-0127.1.

Ruprich-Robert, Y. et al., 2018: Impacts of the Atlantic Multidecadal Variability on North American Summer Climate
and Heat Waves. Journal of Climate, 31(9), 3679-3700, doi:10.1175/jcli-d-17-0270.1.

Russo, A., C.M. Gouveia, E. Dutra, P.M.M. Soares, and R.M. Trigo, 2019: The synergy between drought and extremely
hot summers in the Mediterranean. Environmental Research Letters, 14(1), 014011, doi:10.1088/1748-
9326/aat09%e.

Russo, S., J. Sillmann, and E.M. Fischer, 2015: Top ten European heatwaves since 1950 and-their occurrence in the
coming decades. Environmental Research Letters, 10(12), 124003, doi:10.1088/1748-9326/10/12/124003

Ruti, P.M. et al., 2016: Med-CORDEX Initiative for Mediterranean Climate Studies. Bulletin of the American
Meteorological Society, 97(7), 1187-1208, doi:10.1175/bams-d-14-00176.1.

Sabeerali, C.T. and R.S. Ajayamohan, 2018: On the shortening of Indian summer monsoon season:in a warming
scenario. Climate Dynamics, 50(5-6), 1609—1624, doi:10.1007/s00382-017-3709-7.

Sabin, T.P. et al., 2013: High resolution simulation of the South Asian monsoon using a variable resolution global
climate model. Climate Dynamics, 41(1), 173-194, doi:10.1007/s00382-012-1658-8.

Sabin, T.P. et al., 2020: Climate Change Over the Himalayas. In: Assessment of Climate Change over the Indian Region
[Krishnan, R., J. Sanjay, C. Gnanaseelan, M. Mujumdar, A.Kulkarni, and S. Chakraborty (eds.)]. Springer,
Singapore, pp. 207-222, d0i:10.1007/978-981-15-4327-2 11.

Sachindra, D.A., A.W.M. Ng, S. Muthukumaran, and B.J.C. Perera, 2016: Impact of climate change on urban heat
island effect and extreme temperatures: a case-study. Quarterly Journal of the Royal Meteorological Society,
142(694), 172186, doi:10.1002/qj.2642.

Saeed, F., S. Hagemann, S. Saeed, and D. Jacob, 2013: Influence of mid-latitude circulation on upper Indus basin
precipitation: the explicit role of irrigation. Climate Dynamics, 40(1=2), 21-38, doi:10.1007/s00382-012-1480-
3.

Saffioti, C., E.M. Fischer, S.C. Scherrer, and R. Knutti, 2016: Reconciling observed and modeled temperature and
precipitation trends over Europe by:adjusting for circulation variability. Geophysical Research Letters, 43(15),
81898198, doi:10.1002/201621069802.

Saggioro, E. and T.G. Shepherd,; 2019: Quantifying the Timescale and Strength of Southern Hemisphere Intraseasonal
Stratosphere-troposphere Coupling. Geophysical Research Letters, 46(22), 1347913487,
doi:10.1029/201921084763.

Sailor, D.J., 2011: A review of methods for, estimating anthropogenic heat and moisture emissions in the urban
environment. International Journal of Climatology, 31(2), 189-199, doi:10.1002/joc.2106.

Sakai, A. et al., 2015: Climate regime of Asian glaciers revealed by GAMDAM glacier inventory. The Cryosphere,
9(3), 865-880, doi:10.5194/tc-9-865-2015.

Salamanca, F;;;M. Georgescu, A. Mahaloy, M. Moustaoui, and M. Wang, 2014: Anthropogenic heating of the urban
environment due to air conditioning. Journal of Geophysical Research: Atmospheres, 119(10), 5949-5965,
doi:10.1002/2013jd024225.

Salazar, E. et al., 2016: Observation-based blended projections from ensembles of regional climate models. Climatic
Change, 138(1-2), 55-69, doi:10.1007/s10584-016-1722-1.

Salvi, K., S. Kannan, and'S. Ghosh, 2013: High-resolution multisite daily rainfall projections in India with statistical
downscaling forclimate change impacts assessment. Journal of Geophysical Research Atmospheres, 118(9),
3557-3578, doi:10.1002/jgrd.502802013.

Salzmanny;M., H. Weser, and R. Cherian, 2014: Robust response of Asian summer monsoon to anthropogenic aerosols
in.CMIP5 models. Journal of Geophysical Research: Atmospheres, 119(19), 11,321-11,337,
doi: 10.1002/2014jd021783.

Samanta, D. et al., 2018: Impact of a Narrow Coastal Bay of Bengal Sea Surface Temperature Front on an Indian
Summer Monsoon Simulation. Scientific Reports, 8(1), 17694, doi:10.1038/s41598-018-35735-3.

Samset, B.H., M.T. Lund, M. Bollasina, G. Myhre, and L. Wilcox, 2019: Emerging Asian aerosol patterns. Nature
Geoscience, 12(8), 582-584, doi:10.1038/s41561-019-0424-5.

Samset, B.H. et al., 2018: Climate Impacts From a Removal of Anthropogenic Aerosol Emissions. Geophysical
Research Letters, 45(2), 1020—1029, doi:10.1002/2017g1076079.

Samson, G. et al., 2014: The NOW regional coupled model: Application to the tropical Indian Ocean climate and
tropical cyclone activity. Journal of Advances in Modeling Earth Systems, 6(3), 700722,
doi:10.1002/2014ms000324.

Do Not Cite, Quote or Distribute 10-178 Total pages: 228


https://dx.doi.org/10.1029/2008gl034228
https://dx.doi.org/10.1007/s10584-015-1518-8
https://dx.doi.org/10.1002/wcc.378
https://dx.doi.org/10.1175/jcli-d-16-0127.1
https://dx.doi.org/10.1175/jcli-d-17-0270.1
https://dx.doi.org/10.1088/1748-9326/aaf09e
https://dx.doi.org/10.1088/1748-9326/aaf09e
https://dx.doi.org/10.1088/1748-9326/10/12/124003
https://dx.doi.org/10.1175/bams-d-14-00176.1
https://dx.doi.org/10.1007/s00382-017-3709-7
https://dx.doi.org/10.1007/s00382-012-1658-8
https://dx.doi.org/10.1007/978-981-15-4327-2_11
https://dx.doi.org/10.1002/qj.2642
https://dx.doi.org/10.1007/s00382-012-1480-3
https://dx.doi.org/10.1007/s00382-012-1480-3
https://dx.doi.org/10.1002/2016gl069802
https://dx.doi.org/10.1029/2019gl084763
https://dx.doi.org/10.1002/joc.2106
https://dx.doi.org/10.5194/tc-9-865-2015
https://dx.doi.org/10.1002/2013jd021225
https://dx.doi.org/10.1007/s10584-016-1722-1
https://dx.doi.org/10.1002/jgrd.502802013
https://dx.doi.org/10.1002/2014jd021783
https://dx.doi.org/10.1038/s41598-018-35735-3
https://dx.doi.org/10.1038/s41561-019-0424-5
https://dx.doi.org/10.1002/2017gl076079
https://dx.doi.org/10.1002/2014ms000324

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Samuelsson, P., E. Kourzeneva, and D. Mironov, 2010: The impact of lakes on the European climate as simulated by a
regional climate model. Boreal environment research, 15, 113—129.

Sanchez-Gomez, E. and S. Somot, 2018: Impact of the internal variability on the cyclone tracks simulated by a regional
climate model over the Med-CORDEX domain. Climate Dynamics, 51(3), 1005-1021, doi:10.1007/s00382-
016-3394-y.

Sandeep, S. and R.S. Ajayamohan, 2015: Poleward shift in Indian summer monsoon low level jetstream under global
warming. Climate Dynamics, 45(1-2), 337-351, doi:10.1007/s00382-014-2261-y.

Sandeep, S., R.S. Ajayamohan, W.R. Boos, T.P. Sabin, and V. Praveen, 2018: Decline and poleward shift in Indian
summer monsoon synoptic activity in a warming climate. Proceedings of the National Academy of Sciences,
115(11), 26812686, doi:10.1073/pnas.1709031115.

Sanderson, B.M., R. Knutti, and P. Caldwell, 2015: Addressing Interdependency in a Multimodel Ensemble by
Interpolation of Model Properties. Journal of Climate, 28(13), 5150-5170, doi:10.1175/jcli-d-14-00361.1.

Sanderson, M., K. Arbuthnott, S. Kovats, S. Hajat, and P. Falloon, 2017: The use of climate information to estimate
future mortality from high ambient temperature: A systematic literature review. PLOS'ONE, 12(7), 0180369,
doi:10.1371/journal.pone.0180369.

Sanjay, J., R. Krishnan, A.B. Shrestha, R. Rajbhandari, and G.-Y. Ren, 2017: Downscaled climate change projections
for the Hindu Kush Himalayan region using CORDEX South Asia regional/climate models. Advances'in
Climate Change Research, 8(3), 185—198, doi:10.1016/j.accre.2017.08.003.

San-Martin, D., R. Manzanas, S. Brands, S. Herrera, and J.M. Gutiérrez, 2017:Reassessing Model.Uncertainty for
Regional Projections of Precipitation with an Ensemble of Statistical Dewnscaling Methods..Journal of
Climate, 30(1), 203223, doi: 10.1175/jcli-d-16-0366.1.

Sanogo, S. et al., 2015: Spatio-temporal characteristics of the recent rainfall recovery in West Africa. International
Journal of Climatology, 35(15), 4589—4605, doi:10.1002/j6c.4309.

Santanello, J.A. et al., 2018: Land—Atmosphere Interactions: The LoCo Perspective. Bulletin of the American
Meteorological Society, 99(6), 1253—1272, doi:10.1175/bams-d-17-0001.1.

Santolaria-Otin, M., J. Garcia-Serrano, M. Ménégoz, and J.. Bech, 2021: On the observed connection between Arctic sea
ice and Eurasian snow in relation to the winter North Atlantic Oscillation. Environmental Research Letters,
15(12), 124010, doi:10.1088/1748-9326/abad57.

Sapiains, R. et al., 2020: Exploring the contours of climate governance: An.interdisciplinary systematic literature
review from a southern perspective. Environmental Policy and Governance, eet.1912, doi:10.1002/eet.1912.

Sarewitz, D., 2004: How science makes enyironmental controversies worse. Environmental Science and Policy, 7(5),
385-403, doi:10.1016/j.envsci.2004.06.001.

Sarojini, B.B., P.A. Stott, and E. Black, 2016: Detection and attribution of human influence on regional precipitation.
Nature Climate Change, 6(7), 669—675, doi:10:4038/nclimate2976.

Satoh, M. et al., 2019: Global Cloud-Resolving Models. Current Climate Change Reports, 5(3), 172—-184,
doi:10.1007/s40641-019-00131-0.

Sattari, M.T., A. Rezazadeh-Joudi, and A. Kusiak,2017: Assessment of different methods for estimation of missing
data in precipitation studies. Hydrology Research, 48(4), 1032—1044, doi:10.2166/nh.2016.364.

Saurral, R.I., I.A. Camilloni, and V.R. Batros, 2017: Low-frequency variability and trends in centennial precipitation
stations in southern'South America. International Journal of Climatology, 37(4), 1774-1793,
doi:10.1002/joc:4810.

Saurral, R.I.; F. Kucharski, and G.A. Raggio, 2019: Variations in ozone and greenhouse gases as drivers of Southern
Hemisphere climatein a medium-complexity global climate model. Climate Dynamics, doi:10.1007/s00382-
019-04950-7.

Savelli, E., M. Rusca, H. Cloke, and G. Di Baldassarre, 2021: Don’t blame the rain: Social power and the 2015-2017
drought in Cape Town. Journal of Hydrology, 594, 125953, doi:10.1016/j.jhydrol.2020.125953.

Sayles, J.S., 2018 Effects of social-ecological scale mismatches on estuary restoration at the project and landscape
level in Puget Sound, USA. Ecological Restoration, 36(1), 62—75, doi:10.3368/er.36.1.62c.

Scaife, A.A«and D. Smith, 2018: A signal-to-noise paradox in climate science. npj Climate and Atmospheric Science,
1(1), 28, dei:10.1038/s41612-018-0038-4.

Scannell, Csetal., 2019: The Influence of Remote Aerosol Forcing from Industrialized Economies on the Future
Evolution of East and West African Rainfall. Journal of Climate, 32(23), 8335-8354, doi:10.1175/jcli-d-18-
0716.1.

Schaaf, B. and F. Feser, 2018: Is there added value of convection-permitting regional climate model simulations for
storms over the German Bight and Northern Germany? Meteorology Hydrology and Water Management, 6(2),
21-37, doi:10.26491/mhwm/85507.

Schacter, D.L., D.R. Addis, and R.L. Buckner, 2007: Remembering the past to imagine the future: the prospective
brain. Nature Reviews Neuroscience, 8(9), 657-661, doi:10.1038/nrn2213.

Schaller, N., J. Cermak, M. Wild, and R. Knutti, 2013: The sensitivity of the modeled energy budget and hydrological
cycle to CO2 and solar forcing. Earth System Dynamics, 4(2), 253-266, doi:10.5194/esd-4-253-2013.

Schaller, N. et al., 2018: Influence of blocking on Northern European and Western Russian heatwaves in large climate

Do Not Cite, Quote or Distribute 10-179 Total pages: 228


https://dx.doi.org/10.1007/s00382-016-3394-y
https://dx.doi.org/10.1007/s00382-016-3394-y
https://dx.doi.org/10.1007/s00382-014-2261-y
https://dx.doi.org/10.1073/pnas.1709031115
https://dx.doi.org/10.1175/jcli-d-14-00361.1
https://dx.doi.org/10.1371/journal.pone.0180369
https://dx.doi.org/10.1016/j.accre.2017.08.003
https://dx.doi.org/10.1175/jcli-d-16-0366.1
https://dx.doi.org/10.1002/joc.4309
https://dx.doi.org/10.1175/bams-d-17-0001.1
https://dx.doi.org/10.1088/1748-9326/abad57
https://dx.doi.org/10.1002/eet.1912
https://dx.doi.org/10.1016/j.envsci.2004.06.001
https://dx.doi.org/10.1038/nclimate2976
https://dx.doi.org/10.1007/s40641-019-00131-0
https://dx.doi.org/10.2166/nh.2016.364
https://dx.doi.org/10.1002/joc.4810
https://dx.doi.org/10.1007/s00382-019-04950-7
https://dx.doi.org/10.1007/s00382-019-04950-7
https://dx.doi.org/10.1016/j.jhydrol.2020.125953
https://dx.doi.org/10.3368/er.36.1.62c
https://dx.doi.org/10.1038/s41612-018-0038-4
https://dx.doi.org/10.1175/jcli-d-18-0716.1
https://dx.doi.org/10.1175/jcli-d-18-0716.1
https://dx.doi.org/10.26491/mhwm/85507
https://dx.doi.org/10.1038/nrn2213
https://dx.doi.org/10.5194/esd-4-253-2013

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

model ensembles. Environmental Research Letters, 13(5), 054015, doi:10.1088/1748-9326/aaba55.

Schir, C., C. Frei, D. Liithi, and H.C. Davies, 1996: Surrogate climate-change scenarios for regional climate models.
Geophysical Research Letters, 23(6), 669—672, doi:10.1029/962100265.

Scheff, J., R. Seager, H. Liu, and S. Coats, 2017: Are Glacials Dry? Consequences for Paleoclimatology and for
Greenhouse Warming. Journal of Climate, 30(17), 6593—6609, doi:10.1175/jcli-d-16-0854.1.

Schemm, S., I. Rudeva, and I. Simmonds, 2015: Extratropical fronts in the lower troposphere-global perspectives
obtained from two automated methods. Quarterly Journal of the Royal Meteorological Society, 141(690),
1686-1698, doi:10.1002/qj.2471.

Schemm, S., L. Nisi, A. Martinov, D. Leuenberger, and O. Martius, 2016: On the link between cold fronts and hail in
Switzerland. Atmospheric Science Letters, 17(5), 315-325, doi:10.1002/as1.660.

Schiemann, R. et al., 2014: The sensitivity of the tropical circulation and Maritime Continent precipitation to climate
model resolution. Climate Dynamics, 42(9), 2455-2468, doi:10.1007/s00382-013-1997-0.

Schiemann, R. et al., 2020: Northern Hemisphere blocking simulation in current climate models: evaluating progress
from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution. Weather and
Climate Dynamics, 1(1), 277-292, doi:10.5194/wcd-1-277-2020.

Schliinzen, K.H., P. Hoffmann, G. Rosenhagen, and W. Riecke, 2010: Long-term changes and regional differences:in
temperature and precipitation in the metropolitan area of Hamburg. International Journal of Climatology,
30(8), 1121-1136, doi:10.1002/joc.1968.

Schmetz, J. et al., 2002: An Introduction to Meteosat Second Generation (MSG). Bulletin of the American
Meteorological Society, 83(7), 977-992, doi:10.1175/1520-0477(2002)083<0977:aitmsg>2.3.co:2.

Schneider, U. et al., 2017: Evaluating the Hydrological Cycle over Land Using the Newly-Corrected. Precipitation
Climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere, 8(12), 52,
doi:10.3390/atmos8030052.

Schoetter, R. et al., 2020: A Statistical-Dynamical Downscalingor the Urban Heat Island andBuilding Energy
Consumption — Analysis of Its Uncertainties. Journal of Applied Meteorology and Climatology, 59(5), 859—
883, doi:10.1175/jame-d-19-0182.1.

Schoof, J.T., 2013: Statistical Downscaling in Climatology. Geography Comipass, 7(4), 249-265,
doi:10.1111/gec3.12036.

Schubert, S., S. Grossman-Clarke, and A. Martilli; 2012: A Double-Canyon Radiation Scheme for Multi-Layer Urban
Canopy Models. Boundary-Layer Meteorology,doi:10.1007/s10546-012-9728-3.

Schurer, A.P. et al., 2019: Disentangling the causes of the 1816 European year without a summer. Environmental
Research Letters, 14(9), 94019,doi:10.1088/1748-9326/ab3al0.

Schwingshackl, C. et al., 2019: Regional climate model projections underestimate future warming due to missing plant
physiological CO 2 response. Environmental Research Letters, 14(11), 114019, doi: 10.1088/1748-
9326/ab4949.

Scott, D. et al., 2018: The Story of Water in Windhoek: A Narrative Approach to Interpreting a Transdisciplinary
Process. Water, 10(10); doi:10.3390/w10101366.

Screen, J.A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nature
Climate Change, 4(7), 577-5824doi:10.1038/nclimate2268.

Screen, J.A. and I/ Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather.
Geophysical Research Letters, 40(5), 959—964, doi:10.1002/grl.50174.

Screen, J.A. and R. Blackport, 2019: Is sea-ice-driven Eurasian cooling too weak in models? Nature Climate Change,
9(12), 934-936, doi:10.1038/s41558-019-0635-1.

Screen, J.A., C. Deser, I. Simmonds,and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979-2009:
separating forced changefrom atmospheric internal variability. Climate Dynamics, 43(1-2), 333-344,
doi:10.1007/s00382-013-1830-9.

Seager, R. and M.“Hoerling, 2014: Atmosphere and Ocean Origins of North American Droughts. Journal of Climate,
27(12), 4581-4606, doi:10.1175/jcli-d-13-00329.1.

Seager, R. and M. Ting, 2017: Decadal Drought Variability Over North America: Mechanisms and Predictability.
Current Climate Change Reports, 3(2), 141-149, doi:10.1007/s40641-017-0062-1.

Seager, R. etal., 2010: Tropical Oceanic Causes of Interannual to Multidecadal Precipitation Variability in Southeast
South America over the Past Century. Journal of Climate, 23(20), 5517-5539, doi:10.1175/2010jcli3578.1.

Seager, R. et al., 2019: Climate Variability and Change of Mediterranean-Type Climates. Journal of Climate, 32(10),
2887-2915, doi:10.1175/jcli-d-18-0472.1.

Seaman, N.L., F.L. Ludwig, E.G. Donall, T.T. Warner, and C.M. Bhumralkar, 1989: Numerical Studies of Urban
Planetary Boundary-Layer Structure under Realistic Synoptic Conditions. Journal of Applied Meteorology,
28(8), 760-781, doi:10.1175/1520-0450(1989)028<0760:nsoupb>2.0.co:2.

Sein, D. et al., 2015: Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1.
Description and validation. Journal of Advances in Modeling Earth Systems, 7(1), 268-304,
doi:10.1002/2014ms000357.

Seneviratne, S.I. and M. Hauser, 2020: Regional Climate Sensitivity of Climate Extremes in CMIP6 Versus CMIP5

Do Not Cite, Quote or Distribute 10-180 Total pages: 228


https://dx.doi.org/10.1088/1748-9326/aaba55
https://dx.doi.org/10.1029/96gl00265
https://dx.doi.org/10.1175/jcli-d-16-0854.1
https://dx.doi.org/10.1002/qj.2471
https://dx.doi.org/10.1002/asl.660
https://dx.doi.org/10.1007/s00382-013-1997-0
https://dx.doi.org/10.5194/wcd-1-277-2020
https://dx.doi.org/10.1002/joc.1968
https://dx.doi.org/10.1175/1520-0477(2002)083%3c0977:aitmsg%3e2.3.co;2
https://dx.doi.org/10.3390/atmos8030052
https://dx.doi.org/10.1175/jamc-d-19-0182.1
https://dx.doi.org/10.1111/gec3.12036
https://dx.doi.org/10.1007/s10546-012-9728-3
https://dx.doi.org/10.1088/1748-9326/ab3a10
https://dx.doi.org/10.1088/1748-9326/ab4949
https://dx.doi.org/10.1088/1748-9326/ab4949
https://dx.doi.org/10.3390/w10101366
https://dx.doi.org/10.1038/nclimate2268
https://dx.doi.org/10.1002/grl.50174
https://dx.doi.org/10.1038/s41558-019-0635-1
https://dx.doi.org/10.1007/s00382-013-1830-9
https://dx.doi.org/10.1175/jcli-d-13-00329.1
https://dx.doi.org/10.1007/s40641-017-0062-1
https://dx.doi.org/10.1175/2010jcli3578.1
https://dx.doi.org/10.1175/jcli-d-18-0472.1
https://dx.doi.org/10.1175/1520-0450(1989)028%3c0760:nsoupb%3e2.0.co;2
https://dx.doi.org/10.1002/2014ms000357

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Multimodel Ensembles. Earth’s Future, 8(9), €2019EF001474, doi:10.1029/2019¢f001474.

Seneviratne, S.I., D. Liithi, M. Litschi, and C. Schér, 2006: Land-atmosphere coupling and climate change in Europe.
Nature, 443(7108), 205-209, doi: 10.1038/mature05095.

Seneviratne, S.I. et al., 2010: Investigating soil moisture—climate interactions in a changing climate: A review. Earth-
Science Reviews, 99(3—4), 125-161, doi:10.1016/j.earscirev.2010.02.004.

Seneviratne, S.I. et al., 2013: Impact of soil moisture-climate feedbacks on CMIPS5 projections: First results from the
GLACE-CMIPS experiment. Geophysical Research Letters, 40(19), 5212-5217, doi:10.1002/grl.50956.

Seneviratne, S.I. et al., 2018: Land radiative management as contributor to regional-scale climate adaptation and
mitigation. Nature Geoscience, 11(2), 88-96, doi:10.1038/s41561-017-0057-5.

Sevault, F. et al., 2014: A fully coupled Mediterranean regional climate system model: design and evaluation of the
ocean component for the 1980-2012 period. Tellus A: Dynamic Meteorology and Oceanography, 66(1),
23967, doi:10.3402/tellusa.v66.23967.

Shaevitz, D.A. et al., 2014: Characteristics of tropical cyclones in high-resolution models in the present climate. Journal
of Advances in Modeling Earth Systems, 6(4), 1154—1172, doi:10.1002/2014ms000372.

Shalev, 1., 2015: The climate change problem: promoting motivation for change when themap.is not the territory.
Frontiers in Psychology, 6, doi:10.3389/fpsyg.2015.00131.

Sharma, A. et al., 2020: Urban-Scale Processes in High-Spatial-Resolution Earth System Models. Bulletin of the
American Meteorological Society, 101(9), E1555-E1561, doi:10.1175/bams-d-20-0114.1.

Sharma, D. and R.L. Miller, 2017: Revisiting the observed correlation between-weekly averaged Indian monsoon
precipitation and Arabian Sea aerosol optical depth. Geophysical Research Letters, 44(19), 6-10,10,16,
doi:10.1002/2017g1074373.

Sharma, E. et al., 2019: Introduction to the Hindu Kush Himalaya Assessment. In: The Hindu Kush Himalaya
Assessment: Mountains, Climate Change, Sustainability and People [Wester, P., A¢Mishra, A. Mukherji, and
A.B. Shrestha (eds.)]. Springer, Cham, Switzerland, pp: 1-16, doi:10.1007/978-3-319:92288-1 1.

Shaw, T.A. et al., 2016: Storm track processes and the opposing influences of climate change. Nature Geoscience, 9,
656, doi:10.1038/nge02783.

Shawki, D., A. Voulgarakis, A. Chakraborty, M. Kasoar, and J."Srinivasan, 2018: The‘South Asian Monsoon Response
to Remote Aerosols: Global and Regional Mechanisms. Journal of Geophysical Research: Atmospheres,
123(20), 11,585-11,601, doi:10.1029/2018jd028623.

Shea, J.M. et al., 2015: A comparative high-altitude meteorological analysis from three catchments in the Nepalese
Himalaya. International Journal of Water Resources Development, 31(2), 174-200,
doi:10.1080/07900627.2015.1020417.

Shean, D.E. et al., 2020: A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Frontiers
in Earth Science, 7, 363, d01:10.3389/feart.2019:00363.

Sheen, K.L. et al., 2017: Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales. Nature
Communications, 8,14966, doi:10.1038/ficomms14966.

Sheikh, M.M. et al., 2015: Trends in extreme daily.rainfall and temperature indices over South Asia. International
Journal of Climatology, 35, 1625-1637, doi:10.1002/joc.4081.

Shen, Y., Z. Hong, Y. Pan, J. Yu, and L..Maguire, 2018: China’s 1 km Merged Gauge, Radar and Satellite
Experimental Precipitation Dataset. Remote Sensing, 10(2), doi:10.3390/rs10020264.

Shepard, D., 1968: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968
23rd ACM National Conference. pp. 517-524, doi:10.1145/800186.810616.

Shepherd, T.G.,2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nature
Geoscience, 7, 703.

Shepherd, T.G., 2016a: A Common Framework for Approaches to Extreme Event Attribution. Current Climate Change
Reports, 2(1);28-38, doi:10.1007/s40641-016-0033-y.

Shepherd, T.G., 2016b: Effects of a warming Arctic. Science, 353(6303), 989-990, doi:10.1126/science.aag2349.

Shepherd, T.G., 2019: Storyline approach to the construction of regional climate change information. Proceedings of
theRoyal Society A: Mathematical, Physical and Engineering Sciences, 475(2225), 20190013,
doi:10:1098/rspa.2019.0013.

Shepherd, T:G: et al., 2018: Storylines: an alternative approach to representing uncertainty in physical aspects of
climate change. Climatic Change, 151(3—4), 555-571, doi:10.1007/s10584-018-2317-9.

Sherwood, S.C. et al., 2015: Adjustments in the Forcing-Feedback Framework for Understanding Climate Change.
Bulletin of the American Meteorological Society, 96(2), 217-228, doi:10.1175/bams-d-13-00167.1.

Shige, S., Y. Nakano, and M.K. Yamamoto, 2017: Role of Orography, Diurnal Cycle, and Intraseasonal Oscillation in
Summer Monsoon Rainfall over the Western Ghats and Myanmar Coast. Journal of Climate, 30(23), 9365—
9381, doi:10.1175/jcli-d-16-0858.1.

Shige, S., S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, 2013: Improvement of TMI Rain Retrievals in
Mountainous Areas. Journal of Applied Meteorology and Climatology, 52(1), 242254, doi:10.1175/jamc-d-
12-074.1.

Shige, S. et al., 2009: Spectral retrieval of latent heating profiles from TRMM PR data. Part IV: comparisons of lookup

Do Not Cite, Quote or Distribute 10-181 Total pages: 228


https://dx.doi.org/10.1029/2019ef001474
https://dx.doi.org/10.1038/nature05095
https://dx.doi.org/10.1016/j.earscirev.2010.02.004
https://dx.doi.org/10.1002/grl.50956
https://dx.doi.org/10.1038/s41561-017-0057-5
https://dx.doi.org/10.3402/tellusa.v66.23967
https://dx.doi.org/10.1002/2014ms000372
https://dx.doi.org/10.3389/fpsyg.2015.00131
https://dx.doi.org/10.1175/bams-d-20-0114.1
https://dx.doi.org/10.1002/2017gl074373
https://dx.doi.org/10.1007/978-3-319-92288-1_1
https://dx.doi.org/10.1038/ngeo2783
https://dx.doi.org/10.1029/2018jd028623
https://dx.doi.org/10.1080/07900627.2015.1020417
https://dx.doi.org/10.3389/feart.2019.00363
https://dx.doi.org/10.1038/ncomms14966
https://dx.doi.org/10.1002/joc.4081
https://dx.doi.org/10.3390/rs10020264
https://dx.doi.org/10.1145/800186.810616
https://dx.doi.org/10.1007/s40641-016-0033-y
https://dx.doi.org/10.1126/science.aag2349
https://dx.doi.org/10.1098/rspa.2019.0013
https://dx.doi.org/10.1007/s10584-018-2317-9
https://dx.doi.org/10.1175/bams-d-13-00167.1
https://dx.doi.org/10.1175/jcli-d-16-0858.1
https://dx.doi.org/10.1175/jamc-d-12-074.1
https://dx.doi.org/10.1175/jamc-d-12-074.1

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

tables from two-and three-dimensional cloud-resolving model simulations. Journal of Climate, 22, 5577-5594,
doi:10.1175/2009j¢cli2919.1.

Shindell, D. and G. Faluvegi, 2009: Climate response to regional radiative forcing during the twentieth century. Nature
Geoscience, 2(4), 294-300, doi:10.1038/ngeo473.

Shiogama, H., D.A. Stone, T. Nagashima, T. Nozawa, and S. Emori, 2013: On the linear additivity of climate forcing-
response relationships at global and continental scales. International Journal of Climatology, 33(11), 2542—
2550, doi:10.1002/joc.3607.

Shonk, J.K.P. et al., 2020: Uncertainty in aerosol radiative forcing impacts the simulated global monsoon in the 20th
century. Atmospheric Chemistry and Physics, 20(23), 14903-14915, doi:10.5194/acp-20-14903-2020.
Shrestha, A.B., N.K. Agrawal, B. Alfthan, S.R. Bajracharya, J. Maréchal, and B. van Oort (eds.), 2015: The Himalayan
Climate and Water Atlas: Impact of climate change on water resources in five of Asia’s major river basins.

ICIMOD,GRID-Arendal and CICERO, 1000 pp.

Shukla, S.P., M.J. Puma, and B.I. Cook, 2014: The response of the South Asian Summer Monsoon circulation to
intensified irrigation in global climate model simulations. Climate Dynamics, 42(1-2),.21-36,
doi:10.1007/s00382-013-1786-9.

Siew, P.Y.F., C. Li, S.P. Sobolowski, and M.P. King, 2020: Intermittency of Arctic—mid-latitude teleconnections:
stratospheric pathway between autumn sea ice and the winter North Atlanti¢ Oscillation. Weather and Climate
Dynamics, 1(1), 261-275, doi:10.5194/wcd-1-261-2020.

Sigl, M. et al., 2015: Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523(7562),
543-549, doi:10.1038/naturc14565.

Sigmond, M. and J.C. Fyfe, 2016: Tropical Pacific impacts on cooling North American winters. Nature Climate
Change, 6(10), 970-974, doi:10.1038/nclimate3069.

Sillmann, J., V. Kharin, X. Zhang, F.W. Zwiers, and D. Bronaugh,2013: Climate extremes indices in the CMIP5
multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research:
Atmospheres, 118(4), 1716—-1733, doi:10.1002/jgrd.50203.

Sillmann, J. et al., 2020: Event-based storylines to address.climate risk. Earth’s Future, doi:10.1029/2020ef001783.

Silvy, Y., E. Guilyardi, J.-B. Sallée, and P.J. Durack, 2020: Human-induced changes to the global ocean water masses
and their time of emergence. Nature Climate Change, 10(11), 1030-1036,doi:10.1038/s41558-020-0878-x.

Simpson, I.R. and L.M. Polvani, 2016: Revisiting the relationship betweenjet position, forced response, and annular
mode variability in the southern midlatitudes. Geophysical Research Letters, 43(6), 28962903,
doi:10.1002/2016g1067989.

Simpson, L.R., R. Seager, T.A. Shaw, and M. Ting,2015: Mediterranean Summer Climate and the Importance of
Middle East Topography. Journal of Climate, 28(5), 1977-1996, doi:10.1175/jcli-d-14-00298.1.

Simpson, LR., R. Seager, M. Ting, and T.A. Shaw, 2016:=Causes of change in Northern Hemisphere winter meridional
winds and regional hydroclimate. Nature Climate Change, 6(1), 65-70, doi:10.1038/nclimate2783.

Simpson, L.R., P. Hitchcock, R. Seager, Y. Wu, and P. Callaghan, 2018: The Downward Influence of Uncertainty in the
Northern Hemisphere: Stratospheric Polar Vortex Response to Climate Change. Journal of Climate, 31(16),
6371-6391, doi: 10.1175/cli-d-18-0041.1.

Singh, HK.A., G.J. Hakim, R. Tardif, J. Emile-Geay, and D.C. Noone, 2018: Insights into Atlantic multidecadal
variability using the'Last Millennium Reanalysis framework. Climate of the Past, 14(2), 157-174,
doi:10.5194/cp-14-157-2018.

Singh, R. and'K. AchutaRao, 2018: Quantifying uncertainty in twenty-first century climate change over India. Climate
Dynamics,'do0i:10.1007/s00382<018-4361-6.

Singh, S., S. Ghosh, A.S. Sahana, H.-Vittal, and S. Karmakar, 2017: Do dynamic regional models add value to the
global model projections-of Indian monsoon? Climate Dynamics, 48(3—4), 1375-1397, doi:10.1007/s00382-
016-3147-vy:

Sippel, S., F.E.L. Ottoy M. Flach, and G.J. van Oldenborgh, 2016: The Role of Anthropogenic Warming in 2015 Central
European Heat Waves. Bulletin of the American Meteorological Society, 97(12), S51-S56, doi:10.1175/bams-
d-16-0150.1.

Sippel, S«et al.;,2017: Refining multi-model projections of temperature extremes by evaluation against land—
atmosphere coupling diagnostics. Earth System Dynamics, 8(2), 387-403, doi:10.5194/esd-8-387-2017.

Sippel, S. et al., 2019: Uncovering the Forced Climate Response from a Single Ensemble Member Using Statistical
Learning. Journal of Climate, 32(17), 5677-5699, doi:10.1175/jcli-d-18-0882.1.

Sjolte, J. et al., 2018: Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction.
Climate of the Past, 14(8), 1179-1194, doi:10.5194/cp-14-1179-2018.

Skamarock, W.C., 2004: Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra. Monthly Weather Review,
132(12), 3019-3032, doi:10.1175/mwr2830.1.

Skofronick-Jackson, G. et al., 2017: The Global Precipitation Measurement (GPM) Mission for Science and Society.
Bulletin of the American Meteorological Society, 98(8), 1679-1695, doi:10.1175/bams-d-15-00306.1.

Smith, A.B. and J.L. Matthews, 2015: Quantifying uncertainty and variable sensitivity within the US billion-dollar
weather and climate disaster cost estimates. Natural Hazards, 77(3), 1829-1851, doi:10.1007/s11069-015-

Do Not Cite, Quote or Distribute 10-182 Total pages: 228


https://dx.doi.org/10.1175/2009jcli2919.1
https://dx.doi.org/10.1038/ngeo473
https://dx.doi.org/10.1002/joc.3607
https://dx.doi.org/10.5194/acp-20-14903-2020
https://dx.doi.org/10.1007/s00382-013-1786-9
https://dx.doi.org/10.5194/wcd-1-261-2020
https://dx.doi.org/10.1038/nature14565
https://dx.doi.org/10.1038/nclimate3069
https://dx.doi.org/10.1002/jgrd.50203
https://dx.doi.org/10.1029/2020ef001783
https://dx.doi.org/10.1038/s41558-020-0878-x
https://dx.doi.org/10.1002/2016gl067989
https://dx.doi.org/10.1175/jcli-d-14-00298.1
https://dx.doi.org/10.1038/nclimate2783
https://dx.doi.org/10.1175/jcli-d-18-0041.1
https://dx.doi.org/10.5194/cp-14-157-2018
https://dx.doi.org/10.1007/s00382-018-4361-6
https://dx.doi.org/10.1007/s00382-016-3147-y
https://dx.doi.org/10.1007/s00382-016-3147-y
https://dx.doi.org/10.1175/bams-d-16-0150.1
https://dx.doi.org/10.1175/bams-d-16-0150.1
https://dx.doi.org/10.5194/esd-8-387-2017
https://dx.doi.org/10.1175/jcli-d-18-0882.1
https://dx.doi.org/10.5194/cp-14-1179-2018
https://dx.doi.org/10.1175/mwr2830.1
https://dx.doi.org/10.1175/bams-d-15-00306.1
https://dx.doi.org/10.1007/s11069-015-1678-x

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

1678-x.

Smith, D.M. et al., 2020: North Atlantic climate far more predictable than models imply. Nature, 583(7818), 796—800,
doi:10.1038/s41586-020-2525-0.

Smith, K.L. and L.M. Polvani, 2017: Spatial patterns of recent Antarctic surface temperature trends and the importance
of natural variability: lessons from multiple reconstructions and the CMIP5 models. Climate Dynamics, 48(7—
8), 2653-2670, doi:10.1007/s00382-016-3230-4.

Smoliak, B., .M. Wallace, P. Lin, and Q. Fu, 2015: Dynamical Adjustment of the Northern Hemisphere Surface Air
Temperature Field: Methodology and Application to Observations. Journal of Climate, 28(4), 1613-1629,
doi:10.1175/jcli-d-14-00111.1.

Sniderman, J.M.K. et al., 2019: Southern Hemisphere subtropical drying as a transient response to warming. Nature
Climate Change, 9(3), 232-236, doi:10.1038/s41558-019-0397-9.

Soares, P.M.M. and R.M. Cardoso, 2018: A simple method to assess the added value using high-resolution climate
distributions: application to the EURO-CORDEX daily precipitation. International Journal of Climatology,
38(3), 1484-1498, doi:10.1002/joc.5261.

Soares, P.M.M., R.M. Cardoso, L. Semedo, M.J. Chinita, and R. Ranjha, 2014: Climatology-of the Iberia coastal low-
level wind jet: weather research forecasting model high-resolution results. Tellus.A:Dynamic Meteorology and
Oceanography, 66(1), 22377, doi:10.3402/tellusa.v66.22377.

Soares, P.M.M. et al., 2019a: Assessing the climate change impact on the North African offshore surface wind.and
coastal low-level jet using coupled and uncoupled regional climate simulations. Climate Dynamies, S2(11),
71117132, doi:10.1007/s00382-018-4565-9.

Soares, P.M.M. et al., 2019b: Process-based evaluation of the VALUE perfect predictor experiment of statistical
downscaling methods. International Journal of Climatology39(9),.3868—3893, doi:10.1002/joc.5911.

Sohn, B.J. et al., 2013: Characteristic Features of Warm-Type Rain’Producing Heavy Rainfall over the Korean
Peninsula Inferred from TRMM Measurements. Monthly Weather Review, 141(11), 3873-3888,
doi:10.1175/mwr-d-13-00075.1.

Solman, S.A. and I. Orlanski, 2016: Climate Change over.the Extratropical Southern Hemisphere: The Tale from an
Ensemble of Reanalysis Datasets. Journal of Climate, 29(5), 1673<1687, doiz10.1175/jcli-d-15-0588.1.

Solmon, F., V.S. Nair, and M. Mallet, 2015: Increasing Arabian dust activity and the Indian summer monsoon.
Atmospheric Chemistry and Physics, 15(14), 8051-8064, doi:10.5194/acp-15-8051-2015.

Somot, S., F. Sevault, M. Déqué, and M. Crépon, 2008: 21st century climate change scenario for the Mediterranean
using a coupled atmosphere—ocean regional climate model..Global and Planetary Change, 63(2-3), 112—126,
doi:10.1016/j.gloplacha.2007.10:003.

Somot, S. et al., 2018: Editorial for the Med=CORDEX special issue. Climate Dynamics, 51(3), 771-777,
doi:10.1007/s00382-018-4325-x.

Song, F., T. Zhou, and Y. Qian, 2014:/Responses of East Asian summer monsoon to natural and anthropogenic forcings
in the 17 latest CMIP5 models. Geophysical Research Letters, 41(2), 596—603, doi:10.1002/201321058705.

Sontakke, N.A., N. Singh, and H.N. Singh, 2008: Instrumental period rainfall series of the Indian region (AD 1813-
2005): revised reconstruction, update and analysis. The Holocene, 18(7), 1055-1066,
doi:10.1177/0959683608095576.

Sooraj, K.P., P. Terray, and"M. Mujumdar, 2015: Global warming and the weakening of the Asian summer monsoon
circulation: assessments from the CMIP5 models. Climate Dynamics, 45(1-2), 233-252, d0i:10.1007/s00382-
014£2257-7

Serland, S.L. and A Sorteberg, 2016:Low-pressure systems and extreme precipitation in central India: sensitivity to
temperature changes. Climate Dynamics, 47(1-2), 465-480, doi:10.1007/s00382-015-2850-4.

Serland, S.L., A. Sorteberg, C. Liu, and R. Rasmussen, 2016: Precipitation response of monsoon low-pressure systems
to an idealized uniform temperature increase. Journal of Geophysical Research: Atmospheres, 121(11), 6258—
6272, doi:10.1002/2015jd024658.

Serland, S.L., C.'Schér, D. Liithi, and E. Kjellstrom, 2018: Bias patterns and climate change signals in GCM-RCM
model chains. Environmental Research Letters, 13(7), 074017, doi:10.1088/1748-9326/aacc77.

SorokinasS:A., C. Li, J.J. Wettstein, and N.G. Kvamste, 2016: Observed Atmospheric Coupling between Barents Sea
Icerand the Warm-Arctic Cold-Siberian Anomaly Pattern. Journal of Climate, 29(2), 495-511,
doi: 10.1175/jcli-d-15-0046.1.

Soto-Navarro, J. et al., 2020: Evolution of Mediterranean Sea water properties under climate change scenarios in the
Med-CORDEX ensemble. Climate Dynamics, 54(3—4), 2135-2165, doi:10.1007/s00382-019-05105-4.

Sousa, P.M., R.C. Blamey, C.J.C. Reason, A.M. Ramos, and R.M. Trigo, 2018a: The ‘Day Zero’ Cape Town drought
and the poleward migration of moisture corridors. Environmental Research Letters, 13(12), 124025,
doi:10.1088/1748-9326/aaebc’.

Sousa, P.M., R.M. Trigo, D. Barriopedro, P.M.M. Soares, and J.A. Santos, 2018b: European temperature responses to
blocking and ridge regional patterns. Climate Dynamics, 50(1-2), 457-477, doi:10.1007/s00382-017-3620-2.

Sousa, P.M. et al., 2017: Responses of European precipitation distributions and regimes to different blocking locations.
Climate Dynamics, 48(3—4), 1141-1160, doi:10.1007/s00382-016-3132-5.

Do Not Cite, Quote or Distribute 10-183 Total pages: 228


https://dx.doi.org/10.1007/s11069-015-1678-x
https://dx.doi.org/10.1038/s41586-020-2525-0
https://dx.doi.org/10.1007/s00382-016-3230-4
https://dx.doi.org/10.1175/jcli-d-14-00111.1
https://dx.doi.org/10.1038/s41558-019-0397-9
https://dx.doi.org/10.1002/joc.5261
https://dx.doi.org/10.3402/tellusa.v66.22377
https://dx.doi.org/10.1007/s00382-018-4565-9
https://dx.doi.org/10.1002/joc.5911
https://dx.doi.org/10.1175/mwr-d-13-00075.1
https://dx.doi.org/10.1175/jcli-d-15-0588.1
https://dx.doi.org/10.5194/acp-15-8051-2015
https://dx.doi.org/10.1016/j.gloplacha.2007.10.003
https://dx.doi.org/10.1007/s00382-018-4325-x
https://dx.doi.org/10.1002/2013gl058705
https://dx.doi.org/10.1177/0959683608095576
https://dx.doi.org/10.1007/s00382-014-2257-7
https://dx.doi.org/10.1007/s00382-014-2257-7
https://dx.doi.org/10.1007/s00382-015-2850-4
https://dx.doi.org/10.1002/2015jd024658
https://dx.doi.org/10.1088/1748-9326/aacc77
https://dx.doi.org/10.1175/jcli-d-15-0046.1
https://dx.doi.org/10.1007/s00382-019-05105-4
https://dx.doi.org/10.1088/1748-9326/aaebc7
https://dx.doi.org/10.1007/s00382-017-3620-2
https://dx.doi.org/10.1007/s00382-016-3132-5

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Spence, A., W. Poortinga, and N. Pidgeon, 2012: The Psychological Distance of Climate Change. Risk Analysis, 32(6),
957-972, doi:10.1111/1.1539-6924.2011.01695 .x.

Spennemann, P.C. and A.C. Saulo, 2015: An estimation of the land-atmosphere coupling strength in South America
using the Global Land Data Assimilation System. International Journal of Climatology, 35(14), 4151-4166,
doi:10.1002/joc.4274.

Sperber, K.R. et al., 2013: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the
late 20th century. Climate Dynamics, 41(9—10), 2711-2744, doi:10.1007/s00382-012-1607-6.

Spero, T.L., C.G. Nolte, J.H. Bowden, M.S. Mallard, and J.A. Herwehe, 2016: The Impact of Incongruous Lake
Temperatures on Regional Climate Extremes Downscaled from the CMIP5 Archive Using the WRF Model.
Journal of Climate, 29(2), 839-853, doi:10.1175/jcli-d-15-0233.1.

Spinoni, J., J. Vogt, G. Naumann, P. Barbosa, and A. Dosio, 2018: Will drought events become more frequent and
severe in Europe? International Journal of Climatology, 38(4), 1718—1736, doi:10.1002/joc.5291.

Spinoni, J. et al., 2020: Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. Journal of
Climate, 33(9), 3635-3661, doi:10.1175/jcli-d-19-0084.1.

Sprenger, M. et al., 2017: Global Climatologies of Eulerian and Lagrangian Flow Features based on ERA-Interim.
Bulletin of the American Meteorological Society, 98(8), 1739-1748, doi:10.1175/bams-d-15-00299.1.

Stager, J.C. et al., 2012: Precipitation variability in the winter rainfall zone of South Africa during the last 1400 yr
linked to the austral westerlies. Climate of the Past, 8(3), 877-887, doi:10.5194/cp-8-877-2012.

Staten, P.W., J. Lu, K.M. Grise, S.M. Davis, and T. Birner, 2018: Re-examining tropical expansion. Nature Climate
Change, 8(9), 768—775, doi:10.1038/s41558-018-0246-2.

Stegehuis, A.IL et al., 2015: An observation-constrained multi-physics WRE ensemble for simulating European mega
heat waves. Geoscientific Model Development, 8(7), 2285-2298, doi:10.5194/gmd-8-2285-2015.

Steiger, N.J., J.E. Smerdon, E.R. Cook, and B.I. Cook, 2018: A reconstruction of global hydroclimate and dynamical
variables over the Common Era. Scientific Data, S, 180086,doi:10.1038/sdata.2018.86.

Stephens, G. et al., 2018: Cloudsat and calipso within the a-train: Ten years of actively observing the earth system.
Bulletin of the American Meteorological Society,99(3), 569-581, doi:10.1175/bams-d-16-0324.1.

Stevens, B. et al., 2017: MACv2-SP: a parameterization of anthropogenic a¢rosol optical properties and an associated
Twomey effect for use in CMIP6. Geoscientifie.Model Development, 10(1), 433—452, doi:10.5194/gmd-10-
433-2017.

Stevens, B. et al., 2019: DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-
hydrostatic Domains. Progress in Earth:and Planetary:Science, 6(1), 61, doi:10.1186/s40645-019-0304-z.

Stevenson, S., B. Otto-Bliesner, J. Fasullo, and E. Brady, 2016: “El Nifio Like” Hydroclimate Responses to Last
Millennium Volcanic Eruptions. Journal of Climate, 29(8), 2907-2921, doi:10.1175/jcli-d-15-0239.1.

Stevenson, S., J.T. Fasullo, B.L. Otto-Bliesner, R.A. Tomas, and C. Gao, 2017: Role of eruption season in reconciling
model and proxy responses:to tropical volcanism. Proceedings of the National Academy of Sciences, 114(8),
1822 LP — 1826, doi:10.1073/pnas.16125051.14.

Steynor, A. and L. Pasquini, 2019: Informing climate services in Africa through climate change risk perceptions.
Climate Services, 15, 100112, doi:10.1016/j.cliser.2019.100112.

Steynor, A., J. Padgham, C. Jack, B. Hewitson, and C. Lennard, 2016: Co-exploratory climate risk workshops:
Experiences from urban Africa. Climate Risk Management, 13, 95-102, doi:10.1016/].crm.2016.03.001.

Stillinger, T., D.A. Roberts, N.M. Collar, and J. Dozier, 2019: Cloud Masking for Landsat 8§ and MODIS Terra Over
Snow-Covered Terrain: Error Analysis and Spectral Similarity Between Snow and Cloud. Water Resources
Research, 55(7), 6169—6184,do1:10.1029/2019wr024932.

Stocker, T.F., Q. Dahe, G.-K. Plattner, and M. Tignor, 2015: Workshop Report of the Intergovernmental Panel on
Climate Change Workshop on Regional Climate Projections and their Use in Impacts and Risk Analysis
Studies. []. IRCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland, 171 pp.

Stoffel, M. et al., 2015: Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years.
Nature Geoscience, 8(10), 784—788, doi:10.1038/nge02526.

Stoner, A.M:K., K. Hayhoe, X. Yang, and D.J. Wuebbles, 2013: An asynchronous regional regression model for
statistical downscaling of daily climate variables. International Journal of Climatology, 33(11), 2473-2494,
dois10.1002/joc.3603.

Stott, P., P. Good, G. Jones, N. Gillett, and E. Hawkins, 2013: The upper end of climate model temperature projections
is inconsistent with past warming. Environmental Research Letters, 8(1), 014024, doi:10.1088/1748-
9326/8/1/014024.

Stott, P.A. and J.A. Kettleborough, 2002: Origins and estimates of uncertainty in predictions of twenty-first century
temperature rise. Nature, 416(6882), 723—726, doi:10.1038/416723a.

Strandberg, G. and E. Kjellstrom, 2019: Climate Impacts from Afforestation and Deforestation in Europe. Earth
Interactions, 23(1), 1-27, doi:10.1175/ei-d-17-0033.1.

Strasser, U. et al., 2019: Storylines of combined future land use and climate scenarios and their hydrological impacts in
an Alpine catchment (Brixental/Austria). Science of The Total Environment, 657, 746-763,
doi:10.1016/j.scitotenv.2018.12.077.

Do Not Cite, Quote or Distribute 10-184 Total pages: 228


https://dx.doi.org/10.1111/j.1539-6924.2011.01695.x
https://dx.doi.org/10.1002/joc.4274
https://dx.doi.org/10.1007/s00382-012-1607-6
https://dx.doi.org/10.1175/jcli-d-15-0233.1
https://dx.doi.org/10.1002/joc.5291
https://dx.doi.org/10.1175/jcli-d-19-0084.1
https://dx.doi.org/10.1175/bams-d-15-00299.1
https://dx.doi.org/10.5194/cp-8-877-2012
https://dx.doi.org/10.1038/s41558-018-0246-2
https://dx.doi.org/10.5194/gmd-8-2285-2015
https://dx.doi.org/10.1038/sdata.2018.86
https://dx.doi.org/10.1175/bams-d-16-0324.1
https://dx.doi.org/10.5194/gmd-10-433-2017
https://dx.doi.org/10.5194/gmd-10-433-2017
https://dx.doi.org/10.1186/s40645-019-0304-z
https://dx.doi.org/10.1175/jcli-d-15-0239.1
https://dx.doi.org/10.1073/pnas.1612505114
https://dx.doi.org/10.1016/j.cliser.2019.100112
https://dx.doi.org/10.1016/j.crm.2016.03.001
https://dx.doi.org/10.1029/2019wr024932
https://dx.doi.org/10.1038/ngeo2526
https://dx.doi.org/10.1002/joc.3603
https://dx.doi.org/10.1088/1748-9326/8/1/014024
https://dx.doi.org/10.1088/1748-9326/8/1/014024
https://dx.doi.org/10.1038/416723a
https://dx.doi.org/10.1175/ei-d-17-0033.1
https://dx.doi.org/10.1016/j.scitotenv.2018.12.077

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Stratton, R.A. et al., 2018: A Pan-African Convection-Permitting Regional Climate Simulation with the Met Office
Unified Model: CP4-Africa. Journal of Climate, 31(9), 3485-3508, doi:10.1175/jcli-d-17-0503.1.

Street, R.B., 2016: Towards a leading role on climate services in Europe: A research and innovation roadmap. Climate
Services, 1,2-5, doi:10.1016/j.cliser.2015.12.001.

Strobach, E. and G. Bel, 2019: Regional decadal climate predictions using an ensemble of WRF parameterizations
driven by the MIROCS GCM. Journal of Applied Meteorology and Climatology, 58(3), 527-549,
doi:10.1175/jame-d-18-0051.1.

Strong, J.D.O., G.A. Vecchi, and P. Ginoux, 2015: The Response of the Tropical Atlantic and West African Climate to
Saharan Dust in a Fully Coupled GCM. Journal of Climate, 28(18), 7071-7092, doi:10.1175/jcli-d-14-
00797.1.

Su, C.-H. et al., 2019: BARRA v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for
Australia. Geoscientific Model Development, 12(5), 2049-2068, doi:10.5194/gmd-12-2049-2019.

Sugimoto, S. et al., 2018: Impact of Spatial Resolution on Simulated Consecutive Dry Days and Near-Surface
Temperature over the Central Mountains in Japan. SOLA4, 14, 46-51, doi:10.2151/s0la.2018-008.

Sui, Y., X. Lang, and D. Jiang, 2014: Time of emergence of climate signals over China under.the RCP4.5 scenario.
Climatic Change, 125(2), 265-276, doi:10.1007/s10584-014-1151-y.

Sun, L., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “Warm Arctic, Cold Continents” trend pattern in
winter temperatures? Geophysical Research Letters, 43(10), 5345-53524doi:10.1002/201621069024.

Sun, W. et al., 2019a: A “La Nifia-like” state occurring in the second year after-large tropical volcanic eruptions during
the past 1500 years. Climate Dynamics, 52(12), 7495-7509, doi:10:1007/s00382-018-4163x.

Sun, W. et al., 2019b: How Northern High-Latitude Volcanic Eruptions in"Different Seasons‘Affect ENSO. Journal of
Climate, 32(11), 3245-3262, doi:10.1175/jcli-d-18-0290.1.

Sun, Y., X. Zhang, G. Ren, F.W. Zwiers, and T. Hu, 2016: Contribution of urbanization to warming in China. Nature
Climate Change, 6(7), 706—709, doi:10.1038/nclimate2956.

Sutton, R.T., 2018: ESD Ideas: a simple proposal to improve the contribution of [IPCC WGI to the assessment and
communication of climate change risks. Earth System Dynamics, 9(4), 1155-1158, doi:10.5194/esd-9-1155-
2018.

Sutton, R.T., 2019: Climate Science Needs to Take Risk:Assessment Much More Seriously. Bulletin of the American
Meteorological Society, 100(9), 1637-1642, doi:10.1175/bams-d=18-0280.1.

Sutton, R.T. and B. Dong, 2012: Atlantic Ocean influence on a shift in European climate in the 1990s. Nature
Geoscience, 5, 788, doi:10.1038/ngeol 595.

Sutton, R.T., B. Dong, and J.M. Gregory; 2007: Land/sea warming ratio in response to climate change: IPCC AR4
model results and comparison with observations. Geophysical Research Letters, 34(2), L02701,
doi:10.1029/200621028164.

Suzuki-Parker, A. et al., 2018: Contributions of GCM/RCM Uncertainty in Ensemble Dynamical Downscaling for
Precipitation in EastAsian Summer Monsoon Season. SOLA4, 14, 97-104, doi:10.2151/s0la.2018-017.

Swain, D.L. et al., 2017: Remote Linkages to Anomalous Winter Atmospheric Ridging Over the Northeastern Pacific.
Journal of Geophysical Research: Atmospheres, 122(22), 12,194-12,209, doi:10.1002/2017jd026575.
Swingedouw, D. et al., 2017: Impact of explosive volcanic eruptions on the main climate variability modes. Global and

Planetary Change;150, 2445, doi:10.1016/j.gloplacha.2017.01.006.

Switanek, M.B. et al., 2017: Scaled distribution mapping: a bias correction method that preserves raw climate model
projected changes. Hydrology and Earth System Sciences, 21(6), 2649-2666, doi:10.5194/hess-21-2649-2017.

Sylla, M.B., F. Giorgi, E. Coppola, and-L.. Mariotti, 2013: Uncertainties in daily rainfall over Africa: assessment of
gridded observation products and evaluation of a regional climate model simulation. International Journal of
Climatology, 33(7),,1805<1817, doi:10.1002/joc.3551.

Sylla, M.B., A. FayesF. Giorgi, A. Diedhiou, and H. Kunstmann, 2018: Projected Heat Stress Under 1.5°C and 2°C
Global Warming Scenarios Creates Unprecedented Discomfort for Humans in West Africa. Earth’s Future,
6(7), 1029-1044; doi:10.1029/2018ef000873.

Tabari, H. etal., 2016: Local impact analysis of climate change on precipitation extremes: are high-resolution climate
models needed for realistic simulations? Hydrology and Earth System Sciences, 20(9), 3843-3857,
dois10.5194/hess-20-3843-2016.

Takahashi, H.G., S. Watanabe, M. Nakata, and T. Takemura, 2018: Response of the atmospheric hydrological cycle
over the tropical Asian monsoon regions to anthropogenic aerosols and its seasonality. Progress in Earth and
Planetary Science, 5(1), 44, doi:10.1186/s40645-018-0197-2.

Takane, Y., Y. Kikegawa, M. Hara, and C.S.B. Grimmond, 2019: Urban warming and future air-conditioning use in an
Asian megacity: importance of positive feedback. npj Climate and Atmospheric Science, 2(1), 39,
doi:10.1038/s41612-019-0096-2.

Takayabu, I. et al., 2015: Climate change effects on the worst-case storm surge: a case study of Typhoon Haiyan.
Environmental Research Letters, 10(6), 064011, doi:10.1088/1748-9326/10/6/064011.

Takayabu, I. et al., 2016: Reconsidering the Quality and Utility of Downscaling. Journal of the Meteorological Society
of Japan. Ser. 11, 94A, 31-45, doi:10.2151/jmsj.2015-042.

Do Not Cite, Quote or Distribute 10-185 Total pages: 228


https://dx.doi.org/10.1175/jcli-d-17-0503.1
https://dx.doi.org/10.1016/j.cliser.2015.12.001
https://dx.doi.org/10.1175/jamc-d-18-0051.1
https://dx.doi.org/10.1175/jcli-d-14-00797.1
https://dx.doi.org/10.1175/jcli-d-14-00797.1
https://dx.doi.org/10.5194/gmd-12-2049-2019
https://dx.doi.org/10.2151/sola.2018-008
https://dx.doi.org/10.1007/s10584-014-1151-y
https://dx.doi.org/10.1002/2016gl069024
https://dx.doi.org/10.1007/s00382-018-4163-x
https://dx.doi.org/10.1175/jcli-d-18-0290.1
https://dx.doi.org/10.1038/nclimate2956
https://dx.doi.org/10.5194/esd-9-1155-2018
https://dx.doi.org/10.5194/esd-9-1155-2018
https://dx.doi.org/10.1175/bams-d-18-0280.1
https://dx.doi.org/10.1038/ngeo1595
https://dx.doi.org/10.1029/2006gl028164
https://dx.doi.org/10.2151/sola.2018-017
https://dx.doi.org/10.1002/2017jd026575
https://dx.doi.org/10.1016/j.gloplacha.2017.01.006
https://dx.doi.org/10.5194/hess-21-2649-2017
https://dx.doi.org/10.1002/joc.3551
https://dx.doi.org/10.1029/2018ef000873
https://dx.doi.org/10.5194/hess-20-3843-2016
https://dx.doi.org/10.1186/s40645-018-0197-2
https://dx.doi.org/10.1038/s41612-019-0096-2
https://dx.doi.org/10.1088/1748-9326/10/6/064011
https://dx.doi.org/10.2151/jmsj.2015-042

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Takayabu, Y.N. and W.-K. Tao, 2020: Latent heating retrievals from satellite observations. In: Satellite Precipitation
Measurement Vol. 1 [Levizzani, V., C. Kidd, D. Kirschbaum, C. Kummerow, K. Nakamura, and F.J. Turk
(eds.)]. Springer, Cham, Switzerland, pp. 897-915, doi:10.1007/978-3-030-35798-6_22.

Takayabu, Y.N., S. Shige, W.K. Tao, and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans
observed with TRMM PR spectral latent heating data. Journal of Climate, 23, 2030-2046,
doi:10.1175/2009jcli3110.1.

Talchabhadel, R., R. Karki, B.R. Thapa, M. Maharjan, and B. Parajuli, 2018: Spatio-temporal variability of extreme
precipitation in Nepal. International Journal of Climatology, 38(11), 4296—4313, doi:10.1002/joc.5669.

Tang, Z. et al., 2017: Spatiotemporal Variation of Snow Cover in Tianshan Mountains, Central Asia, Based on Cloud-
Free MODIS Fractional Snow Cover Product, 2001-2015. Remote Sensing, 9(10), doi:10.3390/rs9101045.

Tao, W.-K. et al., 2016: TRMM Latent Heating Retrieval: Applications and Comparisons with Field Campaigns and
Large-Scale Analyses. Meteorological Monographs, doi:10.1175/amsmonographs-d-15-0013.1.

Tapiador, F.J. et al., 2017: Global precipitation measurements for validating climate models. Atmospheric Research
197, 1-20, doi:10.1016/j.atmosres.2017.06.021.

Taylor, C.M., R.A.M. de Jeu, F. Guichard, P.P. Harris, and W.A. Dorigo, 2012: Afternoon rain. more likely over drier
soils. Nature, 489(7416), 423426, doi:10.1038/naturel 1377.

Taylor, C.M. et al., 2013: Modeling soil moisture-precipitation feedback in the Sahel: Importance of spatial scale versus
convective parameterization. Geophysical Research Letters, 40(23), 6213—6218, doi:10.1002/2013g1058511.

Taylor, C.M. et al., 2017: Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature,
544(7651), 475-478, doi:10.1038/nature22069.

Taylor, M.A. et al., 2018: Future Caribbean Climates in a World of Rising'Temperatures: The 1.5 vs 2.0 Dilemma.
Journal of Climate, 31(7), 2907-2926, doi: 10.1175/jcli-d-17<0074.1.

Taylor, P.C., R.C. Boeke, Y. Li, and D.W.J. Thompson, 2019: Arctic cloud annual cycle biases in'climate models.
Atmospheric Chemistry and Physics, 19(13), 87598782, doi:10.5194/acp-19-8759-2019.

Tebaldi, C. and J.M. Arblaster, 2014: Pattern scaling: Its strengths and limitations, and an update on the latest model
simulations. Climatic Change, 122(3), 459471, doi:10.1007/s10584-013-1032-9.

Tebaldi, C. and R. Knutti, 2018: Evaluating the accuracy of climate change pattern emulation for low warming targets.
Environmental Research Letters, 13(5), 055006, doi:10.1088/1748-9326/aabef2.

Tedeschi, R.G. and M. Collins, 2017: The influence of ENSO on South American precipitation: simulation and
projection in CMIP5 models. International Journal of Climatology, 37(8), 3319-3339, doi:10.1002/joc.4919.

Tencer, B., M.L. Bettolli, and M. Rusticucci, 2016: Compound temperature and precipitation extreme events in
southern South America: associated atmospheric circulation, and simulations by a multi-RCM ensemble.
Climate Research, 68(2-3), 183—199, doi:10.3354/cr01396.

Termonia, P. et al., 2018: The ALADIN System and its-canonical model configurations AROME CY41T1 and ALARO
CY40T1. GeoscientificsModel Development, 11(1), 257-281, do0i:10.5194/gmd-11-257-2018.

Thiéblemont, R., K. Matthes, N.-E. Omrani, K. Kodera, and F. Hansen, 2015: Solar forcing synchronizes decadal North
Atlantic climate variability. Nature Communications, 6(1), 8268, doi:10.1038/ncomms9268.

Thiery, W. et al., 2015: The Impact of the African Great Lakes on the Regional Climate. Journal of Climate, 28(10),
4061-4085, doi:10.1175/jcli-d-14-00565.1.

Thiery, W. et al., 2017: Present-day irrigation mitigates heat extremes. Journal of Geophysical Research: Atmospheres,
122(3), 1403-1422, doi:10.1002/2016jd025740.

Thober, S., J: Mai, M=Zink, and L. Samaniego, 2014: Stochastic temporal disaggregation of monthly precipitation for
regional gridded data sets. Water Resources Research, S0(11), 8714-8735, do0i:10.1002/2014wr015930.

Thompson, D.W.J., E.A. Barnes, C. Deser, W.E. Foust, and A.S. Phillips, 2015: Quantifying the Role of Internal
Climate Variability.in Future Climate Trends. Journal of Climate, 28(16), 6443—6456, doi:10.1175/jcli-d-14-
00830.1.

Thorne, P.W. et al; 20113 Guiding the Creation of A Comprehensive Surface Temperature Resource for Twenty-First-
Century Climate'Science. Bulletin of the American Meteorological Society, 92(11), ES40-ES47,
doisl0.1175/201 1bams3124.1.

Thorne, P:W. etal.,2017: Toward an Integrated Set of Surface Meteorological Observations for Climate Science and
Applications. Bulletin of the American Meteorological Society, 98(12), 2689-2702, doi:10.1175/bams-d-16-
016541.

Thorne, P.W. et al., 2018: Towards a global land surface climate fiducial reference measurements network.
International Journal of Climatology, 38(6), 2760-2774, doi:10.1002/joc.5458.

Thornhill, G.D., C.L. Ryder, E.J. Highwood, L.C. Shaffrey, and B.T. Johnson, 2018: The effect of South American
biomass burning aerosol emissions on the regional climate. Atmospheric Chemistry and Physics, 18(8), 5321—
5342, doi:10.5194/acp-18-5321-2018.

Tian, F., B. Dong, J. Robson, and R. Sutton, 2018: Forced decadal changes in the East Asian summer monsoon: the
roles of greenhouse gases and anthropogenic aerosols. Climate Dynamics, 51(9-10), 3699-3715,
doi:10.1007/s00382-018-4105-7.

Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and Internal Twentieth-Century SST Trends in the North

Do Not Cite, Quote or Distribute 10-186 Total pages: 228


https://dx.doi.org/10.1007/978-3-030-35798-6_22
https://dx.doi.org/10.1175/2009jcli3110.1
https://dx.doi.org/10.1002/joc.5669
https://dx.doi.org/10.3390/rs9101045
https://dx.doi.org/10.1175/amsmonographs-d-15-0013.1
https://dx.doi.org/10.1016/j.atmosres.2017.06.021
https://dx.doi.org/10.1038/nature11377
https://dx.doi.org/10.1002/2013gl058511
https://dx.doi.org/10.1038/nature22069
https://dx.doi.org/10.1175/jcli-d-17-0074.1
https://dx.doi.org/10.5194/acp-19-8759-2019
https://dx.doi.org/10.1007/s10584-013-1032-9
https://dx.doi.org/10.1088/1748-9326/aabef2
https://dx.doi.org/10.1002/joc.4919
https://dx.doi.org/10.3354/cr01396
https://dx.doi.org/10.5194/gmd-11-257-2018
https://dx.doi.org/10.1038/ncomms9268
https://dx.doi.org/10.1175/jcli-d-14-00565.1
https://dx.doi.org/10.1002/2016jd025740
https://dx.doi.org/10.1002/2014wr015930
https://dx.doi.org/10.1175/jcli-d-14-00830.1
https://dx.doi.org/10.1175/jcli-d-14-00830.1
https://dx.doi.org/10.1175/2011bams3124.1
https://dx.doi.org/10.1175/bams-d-16-0165.1
https://dx.doi.org/10.1175/bams-d-16-0165.1
https://dx.doi.org/10.1002/joc.5458
https://dx.doi.org/10.5194/acp-18-5321-2018
https://dx.doi.org/10.1007/s00382-018-4105-7

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Atlantic. Journal of Climate, 22(6), 1469-1481, doi:10.1175/2008jcli2561.1.

Toohey, M., K. Kriiger, M. Bittner, C. Timmreck, and H. Schmidt, 2014: The impact of volcanic aerosol on the
Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure. Atmospheric
Chemistry and Physics, 14(23), 13063—13079, doi:10.5194/acp-14-13063-2014.

Torma, C., F. Giorgi, and E. Coppola, 2015: Added value of regional climate modeling over areas characterized by
complex terrain-Precipitation over the Alps. Journal of Geophysical Research: Atmospheres, 120(9), 3957—
3972, doi:10.1002/2014jd022781.

Torralba, V., F.J. Doblas-Reyes, and N. Gonzalez-Reviriego, 2017: Uncertainty in recent near-surface wind speed
trends: A global reanalysis intercomparison. Environmental Research Letters, 12, 114019, doi:10.1088/1748-
9326/aa8as8.

Trapp, R.J., E.D. Robinson, M.E. Baldwin, N.S. Diffenbaugh, and B.R.J. Schwedler, 2011: Regional climate of
hazardous convective weather through high-resolution dynamical downscaling. Climate Dynamics, 37(3—4),
677-688, doi:10.1007/s00382-010-0826-y.

Trenberth, K.E., J.T. Fasullo, and T.G. Shepherd, 2015: Attribution of climate extreme events. Nature Climate Change,
5(8), 725730, doi:10.1038/nclimate2657.

Trewin, B., 2010: Exposure, instrumentation, and observing practice effects on land temperature measurements: Wiley
Interdisciplinary Reviews: Climate Change, 1(4), 490-506, doi:10.1002/wc¢.46.

Trewin, B., 2013: A daily homogenized temperature data set for Australia. International Journal of Climatology, 33(6),
1510-1529, doi:10.1002/joc.3530.

Trusilova, K. et al., 2016: The urban land use in the COSMO-CLM model: a comparison of three parameterizations for
Berlin. Meteorologische Zeitschrift, 25(2), 231-244, doi: 10.1127/metz/2015/0587.

Tsanis, I. and E. Tapoglou, 2019: Winter North Atlantic Oscillation impact on European precipitation and drought
under climate change. Theoretical and Applied Climatology, 135(1), 323-330, doi:10.1007/s00704-018-2379-
7.

Tschakert, P., N. Tuana, H. Westskog, B. Koelle, and A. Afrika, 2016: TCHANGE: The role¢ of values and visioning in
transformation science. Current Opinion in Environmental Sustainability, 20, 21-25,
doi:10.1016/j.cosust.2016.04.003.

Tschakert, P. et al., 2017: Climate change and loss, as'if people mattered: values, places, and experiences. Wiley
Interdisciplinary Reviews: Climate Change, 8(5), 1-19, doi:10.1002/wcc.476.

Tuinenburg, O.A., R W.A. Hutjes, T. Stacke, A. Wiltshire, and P. Lucas-Picher, 2014: Effects of Irrigation in India on
the Atmospheric Water Budget. Journal of Hydrometeorology, 15(3), 1028-1050, doi: 10.1175/jhm-d-13-
078.1.

Tuomenvirta, H., 2001: Homogeneity adjustments of temperature and precipitation series — Finnish and Nordic data.
International Journal of Climatology, 21(4), 495506, doi:10.1002/joc.616.

Turki, I. et al., 2016: Hydrological variability of the Soummam watershed (Northeastern Algeria) and the possible links
to climate fluctuations. Arabian Journalof Geosciences, 9(6), 477, doi:10.1007/s12517-016-2448-0.

Turner, A.G. and H. Annamalai; 2012: Climate change and the South Asian summer monsoon. Nature Climate Change,
2(8), 587-595,/doi:10.1038/nclimate1495.

Turnhout, E., T. Metze, C. Wyborn, N. Klenk, and E. Louder, 2020: The politics of co-production: participation, power,
and transformationsCurrent Opinion in Environmental Sustainability, 42, 15-21,
doi:10.1016/j.cosust.2019411.009.

Turnock, S.T:et al., 2016: The impact of European legislative and technology measures to reduce air pollutants on air
quality, human health and climate. Environmental Research Letters, 11(2), 24010, doi:10.1088/1748-
9326/1.1/2/024010.

Turuncoglu, U.U., G. Giuliani, N.-Elguindi, and F. Giorgi, 2013: Modelling the Caspian Sea and its catchment area
using a coupled regional atmosphere-ocean model (RegCM4-ROMS): model design and preliminary results.
Geoscientific Model Development, 6(2), 283-299, doi:10.5194/gmd-6-283-2013.

Tuttle, S. and G. Salvucci; 2016: Empirical evidence of contrasting soil moisture-precipitation feedbacks across the
United States. Science, 352(6287), 825-828, doi:10.1126/science.aaa7185.

Udall, B.and J..Overpeck, 2017: The twenty-first century Colorado River hot drought and implications for the future.
Water Resources Research, 53(3), 2404—2418, doi:10.1002/2016wr019638.

Ueda, H., A. Iwai, K. Kuwako, and M.E. Hori, 2006: Impact of anthropogenic forcing on the Asian summer monsoon
as simulated by eight GCMs. Geophysical Research Letters, 33, L06703, doi:10.1029/2005g1025336.
Uijlenhoet, R., A. Overeem, and H. Leijnse, 2018: Opportunistic remote sensing of rainfall using microwave links from

cellular communication networks. WIREs Water, 5(4), 1289, doi:10.1002/wat2.1289.

Ukkola, A.M., A.J. Pitman, M.G. Donat, M.G. De Kauwe, and O. Ang¢lil, 2018: Evaluating the Contribution of Land-
Atmosphere Coupling to Heat Extremes in CMIP5 Models. Geophysical Research Letters, 45(17), 9003-9012,
doi:10.1029/2018¢1079102.

Undorf, S. et al., 2018: Detectable Impact of Local and Remote Anthropogenic Aerosols on the 20th Century Changes
of West African and South Asian Monsoon Precipitation. Journal of Geophysical Research: Atmospheres,
123(10), 48714889, doi:10.1029/2017jd027711.

Do Not Cite, Quote or Distribute 10-187 Total pages: 228


https://dx.doi.org/10.1175/2008jcli2561.1
https://dx.doi.org/10.5194/acp-14-13063-2014
https://dx.doi.org/10.1002/2014jd022781
https://dx.doi.org/10.1088/1748-9326/aa8a58
https://dx.doi.org/10.1088/1748-9326/aa8a58
https://dx.doi.org/10.1007/s00382-010-0826-y
https://dx.doi.org/10.1038/nclimate2657
https://dx.doi.org/10.1002/wcc.46
https://dx.doi.org/10.1002/joc.3530
https://dx.doi.org/10.1127/metz/2015/0587
https://dx.doi.org/10.1007/s00704-018-2379-7
https://dx.doi.org/10.1007/s00704-018-2379-7
https://dx.doi.org/10.1016/j.cosust.2016.04.003
https://dx.doi.org/10.1002/wcc.476
https://dx.doi.org/10.1175/jhm-d-13-078.1
https://dx.doi.org/10.1175/jhm-d-13-078.1
https://dx.doi.org/10.1002/joc.616
https://dx.doi.org/10.1007/s12517-016-2448-0
https://dx.doi.org/10.1038/nclimate1495
https://dx.doi.org/10.1016/j.cosust.2019.11.009
https://dx.doi.org/10.1088/1748-9326/11/2/024010
https://dx.doi.org/10.1088/1748-9326/11/2/024010
https://dx.doi.org/10.5194/gmd-6-283-2013
https://dx.doi.org/10.1126/science.aaa7185
https://dx.doi.org/10.1002/2016wr019638
https://dx.doi.org/10.1029/2005gl025336
https://dx.doi.org/10.1002/wat2.1289
https://dx.doi.org/10.1029/2018gl079102
https://dx.doi.org/10.1029/2017jd027711

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Uppala, S.M. et al., 2006: The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131(612),
2961-3012, doi:10.1256/qj.04.176.

Vaittinada Ayar, P. et al., 2016: Intercomparison of statistical and dynamical downscaling models under the EURO- and
MED-CORDEX initiative framework: present climate evaluations. Climate Dynamics, 46(3—4), 1301-1329,
doi:10.1007/s00382-015-2647-5.

Van den Besselaar, E.J.M. et al., 2015: International Climate Assessment & Dataset: Climate Services across Borders.
Bulletin of the American Meteorological Society, 96(1), 16-21, doi:10.1175/bams-d-13-00249.1.

Van den Besselaar, E.J.JM.M., G. van der Schrier, R.C. Cornes, A.S. Igbal, and A.M.G. Klein Tank, 2017: SA-OBS: A
Daily Gridded Surface Temperature and Precipitation Dataset for Southeast Asia. Journal of Climate, 30(14),
5151-5165, doi:10.1175/icli-d-16-0575.1.

van den Hurk, B. et al., 2014: Drivers of mean climate change around the Netherlands derived from CMIPS. Climate
Dynamics, 42(5-6), 1683—-1697, doi:10.1007/s00382-013-1707-y.

van den Hurk, B. et al., 2016: LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model
Intercomparison Project — aims, setup and expected outcome. Geoscientific Model Development, 9(8), 2809—
2832, doi:10.5194/gmd-9-2809-2016.

van der Schrier, G., E.J.M. van den Besselaar, A.M.G. Klein Tank, and G. Verver, 2013::Monitoring European average
temperature based on the E-OBS gridded data set. Journal of Geophysical Research: Atmospheres; 118(11),
5120-5135, doi:10.1002/jgrd.50444.

van Haren, R., R.J. Haarsma, H. de Vries, G.J. van Oldenborgh, and W. Hazeleger, 2015: Resolution dependence of
circulation forced future central European summer drying. Environmental ' Research Letters, 10(5), 55002,
doi:10.1088/1748-9326/10/5/055002.

van Oldenborgh, G.J. et al., 2009: Western Europe is warming much faster than expected./Climate of the Past, 5(1), 1—
12, doi:10.5194/cp-5-1-2009.

van Oldenborgh, G.J. et al., 2019: Cold waves are getting milder in the northern midlatitudes. Environmental Research
Letters, 14(11), 114004, doi:10.1088/1748-9326/ab4867.

Van Pham, T., J. Brauch, C. Dieterich, B. Frueh, and B. Ahrens, 2014: New coupled atmosphere-ocean-ice system
COSMO-CLM/NEMO: assessing air temperature sensitivity over the.North.and Baltic Seas. Oceanologia,
56(2), 167-189, doi:10.5697/0¢.56-2.167.

Vanden Broucke, S., H. Wouters, M. Demuzere, and N.P.M. van Lipzig, 2018: The influence of convection-permitting
regional climate modeling on future projections.of extreme precipitation: dependency on topography and
timescale. Climate Dynamics, 52, 1-22,doi:10.1007/s00382-018-4454-2.

Vannitsem, S., 2011: Bias correction andpost-processing under climate change. Nonlinear Processes in Geophysics,
18(6), 911-924, d0i:10.5194/npg-18-911-2011.

Varela, R., L. Rodriguez-Diaz, andM. DeCastro, 2020:Persistent heat waves projected for Middle East and North
Africa by the end of the 21st.century. PLOS ONE, 15(11), ¢0242477, doi:10.1371/journal.pone.0242477.

Varikoden, H. et al., 2018: Assessment of regional downscaling simulations for long term mean, excess and deficit
Indian Summer Monsoons. Global and Planetary Change, 162, 28-38, doi:10.1016/j.gloplacha.2017.12.002.

Vaughan, C., S. Dessai,;and C. Hewitt, 2018: Surveying Climate Services: What Can We Learn from a Bird’s-Eye
View? Weather, Climate, and Society, 10(2), 373-395, doi:10.1175/wcas-d-17-0030.1.

Vautard, R. et al.,2014: The'European climate under a 2°C global warming. Environmental Research Letters, 9(3),
034006, doi:10.1088/1748-9326/9/3/034006.

Vautard, R. etal., 2020: Evaluation of the large EURO-CORDEX regional climate model ensemble. Journal of
Geophysical Research: Atmospheres, doi:10.1029/2019jd032344.

Vavrus, S.J. etal., 2017: Changes in North American Atmospheric Circulation and Extreme Weather: Influence of
Arctic Amplification and Northern Hemisphere Snow Cover. Journal of Climate, 30(11), 43174333,
doi:10.1175/eli-d-16:0762.1.

Vellinga, M. et al5 20167 Sahel decadal rainfall variability and the role of model horizontal resolution. Geophysical
Research Letters, 43(1), 326333, doi:10.1002/2015g1066690.

Venema, V.K.C. etal., 2012: Benchmarking homogenization algorithms for monthly data. Climate of the Past, 8(1),
89-115, doi:10.5194/cp-8-89-2012.

Venter, Z.S50. Brousse, 1. Esau, and F. Meier, 2020: Hyperlocal mapping of urban air temperature using remote
sensing and crowdsourced weather data. Remote Sensing of Environment, 242, 111791,
doi:10.1016/j.rse.2020.111791.

Vera, C.S. and L. Diaz, 2015: Anthropogenic influence on summer precipitation trends over South America in CMIP5
models. International Journal of Climatology, 35(10), 3172-3177, doi:10.1002/joc.4153.

Verfaillie, D., M. Déqué, S. Morin, and M. Lafaysse, 2017: The method ADAMONT v1.0 for statistical adjustment of
climate projections applicable to energy balance land surface models. Geoscientific Model Development,
10(11), 42574283, d0i:10.5194/gmd-10-4257-2017.

Vergara-Temprado, J., N. Ban, D. Panosetti, L. Schlemmer, and C. Schir, 2019: Climate models permit convection at
much coarser resolutions than previously considered.. Journal of Climate, JCLI-D—19-0286.1,
doi:10.1175/jcli-d-19-0286.1.

Do Not Cite, Quote or Distribute 10-188 Total pages: 228


https://dx.doi.org/10.1256/qj.04.176
https://dx.doi.org/10.1007/s00382-015-2647-5
https://dx.doi.org/10.1175/bams-d-13-00249.1
https://dx.doi.org/10.1175/jcli-d-16-0575.1
https://dx.doi.org/10.1007/s00382-013-1707-y
https://dx.doi.org/10.5194/gmd-9-2809-2016
https://dx.doi.org/10.1002/jgrd.50444
https://dx.doi.org/10.1088/1748-9326/10/5/055002
https://dx.doi.org/10.5194/cp-5-1-2009
https://dx.doi.org/10.1088/1748-9326/ab4867
https://dx.doi.org/10.5697/oc.56-2.167
https://dx.doi.org/10.1007/s00382-018-4454-2
https://dx.doi.org/10.5194/npg-18-911-2011
https://dx.doi.org/10.1371/journal.pone.0242477
https://dx.doi.org/10.1016/j.gloplacha.2017.12.002
https://dx.doi.org/10.1175/wcas-d-17-0030.1
https://dx.doi.org/10.1088/1748-9326/9/3/034006
https://dx.doi.org/10.1029/2019jd032344
https://dx.doi.org/10.1175/jcli-d-16-0762.1
https://dx.doi.org/10.1002/2015gl066690
https://dx.doi.org/10.5194/cp-8-89-2012
https://dx.doi.org/10.1016/j.rse.2020.111791
https://dx.doi.org/10.1002/joc.4153
https://dx.doi.org/10.5194/gmd-10-4257-2017
https://dx.doi.org/10.1175/jcli-d-19-0286.1

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Verrax, F., 2017: Engineering ethics and post-normal science: A French perspective. Futures, 91, 76-79,
doi:10.1016/j.futures.2017.01.009.

Vezér, M., A. Bakker, K. Keller, and N. Tuana, 2018: Epistemic and ethical trade-offs in decision analytical modelling:
A case study of flood risk management in New Orleans. Climatic Change, 147(1-2), 1-10,
doi:10.1007/s10584-017-2123-9.

Vidal, J.-P., E. Martin, L. Franchistéguy, M. Baillon, and J.-M. Soubeyroux, 2010: A 50-year high-resolution
atmospheric reanalysis over France with the Safran system. International Journal of Climatology, 30(11),
1627-1644, doi:10.1002/joc.2003.

Vidal, J.-P., B. Hingray, C. Magand, E. Sauquet, and A. Ducharne, 2016: Hierarchy of climate and hydrological
uncertainties in transient low-flow projections. Hydrology and Earth System Sciences, 20(9), 3651-3672,
doi:10.5194/hess-20-3651-2016.

Vigaud, N., M. Vrac, and Y. Caballero, 2013: Probabilistic downscaling of GCM scenarios over southern India.
International Journal of Climatology, 33(5), 1248—1263, doi:10.1002/joc.3509.

Villamayor, J. and E. Mohino, 2015: Robust Sahel drought due to the Interdecadal Pacific Oscillation in CMIP5
simulations. Geophysical Research Letters, doi:10.1002/201421062473.

Vincent, K., M. Daly, C. Scannell, and B. Leathes, 2018: What can climate services learn.from theory and practice.of
co-production? Climate Services, 12, 48—58, d0i:10.1016/j.cliser.2018.11.001.

Vincent, K. et al., 2021: Co-production: Learning from Contexts. In: Climate Risk.in Africa: Adaptation and Resilience
[Conway, D. and K. Vincent (eds.)]. Palgrave Macmillan, Cham, Switzerland, pp. 37-56,d0i:10.1007/978-3-
030-61160-6_3.

Visser, W.P., 2018: A perfect storm: The ramifications of Cape Town’s drought crisis. The Journal for
Transdisciplinary Research in Southern Africa, 14(1), 1-10,doi: 10.4102/td.v14i1.567.

Vitart, F. et al., 2017: The Subseasonal to Seasonal (S2S) Prediction Project Database. Bulletin of the American
Meteorological Society, 98(1), 163—173, doi:10.1175/bams-d-16-0017.1.

Vizy, E.K. and K.H. Cook, 2017: Seasonality of the Observed Amplified Sahara Warming Trend and Implications for
Sahel Rainfall. Journal of Climate, 30(9), 3073-3094, doi: 10.1175/jcli-d-16-0687.1.

Vogel, M.M. et al., 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by
soil moisture-temperature feedbacks. Geophysical Research Letters, 44(3),1511-1519,
doi:10.1002/2016g1071235.

Volosciuk, C., D. Maraun, M. Vrac, and M. Widmann, 2017: A combined statistical bias correction and stochastic
downscaling method for precipitation. Hydrology and Earth System Sciences, 21(3), 1693-1719,
doi:10.5194/hess-21-1693-20174

Von Clarmann, T., 2014: Smoothing error pitfalls. Atmospheric Measurement Techniques, 7(9), 3023-3034,
doi:10.5194/amt-7-3023-2014.

von Storch, H., H. Langenberg, and F«Feser, 2000: A Spectral Nudging Technique for Dynamical Downscaling
Purposes. Monthly Weather Review, 128(10), 3664-3673, doi:10.1175/1520-
0493(2000)128<3664:dsntfd>2.0.co; 2

von Trentini, F., M. Leduc, and RivLudwig, 2019: Assessing natural variability in RCM signals: comparison of a multi
model EURO-CORDEX ensemble with a 50-member single model large ensemble. Climate Dynamics, 53(3—
4), 196341979, doi:10.1007/s00382-019-04755-8.

Vrac, M., 2018: Multivariate bias adjustment of high-dimensional climate simulations: the Rank Resampling for
Distributions-and Dependences (R?D?) bias correction. Hydrology and Earth System Sciences, 22(6), 3175—
3196, doi:10.5194/hess-22-3175-2018.

Vrac, M. and P. Friederichs, 2015: Multivariate-Intervariable, Spatial, and Temporal-Bias Correction. Journal of
Climate, 28(1), 218-237,/d0i:10.1175/jcli-d-14-00059.1.

Vries, H., S. Scher, Re:Haarsma, S. Drijthout, and A. Delden, 2019: How Gulf-Stream SST-fronts influence Atlantic
winter storms: Climate Dynamics, 52(9-10), 5899-5909, doi:10.1007/s00382-018-4486-7.

Waha, K. et al., 2017: Climate change impacts in the Middle East and Northern Africa (MENA) region and their
implications for vulnerable population groups. Regional Environmental Change, doi:10.1007/s10113-017-
1144-2.

Wahl, S. etal:; 2017: A novel convective-scale regional reanalysis COSMO-REA2: Improving the representation of
precipitation. Meteorologische Zeitschrift, 26(4), 345-361, doi:10.1127/metz/2017/0824.

Wahl, T., S. Jain, J. Bender, S.D. Meyers, and M.E. Luther, 2015: Increasing risk of compound flooding from storm
surge and rainfall for major US cities. Nature Climate Change, 5(12), 1093-1097, doi:10.1038/nclimate2736.

Waldron, K.M., J. Paegle, and J.D. Horel, 1996: Sensitivity of a Spectrally Filtered and Nudged Limited-Area Model to
Outer Model Options. Monthly Weather Review, 124(3), 529-547, doi:10.1175/1520-
0493(1996)124<0529:soasfa>2.0.co;2.

Walker, W., M. Haasnoot, and J. Kwakkel, 2013: Adapt or Perish: A Review of Planning Approaches for Adaptation
under Deep Uncertainty. Sustainability, 5(3), 955-979, doi:10.3390/su5030955.

Walsh, J.E., 2014: Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global and Planetary
Change, 117, 52—63, doi:10.1016/j.gloplacha.2014.03.003.

Do Not Cite, Quote or Distribute 10-189 Total pages: 228


https://dx.doi.org/10.1016/j.futures.2017.01.009
https://dx.doi.org/10.1007/s10584-017-2123-9
https://dx.doi.org/10.1002/joc.2003
https://dx.doi.org/10.5194/hess-20-3651-2016
https://dx.doi.org/10.1002/joc.3509
https://dx.doi.org/10.1002/2014gl062473
https://dx.doi.org/10.1016/j.cliser.2018.11.001
https://dx.doi.org/10.1007/978-3-030-61160-6_3
https://dx.doi.org/10.1007/978-3-030-61160-6_3
https://dx.doi.org/10.4102/td.v14i1.567
https://dx.doi.org/10.1175/bams-d-16-0017.1
https://dx.doi.org/10.1175/jcli-d-16-0687.1
https://dx.doi.org/10.1002/2016gl071235
https://dx.doi.org/10.5194/hess-21-1693-2017
https://dx.doi.org/10.5194/amt-7-3023-2014
https://dx.doi.org/10.1175/1520-0493(2000)128%3c3664:asntfd%3e2.0.co;2
https://dx.doi.org/10.1175/1520-0493(2000)128%3c3664:asntfd%3e2.0.co;2
https://dx.doi.org/10.1007/s00382-019-04755-8
https://dx.doi.org/10.5194/hess-22-3175-2018
https://dx.doi.org/10.1175/jcli-d-14-00059.1
https://dx.doi.org/10.1007/s00382-018-4486-7
https://dx.doi.org/10.1007/s10113-017-1144-2
https://dx.doi.org/10.1007/s10113-017-1144-2
https://dx.doi.org/10.1127/metz/2017/0824
https://dx.doi.org/10.1038/nclimate2736
https://dx.doi.org/10.1175/1520-0493(1996)124%3c0529:soasfa%3e2.0.co;2
https://dx.doi.org/10.1175/1520-0493(1996)124%3c0529:soasfa%3e2.0.co;2
https://dx.doi.org/10.3390/su5030955
https://dx.doi.org/10.1016/j.gloplacha.2014.03.003

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Walton, D.B., F. Sun, A. Hall, and S. Capps, 2015: A Hybrid Dynamical—Statistical Downscaling Technique. Part I:
Development and Validation of the Technique. Journal of Climate, 28(12), 4597-4617, doi:10.1175/jcli-d-14-
00196.1.

Walton, D.B., A. Hall, N. Berg, M. Schwartz, and F. Sun, 2017: Incorporating Snow Albedo Feedback into Downscaled
Temperature and Snow Cover Projections for California’s Sierra Nevada. Journal of Climate, 30(4), 1417—
1438, doi:10.1175/jcli-d-16-0168.1.

Wan, H., X. Zhang, and F. Zwiers, 2019: Human influence on Canadian temperatures. Climate Dynamics, 52(1-2),
479-494, d0i:10.1007/s00382-018-4145-z.

Wan, H., X. Zhang, F. Zwiers, and S.-K. Min, 2015: Attributing northern high-latitude precipitation change over the
period 19662005 to human influence. Climate Dynamics, 45(7-8), 1713-1726, doi:10.1007/s00382-014-
2423-y.

Wang, B. et al., 2020: Monsoons Climate Change Assessment. Bulletin of the American Meteorological Society,
preprint(2020), doi:10.1175/bams-d-19-0335.1.

Wang, J., Z. Yan, X.W. Quan, and J. Feng, 2017: Urban warming in the 2013 summer heat wave in eastern China.
Climate Dynamics, 48(9-10), 3015-3033, doi:10.1007/s00382-016-3248-7.

Wang, K., C. Deser, L. Sun, and R.A. Tomas, 2018: Fast Response of the Tropics to an-Abrupt Loss of Arctic Sea-Ice
via Ocean Dynamics. Geophysical Research Letters, 45(9), 4264—4272, doi:10.1029/2018g1077325.

Wang, Q., Z. Wang, and H. Zhang, 2017: Impact of anthropogenic aerosols fromglobal, East Asian, and non-East
Asian sources on East Asian summer monsoon system. Atmospheric Research, 183, 224-236,
doi:10.1016/j.atmosres.2016.08.023.

Wang, W., A.T. Evan, C. Flamant, and C. Lavaysse, 2015: On the decadal'scale correlation between African dust and
Sahel rainfall: The role of Saharan heat low—forced winds. Science Advances, 1(9), €1500646,
doi:10.1126/sciadv.1500646.

Wang, Y., Y. Sun, T. Hu, D. Qin, and L. Song, 2018: Attribution of temperature changes in Western China.
International Journal of Climatology, 38(2), 742—750, doi:10.1002/joc.5206.

Wang, Z., Y. Li, B. Liu, and J. Liu, 2015: Global climate internal variability in a 2000-year control simulation with
Community Earth System Model (CESM). Chinese Geographical Science, 25, doi:10.1007/s11769-015-0754-
L.

Wang, Z. et al., 2021: Incorrect Asian aerosols affecting the attribution and projection of regional climate change in
CMIP6 models. npj Climate and Atmospheric Science, 4(1), 2, doi:10.1038/s41612-020-00159-2.

Ward, K., S. Lauf, B. Kleinschmit, and W. Endlicher,.2016: Heat waves and urban heat islands in Europe: A review of
relevant drivers. Science of the Total Environment, 569-570, 527-539, doi:10.1016/].scitotenv.2016.06.119.

Warner, J.L.L., J.LA.A. Screen, and A.A.A. Scaife, 2020: Links Between Barents-Kara Sea Ice and the Extratropical
Atmospheric Circulation Explained by Internal-Variability and Tropical Forcing. Geophysical Research
Letters, 47(1), doi:10.1029/2019¢1085679.

Warszawski, L. et al., 2014: The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework.
Proceedings of the National Academy of Sciences, 111(9), 3228-3232, doi:10.1073/pnas.1312330110.
Watanabe, M. et al., 2014: Contribution of natural decadal variability to global warming acceleration and hiatus. Nature

Climate Change, 4(10), 893-897, doi:10.1038/nclimate2355.

Watanabe, S., N. Utsumi, and H. Kim, 2018: Projection of the Changes in Weather Potentially Affecting Tourism in the
Yaeyama Islands Under Global Warming. Journal of Japan Society of Civil Engineers, Ser. G (Environmental
Research), 74(5), I 19-1 24, doi:10.2208/jscejer.74.i_19.

Waugh, D.W., C.I. Garfinkelyand L. M. Polvani, 2015: Drivers of the Recent Tropical Expansion in the Southern
Hemisphere: Changing SSTs or Ozone Depletion? Journal of Climate, 28(16), 6581-6586, doi:10.1175/jcli-d-
15-0138.1.

Weaver, C.P. et al., 2013: Improving the contribution of climate model information to decision making: the value and
demandsof robust decision frameworks. Wiley Interdisciplinary Reviews: Climate Change, 4(1), 39-60,
doi:10.1002/wcci202.

Weaver, C.P. et al., 2017: Reframing climate change assessments around risk: recommendations for the US National
Climate Assessment. Environmental Research Letters, 12(8), 080201, doi:10.1088/1748-9326/aa7494.

Webber, Hoetal., 2018: Diverging importance of drought stress for maize and winter wheat in Europe. Nature
Communications, 9(1), 4249, doi:10.1038/s41467-018-06525-2.

Webber, S. and S.D. Donner, 2017: Climate service warnings: cautions about commercializing climate science for
adaptation in the developing world. Wiley Interdisciplinary Reviews: Climate Change, 8(1), €424,
doi:10.1002/wcc.424.

Weber, T. et al., 2018: Analyzing Regional Climate Change in Africa ina 1.5, 2, and 3°C Global Warming World.
Earth’s Future, 6(4), 643—655, doi:10.1002/2017ef000714.

Weedon, G.P. et al., 2014: The WFDEI meteorological forcing data set: WATCH Forcing data methodology applied to
ERA-Interim reanalysis data. Water Resources Research, doi:10.1002/2014wr015638.

Wehrli, K., B.P. Guillod, M. Hauser, M. Leclair, and S.I. Seneviratne, 2018: Assessing the Dynamic Versus
Thermodynamic Origin of Climate Model Biases. Geophysical Research Letters, 45(16), 8471-8479,

Do Not Cite, Quote or Distribute 10-190 Total pages: 228


https://dx.doi.org/10.1175/jcli-d-14-00196.1
https://dx.doi.org/10.1175/jcli-d-14-00196.1
https://dx.doi.org/10.1175/jcli-d-16-0168.1
https://dx.doi.org/10.1007/s00382-018-4145-z
https://dx.doi.org/10.1007/s00382-014-2423-y
https://dx.doi.org/10.1007/s00382-014-2423-y
https://dx.doi.org/10.1175/bams-d-19-0335.1
https://dx.doi.org/10.1007/s00382-016-3248-7
https://dx.doi.org/10.1029/2018gl077325
https://dx.doi.org/10.1016/j.atmosres.2016.08.023
https://dx.doi.org/10.1126/sciadv.1500646
https://dx.doi.org/10.1002/joc.5206
https://dx.doi.org/10.1007/s11769-015-0754-1
https://dx.doi.org/10.1007/s11769-015-0754-1
https://dx.doi.org/10.1038/s41612-020-00159-2
https://dx.doi.org/10.1016/j.scitotenv.2016.06.119
https://dx.doi.org/10.1029/2019gl085679
https://dx.doi.org/10.1073/pnas.1312330110
https://dx.doi.org/10.1038/nclimate2355
https://dx.doi.org/10.2208/jscejer.74.i_19
https://dx.doi.org/10.1175/jcli-d-15-0138.1
https://dx.doi.org/10.1175/jcli-d-15-0138.1
https://dx.doi.org/10.1002/wcc.202
https://dx.doi.org/10.1088/1748-9326/aa7494
https://dx.doi.org/10.1038/s41467-018-06525-2
https://dx.doi.org/10.1002/wcc.424
https://dx.doi.org/10.1002/2017ef000714
https://dx.doi.org/10.1002/2014wr015638

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

doi:10.1029/2018g1079220.

Wehrli, K., B.P. Guillod, M. Hauser, M. Leclair, and S.I. Seneviratne, 2019: Identifying Key Driving Processes of
Major Recent Heat Waves. Journal of Geophysical Research: Atmospheres, 124(22), 11746—-11765,
doi:10.1029/2019jd030635.

Weijer, W. et al., 2019: Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis. Journal
of Geophysical Research: Oceans, 124(8), 5336-5375, doi:10.1029/2019jc015083.

Weldeab, S., J.-B.W. Stuut, R.R. Schneider, and W. Siebel, 2013: Holocene climate variability in the winter rainfall
zone of South Africa. Climate of the Past, 9(5), 2347-2364, doi:10.5194/cp-9-2347-2013.

Wester, P., A. Mishra, A. Mukherji, and A.B. Shrestha (eds.), 2019: The Hindu Kush Himalaya Assessment: Mountains,
Climate Change, Sustainability and People. Springer, Cham, Switzerland, 627 pp., doi:10.1007/978-3-319-
92288-1.

Westervelt, D.M. et al., 2017: Multimodel precipitation responses to removal of U.S. sulfur dioxide emissions. Journal
of Geophysical Research: Atmospheres, 122(9), 5024—5038, doi:10.1002/2017jd026756.

Westervelt, D.M. et al., 2018: Connecting regional aerosol emissions reductions to local and remote precipitation
responses. Atmospheric Chemistry and Physics, 18(16), 12461-12475, doi:10.5194/acp-18-12461-2018.

Westra, S. et al., 2010: Addressing Climatic Non-Stationarity in the Assessment of Flood.Risk. Australasian Jowrnal of
Water Resources, 14(1), 1-16, doi:10.1080/13241583.2010.11465370.

Wettstein, J.J. and C. Deser, 2014: Internal Variability in Projections of Twenty-First-Century Arctic/Sea Ice Loss: Role
of the Large-Scale Atmospheric Circulation. Journal of Climate, 27(2);527-550, doi:10.1.175/jcli-d-12-
00839.1.

Whan, K. and F. Zwiers, 2017: The impact of ENSO and the NAO on extreme winter precipitation in North America in
observations and regional climate models. Climate Dynamics, 48(5-6), 1401-1411, doei:10.1007/s00382-016-
3148-x.

Whan, K. et al., 2015: Impact of soil moisture on extreme maximum.temperatures in Europe. Weather and Climate
Extremes, 9, 57-67, doi:10.1016/j.wace.2015.05.001.

Widmann, M., H. Goosse, G. van der Schrier, R. Schnur, and J. Barkmeijer, 2010: Using data assimilation to study
extratropical Northern Hemisphere climate over the last-millennium:Climate of the Past, 6(5), 627-644,
doi:10.5194/cp-6-627-2010.

Widmann, M. et al., 2019: Validation of spatial variability in downscaling results from the VALUE perfect predictor
experiment. International Journal of Climatology, 39, joc.6024, doi:10.1002/joc.6024.

Wielicki, B.A. et al., 2013: Achieving climate change absolute accuracy in orbit. Bulletin of the American
Meteorological Society, 94(10),1519-1539, doi:10.4175/bams-d-12-00149.1.

Wilby, R.L. and S. Dessai, 2010: Robust adaptation to climate change. Weather, 65(7), 180—185, doi:10.1002/wea.543.

Wilby, R.L. and D. Yu, 2013: Rainfall and temperature-estimation for a data sparse region. Hydrology and Earth
System Sciences, 17(10), 3937-3955, doi: 10.5194/hess-17-3937-2013.

Wilcke, R.A.L and L. Bérring; 2016: Selecting regional climate scenarios for impact modelling studies. Environmental
Modelling & Software; 78, 191-201, doi:10.1016/1.envsoft.2016.01.002.

Wilcox, L.J., E.J. Highwood, and N.J. Dunstone, 2013: The influence of anthropogenic aerosol on multi-decadal
variations of historical global climate. Environmental Research Letters, 8, 024033, doi:10.1088/1748-
9326/8/2/024033.

Wilcox, L.J. et al.,; 2020: Accelerated increases in global and Asian summer monsoon precipitation from future aerosol
reductions. Atmospheric Chemistry and Physics, 20(20), 11955-11977, doi:10.5194/acp-20-11955-2020.

Wildschut, D, 2017>The need for citizen science in the transition to a sustainable peer-to-peer-society. Futures, 91,
46-52, doi:10.1016/j.fitures.2016.11.010.

Wilks, D.S., 2016: “The Stippling:Shows Statistically Significant Grid Points”: How Research Results are Routinely
Overstated and Overinterpreted, and What to Do about It. Bulletin of the American Meteorological Society,
97(12), 22632273, doi:10.1175/bams-d-15-00267.1.

Willems, P. and M. Vrac,2011: Statistical precipitation downscaling for small-scale hydrological impact investigations
of climate change. Journal of Hydrology, 402(3—4), 193-205, doi:10.1016/j.jhydrol.2011.02.030.

Williams;A.P. et ali, 2015: Contribution of anthropogenic warming to California drought during 2012-2014.
Geophysical Research Letters, 42(16), 6819—6828, doi:10.1002/2015¢1064924.

Williams, A.P: et al., 2020: Large contribution from anthropogenic warming to an emerging North American
megadrought. Science, 368(6488), 314-318, doi:10.1126/science.aaz9600.

Williams, C.N., M.J. Menne, and P.W. Thorne, 2012: Benchmarking the performance of pairwise homogenization of
surface temperatures in the United States. Journal of Geophysical Research: Atmospheres, 117, D05116,
doi:10.1029/2011jd016761.

Williams, K.D. et al., 2018: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations.
Journal of Advances in Modeling Earth Systems, 10(2), 357-380, doi:10.1002/2017ms001115.

Willmott, C.J. and K. Matsuura, 1995: Smart Interpolation of Annually Averaged Air Temperature in the United States.
Journal of Applied Meteorology, 34(12), 2577-2586, doi:10.1175/1520-0450(1995)034<2577:si0aaa>2.0.co:2.

Wills, R.C., T. Schneider, J.M. Wallace, D.S. Battisti, and D.L. Hartmann, 2018: Disentangling Global Warming,

Do Not Cite, Quote or Distribute 10-191 Total pages: 228


https://dx.doi.org/10.1029/2018gl079220
https://dx.doi.org/10.1029/2019jd030635
https://dx.doi.org/10.1029/2019jc015083
https://dx.doi.org/10.5194/cp-9-2347-2013
https://dx.doi.org/10.1007/978-3-319-92288-1
https://dx.doi.org/10.1007/978-3-319-92288-1
https://dx.doi.org/10.1002/2017jd026756
https://dx.doi.org/10.5194/acp-18-12461-2018
https://dx.doi.org/10.1080/13241583.2010.11465370
https://dx.doi.org/10.1175/jcli-d-12-00839.1
https://dx.doi.org/10.1175/jcli-d-12-00839.1
https://dx.doi.org/10.1007/s00382-016-3148-x
https://dx.doi.org/10.1007/s00382-016-3148-x
https://dx.doi.org/10.1016/j.wace.2015.05.001
https://dx.doi.org/10.5194/cp-6-627-2010
https://dx.doi.org/10.1002/joc.6024
https://dx.doi.org/10.1175/bams-d-12-00149.1
https://dx.doi.org/10.1002/wea.543
https://dx.doi.org/10.5194/hess-17-3937-2013
https://dx.doi.org/10.1016/j.envsoft.2016.01.002
https://dx.doi.org/10.1088/1748-9326/8/2/024033
https://dx.doi.org/10.1088/1748-9326/8/2/024033
https://dx.doi.org/10.5194/acp-20-11955-2020
https://dx.doi.org/10.1016/j.futures.2016.11.010
https://dx.doi.org/10.1175/bams-d-15-00267.1
https://dx.doi.org/10.1016/j.jhydrol.2011.02.030
https://dx.doi.org/10.1002/2015gl064924
https://dx.doi.org/10.1126/science.aaz9600
https://dx.doi.org/10.1029/2011jd016761
https://dx.doi.org/10.1002/2017ms001115
https://dx.doi.org/10.1175/1520-0450(1995)034%3c2577:sioaaa%3e2.0.co;2

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Multidecadal Variability, and El Nifio in Pacific Temperatures. Geophysical Research Letters, 45(5), 2487—
2496, doi:10.1002/2017g1076327.

Wills, R.C.J., K.C. Armour, D.S. Battisti, and D.L. Hartmann, 2019: Ocean—Atmosphere Dynamical Coupling
Fundamental to the Atlantic Multidecadal Oscillation. Journal of Climate, 32(1), 251-272, doi: 10.1175/jcli-d-
18-0269.1.

Wills, R.C.J., D.S. Battisti, K.C. Armour, T. Schneider, and C. Deser, 2020: Pattern Recognition Methods to Separate
Forced Responses from Internal Variability in Climate Model Ensembles and Observations. Journal of
Climate, 33(20), 8693-8719, doi:10.1175/jcli-d-19-0855.1.

Willyard, C., M. Scudellari, and L. Nordling, 2018: How three research groups are tearing down the ivory tower.
Nature, 562(7725), 24-28, doi:10.1038/d41586-018-06858-4.

Winter, K.J.-P.M., S. Kotlarski, S.C. Scherrer, and C. Schér, 2017: The Alpine snow-albedo feedback in regional
climate models. Climate Dynamics, 48(3—4), 1109-1124, doi:10.1007/s00382-016-3130-7.

WMO, 2017a: Challenges in the Transition from Conventional to Automatic Meteorological Observing Networks for
Long-term Climate Records. WMO-No. 1202, World Meteorological Organization (WMO), Geneva,
Switzerland, 20 pp.

WMO, 2017b: WMO Guidelines on Generating a Defined Set of National Climate Monitoring Products 2017. WMO-
No. 1204, World Meteorological Organization (WMO), Geneva, Switzerland, 21 pp.

WMO, 2019: Guide to the WMO Integrated Global Observing System 2019. WMO-No. 1165, WorldMeteorological
Organization (WMO), Geneva, Switzerland, 81 pp.

Wolski, P., 2018: How severe is Cape Town’s “Day Zero” drought? Significance; 15(2), 24-27,.doi:10.1111/j.1740-
9713.2018.01127.x.

Wolski, P., S. Conradie, C. Jack, and M. Tadross, 2021: Spatio-temporal patterns of rainfall trends and the 2015-2017
drought over the winter rainfall region of South Africa. Infernational Journalof Climatology, 41(S1),
doi:10.1002/joc.6768.

Woodhouse, C.A. and G.T. Pederson, 2018: Investigating Runoff Efficiency in Upper Colorado River Streamflow Over
Past Centuries. Water Resources Research, 54(1);:286-300, doi:10.1002/2017wr021663.

Woodhouse, C.A., D.M. Meko, G.M. MacDonald, D.W. Stahle;-and E.R. Cook, 2010:°A 1,200-year perspective of 21st
century drought in southwestern North America. Proceedings of the National Academy of Sciences, 107(50),
21283-21288, doi:10.1073/pnas.0911197107.

Woodhouse, C.A., G.T. Pederson, K. Morino, S.A. McAfee, and G.J. McCabe, 2016: Increasing influence of air
temperature on upper Colorado River streamflow. Geophysical Research Letters, 43(5), 2174-2181,
doi:10.1002/2015¢1067613.

Woods, C. and R. Caballero, 2016: The Role of Moist Intrusions in Winter Arctic Warming and Sea Ice Decline.
Journal of Climate, 29(12), 4473-4485, doi: 104175/jcli-d-15-0773.1.

Woollings, T., B. Harvey, and G. Masato, 2014: Arctic warming, atmospheric blocking and cold European winters in
CMIP5 models. Environmental Research’ Letters, 9(1), 014002, doi:10.1088/1748-9326/9/1/014002.
Woollings, T. et al., 2018: Blocking and its Response to Climate Change. Current Climate Change Reports, 4(3), 287—

300, doi:10.1007/s40641<018-0108-z.

Wright, D.M., D.J. Posselt, and A.L. Steiner, 2013: Sensitivity of Lake-Effect Snowfall to Lake Ice Cover and
Temperature in the'Great Lakes Region. Monthly Weather Review, 141(2), 670—689, doi:10.1175/mwr-d-12-
00038.1.

Wu, G.X. etal,;, 2016:Advances in studying interactions between aerosols and monsoon in China. Science China Earth
Sciences, 59(1), 1-16, doi: 10.1007/s11430-015-5198-z.

Wu, J., J. Zha, and D. Zhao, 2017: Evaluating the effects of land use and cover change on the decrease of surface wind
speed over China inrecent 30 years using a statistical downscaling method. Climate Dynamics, 48(1-2), 131—
149, doi:104007/s00382-016-3065-z.

Wu, Y. and L.M. Polvani; 2017: Recent Trends in Extreme Precipitation and Temperature over Southeastern South
America: The Dominant Role of Stratospheric Ozone Depletion in the CESM Large Ensemble. Journal of
Climate, 30(16), 6433-6441, doi:10.1175/jcli-d-17-0124.1.

Wu, Z. and:N.E. Huang, 2009: Ensemble empirical mode decomposition: a noise-assisted data analysis method.
Advances in Adaptive Data Analysis, 01(01), 1-41, doi:10.1142/s1793536909000047.

Wulder, M.A. et al., 2016: The global Landsat archive: Status, consolidation, and direction. Remote Sensing of
Environment, 185, 271-283, doi:10.1016/j.rse.2015.11.032.

Xavier, A.C., C.W. King, and B.R. Scanlon, 2016: Daily gridded meteorological variables in Brazil (1980-2013).
International Journal of Climatology, 36(6), 2644—2659, doi:10.1002/joc.4518.

Xie, P. and P.A. Arkin, 1997: Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations,
Satellite Estimates, and Numerical Model Outputs. Bulletin of the American Meteorological Society, 78(11),
2539-2558, doi:10.1175/1520-0477(1997)078<2539:gpayma>2.0.co:2.

Xie, S. etal., 2010: CLOUDS AND MORE: ARM Climate Modeling Best Estimate Data. Bulletin of the American
Meteorological Society, 91(1), 13-20, doi: 10.1175/2009bams2891.1.

Xie, S.-P. et al., 2015: Towards predictive understanding of regional climate change. Nature Climate Change, 5, 921,

Do Not Cite, Quote or Distribute 10-192 Total pages: 228


https://dx.doi.org/10.1002/2017gl076327
https://dx.doi.org/10.1175/jcli-d-18-0269.1
https://dx.doi.org/10.1175/jcli-d-18-0269.1
https://dx.doi.org/10.1175/jcli-d-19-0855.1
https://dx.doi.org/10.1038/d41586-018-06858-4
https://dx.doi.org/10.1007/s00382-016-3130-7
https://dx.doi.org/10.1111/j.1740-9713.2018.01127.x
https://dx.doi.org/10.1111/j.1740-9713.2018.01127.x
https://dx.doi.org/10.1002/joc.6768
https://dx.doi.org/10.1002/2017wr021663
https://dx.doi.org/10.1073/pnas.0911197107
https://dx.doi.org/10.1002/2015gl067613
https://dx.doi.org/10.1175/jcli-d-15-0773.1
https://dx.doi.org/10.1088/1748-9326/9/1/014002
https://dx.doi.org/10.1007/s40641-018-0108-z
https://dx.doi.org/10.1175/mwr-d-12-00038.1
https://dx.doi.org/10.1175/mwr-d-12-00038.1
https://dx.doi.org/10.1007/s11430-015-5198-z
https://dx.doi.org/10.1007/s00382-016-3065-z
https://dx.doi.org/10.1175/jcli-d-17-0124.1
https://dx.doi.org/10.1142/s1793536909000047
https://dx.doi.org/10.1016/j.rse.2015.11.032
https://dx.doi.org/10.1002/joc.4518
https://dx.doi.org/10.1175/1520-0477(1997)078%3c2539:gpayma%3e2.0.co;2
https://dx.doi.org/10.1175/2009bams2891.1

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

doi:10.1038/nclimate2689.

Xin, X., T. Wu, J. Zhang, J. Yao, and Y. Fang, 2020: Comparison of CMIP6 and CMIPS5 simulations of precipitation in
China and the East Asian summer monsoon. International Journal of Climatology, 40(15), 6423—-6440,
doi:10.1002/joc.6590.

Xu, W. et al., 2013: Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme
temperature indices. Journal of Geophysical Research: Atmospheres, 118(17), 9708-9720,
doi:10.1002/jgrd.50791.

Xu, Y., V. Ramanathan, and W.M. Washington, 2016: Observed high-altitude warming and snow cover retreat over
Tibet and the Himalayas enhanced by black carbon aerosols. Atmospheric Chemistry and Physics, 16(3),
1303-1315, doi:10.5194/acp-16-1303-2016.

Xu, Y., X. Gao, Y. Shi, and Z. Botao, 2015: Detection and attribution analysis of annual mean temperature changes in
China. Climate Research, 63(1), 61-71, doi:10.3354/cr01283.

Xue, Y., Z. Janjic, J. Dudhia, R. Vasic, and F. De Sales, 2014: A review on regional dynamical downscaling in
intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmospheric
Research, 147-148, 68—85, doi:10.1016/j.atmosres.2014.05.001.

Yadav, R.R. et al., 2017: Recent Wetting and Glacier Expansion in the Northwest Himalaya and Karakoram. Scientific
Reports, 7(1), 6139, doi:10.1038/s41598-017-06388-5.

Yaduvanshi, A., M. Zaroug, R. Bendapudi, and M. New, 2019: Impacts of 1.5°C-and 2°C global warming on regional
rainfall and temperature change across India. Environmental Research-Communications, 1(12), 125002,
doi:10.1088/2515-7620/abdee?.

Yamada, T.J., M.-I. Lee, M. Kanamitsu, and H. Kanamaru, 2012: Diurnal‘Characteristics of Rainfall over the
Contiguous United States and Northern Mexico in the Dynamically Downscaled Reanalysis Dataset (US10).
Journal of Hydrometeorology, 13(3), 1142—1148, doi:10.1175/jhm-d-11-01211.

Yan, L., Z. Liu, G. Chen, J.E. Kutzbach, and X. Liu, 2016: Mechanisms of elevation-dependent warming over the
Tibetan plateau in quadrupled CO2 experiments. Climatic Change, 135(3—4), 509-519, doi:10.1007/s10584-
016-1599-z.

Yan, Z., Z. Li, Q. 1i, and P. Jones, 2010: Effects of site change and urbanisation in the Beijing temperature series 1977—
2006. International Journal of Climatology;30(8), 1226—1234,.doi:10.1002/joc.1971.

Yang, K. et al., 2007: Auto-calibration System Developed to Assimilate AMSR-E Data into a Land Surface Model for
Estimating Soil Moisture and the Surface Energy Budget. Journal-of the Meteorological Society of Japan,
85A, 229-242, doi:10.2151/jms].85a.229.

Yang, P. and T.L. Ng, 2019: Fast Bayesian Regression Kriging Method for Real-Time Merging of Radar, Rain Gauge,
and Crowdsourced Rainfall Data. Water Resources Research, 55(4), 3194-3214, doi:10.1029/2018wr023857.

Yang, X.-Y., X. Yuan, and M. Ting; 2016: Dynamical Link between the Barents—Kara Sea Ice and the Arctic
Oscillation. Journal of Climate, 29(14), 5103—-5122, doi:10.1175/jcli-d-15-0669.1.

Yang, Z. et al., 2017: Merging high-resolution satellite-based precipitation fields and point-scale rain gauge
measurements-A case study.n Chile. Journal of Geophysical Research: Atmospheres, 122(10), 52675284,
doi:10.1002/2016jd026177.

Yano, J.-I. et al., 2018: Scientific Challenges of Convective-Scale Numerical Weather Prediction. Bulletin of the
American Meteorological Society, 99(4), 699-710, doi:10.1175/bams-d-17-0125.1.

Yao, T. et al., 2012a: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature
Climate Change, 2(9), 663—667, doi:10.1038/nclimate580.

Yao, T. et al., 2012b: Third Pole Environment (TPE). Environmental Development, 3, 52—64,
doi:10.1016/j.envdev.2012.04.002.

Yettella, V. and M.R. England, 2018: The Role of Internal Variability in Twenty-First-Century Projections of the
Seasonal Cyele of Northern Hemisphere Surface Temperature. Journal of Geophysical Research:
Atmospheres, 123(23), doi:10.1029/20181d029066.

Yokoi, S. et al., 2017: Diurnal cycle of precipitation observed in the western coastal area of Sumatra Island: Offshore
preconditioning by gravity waves. Monthly Weather Review, 145(9), 3745-3761, doi:10.1175/mwr-d-16-
04681

Yokoyama,C:; Y.N. Takayabu, O. Arakawa, and T. Ose, 2019: A Study on Future Projections of Precipitation
Characteristics around Japan in Early Summer Combining GPM DPR Observation and CMIP5 Large-Scale
Environments. Journal of Climate, 32(16), 5251-5274, doi: 10.1175/jcli-d-18-0656.1.

You, Q. et al., 2020: Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives.
Earth-Science Reviews, 210(2005), 103349, doi:10.1016/j.earscirev.2020.103349.

You, Q.-L. et al., 2017: An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH)
region. Advances in Climate Change Research, 8(3), 141-147, doi:10.1016/j.accre.2017.04.001.

Zakey, A.S., F. Solmon, and F. Giorgi, 2006: Implementation and testing of a desert dust module in a regional climate
model. Atmospheric Chemistry and Physics, 6(12), 4687-4704, doi:10.5194/acp-6-4687-2006.

Zambri, B., A.N. LeGrande, A. Robock, and J. Slawinska, 2017: Northern Hemisphere winter warming and summer
monsoon reduction after volcanic eruptions over the last millennium. Journal of Geophysical Research:

Do Not Cite, Quote or Distribute 10-193 Total pages: 228


https://dx.doi.org/10.1038/nclimate2689
https://dx.doi.org/10.1002/joc.6590
https://dx.doi.org/10.1002/jgrd.50791
https://dx.doi.org/10.5194/acp-16-1303-2016
https://dx.doi.org/10.3354/cr01283
https://dx.doi.org/10.1016/j.atmosres.2014.05.001
https://dx.doi.org/10.1038/s41598-017-06388-5
https://dx.doi.org/10.1088/2515-7620/ab4ee2
https://dx.doi.org/10.1175/jhm-d-11-0121.1
https://dx.doi.org/10.1007/s10584-016-1599-z
https://dx.doi.org/10.1007/s10584-016-1599-z
https://dx.doi.org/10.1002/joc.1971
https://dx.doi.org/10.2151/jmsj.85a.229
https://dx.doi.org/10.1029/2018wr023857
https://dx.doi.org/10.1175/jcli-d-15-0669.1
https://dx.doi.org/10.1002/2016jd026177
https://dx.doi.org/10.1175/bams-d-17-0125.1
https://dx.doi.org/10.1038/nclimate1580
https://dx.doi.org/10.1016/j.envdev.2012.04.002
https://dx.doi.org/10.1029/2018jd029066
https://dx.doi.org/10.1175/mwr-d-16-0468.1
https://dx.doi.org/10.1175/mwr-d-16-0468.1
https://dx.doi.org/10.1175/jcli-d-18-0656.1
https://dx.doi.org/10.1016/j.earscirev.2020.103349
https://dx.doi.org/10.1016/j.accre.2017.04.001
https://dx.doi.org/10.5194/acp-6-4687-2006

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Atmospheres, 122(15), 7971-7989, doi:10.1002/2017jd026728.

Zampieri, M. et al., 2009: Hot European Summers and the Role of Soil Moisture in the Propagation of Mediterranean
Drought. Journal of Climate, 22(18), 4747-4758, doi:10.1175/2009icli2568.1.

Zamrane, Z., I. Turki, B. Laignel, G. Mah¢, and N.-E. Laftouhi, 2016: Characterization of the Interannual Variability of
Precipitation and Streamflow in Tensift and Ksob Basins (Morocco) and Links with the NAO. Atmosphere,
7(6), 84, doi:10.3390/atmos7060084.

Zanchettin, D. et al., 2013: Delayed winter warming: A robust decadal response to strong tropical volcanic eruptions?
Geophysical Research Letters, 40(1), 204-209, doi:10.1029/2012g1054403.

Zanchettin, D. et al., 2016: The Model Intercomparison Project on the climatic response to Volcanic forcing (VoIMIP):
experimental design and forcing input data for CMIP6. Geoscientific Model Development, 9(8), 2701-2719,
doi:10.5194/gmd-9-2701-2016.

Zanchettin, D. et al., 2019: Clarifying the Relative Role of Forcing Uncertainties and Initial-Condition Unknowns in
Spreading the Climate Response to Volcanic Eruptions. Geophysical Research Letters, 46(3), 1602—1611,
doi:10.1029/2018¢1081018.

Zandler, H., I. Haag, and C. Samimi, 2019: Evaluation needs and temporal performance differences of gridded
precipitation products in peripheral mountain regions. Scientific Reports, 9(1);15118, doi:10.1038/s41598-
019-51666-z.

Ziangl, G., 2004: A reexamination of the valley wind system in the Alpine Inn Valley with numerical simulations.
Meteorology and Atmospheric Physics, 87(4), 241-256, doi:10.1007/s00703-003-0056-5:

Zanna, L., P.G.L. Porta Mana, J. Anstey, T. David, and T. Bolton, 2017: Scale-aware deterministic and stochastic
parametrizations of eddy-mean flow interaction. Ocean Modelling; 111, 66-80,
do0i:10.1016/j.0cemod.2017.01.004.

Zanna, L. et al., 2019: Uncertainty and scale interactions in ocean enisembles: From seasonal forecasts to multidecadal
climate predictions. Quarterly Journal of the Royal Meteorological Society, 145(S1),160-175,
doi:10.1002/qj.3397.

Zappa, G., 2019: Regional Climate Impacts of Future Changes in the Mid-Latitude Atmospheric Circulation: a
Storyline View. Current Climate Change Reports, 5(4);358-371, doi:10.1007/s40641-019-00146-7.

Zappa, G. and T.G. Shepherd, 2017: Storylines of Atmospheric Circulation Change for European Regional Climate
Impact Assessment. Journal of Climate, 30(16), 6561-6577, doi:10.1175/jcli-d-16-0807.1.

Zappa, G., V. Lucarini, and A. Navarra, 2011: Baroclinic/Stationary Wavesin Aquaplanet Models. Journal of the
Atmospheric Sciences, 68(5), 1023-1040, doi: 10.1175/2011jas3573.1.

Zappa, G., F. Pithan, and T.G. Shepherd,2018: Multimodel Evidence for an Atmospheric Circulation Response to
Arctic Sea Ice Loss in the CMIPS5 Future Projections. Geophysical Research Letters, 45(2), 1011-1019,
doi:10.1002/2017g1076096.

Zappa, G., P. Ceppi, and T.G. Shepherd, 2020: Time-evolving sea-surface warming patterns modulate the climate
change response of subtropical precipitation over land. Proceedings of the National Academy of Sciences,
doi:10.1073/pnas. 1911015 147.

Zeng, Z. et al., 2015: Regional air pollution brightening reverses the greenhouse gases induced warming-elevation
relationship. Geophysical Research Letters, 42(11), 4563—-4572, doi:10.1002/2015¢1064410.

Zerenner, T., V. Venema, PrFriederichs, and C. Simmer, 2016: Downscaling near-surface atmospheric fields with
multi-objective Genetic Programming. Environmental Modelling & Software, 84, 85-98,
doi:20.1016/4«€nvsoft.2016.06.009.

Zhai, P., B. Zhou, and Y. Chen, 2018:A'Review of Climate Change Attribution Studies. Journal of Meteorological
Research, 32(5), 671692, doi:10.1007/s13351-018-8041-6.

Zhan, Y.-J. et al., 2017: Changes.in extreme precipitation events over the Hindu Kush Himalayan region during 1961—
2012. Advances in Climate Change Research, 8(3), 166—175, doi:10.1016/j.accre.2017.08.002.

Zhang, C., Y. Wang, K. 'Hamilton, and A. Lauer, 2016: Dynamical downscaling of the climate for the Hawaiian islands.
Part II: Projection for the late twenty-first century. Journal of Climate, 29, 8333-8354, doi: 10.1175/jcli-d-16-
0038.1.

Zhang, G:Ji; M Cai; and A. Hu, 2013: Energy consumption and the unexplained winter warming over northern Asia
and North America. Nature Climate Change, 3(5), 466—470, doi:10.1038/nclimate1803.

Zhang, H. and'T.L. Delworth, 2018: Robustness of anthropogenically forced decadal precipitation changes projected for
the 21st century. Nature Communications, 9(1), 1150, doi:10.1038/s41467-018-03611-3.

Zhang, H., B. Xie, and Z. Wang, 2018: Effective Radiative Forcing and Climate Response to Short-Lived Climate
Pollutants Under Different Scenarios. Earth’s Future, 6(6), 857-866, doi:10.1029/2018ef000832.

Zhang, H. et al., 2016: Detection, Attribution, and Projection of Regional Rainfall Changes on (Multi-) Decadal Time
Scales: A Focus on Southeastern South America. Journal of Climate, 29(23), 8515-8534, doi:10.1175/jcli-d-
16-0287.1.

Zhang, J., F. Wang, K.B. Tokarska, and Z. Yang, 2020: Multiple possibilities for future precipitation changes in Asia
under the Paris Agreement. International Journal of Climatology, 40(11), 4888-4902, doi:10.1002/joc.6495.

Zhang, K. et al., 2014: Technical Note: On the use of nudging for aerosol—climate model intercomparison studies.

Do Not Cite, Quote or Distribute 10-194 Total pages: 228


https://dx.doi.org/10.1002/2017jd026728
https://dx.doi.org/10.1175/2009jcli2568.1
https://dx.doi.org/10.3390/atmos7060084
https://dx.doi.org/10.1029/2012gl054403
https://dx.doi.org/10.5194/gmd-9-2701-2016
https://dx.doi.org/10.1029/2018gl081018
https://dx.doi.org/10.1038/s41598-019-51666-z
https://dx.doi.org/10.1038/s41598-019-51666-z
https://dx.doi.org/10.1007/s00703-003-0056-5
https://dx.doi.org/10.1016/j.ocemod.2017.01.004
https://dx.doi.org/10.1002/qj.3397
https://dx.doi.org/10.1007/s40641-019-00146-7
https://dx.doi.org/10.1175/jcli-d-16-0807.1
https://dx.doi.org/10.1175/2011jas3573.1
https://dx.doi.org/10.1002/2017gl076096
https://dx.doi.org/10.1073/pnas.1911015117
https://dx.doi.org/10.1002/2015gl064410
https://dx.doi.org/10.1016/j.envsoft.2016.06.009
https://dx.doi.org/10.1007/s13351-018-8041-6
https://dx.doi.org/10.1016/j.accre.2017.08.002
https://dx.doi.org/10.1175/jcli-d-16-0038.1
https://dx.doi.org/10.1175/jcli-d-16-0038.1
https://dx.doi.org/10.1038/nclimate1803
https://dx.doi.org/10.1038/s41467-018-03611-3
https://dx.doi.org/10.1029/2018ef000832
https://dx.doi.org/10.1175/jcli-d-16-0287.1
https://dx.doi.org/10.1175/jcli-d-16-0287.1
https://dx.doi.org/10.1002/joc.6495

— e —
AP RORLOOOINNND W~

Final Government Distribution Chapter 10 IPCC AR6 WQI

Atmospheric Chemistry and Physics, 14(16), 8631-8645, doi:10.5194/acp-14-8631-2014.

Zhang, R., C. Sun, J. Zhu, R. Zhang, and W. Li, 2020: Increased European heat waves in recent decades in response to
shrinking Arctic sea ice and Eurasian snow cover. npj Climate and Atmospheric Science, 3(1), 7,
doi:10.1038/s41612-020-0110-8.

Zhang, T., M.P. Hoerling, J. Perlwitz, and T. Xu, 2016: Forced Atmospheric Teleconnections during 1979-2014.
Journal of Climate, 29(7), 2333-2357, doi: 10.1175/jcli-d-15-0226.1.

Zhang, W., T. Zhou, L. Zhang, and L. Zou, 2019: Future Intensification of the Water Cycle with an Enhanced Annual
Cycle over Global Land Monsoon Regions. Journal of Climate, 32(17), 5437-5452, doi:10.1175/jcli-d-18-
0628.1.

Zhang, X. et al., 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data.
Wiley Interdisciplinary Reviews: Climate Change, 2(6), 851-870, doi:10.1002/wcc.147.

Zhang, Y. et al., 2018: Black carbon and mineral dust in snow cover on the Tibetan Plateau. The Cryosphere, 12(2),
413-431, do0i:10.5194/tc-12-413-2018.

Zhao, A.D., D.S. Stevenson, and M.A. Bollasina, 2019: The role of anthropogenic aerosols in future precipitation
extremes over the Asian Monsoon Region. Climate Dynamics, 52(9-10), 6257—6278,.d0i:10.1007/s00382-
018-4514-7.

Zhao, L., X. Lee, R.B. Smith, and K. Oleson, 2014: Strong contributions of local background climate tourban heat
islands. Nature, 511(7508), 216219, doi:10.1038/nature13462.

Zhao, L. et al., 2021: Global multi-model projections of local urban climates. Nature.Climate Change,
doi:10.1038/s41558-020-00958-8.

Zheng, F. et al., 2018: Crowdsourcing Methods for Data Collection in Geophysics:State of the Art, Issues, and Future
Directions. Reviews of Geophysics, 56(4), 698—740, doi:10.1029/2018rg000616.

Zhou, C. and K. Wang, 2016: Land surface temperature over global desetts: Means, variability, and trends. Journal of
Geophysical Research: Atmospheres, 121(24), 14,344-14,357, doi:10.1002/2016]d025410.

Zhou, S., P. Huang, G. Huang, and K. Hu, 2019: Leading source and constraint on the systematic spread of the changes
in East Asian and western North Pacific summer.monsoon. Environmental Research Letters, 14(12), 124059,
doi:10.1088/1748-9326/ab547¢c.

Zhou, S. et al., 2021: Soil moisture—atmosphere feedbacks mitigate declining water-availability in drylands. Nature
Climate Change, 11(1), 38-44, do0i:10.1038/s41558-020-00945-2.

Zhou, T., F. Song, K.J. Ha, and X. Chen, 2017:'Decadal changes of East Asian summer monsoon: Contributions of
internal variability and external forcing.In: The Global- Monsoon System: Research and Forecasting (3rd
Edition) [Chang, C.-P., H.-C. Kuo, N.-C. Lau, R.H.Johnson, B. Wang, and M.C. Wheeler (eds.)]. World
Scientific, pp. 327-336, doi: 10.1142/9789813200913 0026.

Zhou, T. et al., 2016: GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project.
Geoscientific Model Development, 9(10), 3589-3604, doi:10.5194/gmd-9-3589-2016.

Zhu, P. et al., 2012: A limited‘areazmodel (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale
convective event. Journal of Geophysical Research: Atmospheres, 117(D11), n/a—n/a,
doi:10.1029/20117d016447.

Zhuo, Z., C. Gao, and Y. Pan, 2014: Proxy evidence for China’s monsoon precipitation response to volcanic aerosols
over the past seven-centuries. Journal of Geophysical Research: Atmospheres, 119(11), 6638—6652,
doi:10.1002/2013jd021064".

Zittis, G. and P. Hadjinicolaou, 2017: The effect of radiation parameterization schemes on surface temperature in
regional climate simulations'over the MENA-CORDEX domain. International Journal of Climatology, 37(10),
38473862, doi: 10.1002/j0c.4959.

Zittis, G., A. Bruggeman, C..Camera, P. Hadjinicolaou, and J. Lelieveld, 2017: The added value of convection
permitting simulations of extreme precipitation events over the eastern Mediterranean. Atmospheric Research,
191, 20-33, doi:10.1016/j.atmosres.2017.03.002.

Zittis, G., P. Hadjinicolaou, M. Klangidou, Y. Proestos, and J. Lelieveld, 2019: A multi-model, multi-scenario, and
multi-domain analysis of regional climate projections for the Mediterranean. Regional Environmental Change,
19(8), 26212635, doi:10.1007/s10113-019-01565-w.

Ziv, B.; U. Dayan, Y. Kushnir, C. Roth, and Y. Enzel, 2006: Regional and global atmospheric patterns governing
rainfall in the southern Levant. International Journal of Climatology, 26(1), 55—73, doi:10.1002/joc.1238.

Zou, L. and T. Zhou, 2016a: A regional ocean—atmosphere coupled model developed for CORDEX East Asia:
assessment of Asian summer monsoon simulation. Climate Dynamics, 47(12), 3627-3640,
doi:10.1007/s00382-016-3032-8.

Zou, L. and T. Zhou, 2016b: Future summer precipitation changes over CORDEX-East Asia domain downscaled by a
regional ocean-atmosphere coupled model: A comparison to the stand-alone RCM. Journal of Geophysical
Research: Atmospheres, 121(6), 2691-2704, doi:10.1002/2015jd024519.

Zou, L. and T. Zhou, 2017: Dynamical downscaling of East Asian winter monsoon changes with a regional ocean-
atmosphere coupled model. Quarterly Journal of the Royal Meteorological Society, 143(706), 2245-2259,

doi:10.1002/qj.3082.

Do Not Cite, Quote or Distribute 10-195 Total pages: 228


https://dx.doi.org/10.5194/acp-14-8631-2014
https://dx.doi.org/10.1038/s41612-020-0110-8
https://dx.doi.org/10.1175/jcli-d-15-0226.1
https://dx.doi.org/10.1175/jcli-d-18-0628.1
https://dx.doi.org/10.1175/jcli-d-18-0628.1
https://dx.doi.org/10.1002/wcc.147
https://dx.doi.org/10.5194/tc-12-413-2018
https://dx.doi.org/10.1007/s00382-018-4514-7
https://dx.doi.org/10.1007/s00382-018-4514-7
https://dx.doi.org/10.1038/nature13462
https://dx.doi.org/10.1038/s41558-020-00958-8
https://dx.doi.org/10.1029/2018rg000616
https://dx.doi.org/10.1002/2016jd025410
https://dx.doi.org/10.1088/1748-9326/ab547c
https://dx.doi.org/10.1038/s41558-020-00945-z
https://dx.doi.org/10.1142/9789813200913_0026
https://dx.doi.org/10.5194/gmd-9-3589-2016
https://dx.doi.org/10.1029/2011jd016447
https://dx.doi.org/10.1002/2013jd021061
https://dx.doi.org/10.1002/joc.4959
https://dx.doi.org/10.1016/j.atmosres.2017.03.002
https://dx.doi.org/10.1007/s10113-019-01565-w
https://dx.doi.org/10.1002/joc.1238
https://dx.doi.org/10.1007/s00382-016-3032-8
https://dx.doi.org/10.1002/2015jd024519
https://dx.doi.org/10.1002/qj.3082

— e e e e e
O NP WNORLOOVOIDNWNPSA W —

Final Government Distribution Chapter 10 IPCC AR6 WQI

Zou, L., T. Zhou, and D. Peng, 2016: Dynamical downscaling of historical climate over CORDEX East Asia domain: A
comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations. Journal of
Geophysical Research: Atmospheres, 121(4), 1442—1458, doi:10.1002/2015jd023912.

Zou, L., T. Zhou, F. Qiao, and W. Zhao, 2017: Development of a regional ocean—atmosphere-wave coupled model and
its preliminary evaluation over the CORDEX East Asia domain. International Journal of Climatology, 37(12),
4478-4485, doi:10.1002/joc.5067.

Zscheischler, J., E.M. Fischer, and S. Lange, 2019: The effect of univariate bias adjustment on multivariate hazard
estimates. Earth System Dynamics, 10(1), 31-43, doi:10.5194/esd-10-31-2019.

Zscheischler, J. et al., 2018: Future climate risk from compound events. Nature Climate Change, 8(6), 469—477,
doi:10.1038/s41558-018-0156-3.

Zubler, E.M. et al., 2011: Simulation of dimming and brightening in Europe from 1958 to 2001 using a regional climate
model. Journal of Geophysical Research, 116(D18), D18205, doi:10.1029/2010jd015396.

Zulkafli, Z. et al., 2014: A Comparative Performance Analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for
Hydrological Applications over Andean—Amazon River Basins. Journal of Hydrometeorology, 15(2), 581~
592, doi:10.1175/jhm-d-13-094.1.

Zuo, M., T. Zhou, and W. Man, 2019: Hydroclimate Responses over Global Monsoon Regions Following Volcanie
Eruptions at Different Latitudes. Journal of Climate, 32(14), 43674385, doi:10.1175/jcli-d-18-0707.1.

Do Not Cite, Quote or Distribute 10-196 Total pages: 228


https://dx.doi.org/10.1002/2015jd023912
https://dx.doi.org/10.1002/joc.5067
https://dx.doi.org/10.5194/esd-10-31-2019
https://dx.doi.org/10.1038/s41558-018-0156-3
https://dx.doi.org/10.1029/2010jd015396
https://dx.doi.org/10.1175/jhm-d-13-094.1
https://dx.doi.org/10.1175/jcli-d-18-0707.1

—_
SO0 IN N B~ WN —

11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Final Government Distribution

Figures

|
]

N\

Distillation process (framed by context and values)

—dlP — — — — Nl — = = = = = e e % e —— e S s

/7
N
!

Multiple lines of evidence

Chapter 10

Climate information construction

Sources of climate information

Observational Model Litterature Process Climate
data data understanding  experts
9
@
Synthesis

@ vith uhcertainty assessment @

Climate
Information

distilled from the climate
sources and provided in

the form of:
Data ° Graphics
with uncertainty estimates .
Storylines

of plausible futures

User-prientediclimate information construction

o
User elements ® - : °® User elements
@® Co-producing climate @
information

o for user action following a co-exploration ()
approach and introducing user elements

User-relevant
climate
information
The output format is

flexible, determined
by the user needs

IPCC AR6 WGI

Figure 10.1: Diagram of the processes leading to the construction of regional climate information (green) and
user-relevant regional climate information (orange). The chapter sections and the other chapters of the
report involved in each step are indicated in rectangles. WGII stands for Working Group I1.
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Figure 10.2: Visual abstract of the chapter, with its key elements.
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Figure 10.3: Schematic diagram to display interacting spatial and temporal scales relevant to regional climate
change information. Adapted from Orlanski (1975). The processes included in the different models and
model components considered in Chapter 10'are indicated as a function of these scales.
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Figure 10.4: Schematic diagram that illustrates the treatment of regional climate change in the different parts of the
WGI report and how the chapters relate to each other.
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Warming of the Arctic
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Arctic Sea Ice LoSS
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Potential impacts of a warming Arctic on Northern mid-latitude climate
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Cross-Chapter Box 10.1, Figure1: Mechanisms of potential influences of recent and future Arctic warming on
mid-latitude climate and variability. Mechanisms are different for winter and
summer with different associated influences on mid-latitudes. The mechanisms
involve changes in the polar vortex, storm tracks, planetary waves and jet stream.
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(a) western Mediterranean June to August mean surface air temperature (1986-2005)
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(b) western Mediterranean June to August mean precipitation (1986-2005)
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2 Figure 10.6: Illustration of some model biases in simulations performed with dynamical models. (a) Top row:
3 Mean summer (June to August) near-surface air temperature (in °C) over the Mediterranean area in
4 Berkeley Earth and respective mean bias for five multi-model historical experiments with GCMs
5 (CMIP5, CMIP6 and HighResMIP) and RCMs (CORDEX EUR-44 and EUR-11) averaged between
6 1986-2005. Bottom row: Box-and-whisker plot shows spread of the 20 annual mean summer surface air
7 temperature averaged over land areas in the western Mediterranean region (33°N—45°N, 10°W-10°E,
8 black quadrilateral in the first panel of the top row) for a set of references and single model runs of the
9 five multi-model experiments (one simulation per model) between 1986-2005. Additional observation
10 and reanalysis data included in the bottom row are CRU TS, HadCRUT4, HadCRUTS5, E-OBS, WFDES,
11 ERAS, ERA-Interim, CERA-20C, JRA-25, JRA-55, CFSR, MERRA2, MERRA. Berkeley Earth is
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shown in the first box to the left. (b) as (a) but for precipitation rate (mm day!) and showing CRU TS in
the first panel of the top row. Biases of the five multi-model experiments are shown with respect to CRU
TS. Additional observation and reanalysis data included in the bottom row are GPCC, REGEN, E-OBS,
GHCN, WFDES, CFSR, ERA-Interim, ERAS, JRA-55, MERRA2, MERRA. CRU TS is shown in the
first box to the left. All box-and-whisker plots show the median (line), and the interquartile range (IQR =
Q3-Q1, box), with top whiskers extending to the last data less than Q3+1.5%IQR and analogously for
bottom whiskers. Data outside the whiskers range appear as flyers (circles). Further details on data
sources and processing are available in the chapter data table (Table 10.SM.11).
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Figure 10.7: Northern-Hemisphere blocking performance in historical coupled simulations for different multi-

model.ensembles. CMIP5/6: CMIP5 and CMIP6 DECK historical simulations, 1950-2005, LC/HC:
Low/High-resolution simulations from the PRIMAVERA project, 1950-2014 following the hist-1950
experiment of the CMIP6 HighResMIP Protocol, (Haarsma et al., 2016). (top) blocking frequency, i.e.
fraction of blocked days; (middle) root-mean-squared error in blocking frequency; (bottom) 90th
percentile of blocking persistence, aggregated over an Atlantic domain (left, ATL: 90°W-90°E, 50°—
75°N) and-a Pacific domain (right, PAC: 90°E-270°E, 50°~75°N). Results are for boreal winter (DJF) and
summer (JJA). Box-and-whisker plots for CMIP5/6 follow the methodology used in Figure 10.6 and
show median (line), mean (triangle), and interquartile range (box) across 29 models for each ensemble.
The reference estimate (ERA, asterisk) is from a 50-year reanalysis dataset that merged ERA-40 (1962—
1978) and ERA-Interim (1979-2011) reanalyses. An estimate of internal variability for each metric (IV)
is shown as a box-and-whisker plot over the asterisk and is obtained from a single-model ensemble
(ECMWEF-IFS high-resolution hist-1950 experiment, 6 x 65 years). For details on the methodology see
(Schiemann et al., 2020). Further details on data sources and processing are available in the chapter data
table (Table 10.SM.11).
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Figure 10.8: Hourly accumulated precipitation profiles (mm hour™) around the eye of Typhoon Haiyan.

Represented by (a) GSMaP (Global Satellite Mapping of Precipitation) data (multi-satellite observation),
(b) Guiuan radar (PAGASA); (c) Weekly Ensemble Prediction System (WEPS) data (JMA) (60 km), (d)
NHRCM (20 km), (¢) NHREM (5 km), and (f) WRF (1 km) models. Panels (b), (d)-(f) are adapted from
Takayabu et al. (2015), CCBY3.0 https://creativecommons.org/licenses/by/3.0. Further details on data
sources and processing are available in the'chapter data table (Table 10.SM.11).
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(@) GCMs (b) RCMs
48°N
46°N
44°N o 4
Jf/ )
. —r

I | I | [ I | I |
6°E 8°E 10°E 12°E 14°E 16°E 6°E 8°E 10°E 12°E 14°E 16°E
incomplete or
-30 -20 -10 0 10 20 30 [:::::] missing data

%

Figure 10.9: Projected changes in summer (June to August) precipitation (in percent with respect to the mean
precipitation) over the Alps between the periods 2070-2099 and-1975-2004. (a) Mean of four GCMs
regridded to a common 1.32°x1.32° grid resolution; (b) mean of six RCMs driven with these GCMs. The
grey isolines show elevation at 200 m intervals of the underlying model data: Further details on data

sources and processing are available in the chapter data table (Table 10.SM.11). Adapted from Giorgi et
al. (2016).
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(a) MPI-ESM trends (2015-2070)
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Figure 10.10 ed changes in austral summer (December to February) mean precipitation

. South America; grid boxes close to Sdo Paulo and Buenos Aires) with a five-point

ing mean applied (a variant on the binomial filter with weights [1-3-4-3-1]). The brown
ines correspond to the ensemble member with weakest (strongest) 55-year trend and the grey

o0 all remaining ensemble members. Box-and-whisker plots show the distribution of 55-year linear
trends across all ensemble members, and follow the methodology used in Figure 10.6. Trends are
estimated using ordinary least squares. Further details on data sources and processing are available in
the chapter data table (Table 10.SM.11).
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(@) MAM temperature 1981-2000
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Cross-Chapter Box 10.2, Figure 1: Boreal spring (March to May) daily mean surface air temperature in the
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Sierra Nevada region in California. (a) Present climate (1981-2000 average, in
°C) in the GFDL-CM3 AOGCM, interpolated to 8 km (left), GCM bias adjusted
(using quantile mapping) to observations at 8 km resolution (middle) and WRF
RCM at 3 km horizontal resolution (right). (b) Climate change signal (2081-2100
average minus 1981-2000 average according to RCP8.5, in °C) in the AOGCM
(left), the bias adjusted AOGCM (middle) and the RCM (right). Further details on
data sources and processing are available in the chapter data table (Table
10.SM.11). Adapted from Maraun et al. (2017b).
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(a) Sahel precipitation anomalies (CRU TS)
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Figure 10.11: Attribution of historic precipitation change.in the Sahelian West African monsoon during June
to September. (a) Time series of CRU.TS precipitation anomalies.(mm day+, baseline 1955-1984) in
the Sahel box (10°N-20°N, 20°W=30°E) indicated in panel (b) applying the same low-pass filter as that
used in Figure 10.10. The two periods used for diffetence diagnostics are shown in grey columns. (b)
Precipitation change (mm day™) in"CRU TS data for 1980-1990 minus 1950—1960 periods. (c)
Precipitation difference (mm day!) between 1:5x and'0.2x historical aerosol emissions scaling factors
averaged over 1955-1984 and five ensemble members of HadGEM3 experiments after Shonk et al.
(2020). (d) Sahel precipitation;anomaly time series (mm day !, baseline 1955-1984) in CMIP6 for 49
historical simulations with all forcings (red); and thirteen for each of greenhouse gas-only forcing (light
blue) and aerosol-only forcing (grey), with a thirteen-point weighted running mean applied (a variant on
the binomial filter with weights[1-6-19-42-71-96-106-96-71-42-19-6-1]). The CMIP6 subsample of all
forcings matching the individual foreing simulations is also shown (pink). (e) Precipitation linear trend
(% per decade) for (left) decline (1955-1984) and (right) recovery periods (1985-2014) for ensemble
means and.individual CMIP6 historical experiments (including single-forcing) as in panel (d) plus 34
CMIPS models (darkblue). Box-and-whisker plots show the trend distribution of the three coupled and
the d4PDF atmosphere-only SMILEs used throughout Chapter 10 and follow the methodology used in
Figure 10.6. The two black crosses represent observational estimates from GPCC and CRU TS. Trends
are estimated using ordinary least-squares regression. Further details on data sources and processing are
available in the chapter data table (Table 10.SM.11).
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(@) Mechanisms contributing to the southeastern South America summer wetting (1951-2014)
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Figure 10.12: Southeastern South America positive mean precipitation trend and its drivers during 1951-2014.
(a) Mechanisms that have been suggested to contribute to southeastern South America summer wetting.
(b) Time series of austral summer (December to February) precipitation anomalies (%, baseline 1995—
2014) over the south-eastern South American region (26.25°S-38.75°S, 56.25°W-66.25°W), black
quadrilateral in the first map of panel (c). Black, brown and green lines show low-pass filtered time
series for CRU TS, and the members with driest and wettest trends of the MPI-ESM SMILE (between
1951-2014), respectively. The filter is the same as the one used in Figure 10.10. (c) Mean austral
summer precipitation spatial linear 1951-2014 trends (mm per month and decade) from CRU TS and
GPCC. Trends are estimated using ordinary least squares regression. (d) Distribution of precipitation
1951-2014 trends over southeastern South America from GPCC and CRU TS (black crosses), CMIP6
all-forcing historical (red circles) and MIROC6, CSIRO-Mk3-6-0, MPI-ESM and d4PDF SMILEs (grey
box-and-whisker plots). Grey squares refer to ensemble mean trends of their respective SMILE and the
red circle refers to the CMIP6 multi-model mean. Box-and-whisker plots follow the methodology used
in Figure 10.6. Further details on data sources and processing are available in the chapter data table
(Table 10.SM.11).
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(a) Annual mean precipitation trend over North America (1983-2014)
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Figure 10.13: Attribution of the southwestern North America precipitation decline during the 1983-2014
period. (a) Water year(October to September) precipitation spatial linear trend (in percent per decade)
over North America from:1983 to 2014. Trends are estimated using ordinary least squares. Top row:
Observed trends from CRU TS, REGEN, GPCC, and the Global Precipitation Climatology Project
(GPCP). Middle row: Driest, mean and wettest trends (relative to the region enclosed in the black
quadrilateral, bottom row) from the 100 members of the MPI-ESM coupled SMILE. Bottom row:
Driest, mean and wettest trends relative to the above region from the 100 members of the d4PDF
atmosphere-only SMILE. (b) Time series of water year precipitation anomalies (%, baseline 1971—
2000) over the above south-western North America region for CRU TS (grey bar charts). Black, brown
and green lines show low-pass filtered time series for CRU TS, driest and wettest members of the
d4PDF SMILE, respectively. The filter is the same as the one used in Figure 10.10. (c) Distribution of
south-western region-averaged water-year precipitation 1983-2014 trends (in percent per decade) for
observations (CRU TS, REGEN, GPCC and GPCP, black crosses), CMIP6 all-forcing historical
simulations (red circles), the MIROC6, CSIRO-Mk3-6-0, MPI-ESM and d4PDF SMILEs (grey box-
and-whisker plots). Grey squares refer to ensemble mean trends of their respective SMILE and the red
circle refers to the CMIP6 multi-model mean. Box-and-whisker plots follow the methodology used in
Figure 10.6. Further details on data sources and processing are available in the chapter data table (Table
10.SM.11).
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Robustness and scalability of anthropogenic signals at regional scale

Spatial patterns of change at increasing global warming levels since pre-industrial period (1850-1900)
(All patterns are CMIP6 multi-model mean changes and have been scaled to a 1°C global warming level)
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Figure 10.14: Robustness and scalability of anthropogenic signals at regional scale. (a) Spatial patterns of Europe
and Africa summer (June to August) surface air temperature change (in °C °C™") from the CMIP6 multi-
model mean (45 models, one member per model, historical simulations and scenario SSP5-8.5) at
different global warming levels (GWLs) and the end-21st century scaling pattern estimated from the
multi-model mean difference between 2081-2100 and the pre-industrial period (1850—-1900) divided by
the corresponding global mean warming. The scale of all GWL patterns has been adjusted to a global
mean warming of 1°C (for example, the resulting 3°C spatial pattern has been divided by three). The
scales’of the GWL patternshave to be multiplied by their threshold values to obtain the actual simulated
warming. The metrics'shown in the bottom left corner of the GWL pattern plots indicate the spatial

pattern correlation and the root-mean square difference between the GWL patterns and the scaling

pattern. The number:in bold just above the metrics gives the number of used CMIP6 models (out of 45)

that have reached the GWL threshold. Areas with robust change (at least 66% of the models have a

signal to noise ratio’'greater than one and 80% or more of the models agree on the sign of the change)
are coloured with no pattern overlaid (Cross-Chapter Box Atlas.1). Areas with a significant change (at

least 66%. of the models have a signal to noise ratio greater than one) and lack of model agreement
(meaning that less than 80% of the models agree on the sign of the change) are marked by cross-

hatching. Areas with no change or no robust change (less than 66% of the models have a signal to noise
ratio greater than one) are marked by negatively sloped hatching. (b) Same as (a) but for North, Central

and South America annual mean precipitation relative change (percent °C-'). The baseline for

precipitation climatology is 1850—1900. Further details on data sources and processing are available in

the chapter data table (Table 10.SM.11).
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Future emergence of anthropogenic signal at regional scale
Percentage area of ARG land regions with robust annual mean precipitation change
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Figure 10.15: Future emergence of anthropogenic signal at regional scale. (a) Percentage area of land regions with

robust annual mean precipitation change-as'a function of increasing GWLs. Robustness of the
precipitation change'is first estimated at each grid-point followed by the estimation of the AR6 region
area with robust changes. For each CMIP6 model considered (45 models, one member per model,
historical simulations and scenario SSP5-8.5), the annual mean precipitation change is based on the
difference between a20-year average centred on the GWL crossing year and the mean precipitation
during the pre-industrial period (1850—-1900) taken as a reference. Robustness of the change is acted
when at least 66% of the models (30 out of 45) have a signal to noise ratio greater than one and at least
80% of them (36-0ut of 45) agree on the sign of change. The signal to noise ratio is estimated for each
model from the ratio between the change and the standard deviation of non-overlapping 20-year means
of the corresponding pre-industrial simulation (scaled by square root of 2 times 1.645). (b) Time
evolution of the percentage area of land region with robust annual mean precipitation change for five
ARG land regions. Thick solid lines represent precipitation changes based on the same CMIP6 ensemble
as in (a): Thin solid, dotted and dashed lines represent changes based on the three coupled SMILEs used
in Chapter 10, illustrating the influence of internal variability on the emergence of robust change. The
change is estimated from the difference between all consecutive 20-year periods from 1900-1919 up to
2081-2100 and the pre-industrial period. The line colour indicates the sign of the robust change given
by the multi-model mean (CMIP6) or ensemble mean (SMILE) change: brown (decreasing
precipitation) and dark green (increasing precipitation). Further details on data sources and processing
are available in the chapter data table (Table 10.SM.11).
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Figure 10.16: Illustration of how using different sources can result in different and potentially conflicting
information. Change in‘daily precipitation (20712100 RCP8.5 relative to 1981-2010) over West
Africa as simulated bysan ensemble of GCM-driven RCMs. (a) Change in daily precipitation (mm) for
April to September, as mean of 17 CORDEX models (Dosio et al., 2020) (b-e) Time-latitude diagram of
daily precipitation change for four selected RCM-GCM combinations. For each month and latitude,
model results arezonally averaged between 10°W—10°E (blue box in a). Different GCM-RCM
combinations can produce substantially different and contrasting results, when the same RCM is used to
downscale different GCMs'(b, d), or the same GCM is downscaled by different RCMs (d, e).
GCMI1=IPSL-IPSL-CM5A, GCM2=ICHEC-EC-EARTH, RCM1=RCA4, RCM2=REMO02009.
Adaptedfrom (Dosioe-et al., 2020), CCBY4.0 https://creativecommons.org/licenses/by/4.0/. Further
details on data sources and processing are available in the chapter data table (Table 10.SM.11).
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(a) Event storyline
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Box 10.2, Figure 1: Schematic of two types of physical-climate storylines with a particular climate impact of
concern (red). The storylines are defined by specified elements (dark blue). Variable
elements (light blue) are simulated conditionalion the specified elements. The white
elements are ‘blocked’ since their state does.not need to be known to determine the light
blue elements. Other types-of storylines ¢ould be defined by specifying other elements
(e.g., storylines of different climate sensitivities or different representative concentration
pathways). (a) Event storyline, where the particular dynamical conditions during the
event as wellas the regional warming are specified and control the hazard arising from
the event. (b).Dynamical storyline, where the global warming level and remote drivers
are specified and control the long-term changes in atmospheric dynamics and regional
warming: In both storylines, the impact is also conditioned on specified exposure and
vulnerability. Adapted from Shepherd (2019).
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The confidence is obtained from

Extreme heat ~1 74 expert judgment, derived from
specific questions
> Do observed trends agree?
r Are they significant?
CIDs are first ) | ( Do they cover the same period and region?
/ Vg
defined by one or - = Are past trends attributable to human activities?
a set of indices (0 )bservations X A ttribution ( _ ends and observed events
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Relevant climate (U)nderstanding processes e ojections agree?
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collected for each \—4 changes i dosgotiangrdepg °" 3
region and indicator 00 Interplay with other drivers (SLCFS, land use...) \ a'sound physical explanation of the processes

and evaluated Connection between human drivers and for past and future'ghanges
physical change

Document each line of evidence in a Traceback Matrix
the Technical Su
DOD The matrix acts as a roadm (Table T8.5)
© —r to the sections of the 7

Region 1 ¢ % >< contammg the assessment
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In the Summary for
Policymakers

a distillation process of multiple lines of evidence
, attribution of trends or events, climate model
understanding.
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Figure 10.18: Historicalland projected rainfall and Southern Annular Mode (SAM) over the Cape Town region.

(a) Yearly accumulation of rainfall (in mm) obtained by summing monthly totals between January and
December, with the drought years 2015 (orange), 2016 (red), and 2017 (purple) highlighted in colour.
(b)Monthly rainfall for the drought years (in colour) compared with the 1981-2014 climatology (grey
line). Rainfall in‘(a) and (b) is the average of 20 quality controlled and gap-filled series from stations
within the Cape Town region (31°S-35°S, 18°W-20.5°W). (c) Time series of the SAM index and of
historical and projected rainfall anomalies (%, baseline 1980-2010) over the Cape Town region.
Observed.data presented as 30-year running means of relative total annual rainfall over the Cape Town
tegion for station-based data (black line, average of 20 stations as in (a) and (b)), and gridded data
(average of all grid cells falling within 31°S-35°S, 18°W-20.5°W): GPCC (green line) and CRU TS
(olive line). Model ensemble results presented as the 90"-percentile range of relative 30-year running
means of rainfall and the SAM index from 35 CMIP5 (blue shading) and 35 CMIP6 (red shading)
simulations, 6 CORDEX simulations driven by 1 to 10 GCMs (cyan shading), 6 CCAM (purple
shading) simulations from individual ensemble members, and 50 members from the MIROC6 SMILE
simulations (orange shading). The light blue, dark red and yellow lines correspond to NCEP/NCAR,
ERA20C and 20CR, respectively. The SAM index is calculated from sea-level pressure reanalysis and
GCM data as per Gong and Wang (1999) and averaged over the aforementioned bounding box. CMIPS5,
CORDEX and CCAM projections use RCP8.5, and CMIP6 and MIROC6 SMILE projections use
SSP5-8.5. (d) Historical and projected trends in rainfall over the Cape Town region and in the SAM
index. Observations and gridded data processed as in (c). Trends calculated as Theil-Sen trend with
block-bootstrap confidence interval estimate. Markers show median trend, bars 95% confidence
interval. GCMs in each CMIP group were ordered according to the magnitude of trend in rainfall, and
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the same order is maintained in panels showing trends in the SAM. Further details on data sources and
processing are available in the chapter data table (Table 10.SM.11).

Do Not Cite, Quote or Distribute 10-220 Total pages: 228



—
SO0 WN KW~

Final Government Distribution

(a) Rain-gauge density

Chapter 10

(b) CMIP6 MME mean bias
1985-2010

(c) Precipitation trends

IPCC AR6 WGI

APHRO-MA V1101 (JJAS 1956)

] e
sea-masked ey
data .

CRU TS (1950-2000)

e

CMIP6 SSP5-8.5 (2015-2100)

¥

34 " @

CMIP6 hist-aer (1950-2000)

0

CMIP6 hist-GHG (1950-2000)

0.0 25 5.0 75

10.0

=02 -01 00 0.1 0.2 03

% mm day~* mm day~* décade~*
(d) Precipitation anomalies over central India ¢ long term
Baseline period is 1995-2014 prechitation change
60 rical* (N= = L F 60
—— CRUTS —— CMIP6 historical* (N=13) —— CMIP6 (N=34) CMIP6 SSP5-85 (N=34)
— GPCC —— CMIP6 hist-aer (N=13) —— CMIP5 (N=41) ey
503 — REGEN ——  CMIP6 hist-GHG (N=13) CMIP5RERES (N=41) Fs0
—— APHRO-MA
40 F 40
304 F30
& 204 L 20
104 F10
0 Fo
-104 [ F-10
N 1 I 5
e Past period Future period E 20
T T T T T T T
1960 1980 2000 2020 2040 2060 2080 2100
(e) Precipiation trend distribution over central India (f) Spread of precipitation trends (3 min - 3 max)
Past period (1950-2000) Future period (2015-2100) MPI-ESM (2016-2045)
XXX 0BS
\Y% Ensemble means @i O
QO EEEmOOQ. CMIPS5 higforicalkRCP8.5  CIDOEEXDD @ O
Q@I O O CMIP6 historical-SSP5:8.5 ~ OCEIEED@D @) o
O@XREO CMIP6 hist@rical*
AR VR CMIPEthist-GHG
A LN 2 CMIPS hist-aer
HIIH MIROCB HIH
oo L H CSIRO-MK3-6-0 T
HiHo MPI-ESM e
L d4PDF
I T T T T T T T 1 I T T T T T T T 1
-0 -15/ -100-5 0 5 10 15 20 -10 -5 0 5 0 15 20 25 30 -12 -08 -04 00 04 08 12

Trend (% decade ™)

Trend (% decade ™)

mm day~? decade~!

Figure 10:19: Changes in the Indian summer monsoon in the historical and future periods. (a) Observational
uncertainty demonstrated by a snapshot of rain-gauge density (% of 0.05°-subgrid boxes containing at
least one gauge) in the APHRO-MA 0.5° daily precipitation dataset for June to September 1956. (b)
Multi-model ensemble (MME)-mean bias of 34 CMIP6 models for June to September precipitation
(mm day-1) compared to CRU TS observations for the 1985-2010 period. (c) Maps of rainfall trends
(mm day-1 per decade) in CRU TS observations (1950-2000), the CMIP6 MME-mean of SSP5-8.5
future projections for 2015-2100 (34 models), the CMIP6 hist-GHG and hist-aer runs, both measured
over 1950 to 2000. (d) Low-pass filtered time series of June to September precipitation anomalies (%,
relative to 1995-2014 baseline) averaged over the central India box shown in panel (b). The averaging
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region (20°N-28°N, 76°E-87°E) follows other works (Bollasina, Ming, & Ramaswamy, 2011; Huang et
al., 2020; Jin & Wang, 2017). Time series are shown for CRU TS (brown), GPCC (dark blue), REGEN
(green), APHRO-MA (light brown) observational estimates and the IITM all-India rainfall product
(light blue) in comparison with the CMIP6 mean of 13 models for the all-forcings historical (pink) the
aerosol-only (hist-aer, grey) and greenhouse gas-only (hist-GHG, blue). Dark red and blue lines show
low-pass filtered MME-mean change in the CMIP6 historical/SSP5-8.5 (34 models) and CMIP5
historical/ RCP8.5 (41 models) experiments for future projections to 2100. The filter is the same as that
used in Figure 10.11(d). To the right, box-and-whisker plots show the 2081-2100 change averaged over
the CMIP5 (blue) and CMIP6 (dark red) ensembles. Note that some models exceed the plotting range
(CMIPS: GISS-E2-R-CC, GISS-E2-R & IPSL-CMS5B-LRI and CMIP6: CanESMS5-CanOE, CanESM5
& GISS-E2-1-G). (e) Precipitation linear trend (% per decade) over central India for historical 1950-
2000 (left) and future 2015-2100 (right) periods in Indian monsoon rainfall in observed estimates
(black crosses), the CMIPS5 historical-RCP8.5 simulations (blue), the CMIP6 ensemble (dark red) for
historical all-forcings experiment and SSP5-8.5 future projection, the CMIP6 hist-GHG (light blue
triangles), hist-aer (grey triangles) and historical all-forcings (same sample as.for hist-aer and hist-
GHG, pink circles). Ensemble means are also shown. Box-and-whisker-plots show the trend distribution
of the three coupled and the d4PDF atmosphere-only (for past period only) SMILEs used throughout
Chapter 10 and follow the methodology used in Figure 10.6. (f) Example spread of trends (mm day!
per decade) out to the near term (2016-2045) in RCP8.5 SMILE. experiments of the MPI-ESM model,
showing the difference between the three driest and three wettest-trends among ensemble members over
central India. All trends are estimated using ordinary least=squares regression: Further details on data
sources and processing are available in the chapter data table (Table 10.SM.11).
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thermodynamic effects
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(a) Mechanisms of enhanced Mediterranean warming (b) Station locations (c) Observational grid point difference
Warm Atlantic Ocean Reduction of Surface drying Lapse rate difference = == CRUIENE
S —— Berkeley Eath —— GISTEMP
aerosols Over land stronger @]
Enhanced warming than over sea k=
sensible =3
heatfiux ~ FReduced Sea |\ Land o= 54
latent =]
[=)]
heat flux o
(] . ] —
Dynamic and X ey e EE S
£ X
=
o

| o — T
// Less dimming and  Reduction of latent heat flux and v Donat et al. 2014 ‘ E-OBS -0.2 0.0 0.2
increase of solar radiation increase of sensible heat flux Temperature Trend difference to E-OBS

(°C decade™1)

(d) Observed trend (BerkeleyEarth)  (e) Mediterranean temperature anomalies (f) Temperature trend distribution
Past period (1960-2014) Baseline period is 1995-2014 Past period (1960-2014)
—— CMIP5 HighResMIP P 0OBS
191 == CMIP6 —— CORDEX EUR-44 [COTIOD Ensemble means
— comexetR PR S I
— 0O O @uiighResMIP
0 @OO@DOOCD 4, CORDEX EUR-44
& QDI OONCORDEX EUR-11
——— MIROC6
-1 —— Berkeley Earth - CSIROM’\éﬁE'g,a
> — CRUTS o—ill—® d4PDF
N O —— -
—— HadCRUTS U L
0.0 o.1ug.§ecadg.§lo.4 05 -zl,,.‘,....,,,,,,‘H.,..a..l,, &> v 06
1960 1970 1980 1990 2000 2010 Trend (°C decade ™)

(9) Ensemble mean trend differences with respect to the observed trend ((d), 1960-2014)

lighResMIP

I I I

Obs. outside
-m model range

I missingand sea- B TR T ST ; dg.ci% B 505

Figure 10.20: Aspects of Mediterranean summer warming. (a) Mechanisms and feedbacks involved in enhanced
Mediterranean summer warming. (b) Locations of observing stations in E-OBS and (Donat et al., 2014).
(c) Differences in temperature observational data sets (NOAA Global Temp, Berkeley Earth,
CRUTEM4 and GISTEMP) with respect to E-OBS for the land points between the Mediterranean Sea
and 46°N and'west of 30°E. (d) Observed summer (June to August) surface air temperature linear trends
(°C decade!) over the 1960-2014 period from Berkeley Earth. (e) Time series of area averaged
Meditertanean (25°N—50°N, 10°W—40°E) land point summer temperature anomalies (°C, baseline
1995-2014). Dark blue, brown and turquoise lines show low-pass filtered temperature of Berkeley
Earth, CRU'TS and HadCRUTS, respectively. Orange, light blue and green lines show low-pass filtered
ensemble means of HighResMIP (4 members), CORDEX EUR-44 (20 members) and CORDEX EUR-
11 (37'members). Blue and red lines and shadings show low-pass filtered ensemble means and standard
deviations of CMIP5 (41 members) and CMIP6 (36 members). The filter is the same as the one used in
Figure 10.10.(f) Distribution of 1960-2014 Mediterranean summer temperature linear trends (°C
decade™!) for.observations (black crosses), CORDEX EUR-11 (green circles), CORDEX EUR-44 (light
blue circles), HighResMIP (orange circles), CMIP6 (red circles), CMIPS (blue circles) and selected
SMILEs (grey box-and-whisker plots, MIROC6, CSIRO-Mk3-6-0, MPI-ESM and d4PDF). Ensemble
means are also shown. CMIP6 models showing a very high ECS (Box. 4.1) have been marked with a
black cross. All trends are estimated using ordinary least-squares and box-and-whisker plots follow the
methodology used in Figure 10.6. (g) Ensemble mean differences with respect to the Berkeley Earth
linear trend for 1960-2014 (°C decade™!) of CMIP5, CMIP6, HighResMIP, CORDEX EUR-44 and
CORDEX EUR-11. Further details on data sources and processing are available in the chapter data table
(Table 10.SM.11).
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(a) Projected Mediterranean temperature anomalies (b) Temperature trend distribution
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Figure 10.21:

°C decade™? data global temperature (°C)
Projected Mediterranean summer warming. (a) Time series of area averaged Mediterranean (25°N—
50°N, 10°W—40°E) land point summer surface air temperature anomalies (°C, baseline period is 1995—
2014). Orange, light blue and green lines show low-pass filtered ensemble means of HighResMIP
(highres-future, 4 members),  CORDEX EUR-44 (RCP8.5, 20 members) and CORDEX EUR-11
(RCP8.5, 37 members). Blue and dark red linés and shadings show low-pass filtered ensemble means
and standard deviations of CMIP5 (RCP8.5, 41 members) and CMIP6 (SSP5-8.5, 36 members). The
filter is the same as.the one used in Figure.10.10. The box-and-whisker plots show long term (until
2081-2100) temperature changes of different CMIP6 scenarios with respect to the baseline period
(SSP1-2.6 in dark blue; SSP2-4.5.n yellow, SSP3-7.0 in red, SSP5-8.5 in dark red). (b) Distribution of
2015-2050 Mediterranean summmer temperature linear trends (°C decade™) for CORDEX EUR-11
(RCPS8.5, green circles), CORDEX EUR-44 (RCP8.5, light blue circles), HighResMIP (highres-future,
orange circles), CMIP6 (SSP5-8.5, dark red circles), CMIP5 (RCPS.5, blue circles) and selected
SMILEs (grey box-and-whisker plots, MIROC6, CSIRO-Mk3-6-0 and MPI-ESM). Ensemble means are
also shown. CMIP6 models showing a very high ECS (Box 4.1) have been marked with a black cross.
All trends are estimated using ordinary least-squares and box-and-whisker plots follow the methodology
used-in Figure'10.6. (¢) Projections of ensemble mean 2015-2050 linear trends (°C decade™!) of CMIP5
(RCP8.5), CORDEX.EUR-44 (RCP8.5), CORDEX EUR-11 (RCPS8.5), CMIP6 (SSP5-8.5) and
HighResMIP (highres-future). All trends are estimated using ordinary least-squares. (d) Projected
Mediterranean summer warming in comparison to global annual mean warming of CMIPS5 (dashed
lines, RCP2.6 in dark blue, RCP4.5 in light blue, RCP6.0 in orange and RCP8.5 in red) and CMIP6
(solid lines, SSP1-2.6 in dark blue, SSP2-4.5 in yellow, SSP3-7.0 in red and SSP5-8.5 in dark red)
ensemble means. Further details on data sources and processing are available in the chapter data table
(Table 10.SM.11).
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(@) Trend in global surface air temperature (CRU TS, 1950-2018)
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Box 10.3, Figure 1: Urban warming compared to global GHG-induced warming. (a) Change in the annual mean
surface air temperature over the period 1950-2018 based on the local linear trend retrieved from
CRU TS (°C per 68years). This background warming is compared to the local warming that has
been reported during 1950-2018 in the literature from historical urbanization. The relative share
of the total warming as percentage between the urban warming and the surrounding warming is
plotted in a/circle for each city. This map has been compiled from a review study (Hamdi et al.,
2020).(b) Low-pass filtered time series of the annual mean temperature (°C) observed in the
urban station of Tokyo (red line) and the rural reference station in Choshi (blue line) in Japan.
The filter is.the same as the one used in Figure 10.10. (c) Uncertainties in the relative share of
urban warming with respect to the total warming (%) related to the use of different global
observational datasets: CRU TS (brown circles), Berkeley Earth (dark blue downward triangle),
HadCRUTS (cyan upward triangle), Cowtan Way (orange plus) and GISTEMP (purple squares).
Further details on data sources and processing are available in the chapter data table (Table
10.SM.11).
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(a) Observed trend over southern Asia and the Hindu Kush Himalaya (HKH, 1961-2014)
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Cross-Chapter Box 10.4, Figure 1: ~Historical annual-mean surface air temperature linear trend (°C per
decade) and its attribution over the Hindu Kush Himalaya (HKH) region.
(a) Observed trends from Berkeley Earth (also showing the HKH outline), CRU
TS (also showing the AR6 TIB outline, for ease of comparison to the Interactive
Atlas), APHRO-MA and JRA-55 datasets over 1961-2014. (b) Models showing
the coldest, median and warmest HKH temperature linear trends among the
CMIPG6 historical ensemble over 1961-2014. (c) Lowpass-filtered time series of
annual-mean surface air temperature anomalies (°C, baseline 1961-1980) over
the HKH region as outlined in panel (a), showing means of CMIP6 hist all-
forcings (red), and the CMIP6 hist all-forcings sample corresponding to DAMIP
experiments (pink), for hist-aer (grey) and hist-GHG (pale blue). Observed
datasets are Berkeley Earth (dark blue), CRU (brown), APHRO-MA (light
green) and JRA-55 (dark green). The filter is the same as that used in Figure
10.10. (d) Distribution of annual mean surface air temperature trends (°C per
decade) over the HKH region from 1961 to 2014 for ensemble means, the
aforementioned observed and reanalysis data (black crosses), individual
members of CMIP6 hist all-forcings (red circles), CMIP6 hist-GHG (blue
triangles), CMIP6 hist-aer (grey triangles), and box-and-whisker plots for the
SMILEs used throughout Chapter 10 (grey shading). Ensemble means are also
shown. All trends are estimated using ordinary least-squares regression and box-
and-whisker plots follow the methodology used in Figure 10.6. Further details on
data sources and processing are available in the chapter data table (Table
10.SM.11).
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FAQ10.1: How can scientists provide useful regional climate information?
In decision-making, climate information is more useful if the physical and cultural diversity across the world is considered

Historical Climate Dominant weather Storylines of
trends and simulations & climate complex, high
observations processes impact events
[ ]
Distillation
involving
scientists and
stakeholders
°®
o
LJ
]
Human health Agriculture _Water resources  Transportation Fisheries Natural Human Energy
management ecosystems habitations resources

FAQ 10.1, Figure 1: Climate information for decision makers is more useful if the physical and cultural
diversity across the world is considered. The figure illustrates schematically the broad range of
knowledge that must be blended with the diversity of users to distil information that will have
relevance and credibility. This blending or distillation should engage the values and knowledge
of both the stakeholders and the scientists. The bottom row contains examples of stakeholders’
interests and is not all-inclusive. As part of the distillation, the outcomes can advance the U.N.’s
Sustainable Development Goals, covered in part by these examples.

Do Not Cite, Quote or Distribute 10-227 Total pages: 228



O 001NN WN—

Final Government Distribution Chapter 10 IPCC AR6 WGI
FAQ 10.2: Why are cities the hotspots of global warming?
Cities are usually warmer than their surrounding areas due to
and a lack of , Such as water and vegetation.
Local effect on temperature (°C)
-3 -2 -1 0 +1 +2
. | ' | ' | ' | ' | ' |
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FAQ 10.1, Figure 2:
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Local effect on temperature (°C)

Efficiency of the various factors at warming up or cooling down neighbourhoods of
urban areas. Overall, cities tend to be warmer than their surroundings. This is called the
‘urban heat island’ effect. The hatched areas on the bars show how the strength of the warming
or cooling effects of each factor varies depending on the local climate. For example, vegetation
has a stronger cooling effect in temperate and warm climates. Further details on data sources
are available in the chapter data table (Table 10.SM.11).
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