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Abstract
We relate the exponential integrability of the conjugate function f to the size of the
gap in the essential range of f. Our main result complements a related theorem of
Zygmund.

Keywords Exponential integrability - Conjugate function - Hilbert transform - Outer
functions

Mathematics Subject Classification 42A50

1 Introduction

We denote by L? the usual Lebesgue spaces of functions on the unit circle T with norm
Il-1l,- Given f € L', let u be the Poisson integral of f and denote by i the harmonic
conjugate function of «, normalized so that i1 (0) = 0. Then i1 (z) has nontangential limit
£ () almost everywhere on T and we call f the conjugate function of f. Alternatively,
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the conjugate function f can be defined as the principal value integral

1 0
f) = lim — t
f() egbzﬂ'/; W>€CO <

for almost every 6. For further details and references, see Sect. 2.1 below.
The linear mapping f — f is referred to as the conjugation operator. If f is a
trigonometric polynomial Z a,,e”’a then f is a trigonometric polynomial of the

same degree

_‘”> f(@)dy (1.1)

N

fO) = Z —i sgn(m)ape™?,

n=—N

where —i sgn is the Fourier multiplier associated with the conjugation operator.
When 1 < p < o0, according to a famous theorem of M. Riesz, there is a constant
Cp such that

1£1l, < Collfllp

forall f € L. In addition, although f € L™ does not imply that f € L™ (see, e.g.
[4]), the Hilbert transform still has very strong boundedness properties as can be seen
in the following theorem, due to Zygmund [19].

Theorem A (Zygmund) For f € L*® with || fllec < 7/2 and . < 1, there is a
constant C), such that

1 2 .
> M < ¢y, (1.2)
T

and if f is continuous on T, then
— M < o0 (1.3)

forall ) < oo.

For the proof, see Corollary I11.2.6 of [4]. It follows that

f=f+5 llfile <7/2, €C(T) = exp(f) el (1.4)

where C(T) stands for the space of continuous functions on T.
Let E be a measurable subset of T and define

1, ze E
pE@ =@ 1= 1" T g (15)
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The Lebesgue measure of E is denoted by | E|. We note that the condition || f1|lcc <
/2 above is optimal as seen by considering an interval E = [a, b] C (0, 27) and
showing that

o 1—a
sin 5

. t—a
sin =
2 s

which is not integrable in any neighborhood of . More generally, it follows from (1.6)
and Theorem I11.2.7 of [4] that exp(%ﬁE) ¢ L! whenever E is a measurable subset
of T with0 < |E| < 2.

Notice that the conditions of (1.4) imply that if the function f is real valued and has
jumps, then the size of each jump is strictly less than 7, while the size of each jump
of 7 pE is exactly  and exp(5 0k) ¢ L' with E as above. Motivated by the study of
the Fredholm properties of Toeplitz operators, Shargorodsky [11] proved that if g is
real valued and inf R(g) > 7 /2, where R(g) stands for the essential range of g, then
exp(gpE) is not integrable. These observations lead to the question of whether

t
sin , (1.6)

‘—Hog

exp (%ﬁE(t)) = exp (— log

fel®and f>m/2ae = exp(fpr) & L. (1.7)

Our main result answers this in the affirmative. Indeed, we give an elementary proof
of the following result in Sect. 3.

Theorem 1 Suppose that f € L™ with f > 7 /2 almost everywhere and 0 < |E| <
2m. Then there is a positive constant C such that

Bl =it Fpe) > 1} = ce™ (1.8)
forall » > 0. In particular,

exp (?E) ¢ L. (1.9)

Remark 1 In the preceding theorem, the conditions on E and that f > /2 almost
everywhere are optimal—see Remark 3.

Remark 2 Notice that [11] contains the following local non-integrability result. Sup-
pose that 0 < |E| < 27 and y C T is an arc intersecting both E and T \ E in sets of
positive measure and at least one of these sets is not an arc (modulo sets of measure
zero). If g € L™ is real valued and inf R(g) > m/2, then exp(gpg) is not integrable
ony.

Notice that Theorem 1 generalizes the preceding result for y = T. However, it
remains an open problem whether our conclusion can be strengthened to that of [11]
for the other arcs y # T if we only assume that g > /2 almost everywhere.

Previously in [9,15], sufficient conditions for exponential integrability of f were
obtained in terms of the modulus of continuity of f in L”. In addition to these results
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and other intrinsic interest [4,7,18], the integrability of the exponential of conjugate
functions plays an important role in the spectral theory of Toeplitz and related operators
[10-12], scalar Riemann—Hilbert problems [13,14,17] and their applications.

2 Preliminaries

As indicated in the introduction, our approach is elementary and based on classical
results of complex analysis which are briefly discussed in this section.

2.1 Poisson Integrals

For f € L', denote by P[ f] the Poisson integral of f, that is,
1 2
Plf1z) = E/ P(0)f(0)d0  (z D), 2.1
0
where the Poisson kernel P, is defined by

i0
P.(6) = Re = te
el —z

Recall that P[ ] is harmonic in ID and if the function f is continuous at ¢/?, then

lim P[f1(z) = f(©) (2.2)

z—é!
(see Theorem 1.1.3 of [5]). To deal with discontinuities at ¢'?, define a cone I, by
Tu(@®) ={zeD:|z—e <al —|z))}

for each o < 1, and recall that a function ¢ : D — C is said to have nontangential
limit ¢*(e'?) at €'? if

lim  @(z) = ¢*("?) (2.3)

Ty (eif)z—ei?

for every @ < 1. Now, for any f € L ifu= P[f], then u* = f almost everywhere
by Fatou’s theorem.

Define
l 2 el9+Z
Xr(@) =— . 0)do D).
7@ 271/0 el@_zf() (z e D)
Then
B 1 2 ele+
w(@) +ii(x) = Xp(2) = —/ 2 1(6)do 2.4)
2 0 e’ —Z
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for z € D, where u = P[ f]and & is the harmonic conjugate function of # normalized
so that 2(0) = 0. By Fatou’s theorem and Lemma III.1.1 of [4],

X50) = f(6) +if(6) 2.5

for almost every 6. For the integral representation of f givenin (1.1), see Lemmalll.1.2
of [4]. In particular, it follows that the principal value in (1.1) exists almost everywhere.
If f € L™, then

IRe X ¢ ()] = [u(2)] < [Iflloo- (2.6)

2.2 Harmonic and Subharmonic Functions

In one of the key steps of the proof of the main theorem, we consider the Dirichlet
problem of finding a unique bounded harmonic function on a simply connected domain
£2 with prescribed boundary values.

If g is a continuous real-valued function on 952, the Dirichlet problem of finding the
bounded harmonic function u : £2 — R such that u = g on 92 can be solved using
the Poisson integral and the Riemann mapping theorem, which reduces the problem
to the well-known case of the unit disk (see, e.g., [5]).

However, in our case, since the boundary functions are discontinuous (see Lemma 1
below), the following more general result is needed.

Theorem B Let §2 be a simply connected domain and let g be a piecewise continuous
function on 952 with a finite number of discontinuities of the first kind at &1, . . . &.
Then there is at most one bounded harmonic function h on 2 such that h = g on

a2\ {51, ... &l

If such a bounded harmonic function h exists, then

inf h(¢) <h(z) < su h(Z)
¢ed2\{&1,....5} ¢ ) ;ean\{gl?,...,gk} ¢

forall z € £2.

For the proof of the preceding result, see Theorems 5 and 6 of Sect. 42 of [§].
Regarding the values of a harmonic function in a domain £2 (a nonempty open
connected set), we recall the maximum principle (Theorem 1.8 of [2]):

Theorem C Suppose $2 is a domain, u is real-valued and harmonic on §2, and u has
a maximum or a minimum in $2. Then u is constant.

Lemmas 1 and 2 below are utilized in key steps of the proof of the main result.

Lemma 1 Suppose that f € L with f > % almost everywhere. Let . > 0 and
G, ={|Rez| <m/2}U{z:|Rez|] < || flloo and Imz > A 4 1}

Birkhauser
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be the domain in Fig. 1 and put L = 0G; N{Im z > A+ 1}. Then there exists a unique
bounded harmonic function v, on G; with the boundary values

no=1 ek 2.7)
P00, 1€ 0G5\ (LU flloo + i+ DY) . '

Proof Let t be a conformal map of G, onto the unit disk . Then each straight-line
piece of the boundary G, is mapped to an arc on the circle T (see Theorem I1.3.4°
of [6]). Now consider the Poisson integral of the function that equals 1 on the arcs to
which T maps L and 0 on the complementary arcs. The composition of the Poisson
integral with t gives the desired harmonic function. Uniqueness and the bounds

0<uv(z) <1 forzeGy (2.8)

follow from Theorems B and C. O
The following characterization of subharmonic functions is also needed:

Theorem D Let u be a function on D and suppose it satisfies the following conditions:

(i) 00 <u < o0, u #E —09,
(ii) u is upper semi-continuous in D,
(iii) for each zo € D, there is an ro such that D(zo, ro) C D and

1 2 .
u(zo) < — / u(zo + re'?ydo (2.9)
2w 0

forall0 <r <ry.
Then u is subharmonic in D.
For the proof of the preceding result, see Theorem I1.13 of [16].

Lemma?2 Let A, f, G,, and vy, be as in Lemma 1 and E C T be a measurable set
with 0 < |E| < 2m. Define

2w 0
x(z>=5/0 S (foe) )0 eD)

where pg is defined in (1.5). Let $2,, = X~ 1(G,) and define H; : D — C by

U)LOX, ZE.Q)L

H(2) = {0, 2eD\ 2.

Then H,, is continuous and subharmonic with 0 < H, < 1.

Birkhauser
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—[1fllee I 1leo

—7/2 /2

Fig. 1 The open set G,

Proof First, if z € 08, N'D, then X(z) ¢ G, but X(z) € G,; NX(D),
and hence X(z) € 0G,. Further, since |[Re X(z)] < |flo and z € D,

X@ efx+iy:ilxl < flloo, y=2+1}

and so vy (X (z)) = 0 according to (2.7)). If zx — z in £2;, then, using the continuity
of v, up to the point X (z), v (X (zx)) — 0, which implies that H, is continuous on
D. That 0 < H, < 1 follows from 0 < v, < 1 (see (2.8)) and the definition of the
function H,.

The local mean value inequality in (2.9) holds for each point of £2, because H) =
v o X is harmonic in §2,, and it holds for each point of D\ §2, because H), > 0 equals
zero there. Thus, by Theorem D, the function H,, is subharmonic in D. O

3 Proof of Theorem 1

Suppose that f € L with f > 7/2 almost everywhere and 0 < |E| < 2x. Let

X@) =5 /0 o _j(pr)(e)de (zeD),

where pg is defined in (1.5). Then

X* = fpe+ifpE

almost everywhere according to (2.5).
The proof of (1.8) consists of several steps.

Step 1 Since Re X* = fpr > m/2 almost everywhere on E and Re X* < —x/2
almost everywhere on T \ E, there is a point w € D such that |Re X (w)| < 7 /2.

Step 2 Let the open set G, (see Fig. 1) and L = 0G, N {Imz > A + 1} be defined as
in Lemma 1.

Birkhauser
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Then Lemma 1 asserts that there exists a unique bounded harmonic function v, on
G with the boundary values

0.(2) = 1, zelL,
P70, 2€0G\ L UENflloo + i+ D).

Step3 Let 2, = x! (G,). Then, according to Lemma 2, the function H, : D — C
defined by

U)»OX, ZE.Q)\

M) = {0, €D\ 2,

is continuous and subharmonic with 0 < H, < 1.

Step 4 There is a C > 0, independent of A, such that
|Exl = C(vy 0 X)(w), (3.1

where E is defined by (1.8) and w is defined in Step 1. Since H, is bounded, it
trivially has a harmonic majorant, and hence, by Theorem 1.6.7 of [4],

1 27 .
H;(z) < lim — f P.(0)H) (re'?) do (3.2)
r—12m 0

for z € D. It follows from (2.5) that, for almost every 8 € [0, 27] \ E;,
[Re X*(0)| = |f(®)| > 7/2 and Im X*(0) < A.
Therefore, using the definition of H, and the properties of v;,
lim Hy(re') = v, (X*(©)) = 0.
Now, by (3.2) and Lebesgue’s dominated convergence theorem,

1 1 :
Hy(w) < —/ Pu(0)do + — Py (0) lim Hi (re'®) do
2 E; 2 [0,271\E;. r—1
2

1 2
_ —f Pu(®) x5, 6) 6 < Cf XE,(6)d8 = C|E; |,
27’[ 0 0

where the constant is independent of A.

Step 5 It is difficult to obtain the desired estimate (v, o X)(w) > C e directly.
Instead we estimate v, from below by another harmonic function g, defined on a
vertical strip, which allows us to compute g, explicitly in the next step.

Let g, be the bounded harmonic function in the strip S = {|Re z| < 7/2} with the
boundary values

Birkhauser
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I, y>A+2

T /2 +1iy) =
gi(Em/ y) 0. y<i+2.

Notice that limy_, o vo(£m/2 4 iy) = 1 (which can be verified using a conformal
map of 2y onto D). Therefore, since v is continuous, Theorem C implies that there
is a positive constant C such that

vo(Em/2 +iy) > C > Cgo(£m/2 +iy)

forall y > 2. Clearly vo(£m/2+iy) > 0 = Cgo(£m/2+iy) forall y < 2. Thus, by
Theorem B, vy(z) — Cgo(z) > Oforallz € S,andsoforA > Oandz € S,

:.(2) = vo(z — iA) = Cgo(z —id) = Cgu(z).
Consequently, by (3.1),
[E>| = C(gx o X)(w),

where the constant C is independent of A.

Step6 Lett = x +iy = X(w), so |x] < w/2 and y € R. We show that there is
a constant C > 0, independent of A, such that g, (r) > Ce™*, which completes the

proof.
. . e%iz _ e—%iz
Fiz)=tanyz=—i| ——

1. .
ele + e*le

defines a conformal mapping from S onto D with F(ib) = itanh(%b) — =i, as
b — +o00. Notice that

1—iz

F~! =2arctanz =i lo
(2) z=ilog

for z € D. Thus, using the mapping z — —iz, we see that

) 1 —tan % ) 1 +tan %
Zr—)zlogﬁz—zlog—2

maps S conformally onto itself with :I:% — (0, Foo) and (0, o0) > % Therefore,

—i(A+2)
I + tan T)

1 1 .
gn(z) =7+ —Re <_’ log —i042)
)

1 —tan
—i(A+2)
1 1 1 + tan ZT

=4+ —arg———=——.
2—i(AF2)
2 7 I — tan =—5—=

Birkhauser
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T—i(A42)
2

To evaluate g, at T = x + iy, write 7), = and notice that

1 1 1+ tan 1), 1 1
@)= -+ —ag——— = - + —argtan(t) + 7 /4)
2 7 1 —tan Ty, 2 7
1 1 sinh(y — (A 4+ 2)) 1 1 sinh(A +2 — y)
= — 4+ — arctan - = - — —arctan ———
2 7 sin(x 4+ 7/2) 2 7 cos x

using the formula argtan(a + ib) = arctan % and the fact that arctan is odd.

Observe also that the expression for g, (t) is valid in S, but not necessarily on 9.5 and
the first expression for g;,(z) is valid in S. We first established the expression for g; (z)
with the desired boundary behavior on 9.5 and then considered only the behavior inside
S, where the expressions for g; (z) and g; (t) coincide. Since arctan a = % —arctan a !
for a > 0, we have, for A +2 > y,

COS X

1
)= —arctan ————
(0 == sinh(h + 2 — )

which gives the estimate. This completes the proof of (1.8).

It remains to prove (1.9). As in Sect. 4 of Chapter I in [4], consider the distribution
function

m(x) = Ht - exp (ﬁg(z)) > x”
for A > 0. Notice that for A > 1,
m(A) = ’Elogk’

(see (1.8) for the definition of E)yg 3 ), and so by Lemma 1.4.1 in [4],

/exp(ﬁo;(e))de =/0 m(A)dAz/l | Etog | d. (3.3)

It remains to combine (1.8) with (3.3).

4 Further Remarks

In this section we provide remarks and examples related to Theorem 1. We show first
that the conditions in the theorem are optimal.

Remark 3 In Theorem 1, (i) the condition on E is optimal, and (ii) the condition that
f = m/2 almost everywhere is optimal.

Proof (i) Let E = [0,27] and f = 7w/2 on E. Then fpg = f and so trivially
e/PE e L1 by (1.3).

Birkhauser
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Further, by Corollary II1.1.8 of [7],
Bl = |t 1706 > 2| = (1 176 > 22/m)| < 10w, @)

which implies that there is no constant C for which (1.8) holds in this case.

(ii) Suppose that 7 /4 < f < w/2onaninterval I = (a, b) C (0,27)and f = /2
on [0, 2]\ I.Let E = [0, a +8]U[b — 8, 27| for some small § > 0. Then exp(f pr)
is integrable by Zygmund’s Theorem A because the gap in the essential range of f pg
is strictly less than w. Consequently, the condition is optimal for (1.9), and it must
also be optimal for (1.8) because it was used to prove (1.9). O

Remark 4 In addition to the example in the previous proof, there are functions f which
are not constant and still satisfy | E; | < e asin (4.1). Indeed, let 0 < |E| < 27 and
let f be Holder with f(0) = /2 forallf € 0E.If g = (f — n/2)pE, then it is not
difficult to see that g is Holder and hence g is Holder. Also,

Thus, by Exercise VI.18 of [4],
(o = 01 = M| = |1 1135601 > 1] S e,
which implies that |E;| = ‘{t N fpe®)] > )\}‘ < e Mgl < Ce for some

constant C. o
In fact, (0.2) of [18], when ¢ = fpg =g + %,55, implies the stronger result

Heel: W=yl >M o

hS “4.2)
I 1]
Notice that the converse is not true, however, that is, (4.2) does not imply that
Y=u+v, wucL® |v|e <m/2 4.3)

(see Wolff’s counterexample on page 52 of [18]).

Open Problem 1 In the preceding remark, when ¢ = % log | H| with H univalent and
zero free, Baernstein [3,18] posed a question of whether (4.2) implies (4.3). This seems
to be still open.

Our next example concerns outer functions from the theory of Hardy spaces. Recall
that an outer function is a function G on the unit disk which can be written in the form

1 2w it +
G(z) = a exp (Z/o :n = i 10g(p(t)dt> . @eC zeD,  (44)

where |o| = 1 and ¢ is a positive measurable function on T such that logg € L!.
Similarly to (2.4),

Birkhauser
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G(Z) — eu(Z)‘H'U(Z), z € D, (45)

where u is the Poisson integral of log ¢ and v is the harmonic conjugate function of u
so that ¢/*©@ = ¢.

Let 0 < p < oo and let f be analytic in ID. Then the function f is in the Hardy
space H? if

2 )
sup/ | f(re')|Pdt < oo.
0

r<l1

Notice that G € H? if and only if ¢ € L? (see, e.g., Sect. 1.4 of [4]). We can now
use Theorem 1 to determine when certain outer functions are not in H” as shown in
the following example.

Example 1 Given a real-valued function f in L°°, define

. 2w it
@ (z) = exp (’_/ ¢ +Zf(t)dt>, Izl < 1.
0

4w et —z

Using (4.5), it is easy to see that @y and its inverse (D;l are both outer functions.
Denote by R( f) the essential range of f as before. Let -

I C [essinf;er f(1), esssup,ct f(2)]

be an interval such that I N R(f) = @ and |I| > 27” Then @, @;1 ¢ HP.In

particular, @?1 ¢ H? if R(f) has a gap of length > 7.
To see this, notice first that (similarly to (2.5))

Elyk 1/ .
(@) (6) = exp <:F§ (Fo- zf(t))) ,

SO |(45;E1)*(t)| = eqc%f @ Since @ 7 s an outer function, it follows from Theorem 1
that @ 7, q>]71 ¢ HPif L|I| > 7.

To illustrate the effect of jumps in relation to exponential integrability (see Exam-
ple 2), the following lemma will be needed. Its proof is included for completeness
because we have not found it in the literature.

Lemma3 For0 < x < 2m, let

oo

cos nx

§x) = Z nlogn’
=2

Then

- 1 Lo Lo
g(x) = loglog e + B+ O | (loglog x) (log x) (4.6)

as x — 04, where B is a positive constant.

Birkhauser
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Proof Define B, (y) = Zzs”sy cosnx. Then, for0 < x <mand y > 2, |By(y)| <
T + 1. Therefore, integrating by parts,

% cosnx /M dBy(y)  Byi(M) _ By(N) /M B.(n)(logy +1) ,
N

= nlogn ylogy =~ MlogM NlogN y2| log y|? ’
and so
>\ COSTX T4+1 . ® logy + 1
anon_Nlo N+(; : 210g? d
—n 1108 g N y-loghy
T +1
<> =+ 4

- NlogN leogN‘

Suppose now that x < 5. Then

N 1 N cos nx N 2a72 N 1
D DL S (=)
i nlogn nzznlogn _anogn nzznlogn
Since
1 1
= log1l B+ 0(—),
k=2klogk oglogn+ b5+ (nlogn)

where B is a constant (see Exercise 8.20 of [1]), we get for x < %,

1 1
=loglogN + B+ O O (x*N?loglogN) + O [ ————
g(x) =loglogN + B + (NlogN>+ (x oglog )—I— (leogN)

as N — oo.
Choosing N = %(log % loglog %)_1/3, we obtain (4.6) as x — 0+. O

Remark 5 In the following example, for small values of | x|, we only need the following
consequence of the preceding lemma:

o0
32> Cloglog(1/1x)).

nlog
n=2

which can also be obtained using Theorem V.1.5 of [19].

Example2 Let 1y € (0,2m). For0 < § < 1 define

w/2 th—56<t<ty
g(t) =
—m/2 th<t<ty+$§

) Birkhduser
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and suppose that g is Holder continuous elsewhere. By Theorem V.1.3 of [20], the
series

h(t) = ZZ sinn(t — ty)

nlogn

converges uniformly and defines a continuous function on [0, 27 ]. It is well known
that

fz(t) _ Z cosn(t — to)’

o nlogn

which is continuous on [0, 277] \ {fp} (see Theorem 1.2.6 of [20]). Define f = g + h.
Then lim;—+ f(t) = Fm/2, so f is piecewise continuous with only one jump,
which is of size 7. We want to determine whether exp(f) is integrable. Obviously
we cannot use Zygmund’s Theorem A. Notice also that we cannot apply Theorem 1
because we do not know without further inspection whether f > /2 a.e. on (0, #p)
and f < —m/2a.e.on (t, 27).

Now, similarly to (1.6), and using the fact that g is Holder on [0, 2] \ {f0}, there
is a constant C > 0 such that

t
g(t) < —log|sin

— [
0‘+C

for 0 < ¢ < 27. To estimate / near to, notice first that Lemma 3 implies that
h(r) < —2log(log |t — o] ™")

for ¢ sufficiently close to #g. Therefore, for some constants C, we have

— 1y 1
|) exp (—210g log )
|t — 10

1 -2
1
(1og ) < Clt — 1ol (log|t — o)),
[t — o]

- B - t
el = 80 < Cexp <— log | sin

t—ty|
2

= C |sin

which is integrable in a neighborhood of #y, and hence el e Ll

Now, of course, by Theorem 1, the integrability of e/ means that f has values in
(—m/2, m/2) on a set of positive measure. In fact, by V.2.13 of [19], the function / is
positive on (7, o + €) for some € > 0 and hence negative on (fp — €, #p) (as an odd
function), and so indeed f < m/2 on (typ — €, tp) and f > —m /2 on (tg, ty + €).

Remark 6 We can use the previous example to construct a function f € L such that

I flloc = /2, |f| < /2 and ef e L'. This should be compared with Zygmund’s
result in (1.2).
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Open Problem 2 In Theorem 1, it is assumed that f € L* as in Zygmund’s The-
orem A. It is natural to ask whether the conclusion of Theorem 1 remains true for
unbounded functions.

We finish this section with a connection between the estimate in (1.8) and the
distance in BMO to L (see Sect. V1.6 of [4]).

Suppose that the conditions of Theorem 1 are satisfied, that is, f € L* with
f = m/2 almost everywhere and 0 < |E| < 27. If ||g]lcc < 7/2, then by Theorems

A and 1, ?_;); — g ¢ L, and so dist(?_;);, L®°) > /2, where
dist(e, L*) = inf{llgllec : ¢ — & € L™},

which is equivalent to infge o [|¢ — gllBMO (see, e.g., page 250 in [4]). By Corollary
VI1.6.6, there is no € € (0, 1) such that

qup €1 FrE® = Greyl =2 _ e

4.7
I |1] @7

for all A > 0, where the supremum is taken over all arcs / C T and the average ¢y is
defined by ¢; = ﬁf,q) forp e L.

The same conclusion also follows directly from (1.8) if f > m/2, which is no
surprise because the requirement that f has a gap in its essential range is a stronger
assumption than dist(%, L*>°) > /2. Indeed, assume that (1.8) holds and (4.7)
does not hold, so that there exists € € (0, 1) satisfying the estimate (4.7). Denote
h = fpg so that ﬁo = iﬂ 02” ﬁ, and choose s > 0 so large that A = ﬁo +s5 > 0.
Then there exists a constant C > 0 so that

Ce ™ < L|{9 €10,27]: h(0) > A} = L|{9 € (0,27 : h(9) — hp > s}
21 21

IA

1 -~ s
sup — {0 eI :|(h—hp)O)] > s} <e <,
rcr ]

7 s e 1
so we have Ce ™ = Ce(hots) < e ¢. Therefore Ceho < 1= 5 0ass — 00,
which is a contradiction.

5 Complex-Valued Functions

While real-valued functions are of particular importance in the study of exponential
integrability of their conjugate functions, especially in connection with applications,
such as Riemann—Hilbert problems and spectral theory of Toeplitz operators above,
it would also be of interest to consider the case of complex-valued functions. Indeed,
as in Zygmund’s Theorem A, we may consider a complex-valued f € L* and ask
under what conditions is exp(l?;)_a) not integrable. As in the proof of Theorem 1,
we can define m(A) = |{r : exp(l?,(\)g(t)b > A}| and show that if there is a constant
t : [fpe(t)] > A}| = Ce=* forall A > 0, then exp(| f pg|) is not integrable.
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However, in the complex case, the function f pg no longer has a similar (geometric)
meaning as in the real case where it can be related to a gap in the essential range. For
this reason, we say that a set A C C has a gap of size g > 0if A = B U C for some
sets B and C of positive measure with dist(A, B) > g. With this, we can state (1.9) in
Theorem 1 as follows: If f € L™ is real and R(f) has a gap of size at least 7z, then
exp(f) is not integrable.

Open Problem 3 Given a complex-valued function f in L, find a converse to Zyg-
mund’s Theorem A.

It may be useful to try to relate the exponential integrability of f to the size of the
gap in the essential range of f as in the real case.
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