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TWO-LEVEL NYSTROM-SCHUR PRECONDITIONER FOR SPARSE
SYMMETRIC POSITIVE DEFINITE MATRICES*

HUSSAM AL DAAST, TYRONE REES', AND JENNIFER SCOTTT*

Abstract. Randomized methods are becoming increasingly popular in numerical linear algebra.
However, few attempts have been made to use them in developing preconditioners. Our interest lies
in solving large-scale sparse symmetric positive definite linear systems of equations where the system
matrix is preordered to doubly bordered block diagonal form (for example, using a nested dissection
ordering). We investigate the use of randomized methods to construct high quality preconditioners.
In particular, we propose a new and efficient approach that employs Nystrom’s method for computing
low rank approximations to develop robust algebraic two-level preconditioners. Construction of the
new preconditioners involves iteratively solving a smaller but denser symmetric positive definite Schur
complement system with multiple right-hand sides. Numerical experiments on problems coming from
a range of application areas demonstrate that this inner system can be solved cheaply using block
conjugate gradients and that using a large convergence tolerance to limit the cost does not adversely
affect the quality of the resulting Nystrom—Schur two-level preconditioner.

Key words. Randomized methods, Nystrom’s method, Low rank, Schur complement, Deflation,
Sparse symmetric positive definite systems, Doubly bordered block diagonal form, Block Conjugate
Gradients, Preconditioning.

1. Introduction. Large scale linear systems of equations arise in a wide range
of real-life applications. Since the 1970s, sparse direct methods, such as LU, Cholesky,
and LDLT factorizations, have been studied in depth and library quality software is
available (see, for example, [9] and the references therein). However, their memory
requirements and the difficulties in developing effective parallel implementations
can limit their scope for solving extremely large problems, unless they are used in
combination with an iterative approach. Iterative methods are attractive because
they have low memory requirements and are simpler to parallelize. In this work,
our interest is in using the conjugate gradient (CG) method to solve large sparse
symmetric positive definite (SPD) systems of the form

(1.1) Az = b,

where A € R™"*" is SPD, b € R™ is the given right-hand side, and « is the required
solution. The solution of SPD systems is ubiquitous in scientific computing, being
required in applications as diverse as least-squares problems, non-linear optimization
subproblems, Monte-Carlo simulations, finite element analysis, and Kalman filtering.
In the following, we assume no additional structure beyond a sparse SPD system.

It is well known that the approximate solution xj, at iteration k of the CG method
satisfies

k
VE—1
1.2 — <2 - —
(12 o~ ula < 2e —anlla (YT )
where z, is the exact solution, xg is the initial guess, ||-||4 is the A-norm, and xk(A) =

Amax/Amin 1S the spectral condition number (Apax and Api, denote the largest and
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2 H. AL DAAS, T. REES, AND J. SCOTT

smallest eigenvalues of A). The rate of convergence also depends on the distribution
of the eigenvalues (as well as on b and xzp): eigenvalues clustered away from the
origin lead to rapid convergence. If k(A) is large and the eigenvalues of A are evenly
distributed, the system needs to be preconditioned to enhance convergence. This
can be done by applying a linear operator P to (1.1), where P € R™*™ is chosen so
that the spectral condition number of P A is small and applying P is inexpensive. In
some applications, knowledge of the provenance of A can help in building an efficient
preconditioner. Algebraic preconditioners do not assume such knowledge, and include
incomplete Cholesky factorizations, block Jacobi, Gauss—Seidel, and additive Schwarz;
see, for example, [36]. These are referred to as one-level or traditional preconditioners
[7, 43]. In general, algebraic preconditioners bound the largest eigenvalues of P A but
encounter difficulties in controlling the smallest eigenvalues, which can lie close to the
origin, hindering convergence.

Deflation strategies have been proposed to overcome the issues related to small
eigenvalues. As explained in [25], the basic idea behind deflation is to “hide” certain
parts of the spectrum of the matrix from the CG method, such that the CG iteration
“sees” a system that has a much smaller condition number than the original matrix.
The part of the spectrum that is hidden from CG is determined by the deflation
subspace and the improvement in the convergence rate of the deflated CG method is
dependent on the choice of this subspace. In the ideal case, the deflation subspace
is the invariant subspace spanned by the eigenvectors associated with the smallest
eigenvalues of A and the convergence rate is then governed by the “effective” spectral
condition number associated with the remaining eigenvalues (that is, the ratio of the
largest eigenvalue to the smallest remaining eigenvalue). The idea was first introduced
in the late 1980s [8, 33], and has been discussed and used by a number of researchers
[2, 3, 10, 14, 22, 23, 27, 32, 40, 41, 45, 46]. However, in most of these references,
the deflation subspaces rely on the underlying partial differential equation and its
discretization, and cannot be applied to more general systems or used as “black box”
preconditioners. Algebraic two-level preconditioners have been proposed in [4, 11,
15, 30, 43, 44]. Recently, a two-level Schur complement preconditioner based on the
power series approximation was proposed in [50].

In recent years, the study of randomized methods has become an active and
promising research area in the field of numerical linear algebra (see, for example,
[16, 31] and the references therein). The use of randomized methods to build
preconditioners has been proposed in a number of papers, including [14, 18]. The
approach in [14] starts by reordering the system matrix A to a 2 x 2 doubly
bordered block diagonal form, which can be achieved using a nested dissection
ordering. The Schur complement system must then be solved. Starting from
a first-level preconditioner P, a deflation subspace is constructed via a low rank
approximation. Although deflation can be seen as a low rank correction, using
randomized methods to estimate the low rank term is not straightforward because
the deflation subspace is more likely to be associated with the invariant subspace
corresponding to the smallest eigenvalues of the preconditioned matrix, and not to
its dominant subspace. In section 2, we review the ingredients involved in building
our two-level preconditioner. This includes Nystrom’s method for computing a low
rank approximation of a matrix [12, 16, 34, 47, 48], basic ideas behind deflation
preconditioners, and the two-level Schur complement preconditioners presented in
[14, 27]. In section 3, we illustrate the difficulties in constructing these two-level
preconditioners by analysing the eigenvalue problems that must be solved. We show
that these difficulties are mainly associated with the clustering of eigenvalues near
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Identifier n nnz(A) K(A) nr 2D/3D Application Source
besstk38 8,032 355,460 5.5e+16 2,589 2D Structural problem SSMC
ela2d 45,602 543,600 1.5e+8 4,288 2D Elasticity problem FF4++
ela3d 9,438 312,372 4.5e+5 4,658 3D Elasticity problem FF+4++
mscl10848 10,848 1,229,776 1.0e+10 4,440 3D Structural problem SSMC
nd3k 9,000 3,279,690 1.6e+7 1,785 3D Not available SSMC
s3rmt3ma3 5,357 207,123 2.4e+10 2,058 2D Structural problem SSMC
TABLE 1

Set of test matrices. n and nnz(A) denote the order of A and the number of nonzero entries
i A disregarding, k(A) is the spectral condition number, nr is the order of the Schur complement
(2.11). SSMC refers to SuiteSparse Matriz Collection [5]. FF++ refers to FreeFem++ [17].

the origin. Motivated by this analysis, in section 4 we propose reformulating the
approximation problem.

The new formulation leads to well-separated eigenvalues that lie away from
the origin, and this allows randomized methods to be used to compute a deflation
subspace. Our approach guarantees a user-defined upper bound on the expected value
of the spectral condition number of the preconditioned matrix. Numerical results for
our new preconditioner and comparisons with other approaches are given in section 5.
Concluding remarks are made in section 6.

Our main contributions are:

e an analysis of the eigenvalue problems and solvers presented in [14, 27];

e a reformulation of the eigenvalue problem so that it be efficiently solving using
randomized methods;

e a new two-level preconditioner for symmetric positive definite systems that
we refer to as a two-level Nystrom—Schur preconditioner;

e theoretical bounds on the expected value of the spectral condition number of
the preconditioned system.

Test environment. In this study, to demonstrate our theoretical and practical
findings, we report on numerical experiments using the test matrices given in Table 1.
This set was chosen to include 2D and 3D problems having a range of densities and
with relatively large spectral condition numbers. In the Appendix, results are given
for a much larger set of matrices. For each test, the entries of the right-hand side
vector f are taken to be random numbers in the interval [0,1]. All experiments are
performed using Matlab 2020b.

Notation. Throughout this article, matrices are denoted using uppercase letters;
scalars and vectors are lowercase. The pseudo inverse of a matrix C' is denoted by C'
and its transpose is given by C'T. A(M) denotes the spectrum of the matrix M and
k(M) denotes its condition number. Ay = diag(Aq,...,Ax) denotes a k x k diagonal
matrix with entries on the diagonal equal to Ay, ..., Ag. S (with or without a subscript
or superscript) is used as an approximation to a Schur complement matrix. P (with
or without a subscript) denotes a (deflation) preconditioner. M (with or without
a subscript) denotes a two-level (deflation) preconditioner. Matrices with an upper
symbol such as A , A , and Z denote approximations of the matrix Z. Euler’s constant
is denoted by e.

2. Background. We start by presenting a brief review of Nystrom’s method for
computing a low rank approximation to a matrix and then recalling key ideas behind
two-level preconditioners; both are required in later sections.

This manuscript is for review purposes only.
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4 H. AL DAAS, T. REES, AND J. SCOTT

2.1. Nystrom’s method. Given a matrix G, the Nystrom approximation of a
SPSD matrix B is defined to be

(2.1) BG(G"BG)(BG)T.

We observe that there are a large number of variants based on different choices of
G (for example, [16, 28, 31]). For ¢ > 0, the g-power iteration Nystrom method is
obtained by choosing

(2.2) G = BQ,

for a given (random) starting matrix 2. Note that, in practice, for stability it is
normally necessary to orthonormalize the columns between applications of B.

The variant of Nystrom’s method we employ is outlined in Algorithm 2.1. It gives
a near-optimal low rank approximation to B and is particularly effective when the
eigenvalues of B decay rapidly after the k-th eigenvalue [16, 31]. It requires only one
matrix-matrix product with B (or g + 1 products if (2.2) is used). The rank of the
resulting approximation is min(r, k), where r is the rank of Dy, see Step 5.

Algorithm 2.1 Nystrom’s method for computing a low rank approximation to a

SPSD matrix.

Input: A SPSD matrix B € R"*", the required rank & > 0, an oversampling
parameter p > 0 such that k,p < n, and a threshold .

Output: Ek = ﬁkik(},;r ~ B where ﬁk is orthonormal f]k is diagonal with non
negative entries.

Draw a random matrix G € R?*(k+p),

Compute F' = BG.

Compute the QR factorization F' = QR.

Set C =G'F.

Compute the EVD C = V; D1 V;" + V2D, V,", where Dy contains all the eigenvalues
that are at least e.

6: Set T = RViD; ' (RV})7.

7. Compute the EVD T'=WEW .

8 Set U=QW, U, =U(:,1:k), X =E(1:k,1:k), and By, = Up S, U, .

Note that, if the eigenvalues are ordered in descending order, the success of
Nystrom’s method is closely related to the ratio of the (k + 1)th and the kth
eigenvalues. If the ratio is approximately equal to one, ¢ must be large to obtain
a good approximation [37].

2.2. Introduction to two-level preconditioners. Consider the linear system
(1.1). As already noted, deflation techniques are typically used to shift isolated
clusters of small eigenvalues to obtain a tighter spectrum and a smaller condition
number. Such changes have a positive effect on the convergence of Krylov subspace
methods. Counsider the general (left) preconditioned system

(2.3) PAx =Pb, P eR™™

Given a projection subspace matrix Z € R™** of full rank and k < n, define the
nonsingular matrix £ = Z' AZ € R*** and the matrix Q = ZE~'ZT € R"*". The
deflation preconditioner Pppr € R™*™ is defined to be [10]

(2.4) Poer = I — AQ.

This manuscript is for review purposes only.
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TWO-LEVEL NYSTROM-SCHUR PRECONDITIONER FOR SPD MATRICES 5

It is straightforward to show that Ppgr is a projection matrix and PpgrA has k zero
eigenvalues (see [44] for basic properties of Ppgg). To solve (1.1), we write

2= (I = Poye )z + Popp.
Since Q is symmetric, P/, = I — QA, and so
r=QAx+ Pl .x=Qb+ Pl
and we only need to compute P_J__x. We first find y that satisfies the deflated system
(2.5) Powr Ay = Pperb,

then (due to the identity AP/, = PpprA) we have that P,y = PJ..xv. We therefore
obtain the unique solution z = Qb+ P/..y. The deflated system (2.5) is singular and
can only be solved using CG if it is consistent [24], which is the case here since the
same projection is applied to both sides of a consistent nonsingular system (1.1).
The deflated system can also be solved using a preconditioner, giving a two-level
preconditioner for the original system.

Tang et al. [44] illustrate that rounding errors can result in erratic and slow
convergence of CG using Pprr. They thus also consider an adapted deflation
preconditioner

(26) PA-DEF =1- QA + Qa

that combines P . with Q. In exact arithmetic, both Ppyr and P, pgr used with
CG generate the same iterates. However, numerical experiments [44] show that the
latter is more robust and leads to better numerical behavior of CG!.

Let A, > --- > A1 > 0 be the eigenvalues of A with associated normalized
eigenvectors v,,...,v;. For the ideal deflation preconditioner, Pigea1, the deflation
subspace is the invariant subspace spanned by the eigenvectors associated with the
smallest eigenvalues. To demonstrate how Pjqe.a1 modifies the spectrum of the deflated
matrix, set Zj = [v1, ..., vx] to be the nx k matrix whose columns are the eigenvectors
corresponding to the smallest eigenvalues. It follows that £ = ZT AZ is equal to
Ay = diag(A, ..., \x) and the preconditioned matrix is given by

Pideal A = A — Z) A Z)) .

Since Zj, is orthonormal and its columns span an invariant subspace, the spectrum
of Pigeatd is {An,..., Ak+1,0}.  Starting with @ such that Z]rg = 0 (ro is the
initial residual), for I > 0, Z;(PidealA)lro = 0 and Z;Alro = 0. Hence the search
subspace generated by the preconditioned CG (PCG) method lies in the invariant
subspace spanned by v,,...,vr+1, which is orthogonal to the subspace spanned by
the columns of Z;. Consequently, the effective spectrum of the operator that PCG
sees is {An, ..., Ar41} and the associated effective spectral condition number is

’ieff(lpidealA) = )\n/>\k+1-
Using similar computations, the ideal adapted deflated system is given by:
(2.7) Pacideal = A — ZpyN' Z) + 212,

n [44], Poer and Pa.per are termed Pprri and Pa_prra, respectively

This manuscript is for review purposes only.
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6 H. AL DAAS, T. REES, AND J. SCOTT

Furthermore, the spectrum of the operator that PCG sees is { A, ..., Agt1,1,...,1}
and the associated effective spectral condition number is

Keft(PAcideal4) = max{1, A\, }/ min{1, \g11}.

In practice, only an approximation of the ideal deflation subspace spanned by the
columns of Zj, is available. Kahl and Rittich [25] analyze the deflation preconditioner
using Zk ~ Zj and present an upper bound on the corresponding effective spectral
condition number of the deflated matrix k (PA). Their bound [25, Proposition 4.3],

which depends on k(A), Ket(Pidea1d), and the largest principal angle 6 between Zj
and Zy, is given by

(2.8) K (PA) < (\/H(A) sin 6 + ,/Hcﬁ(PidcalA)) ’

where sinf = ||Z,Z,] — Zk;Z;”Q

2.3. Schur Complement Preconditioners. This section reviews the Schur
complement preconditioner with a focus on two-level variants that were introduced in
[14, 27].

One-level preconditioners may not provide the required robustness when used with
a Krylov subspace method because they typically fail to capture information about
the eigenvectors corresponding to the smallest eigenvalues. To try and remedy this, in
their (unpublished) report, Grigori et al. [14] and, independently, Li et al. [27] propose
a two-level preconditioner based on using a block factorization and approximating the
resulting Schur complement.

Applying graph partitioning techniques (for example, using the METIS package
[26, 29]), A can be symmetrically permuted to the 2x2 doubly bordered block diagonal
form

A A
2.9 PTap= (1 ”) ,
(29) <AFI Ar

where A; € R™*™ is a block diagonal matrix, Ap € R"r*"r Ap; € R*™1X"r and
Arr = A{;. For simplicity of notation, we assume that A is of the form (2.9) (and
omit the permutation P from the subsequent discussion).

The block form (2.9) induces a block LDLT factorization

B I Ag I A7'Apr
o A= (g ) (M) ()

where
(2.11) Sp = Ar — ApfA7 M App

is the Schur complement of A with respect to Ar. Provided the blocks within Aj
are small, they can be factorized cheaply in parallel using a direct algorithm (see,
for example, [38]) and thus we assume that solving linear systems with A is not
computationally expensive. However, the SPD Schur complement St is typically
large and significantly denser than Ar (its size increases with the number of blocks
in Ay) and, in large-scale practical applications, it may not be possible to explicitly
assemble or factorize it.

This manuscript is for review purposes only.
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TWO-LEVEL NYSTROM-SCHUR PRECONDITIONER FOR SPD MATRICES 7

Preconditioners may be derived by approximating Sy 1. An approximate block
factorization of A1 is

(T =AY A (A7 I
M _< I 5—1 _AFIA;1 1)’

where S~! ~ Sg'. If M~' is employed as a preconditioner for A then the
preconditioned system is given by

-1 _ Q-1
(2.12) mta= (1 AT AT =575 )
S-18p

with A(M~tA) = {\ € A(S71Sr)} U {1}. Thus, to bound the condition number
k(M~1A), we need to construct 5! so that £(S~1Sp) is bounded. Moreover, (2.12)
shows that applying the preconditioner requires the efficient solution of linear systems
with S~1Sp and Ay, the latter being relatively inexpensive. We therefore focus on
constructing preconditioners S~! for linear systems of the form

(2.13) Srw = f.
Consider the first-level preconditioner obtained by setting
(2.14) Syti= Apt

Assume for now that we can factorize Ar, although in practice it may be very large
and a recursive construction of the preconditioner may then be needed (see [49]). Let
the eigenvalues of the generalized eigenvalue problem

(2.15) Srz = ASy2
be App > -+ > A > 0. From (2.11), A\, <1 and so

Mp _ 1
AT A

H(gl_lsp) =

As this is unbounded as A; approaches zero, we seek to add a low rank term to
“correct” the approximation and shift the smallest k eigenvalues of ST 1Sr. Let
A, = diag{\1,..., \} and let Z, € R"™** be the matrix whose columns are
the corresponding eigenvectors. Without loss of generality, we assume Zj is Ap-
orthonormal. Let the Cholesky factorization of Ar be

(2.16) Ar = R} Rr
and define
(2.17) Syli= AP+ Z(A - D7)

§2_ !'is an additive combination of the first-level preconditioner §1_ ! and an adapted
deflation preconditioner associated with the subspace spanned by the columns of
Ur = RrZ, which is an invariant subspace of R;lspRI?T. Substituting Uy into
(2.17) and using (2.16),

(2.18) Syt = RN (I + Up(AY — DU)RE .

This manuscript is for review purposes only.
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8 H. AL DAAS, T. REES, AND J. SCOTT
Setting @ = U A} 'U,| in (2.6) gives
Proer = RrS; 'RL.

Now gngF = R;1PA_DEFR;TSF and PA_DEFRETSFRl?l are spectrally equivalent
and A(S5'Sr) = {Anes Anp—1, - App1y U {1}, Tt follows that

Ane 1
< .
Akl Akl

k(S5 1Sr) =

Grigori et al. [14] note that (2.15) is equivalent to the generalized eigenvalue
problem

(2.19) (Ar — Sr)z = Arf A7 Arz = 0 Arz, o=1-M\
Setting u = Rrz and defining

(2.20) H =Ry " Arf A7 Apr Ry

(2.19) becomes

(2.21) Hu = ou.

Thus, the smallest eigenvalues A of (2.15) are transformed to the largest eigenvalues
o of problems (2.19) and (2.21). Grigori et al. employ a randomized algorithm to
compute a low rank eigenvalue decomposition (EVD) of H that approximates its
largest eigenvalues and vectors, which are multiplied by R ! to obtain approximate
eigenvectors of Aj L.
In [27], Li et al. write the inverse of the Schur complement Sr as:
_ _ -1

Set = (Ar — Arr A7 Apr)

(2.22) = (RLRr — Ars A7 App) ™
— R R

where the symmetric positive semidefinite (SPSD) matrix H is given by (2.20). Since
I—-H = R;TSprl is SPD, the eigenvalues o1 > ... > o0, of H belong to [0, 1].

Let the EVD of H be
H=UXU",

where U is orthonormal and ¥ = diag{o,...,on.}. It follows that

Spt =R (1-USUT) T RET

=R'U(I-%)'UTRET

2.2 _

(2.23) :R;1(1+U((1—2) 1—I)UT)R;T

— A7+ RU (=) =) UTRET
If H has an approximate EVD of the form

H~USU', S =diag{G1,...,0n.},

This manuscript is for review purposes only.
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then an approximation of S Lis
g1 -1 -1 S\ Tp-T
(2.24) S7' = A7 + Ry U((I—z) —I)U Ry

The simplest selection of ¥ is the one that ensures the k largest eigenvalues of (I—X)~*
match the largest eigenvalues of (I —X)~!. Li et al. set ¥ = diag(oy,...,0%,0,...,0),
where 6 € [0,1]. The resulting preconditioner can be written as

_ 1 1
2.2 1~ Az (-2 e — 1) 7]
(2.25) 5 = gt v 2 (=m0 - gr) 2

where X = diag(oy,...,01) and the columns of 7 = R;lU;~C are the eigenvectors
corresponding to the k largest eigenvalues of H. In [27], it is shown that /4:(50_ 15) =
(1 —0p)/(1 —6), which takes its minimum value for 8 = op41.

In the next section, we analyse the eigenvalue problems that need to be solved
to construct the preconditioners (2.17) and (2.25). In particular, we show that the
approaches presented in [14, 27] for tackling these problems are inefficient because of
the eigenvalue distribution.

3. Analysis of Hu = ou.
3.1. Use of the Lanczos method. Consider the eigenproblem:

Given € > 0, find all the eigenpairs (A, z) € R x R"T such that
Srz = )\AFZ, A <e.

This can be rewritten as:

Given € > 0, find all the eigenpairs (A, z) € R x R"" such that

(3.1) o
(I — H)u = \u, z=Rp u, A<e,
where Rp and H are given by (2.16) and (2.20). Consider also the eigenproblem:

Given ¢ > 0, find all the eigenpairs (o,u) € R x R"T such that

(3.2)
Hu = ou, o>1-—c¢.

As already observed, each eigenpair (A, z) of (3.1) corresponds to the eigenpair (1 —
A, Rrz) of (3.2). Consider using the Lanczos method to solve these eigenproblems.
The Krylov subspace at iteration j generated for (3.1) is

K;((I — H),v) = span(vy,(I — H)vy,...,(I — H)?"1vy),
while the subspace generated for (3.2) is
K;(H,v) = span(vy, Hvy, ..., H " toy).
It is clear that, provided the same starting vector vy is used, K,;((I — H),v1) and
K;(H,v:1) are identical. Suppose that [V}, v;1] is the output of the Lanczos basis of

the Krylov subspace, then the subspace relations that hold at iteration j are

(I = H)V; = ViTj +vjah]

This manuscript is for review purposes only.
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10 H. AL DAAS, T. REES, AND J. SCOTT

HV; =V;(I - Tj) — vj11h]

where T; € R7¥J is a symmetric tridiagonal matrix and h; € R7. The eigenpair
(A, z) (respectively, (o,u)) corresponding to the smallest (respectlvely, largest)
eigenvalue in (3.1) (respectively, (3.2)) is approximated by the eigenpair (/\ R:'Wja)
(respectively, (o, V;@)) corresponding to the smallest (respectively, largest) elgenvalue
of Tj (respectively, I —Tj). To overcome memory constraints, the Lanczos procedure
is typically restarted after a chosen number of iterations, at each restart discarding
the non convergent part of the Krylov subspace [42]. Hence, starting with the same
v1 and performing the same number of iterations per cycle, in exact arithmetic the
accuracy obtained when solving (3.1) and (3.2) is identical.

Having shown that the convergence of Lanczos’ method for solving (3.1) and (3.2)
is the same, we focus on (3.2). In Figure 1, for each of our test matrices in Table 1

Eigenvalue

ela2d
ela3d
s3rmt3m3
besstk3g
msc10848
nd3k
0.86 T I I I I I I I I ]

0 10 20 30 40 50 60 70 80 920 100

Eigenvalue index

0.9 H

0.88

*Xxo0on

FiG. 1. Largest 100 eigenvalues of H = R AFIA A]FR associated with our test matrices
computed to an accuracy of 10~8 using the Krylov Schur method [42].

we plot the 100 largest eigenvalues of the matrix H given by (2.20). We see that the
largest eigenvalues (which are the ones that we require) are clustered near one and
they do not decay rapidly. As there are a significant number of eigenvalues in the
cluster, computing the largest k (for £ = O(10)) and the corresponding eigenvectors
with sufficient accuracy using the Lanczos method is challenging. Similar distributions
were observed for the larger test set that we report on in the Appendix, particularly
for problems for which the one-level preconditioner S; was found to perform poorly,
which is generally the case when k(A) is large. Table 2 reports the Lanczos iteration
counts (itran) for computing the k£ = 20 and 40 largest eigenpairs (that is, the number
of linear systems that are solved in the Lanczos method). In addition, we present the
PCG iteration count (ztpcg) for solving the linear system (2.13) using the first-level
preconditioner Sy = AF and the two-level preconditioner S, given by (2.17). We
see that, in terms of the total iteration count, the first-level preconditioner is the
more efficient option. It is of interest to consider whether relaxing the convergence
tolerance er.n in the Lanczos method can reduce the total iteration count for Ss.
Table 3 illustrates the effect of varying er,., for problem el3d (results for the other test
problems are consistent). Although ity,,, decreases as ep,,, increases, itpcg increases
and the total count still exceeds the 175 PCG iterations required by the first-level
preconditioner Si.

As already observed, in [49] a recursive (multilevel) scheme is proposed to
help mitigate the computational costs of building and applying the preconditioner.

This manuscript is for review purposes only.
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So
S k=20 k=40
Identifier itpca itpan  itpcg  total itLan  itpcg  total
bcsstk38 584 797 122 919 730 67 797
el2d 914 1210 231 1441 982 120 1102
el3d 174 311 37 348 389 27 416
msc10848 612 813 116 929 760 63 823
nd3k 603 1796 143 1939 1349 105 1454
s3rmt3m3 441 529 70 599 480 37 517

TABLE 2
The Lanczos iteration count (itrqen) and the iteration count for PCG (itpca). The convergence
tolerance for the Lanczos method and PCG is 1076, The size of the Krylov subspace per cycle is
2k.

k=20 k=40
€Lan “lan itpca total “an itpca total
0.1 50 131 181 80 101 181
0.08 50 131 181 100 85 185
0.06 60 121 181 100 85 185
0.04 82 100 182 120 71 191
0.02 127 64 201 207 37 244
0.01 169 41 210 259 32 291
0.005 213 38 251 316 29 345
0.001 247 37 284 372 28 400
TABLE 3

Problem el3d and two-level preconditioner Sa: sensitivity of the number of the Lanczos iteration
count (itpqn) and the iteration count for PCG (itpcg) to the convergence tolerance €rqn. The PCG
convergence tolerance is 1076, The size of the Krylov subspace per cycle is 2k.

Nevertheless, the Lanczos method is still used, albeit with reduced costs for applying
the operator matrices.

3.2. Use of Nystrom’s method. As suggested in [14], an alternative approach
to approximating the dominant subspace of H is to use a randomized method,
specifically a randomized eigenvalue decomposition. Because H is SPSD, Nystrom’s
method can be use. Results are presented in Table 4 for problem el3d (results for our
other test examples are consistent with these). Here p is the oversampling parameter
and q is the power iteration parameter. These show that, as with the Lanczos method,
Nystrom’s method struggles to approximate the dominant eigenpairs of H. Using
k = 20 (respectively, 40) exact eigenpairs, PCG using S3 requires 37 (respectively,
28) iterations. To obtain the same iteration counts using vectors computed using
Nystrom’s method requires the oversampling parameter to be greater than 2000,
which is clearly prohibitive. Using the power iteration improves the quality of the
approximate subspace. However, the large value of ¢ needed to decrease the PCG
iteration count means a large number of linear systems must be solved with Ar, in
addition to the work involved in the orthogonalization that is needed between the
power iterations to maintain stability. Indeed, it is sufficient to look at Figure 1 to
predict this behaviour for any randomized method applied to H. The lack of success
of existing strategies motivates us, in the next section, to reformulate the eigenvalue
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problem to one with a spectrum that is easy to approximate.

p k=20 k=40 q k=20 k=40
100 171 169 0 172 171
200 170 165 20 121 87
400 165 161 40 86 48
800 155 146 60 68 34

1600 125 111 80 55 30
3200 55 45 100 46 29
TABLE 4

PCG iteration counts for problem el3d using the two-level preconditioner So constructed using
a rank k approximation of H = R;TAFIAI_IAIFRI?I. The PCG convergence tolerance is 1076,
Nystrém’s method applied to H with the oversampling parameter p > 100 and the power iteration
parameter ¢ =0 (left) and with p =0 and ¢ > 0 (right).

4. Nystrom—Schur two-level preconditioner. In this section, we propose
reformulating the eigenvalue problem to obtain a new one such that the desired
eigenvectors correspond to the largest eigenvalues and these eigenvalues are well
separated from the remaining eigenvalues: this is what is needed for randomized
methods to be successful.

4.1. Two-level preconditioner for Sp. Applying the Sherman Morrison
Woodbury identity [13, 2.1.3], the inverse of the Schur complement Sr (2.11) can
be written as:

Spt=Art + AptArr(Ar — A A Arnp) T A ALY

4.1

(4.1) = Art + AR Ar ST A ALY
where

(4.2) Sr=Ar — Arr A Arg

is the Schur complement of A with respect to A;. Using the Cholesky factorization
(2.16), we have

(4.3) RrSy 'Ry =T+ Ry " ArS; ARy

Note that if (A, u) is an eigenpair of RETSprl, then (% — 1,u) is an eigenpair of
RI?TAFISl_lA[prl. Therefore, the cluster of eigenvalues of R;TSprl near the
origin (which correspond to the cluster of eigenvalues of H near 1) correspond to
very large and highly separated eigenvalues of R TAHSl_lA]pRI? ! Hence, using
randomized methods to approximate the dominant subspace of Ry ' Ar;S; ARy
can be an efficient way of computing a deflation subspace for R TSFR; 1 Now
assume that we have a low rank approximation

(4.4) R;TAF[S;lA[FRfl ~ ﬁkikﬁg,

where U, € R™** is orthonormal and ¥, € R¥** is diagonal. Combining (4.3) and
(4.4), we can define a preconditioner for Ry ' SpRp' to be

(4.5) Pr=1+ ﬁkikﬁ;
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The preconditioned matrix P; R TSFRI? Lis spectrally equivalent to R 1731R1? TSF.
Therefore, the preconditioned system can be written as

(4.6) M4 St = RFLPlRFTSF = (Afl + Zkiké,j) Sr,

where Z;, = R;llj}g. If (4.4) is obtained using a truncated EVD denoted by UkaU,;r,
then Uy = Uy, and the subspace spanned by the columns of Uy, is an invariant subspace
of RrSp R and of its inverse Rp'Sp Ry . Furthermore, using the truncated EVD,
(4.5) is an adapted deflation preconditioner for Ry TSFR; ! Indeed, as the columns of
Uy, are orthonormal eigenvectors, we have from (4.3) that RpSp 'R Uy, = Uy (I +X%).
Hence RETSFRflUk = Ui(I + 3j)~ ! and the preconditioned matrix is

PaverRp  SrRp' = Ry SrRy' + UpXp(I + k) U,
=Ry 'SrRp + U (T +3%) — 1) (T + %) U7
= Ry "SrRp! — Up(I + %) 71U + URUY

which has the same form as the ideal adapted preconditioned matrix (2.7).

Note that given the matrix U, in the approximation (4.4), then following
subsection 2.2, we can define a deflation preconditioner for R TSFR; 1 Setting
Ey = U] Ry "SrRp U, and Q = U, E~'U,], the deflation preconditioner is

(47) Praper =1 — QRI:TSFlel + Q

The preconditioned Schur complement P, . perRp TSFRIT ! is spectrally similar to
RFIPI—A-DEFR;TSF and thus

(48) M aper = RI:LPLADEFR;T

is a two-level preconditioner for St.

4.2. Lanczos versus Nystrom. The two-level preconditioner (4.8) relies on
computing a low-rank approximation (4.4). We now consider the difference between
using the Lanczos and Nystrom methods for this.

Both methods require the application of RI?TAFISflA[prl to a set of k+p
vectors, where k > 0 is the required rank and p > 0. Because explicitly computing
the SPD matrix St = Ay — ArAp YAr; and factorizing it is prohibitively expensive,
applying 51_1 must be done using an iterative solver.

The Lanczos method builds a Krylov subspace of dimension k + p in order to
compute a low-rank approximation. Therefore, k + p linear systems must be solved,
each with one right-hand side, first for Rr, then for S;, and then for R}.. However,
the Nystrom method requires the solution of only one linear system with k + p right-
hand sides for Rr, then for S7, and then for R; . This allows the use of matrix-matrix
operations rather than less efficient matrix-vector operations. Moreover, as we will
illustrate in section 5, block Krylov subspace methods, such as block CG [35], for
solving the system with S yield faster convergence than their classical counterparts.
When the Nystrém method is used, we call the resulting preconditioner (4.8) the
Nystrom—Schur preconditioner.

4.3. Avoiding computations with Rp. For large scale problems, computing
the Cholesky factorization Ar = R[. Rr is prohibitive and so we would like to avoid
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computations with Rpr. We can achieve this by using an iterative solver to solve linear
systems with Ar. Note that this is possible when solving the generalized eigenvalue
problem (2.15). Because Ar is typically well conditioned, so too is Rp. Thus, we can
reduce the cost of computing the Nystrom—Schur preconditioner by approximating
the SPSD matrix AFISI_lAIF (or even by approximating Sl_l). Of course, this needs
to be done without seriously adversely affecting the preconditioner quality. Using an
approximate factorization

(4.9) ArST A =~ WS W,
an alternative deflation preconditioner is
Py = I+ Ry "W, S, W, Ry Y,
=Ry (Ap + WkikWJ) RiL.

The preconditioned Schur complement PoRp TSFRI? Loig spectrally similar to
R:-'PoRy " S and, setting Zy = AWy, we have

(4.10) MsSr = RiVPoRy T Sr = (Ap! + Zy S Z] ) Sr.

Thus My = AL Ly Zkikf ,;'— is a variant of the Nystréom—Schur preconditioner for Sp
that avoids computing Rr.
Alternatively, assuming we have an approximate factorization

(4.11) ST R VS Vi

yields o
Ps =1+ Ry Ar/VisiV, Arr Ry

Again, PgRl?TSprl is spectrally similar to RfngRl?TSp and, setting Z, =
AFlAFIVk, we have

(4.12) Ms3Sr = RFLP;;RFTSF = (AFl + Zkf)kf,;r)sp,

which gives another variant of the Nystrom—Schur preconditioner. In a similar way
to defining M,_, prr (4.7), we can define M, 5 prr and My s per. Note that M, per
and M . per also avoid computations with Rr.

4.4. Nystrom—Schur preconditioner. Algorithm 4.1 presents the
construction of the Nystrom—Schur preconditioner Msy; an analogous derivation
yields the variant Mg3. Step 3 is the most expensive step, that is, solving the n; x ny
SPD linear system

(4.13) S;X =F,

where F € Rr>(k+p) and S; = Ay — AIFAITIAFI. Using an iterative solver requires a
linear system solve with Ar on each iteration. Importantly for efficiency, the number
of iterations can be limited by employing a large relative tolerance when solving
(4.13) without adversely affecting the performance of the resulting preconditioner.
Numerical experiments in section 5 illustrate this robustness.

Observe that applying My to a vector requires the solution of a linear system
with Ar and a low rank correction; see Step 12.
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Algorithm 4.1 Construction of the Nystrom-Schur preconditioner (4.10)

Input: A in block form (2.9), k > 0 and p >0 (k,p < nr) and € > 0.
Output: Two-level preconditioner for the nr x npr Schur complement Sr.
Draw a random matrix G € R *(k+p)

Compute F' = A;rG.

Solve S; X = F.

Compute Y = Ar; X.

Compute Y = QR.

Set C =G'Y.

Compute the EVD C =V, D, VlT —l—VgDQVQ—'—7 where D7 contains all the eigenvalues
that are at least €.

Set T = RV;Dy'V,"RT.

9: Compute the EVD T'= WEW .

10: Set U=YW(,1:k),S=E(1:k1:k).

11: Solve ArZ =U.
12: Define the preconditioner Mo = Alfl + 2277,

o

4.5. Estimation of the Spectral Condition Number. In this section, we
provide an expectation of the spectral condition number of Sr preconditioned by
the Nystrom—Schur preconditioner. Saibaba [37] derives bounds on the angles
between the approximate singular vectors computed using a randomized singular
value decomposition and the exact singular vectors of a matrix. It is straightforward
to derive the corresponding bounds for the Nystrom method. Let Il denote
the orthogonal projector on the space spanned by the columns of the matrix M.
Let (Aj,u;), j = 1,...,k, be the dominant eigenpairs of RI?TSFREI. Following

the notation in Algorithm 2.1, the angle §; = Z(u;,U) between the approximate

eigenvectors U e Rrrx(ktp) of RETSprl and the exact eigenvector u; € R"T
satisfies

(4.14) sinZ(uj, U) = |lu; — Hgugllz <ALt

where ¢ is the power iteration count (recall (2.2)), ;5 is the gap between /\;1 -1
and )\,:_il — 1 given by

(4.15) Yik = At — 1/ = 1),

and c¢ has the expected value

| k  eJ/(k+p)(nr —Fk)
4.16 E(c) = + )
(4.16) (c) P )

where k is the required rank and p > 2 is the oversampling parameter. Hence,

(4.17) E (smg(uj, ﬁ)) =E (JJuy — Mpuyllz) < 175'E(e).

Note that if )\j < 1/2 then Yik < 2/\j/)\k+1 (j =1,..., k)
ProprosITION 4.1. Let the EVD of the SPD matric I — H = RETSerl be

UL Ul [Al AJ {g%],
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where A € Rr=k)x(ne=k) gnq A, € R¥** are diagonal matrices with the eigenvalues
(A)k>i>1 and (Ai)np>i>kt1, respectively, in decreasing order. Furthermore, assume
that A\, < 1/2. Let the columns of U € Rrex(E+P) pe the approzimate eigenvectors of
I — H computed using the Nystrom method and let

P=I-I—-HUE'U" with E=U"(I-H)U,

be the associated deflation preconditioner. Then, the effective condition number of the
two-level preconditioner P(I — H) = PRy ' SpRy ! satisfies

(4.18)

Anp

JE( neff(P(I—H)))Sﬁ ST

where 3 is independent of the spectrum of I — H and can be bounded by a polynomial

of degree 3 in k.

Proof. Let x € R"T. Since uy, ..., Uy, form an orthogonal basis of R"", there

exists aq,...,

Rittich show that, if for some positive constant cyx, U satisfies

(4.19)

117 5

r—T-~z|? < cxg —r—re
|| U ||2— KHI_HH27

then the effective condition number of P(I — H) satisfies

ket (P(I — H)) < ck.

Let ¢t < k and consider

nr nr
|z — Mgz = | Zaiui ~ 1l Z o2

< Z (I -1 aluZHg—&—Z\aZ\Hul—H

i=t+1

< Z azul\|2+2|al|||ul Mg ulf2.

i=t+1

Fuill2

an. € R such that = Y1 ;. In [25, Theorem 3.4], Kahl and

The last inequality is obtained using the fact that I — Il is an orthogonal projector.
Now bound each term on the right separately. We have

i=t+1

/\

IN

——ll Z VAep1atg2 <
V/\H‘l i=t+1 \/)‘H‘l i=t+1

|z —y,zl -0 =

by a
Vi )\t+1 ZZt_:H \/ t+1
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513 From (4.15), v, < 1for i =1,...,¢, thus,

t t
+
514 D Jailflu; = Mgl < Z loalyii e < e/ lailvAik
=1 i=1

_ 1
515 =y Ay — 1 Z |ovi| -
i=1 A -1
1< 1
516 <oy’ Z|ai|

VAk+1 2 o1

518 Assuming that A\; < 1/2 for i =1,... ¢, we have

ot
—
~

Iy

t
+

519 v [Jui — Mgugl2 < \/ic'ysz |

2 i e

520 < V2 at3 «
!;21 r)/tk \/mz‘ Z|\/7

522 Using the fact that the [; and [ norms are equivalent, we have

t
+
523 Z lovil[lu; — Mzugll2 < C\E’ysz
i=1 VA

524 = C\F’Yﬁz My, 2| 1- 1
V )\k+1

. — V3 Ane My, ll1-a

526 Akt VI = H||2.

527 Since A\ > A\¢ we have

A II _
528 z:loleHu7 Il u1||2<c\r'yq+2 ne Mo zllr—m

529 i=1 Avrr /I = Hlo

530 It follows that

Mg |l =y, z|l1-1 4 ov/ain, q+2 Aoe Ty, 2|l r— 1

531 |z — Mgzl <
v A /T=HJ: vt /T — Hll»
A -
532 <\fmaX(C\/7’yq+2 1) nr Hx”I H )
533 At1 /I — H]2

534  Hence (4.19) is satisfied and we have

535 ket (P(I — H)) < 2max(2¢ t'y2q+1 1)h

Att1

536 Thus,

)‘nr
Atr1

537 E( ﬁeg(P(I—H))) < V2 max(E(c) V20112, 1)
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Since t is chosen arbitrarily between 1 and k& we have

1<t<k At

(4.20) E( ket (P(I — H))) < V2 min (max (IE(C)\/E%?:,:%7 1) Any ) :

Because E(c) can be bounded by a polynomial of degree 1 in k and ~, 5 < 1,

max(4t’y§‘}j1 (E(c))2 ,2) can be bounded by a polynomial of degree 3 in k independent
of the spectrum of I — H. ]

Note that, in practice, when the problem is challenging, a few eigenvalues of
Ry TSFRIT ! are close to the origin. This is reflected in a rapid and exponential
decay of the values of the entries of A=! — I. Figure 2 depicts the bound obtained
in Proposition 4.1 for different values of k& and ¢ for problem s3rmt3m3.

* * *
10°
* q=0
* =1
10* O q=2
s [ ] A1//\k
L |
* *
102 1
9
| |
| | |
5 10 20 40

k

FIG. 2. Problem sSrmt3m3: Values of the bound (4.20) on (E (y/keg (P(I — H))))2 for a range
of values of k and q.

5. Numerical Experiments. We use 64 subdomains (i.e., Ay is a 64-block
diagonal matrix) for each of our test matrices with the exception of one problem. The
matrix nd3k is much denser than the others, and we use only two blocks (to reduce
the runtime). For comparison purposes, we include results for the Schur complement
preconditioners Sy and S, given by (2.14) and (2.17), respectively. As demonstrated
in subsection 3.1, the latter is too costly to be practical, however, its performance
is the ideal since it guarantees the smallest spectral condition number for a fixed
deflation subspace. Therefore, the quality of the Nystrom-Schur preconditioner will
be measured in terms of how close its performance is to that of Sz and the reduction in
iteration it gives compared to S;. For a given problem, the right-hand side vector is the
same for all the tests: it is generated randomly with entries from the standard normal
distribution. The relative convergence tolerance for PCG is 1076, Unless otherwise
specified, the parameters within Nystrom’s method (Algorithm 2.1) are rank k = 20,
oversampling p = 0, and power iteration ¢ = 0. To ensure fair comparisons, the
random matrices generated in different runs of the Nystrom algorithm use the same
seed. We employ the Nystrom—Schur variant My (4.10) (recall that its construction
does not require the Cholesky factors of Ar). The relative convergence tolerance used
when solving the SPD system (4.13) is g, = 0.1. This system (4.13) is preconditioned
by the block diagonal matrix A;. We denote by its, the number of block PCG
iterations required to solve (4.13) during the construction of the Nystrom—Schur
preconditioners (it is zero for 51 and 52), and by itpcg the PCG iteration count
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# iteration

Fia. 3. Histogram of the PCG iteration counts for (4.13) for problem bcsstk38. The number of
right hand sides for which the iteration count is between |k, k + 10), k = 100, ..., 240, is given.

Classic Block
Identifier iters  itpca iters  itpca
besstk38 238 186 46 173
el2d 549 261 72 228
el3d 95 56 24 52
mscl10848 203 194 47 166
nd3k 294 191 32 178
s3rmt3m3 403 157 37 98
TABLE 5

A comparison of the performance of classic and block PCG. iters denotes the iteration count
for solving (4.13) (details in the text) and itpcg is the iteration count for solving (2.13).

for solving (2.13). The total number of iterations is itiotal = its, +itpca. We use the
code [1] to generate the numerical experiments.

5.1. Linear system with S;. We start by considering how to efficiently
compute an approximate solution of (4.13).

5.1.1. Block and classic CG. The system (4.13) has k + p right hand sides.
The number of iterations required by PCG to solve each right hand side is different
and the variation can be large; this is illustrated in Figure 3 for problem bcsstk38.
Here we report the number of right hand sides for which the iteration count lies in
the interval [k, k + 10), k = 100,...,240. For example, there are 4 right hand sides
for which the count is between 110 and 119. Similar behaviour was observed for our
other test problems.

Table 5 reports the iteration counts for the classical PCG method and the
breakdown-free block PCG method [21, 35]. For PCG, iters is the largest PCG
iteration count over the k + p right hand sides. For the block method, iters = itg, is
the number of block PCG iterations. As expected from the theory, the block method
significantly reduces the (maximum) iteration count. For our examples, it also leads
to a modest reduction in the iteration count itpcg for solving (2.13).

5.1.2. Impact of tolerance cg,. We now study the impact of the convergence
tolerance eg, used when solving (4.13) on the quality of the Nystrom—Schur
preconditioner. In Table 6, we present results for three test problems that illustrate
the (slightly) different behaviors we observed. The results demonstrate numerically
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Mo S1 Sa
Identifier  eg, its, itpca
0.8 1 500+
0.5 68 228
el2d 0.3 70 228 914 231
0.1 72 228
0.01 78 228
0.8 1 173
0.5 2 171
el3d 0.3 22 52 174 37
0.1 24 52
0.01 27 52
0.8 32 178
0.5 32 178
nd3k 0.3 32 178 603 143
0.1 32 178
0.01 33 178
TABLE 6

The effects of the convergence tolerance €5, on the quality of the Nystrém-Schur preconditioner.

Identifier M1 Miaper Mz Moaper M3z Msaper S Sy

bcsstk38 218 218 219 219 360 313 584 122

el2d 266 267 300 300 282 282 914 231

el3d 73 72 76 75 78 76 174 37

mscl10848 206 205 213 211 216 222 612 116

nd3k 205 205 210 210 211 211 603 143

s3rmt3m3 127 127 135 134 161 153 441 70
TABLE 7

Comparison of itiyeqr for the variants of the Nystrém-—Schur preconditioner and S1 and Ss.
es; =0.1.

that a large tolerance can be used without affecting the quality of the preconditioner.
Indeed, using €5, = 0.3 leads to a preconditioner whose efficiency is close to that of the
ideal (but impractical) two-level preconditioner 52. The use of a large €g, to limit itg,
is crucial in ensuring low construction costs for the Nystrom—Schur preconditioners.

5.2. Type of preconditioner. We next compare the performances of the
variants M; and M, pgr (i = 1,2, 3) of the Nystrom—Schur preconditioner presented
in section 4. In Table 7, we report the total iteration count itioa. All the variants
have similar behaviors and have a significantly smaller count than the one-level
preconditioner Si.

5.3. Varying the rank and the oversampling parameter. We now look
at varying the rank k within the Nystrom algorithm and demonstrate numerically
that the efficiency of the preconditioner is robust with respect to the oversampling
parameter p. For problem s3rmt3m3, Table 8 compares the iteration counts for My
with that of the ideal two-level preconditioner Ss for k ranging from 5 to 320. For S,
the iteration count is 441. This demonstrates the effectiveness of the Nystrom—Schur
preconditioner in reducing the iteration count. Increasing the size of the deflation
subspace (the rank k) steadily reduces the iteration count required to solve the Sy
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k 5 10 20 40 80 160 320

its, 97 57 37 23 16 11 8
itpceg 244 203 98 53 30 20 14

Mz

Sa itpca 212 153 70 37 22 13 9

TABLE 8
Problem s8rmt3m3: Impact of the rank k on the iteration counts (p =0).

P 0 5 10 20 40

its, 37 31 28 23 20
itpca 98 &8 79 77T T4

TABLE 9
Problem s8rmt3m3: Impact of the oversampling parameter p on the iteration counts (k = 20).

system (4.13). For the same test example, Table 9 presents the iteration counts for
a range of values of the oversampling parameter p (here k = 20). We observe that
the counts are relatively insensitive to p but, as p increases, itpcg reduces towards
the lower bound of 70 PCG iterations required by S;. Similar behavior was noticed
for our other test examples. Although increasing k£ and p improves the efficiency
of the Nystrom—Schur preconditioner, this comes with extra costs during both the
construction of the preconditioner and its application. Nevertheless, the savings from
the reduction in the iteration count and the efficiency in solving block linear systems
of equations for moderate block sizes (for example, k = 40) typically outweigh the
increase in construction costs.

5.4. Comparisons with incomplete Cholesky factorization
preconditioners. Finally, we compare the Nystréom—Schur preconditioner with
two incomplete Cholesky factorization preconditioners applied to original system.
The first is the Matlab variant ichol with the global diagonal shift set to 0.1 and
default values for other parameters and the second is the Matlab interface to the
incomplete Cholesky (IC) factorization preconditioner HSL_MI28 [39] from the HSL
library [20] using the default parameter settings. IC preconditioners are widely used
but their construction is often serial, potentially limiting their suitability for very
large problems (see [19] for an IC preconditioner that can be parallelised). In terms
of iteration counts, the Nystrom—Schur and the HSL_MI28 preconditioners are clearly
superior to the simple ichol preconditioner, with neither consistently offering the
best performance. Figure 4 presents the residual norm history for PCG. This is
confirmed by the results in the Appendix for our large test set. The residual norm for
My decreases monotonically while for the IC preconditioners we observe oscillatory
behaviour.

Because our implementation of the Nystrom—Schur preconditioner is in Matlab,
we are not able to provide performance comparisons in terms of computation times.
Having demonstrated the potential of our two-level Nystrom—Schur preconditioner,
one of our objectives for the future is to develop an efficient (parallel) implementation
in Fortran that will be included within the HSL library. This will allow users to
test out the preconditioner and to assess the performance of both constructing and
applying the preconditioner. Our preliminary work on this is encouraging.
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Identifier Mo HSL_MI28 ichol

its; itpca

bcsstk38 46 173 593 2786

ela2d 72 228 108 2319

ela3d 24 52 36 170

mscl10848 47 166 145 784

nd3k 32 178 102 1231

s3rmt3m3 37 98 610 2281
TABLE 10

PCG iteration counts for the Nystrém-—Schur preconditioner Mo (with k = 20) and the IC
preconditioners HSL_MI28 and ichol.

— Nystrém-Schur
—HSL_MI28

—ichol

Residual norm

I | | |
0 500 1000 1500 2000 2500 3000
Iteration count

— Nystrom-Schur
—HSL_MI28
—ichol

Residual norm

I I I I |
0 500 1000 1500 2000 2500
Iteration count

Fi1c. 4. PCG residual norm history for test examples bcsstk38 (top) and ela2d (bottom).

6. Concluding comments. In this paper, we have investigated using
randomized methods to construct efficient and robust preconditioners for use with
CG to solve large-scale SPD linear systems. The approach requires an initial
ordering to doubly bordered block diagonal form and then uses a Schur complement
approximation. We have demonstrated that by carefully posing the approximation
problem we can apply randomized methods to construct high quality preconditioners,
which gives an improvement over previously proposed methods that use low rank
approximation strategies. We have presented a number of variants of our new
Nystrom—Schur preconditioner. During the preconditioner construction, we must
solve a smaller linear system with multiple right-hand sides. Our numerical
experiments have shown that a small number of iterations of block CG are needed
to obtain an approximate solution that is sufficient to construct an effective
preconditioner.
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Currently, the construction and application of our Nystrom—Schur preconditioners
requires the solution of linear systems with the block matrix Ar (2.9). Given
the promising results presented in this paper, in the future we plan to investigate
employing a recursive approach, following ideas given in [49]. This will only require
the solution of systems involving a much smaller matrix and will lead to a practical
approach for very large-scale SPD systems. A parallel implementation of the
preconditioner will also be developed.

Appendix A. Extended numerical experiments. Here we present results
for a larger test set. The problems are given in Table 11. We selected all the SPD
matrices in the SuiteSparse Collection with n lying between 5K and 100K, giving us a
set of 71 problems. For each problem, we ran PCG with the S;, My, S5 and HSL_MI28
preconditioners. In all the tests, we use 64 subdomains. For My, we used k = 20
and set p = ¢ = 0. Iteration counts are given in the table, whilst performance profiles
[6] are presented in Figure 5. In recent years, performance profiles have become a
popular and widely used tool for providing objective information when benchmarking
algorithms. The performance profile takes into account the number of problems solved
by an algorithm as well as the cost to solve it. It scales the cost of solving the problem
according to the best solver for that problem. In our case, the performance cost is
the iteration count (for Mz, we sum the counts its, and itpcg). Note that we do
not include §2 in the performance profiles because it is an ideal but impractical two-
level preconditioner and, as such, it always outperforms My. The performance profile
shows that on the problems where Sy struggles, there is little to choose between the
overall quality of My and HSL_MI28.

S Ma S, HSLMI28  k(A) S Mo S, HSLMI28  k(A)
Identifier its, itpca Identifier its, ilpca
Aft0L 18 19 5 31 17 9or18 s3dkt3m2 To164 338 270 1107 3e+10
e o7 miows @ oie  mmumome S wow o m e
besstk17 349 46 55 48 59 let+10 $3rmt3m3 a1 37 101 70 610 3e+00
besstk18 136 40 745 26 Getl1l ship_001 1453 367 600 368 177 60409
besstk25 t 92 660 453 254 le+13 smt 399 59 12 72 95 le+09
besstk36 451 64 214 169 toletl2 thermall 169 30 62 47 30 4det01
besstk38 584 46 171 122 593 6e+16 Pres_Poisson 92 13 29 19 32 3e+06
bodyy6 182 53 163 129 5  9e+04 crankseg_1 92 16 49 33 34 9e+18
cant h 57 228 396 933 5e+10 crankseg_2 89 17 47 32 38 8e+06
cfdl 200 30 72 50 274 1e+06 Kuu st 16 a3l 10 30404
consph 185 47 177 136 50 3407 }’)‘;‘f){{fvdz By o " ?:gi
gridgena 426 90 377 298 66  6e4+05 cbuckle 55 9 51 39 4T Tet0T
gyro T 55 346 518 319 4e+09 3 50 12 31 21 8 4de+03
gyrok T 55 346 518 319 3e+09 Dubcoval 39 8 24 15 7 2403
gyrom 165 16 34 22 17 1let07 bodyy4 34 8 29 2 4 1e403
m_t1 867 85 247 187 t 3etll jnlbrngl 22 4 21 19 4 let02
minsurfo 15 3 15 13 3 8et01 bundlel 13 3 8 5 5 let04
mscl0848 612 47 168 116 145  3e+10 t2dah_e 12 3 12 11 3 3et07
msc23052 479 69 220 175 T let12 obstclae 12 3 1212 3 det0l
nasasrb 1279 135 196 421 £ 1et09 t:;:fg;,lmo g 2 3 }f 3 S:g?
nd3k 1091 56 301230 102 5e407 wathen120 12 3 2 1 3 2e4+07
nd6k 1184 108 325 248 116 6e+07 ol 7 5 T 3 Tetol
oilpan 647 67 122 72 507 4e+09 2 7 3 .7 3 leto0l
olafu 1428 69 489 757 557 2e+12 shallow_water2 7 40 7 7 3 3e+l12
pdblHYS 869 89 83 274 483 2e+12 shallow_waterl 520 5 5 2 1e401
vanbody t287 1106 769 i 4et03 Muu 6 1 6 6 2 le402
ct20stif 1296 90 232 281 T 2et14 qa8fm 6 1 6 6 2 le+02
nd12k 1039 155 337 265 111 2e+08 crystm02 6 1 6 5 2 4et02
nd24k 1093 165 386 268 120 2e+08 crystm03 6 1 6 5 2 4et02
slrmgdml 154 19 50 32 33 5e+06 finan512 5 1 5 5 3 9e01
! i : ted_B_unscaled 3 1 3 4 2 det05
slrmt3ml 192 24 59 39 18 3e+08 tod D 5 h PO 2 2411
s2rmgdml 231 28 54 4l 39 de+08 Trefethen_20000b 3 1 2 2 3 1et05
s2rmt3ml 260 31 64 45 33 3e+l1l Trefethen_20000 4 1 2 2 3 2e+05
s3dkq4m2 too148 339 236 610 6Ge+11
TABLE 11

PCG iteration counts for SPD matrices from the SuiteSparse Collection with n ranging between
5K and 100K.
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Profile: Iterations - 71 problems Profile: Iterations - 40 problems

°
®
|
'
'
'
'

°
&)

°
S
'

fraction for which solver within f of best
fraction for which solver within f of best
h

- '
02 ! — HSL_MI28 (6 failures) 02 i — HSL_MI28 (6 failures)
‘.-' --=  Nystrom--Schur (0 failures) i == Nystrom--Schur (0 failures)
- -~ One-level (7 failures) ST - - One-level (7 failures)
0.0 0.0
2 3 4 5 6 7 B 9 10 2 3 2 5 6 7 8 9 10

f f

FiG. 5. Iteration count performance profile for the large test set. The 40 problems used in the
right hand plot are the subset for which the S1 (one-level) iteration count exceeded 100.
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