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Highlights

•	 Understanding broad-scale biological patterns and 
processes is crucial for effective conservation actions 
and management under ongoing global change.

•	 While Macroecology and Conservation science have 
different scopes, they have influenced - and benefitted 
from - each other over time.

•	 Macroecology has contributed to conservation by 
developing ecological theory and methodological 
approaches, making data more accessible, and 
addressing knowledge gaps.

•	 Macroecology has capitalized on data-gathering 
that was originally intended to support conservation 
initiatives, and gained an improved understanding of 
how natural patterns have been altered by recent 
human impact.

•	 Untapped opportunities remain that could foster 
additional interconnections and aid further 
development of both disciplines. We present possible 
solutions to improve connections and new avenues 
for macroecological research that can benefit 
conservation science.

Abstract
Human activities are altering the structure of ecosystems, 
compromising the benefits they provide to nature and 
people. Effective conservation actions and management 
under ongoing global change rely on a better understanding 
of socio-ecological patterns and processes across broad 
spatiotemporal scales. Both macroecology and conservation 
science contribute to this improved understanding and, 
while they have different scopes, these disciplines have 
become increasingly interconnected over time. Here we 
describe examples of how macroecology has contributed 
to conservation science, and how conservation science 
can motivate further macroecological developments 
and applications. We identify challenges and untapped 
potential to further strengthen the links between these two 
disciplines. Major macroecological contributions include 
developing ecological theory, providing methodologies 
useful for biodiversity assessments and projections, 
making data more accessible and addressing knowledge 
gaps. These contributions have played a major role in 
the development of conservation science, and have 
supported outreach to policy makers, media, and the public. 
Nonetheless, a pure macroecological lens is limited to 
inform conservation decisions, particularly in local contexts, 
which frequently leads to the misuse of macroecological 
analyses for conservation applications, misunderstandings 
of research outputs, and skepticism among conservation 
practitioners and scientists. We propose possible solutions 
to overcome these challenges and strengthen links between 
macroecology and conservation science, including a stronger 
focus on ecological mechanisms and predictive approaches, 
and the creation of hybrid journals and meetings. Finally, 
we suggest new avenues for macroecological research that 
would further benefit conservation science.

Keywords: biodiversity assessments, biodiversity database, broad-scale biodiversity models, conservation practice, 
macroecological theory, media attention, public interest
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Macroecology and Conservation Science: 
diverging but complementary scopes
Macroecology and conservation science are both 

relatively young scientific disciplines arising from 
traditional ecology (Hintzen et al. 2019, McGill 2019). 
Although there can be overlap in academic research 
between them, the two disciplines often differ in their 
aims. Macroecology is the branch of ecology focused 
on broad-scale patterns, processes, and emergent 
properties of complex systems (Brown and Maurer 
1989, Lawton 1999, Smith et al. 2008), where scale 
can be defined along three main axes: time, space, 
and taxonomy (Brown 1999, McGill 2019; Fig. 1). While 
typically characterized by a focus on broader scales and 
a top-down approach, the search for general principles 

underlying the structure and functioning of life on earth 
that escape the specifics of individual systems can 
further distinguish macroecology from other disciplines, 
such as biogeography, meta-community or landscape 
ecology (Lawton 1999, Blackburn and Gaston 2002, 
Marquet 2002, Smith et al. 2008). Conservation science, 
conversely, is a mission-oriented discipline aimed at 
biodiversity conservation (Soulé 1985; Fig. 1). When 
first defined as a discipline it was considered a branch 
of ecology (i.e. conservation biology) but has become 
increasingly multidisciplinary over time, broadening 
into what is now collectively defined as conservation 
science (Box 1), which explicitly recognizes the role 
of humans in the conservation agenda by integrating 
disciplines such as economics, political science, and 
social sciences (Kareiva and Marvier 2012; we broadly 

Box 1 - GLOSSARY
Macroecology = Discipline aimed at delineating general principles able to explain patterns, processes and 
emergent properties of complex ecological systems at broad scales, where scale can be defined along 
three main axes: time, space and taxonomy.
Conservation science = Discipline concerned with all aspects of conservation, including e.g. biology, 
economics, policy, psychology, sociology, sustainable development, anthropology and ethics.
Conservation biology = Branch of conservation science dealing specifically with biological aspects, 
including e.g. genetics, population biology, ecosystems, and biodiversity.
Conservation biogeography = Subfield of conservation biology applying biogeographical principles, 
theories and analyses to address biodiversity conservation.
Conservation research = Research aimed at improving the theory underlying conservation science and 
exploring new approaches and methods for conservation practice.
Conservation planning = Quantitative approaches for the identification of conservation actions needed in 
order to meet a conservation goal.
Conservation practice = Implementation of conservation actions on the ground, which may include actual 
interventions on populations/habitats, interaction with policy makers and stakeholders, fundraising, 
education and communication with the public.
Land manager = Person in charge of managing and supervising the development lands, including areas 
dedicated to biodiversity conservation.

Figure. 1. Scale in macroecology and conservation science, adapted from McGill (2019). The grey dots along the axes 
indicate the approximate values beyond which macroecology typically operates.
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refer to conservation science throughout the paper, 
only referring to different conservation subfields 
where relevant). As a mission-driven discipline, 
conservation science has been subjected to many 
temporary and contrasting schools of thought (Mace 
2014, Hintzen  et  al. 2019, Sandbrook  et  al. 2019). 
An important difference that characterizes the 
development of conservation science when compared 
to other ecological disciplines is that conservation 
scientists and practitioners are expected to provide 
recommendations and make decisions even when a 
solid theoretical or empirical underpinning is missing 
(Soulé 1985). Therefore, conservation science requires 
pragmatism and higher tolerance to uncertainty 
compared to other disciplines. Here we have adopted 
inclusive, operational definitions for conservation and 
macroecology (see Glossary – Box 1), but discipline 
boundaries are not strict, and we acknowledge that the 
research (and researchers) we discuss can potentially 
overlap other disciplines (e.g. meta-community ecology, 
biogeography, landscape ecology). As it commonly 
happens in science, different interpretations coexist, 
and achieving consensus in definitions goes beyond 
the scope of this work and is, arguably, not needed for 
the overall argument that further linking of top-down, 
broad-scale ecology with conservation can be useful.

Historically, much of conservation science has 
focused on specific populations or habitats. However, 
given the global nature and the synergistic effects of 
the multiple drivers of global change that characterize 
the Anthropocene, such as land-use, overexploitation 
and climate change (Barnosky et al. 2012, Halpern et al. 
2019, IPBES 2019, Bowler et al. 2020), conservation 

science has gradually adopted a broad-scale top-
down perspective (Fig. 2). Today, conservation is an 
extremely diversified discipline that includes both 
researchers and practitioners working at scales that 
span from single populations and local habitats, up 
to global conservation efforts, such as those defined 
under the UN Convention on Biological Diversity. 
‘Conservation biogeography’ has emerged as a hybrid 
field addressing conservation questions based on 
biogeographical principles (Whittaker  et  al. 2005). 
Broad-scale conservation analysed can be seen by some 
practitioners as purely academic exercises with little 
relevance for   real-world applications (Prendergast et 
al. 1999). However adequate conservation planning 
in response to global-scale threats requires an 
understanding of the regional-scale context in which 
species are embedded (Knight et al. 2006, Pressey et 
al. 2013). Indeed, land managers and policy makers 
are already making conservation decisions within 
regional, national and international frameworks (e.g. 
Rewilding Europe and Natura 2000 in Europe, Evans 
2012, Ceaușu et al. 2015) which largely exceed the 
average scale of traditional ecological studies (Estes 
et al. 2018, McGill 2019).

In 1989 James H. Brown argued that macroecology 
had much to offer to biodiversity conservation (Brown 
1989), from predictions of extinctions due to habitat 
loss, to the identification of correlates of species 
extinction risk and drivers of species abundance and 
distribution. More than thirty years later, we argue 
that macroecology has indeed made substantial 
contributions and nowadays plays an important role 
in informing conservation science and, more indirectly, 

Figure. 2. Links between traditional ecology, macroecology, conservation research and practice, policy-makers and the 
public. We represent here the links discussed in the text, but acknowledge that many other links exist (e.g. between 
ecology and conservation) or are possible. We further note that this figure is an oversimplified representation of reality: 
disciplines are presented as distinct boxes, although we acknowledge that in reality science is fluid and boundaries between 
disciplines are often fuzzy, depending on the definitions used. We also acknoweldge that many researchers today conduct 
research that crosses different disciplines’ boundaries.
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conservation practice (Fig. 2), but that there remains 
untapped potential for further contributions. Here, 
we highlight some of the existing macroecological 
theoretical and methodological contributions to 
conservation science and provide insights into how 
links between the two disciplines can be further 
improved. We also show that conservation science has 
in turn contributed to contextualising the broad-scale 
patterns investigated by macroecology. On the other 
hand, the two disciplines are broad and diversified, and 
communication among respective researchers is often 
limited. This perspective article has three main goals: 
1) to provide a broad overview of the interconnections 
between macroecology and conservation science, 
covering examples of how these disciplines contributed 
to their mutual development in terms of theory, 
data, methods, and outreach potential; 2) to discuss 
limitations in terms of scale, communications and 
mutual understanding; and 3) to outline opportunities 
for further interlinkages and synergies between the 
two disciplines. This perspective may help to foster 
further collaborations between macroecology and 
conservation, and hope to reach macroecology and 
conservation reaching researchers who could, but do 
not yet, conduct research at the interface of these two 
disciplines. While here we refer to groups of scientists 
belonging to distinct disciplines, we recognize that 
science today is highly interconnected, and many 
researchers do not exclusively fit in any of these 
distinct categories, and often conduct research across 
disciplines.

Macroecology contributions to 
conservation science research

Developing theory
Local studies provide insights into ecological 

mechanisms, but these are rarely generalizable across 
taxa and/or habitats, limiting predictive capacity (Currie 
2019). Macroecology’s search for emergent patterns 
has contributed to our understanding of generalizable 
ecological mechanisms (McGill and Nekola 2010, 
Marquet et al. 2014) leading to improved predictive 
capacity (Currie 2019). For example, the Metabolic 
Theory of Ecology, which explains how body size and 
temperature interact to determine metabolic rates 
(Gillooly et al. 2001, Brown et al. 2004), prompted much 
macroecological research relevant for conservation 
issues. Metabolic theory underlies the allometry of 
space use, which relates species population density 
with body mass and trophic levels (Brown and Maurer 
1989, Jetz et  al. 2004). Such relationships, in turn, 
determine the minimum area required to effectively 
conserve populations (Boyer and Jetz 2012), as well 
as the minimum geographic range area for the long-
term persistence of species (Brown and Maurer 1987, 
Marquet and Taper 1998, Diniz-Filho  et  al. 2005, 
Carvajal-Quintero et al. 2017). Metabolic theory can 
also predict life history traits across trophic levels 
and body mass, which has been applied to inform 
the management of exploited populations, such as 
fisheries (Jennings and Blanchard 2004, Andersen et al. 

2009, 2015, Gislason et al. 2010). Species abundance, 
geographic distribution and reproductive traits are key 
parameters that determine species extinction risk. 
Scaling relationships have been used to clarify how 
the intrinsic vulnerability of species to extinction varies 
with their size and other biological traits (Purvis et al. 
2000, Cardillo  et  al. 2005a, Pearson  et  al. 2014, 
Böhm et al. 2016). Finally, the scaling of metabolic rate 
with body mass and its dependency on environmental 
temperature (Gillooly et al. 2001) underlies species 
tolerance and vulnerability to environmental change 
(Dillon et al. 2010, Araújo et al. 2013). Obviously, such 
relationships cannot be considered universally accurate 
as they describe broad biodiversity patterns, and 
improved estimates for conservation must be obtained 
for individual populations. For example, criticisms on 
the application of the metabolic theory to fisheries 
has exposed simplifications that may lead to flawed 
estimates (Valderrama and Fields 2017). However, 
such macroecological relationships allow to set prior 
expectations in the absence of more targeted studies.

The Unified Neutral Theory (Hubbell 2001), 
which emphasizes the importance of ecological drift 
and dispersal limitation to explain natural patterns, 
has also been widely used to derive predictions in 
conservation, for example regarding the number of 
species expected to go extinct (e.g. Hubbell  et  al. 
2008). Several studies have shown that Neutral theory 
is capable of accurately predicting some informative 
parameters for conservation (e.g. extinction rates, 
invasion success), but not others, highlighting the role 
of neutral mechanisms in structuring communities, 
while also exposing the over-simplification of some 
assumptions (e.g. Gilbert et al. 2006, Daleo et al. 2009).

Macroecologists have long studied the relationship 
between the Grinnellian niche and species distribution 
(Maguire 1973, Colwell and Rangel 2009, Soberón 
and Nakamura 2009), leading to the development 
of methods for predicting species distributions that 
are now widely applied in conservation planning 
(e.g. Araújo  et  al. 2004), identifying undiscovered 
populations of rare species (e.g. Williams et al. 2009), 
and potential reintroduction areas (e.g. Martínez-
Meyer et al. 2006). Such investigation also underlies 
many studies on the effects of global change on species 
distribution, providing essential risk assessments and 
scenario projections (Guisan and Thuiller 2005, Guisan 
et al. 2013; although their uncritical application has 
been criticized, e.g. Fourcade et al. 2018, Warren et 
al. 2020, Santini et al. 2021). For example, studies of 
geographic range contractions have shown that these 
rarely occur from margins to the centre, as originally 
hypothesized, with many highly threatened species 
now occupying a marginal area of their historical 
distributions (Channel and Lomolino 2000). More 
recent research further unveiled the interplay between 
climate change, anthropogenic threats and species 
traits in range contraction dynamics (Pacifici  et  al. 
2020).

Macroecological research has also focused on 
community assembly rules (Münkemüller et al. 2020) 
and functional biogeography (Violle et al. 2014), and 



Santini et al. How is macroecology useful to conservation?

Frontiers of Biogeography 2021, 13.4, e53025 © the authors, CC-BY 4.0 license  5

these concepts have gradually started to be used for 
projections of biodiversity responses to environmental 
change, e.g. in terms of community filtering effects and 
changes in functional trait patterns (e.g. Dubuis et al. 
2013, Blonder et al. 2015, Madani et al. 2018).

Macroecological principles are at the base of the 
Island Biogeography Theory (MacArthur and Wilson 
1967), which underlies the concept of “rescue effect” 
(Brown and Kodric-Brown 1977) and has been pivotal 
for the development of conservation planning, 
specifically underlying the general principles of 
reserve design in terms of area, shape and isolation 
(Diamond et al. 1976). Subsequently, the SLOSS (Single 
Large or Several Small) debate has set the basis for 
landscape and conservation planning theory, exposing 
the trade-offs between population persistence, species 
richness and risk spread, as well as between single- and 
multi-species conservation plans (Ovaskainen 2002, 
Whittaker and Fernández-Palacios 2007, Le Roux et al. 
2015). Whilst conceptually useful, the Island 
Biogeography Theory is not directly applicable to real 
case studies given the context-dependent nature of 
conservation problems, which normally require a 
more in-depth consideration of several factors (e.g. 
costs, risk of land to be converted, etc.; Margules and 
Pressey 2000).

Further fundamental contributions stem from 
emergent macroecological patterns like Species 
Abundance Distributions (SADs) and Species Area 
Relationships (SARs) (Rosenzweig 1995). Both SADs 
and SARs have been used to estimate long-term effects 
of habitat loss and fragmentation on species richness 
and abundance (Storch  et  al. 2012, Matthews and 
Whittaker 2015, Chisholm et al. 2018). For instance, 
SADs can inform conservation management and 
monitoring about the relative rarity of species in a 
community (McGill et al. 2007, Enquist et al. 2019), 
with changes in SADs acting as early-warning signals 
of disturbance processes such as biological invasions 
(Matthews and Whittaker 2015). Both SARs and SADs 
have been shown to be accurately predicted by the 
Maximum Entropy theory of ecology (Harte 2011), 
which relies on information on species richness, total 
abundance, and total metabolic rate of a community 
to predict several emergent patterns in macroecology. 
Further, the concept of “extinction debt” results from 
a delayed effect of habitat loss on species richness 
and abundance, derived as a direct consequence of 
habitat loss and fragmentation acting on broad spatio-
temporal scales on entire biological communities. 
Although this concept was originally formulated 
as a species-level mechanism (Diamond 1972, 
Tilman et al. 1994), it has increasingly been treated as a 
disequilibrium of community level emergent properties 
following changes in the available area according to 
SARs (Halley et al. 2014). SAR have, however, been 
shown to overestimate extinction debts, and further 
development of this theory led to the conceptualization 
of the Endemic Area Relationships (EAR) as a more 
robust approach to estimate the number of extinctions 
expected at the equilibrium (Kinzig and Harte 2000).

The study of habitat fragmentation also benefit 
from a top-down approach, as conclusions drawn 
from individual patches do not scale up to landscape 
levels (Fahrig 2019). After decades of literature 
supporting the negative impacts of fragmentation on 
biodiversity, macroecological approaches have allowed 
disentangling the individual effects of habitat loss and 
fragmentation, suggesting that fragmentation per se 
may not yield negative effects on biodiversity, and 
only the amount of surrounding habitat matters - the 
Habitat Amount Hypothesis (Fahrig 2013). Results 
regarding this hypothesis are, however, mixed, and its 
implications are still currently debated (Saura 2020).

Macroecology has also developed frameworks to 
test hypotheses on biological invasions, delineating 
both generalized patterns of invasions (Blackburn 
and Duncan 2001a,b, Sax et al. 2002, Sax and Gaines 
2008, Blackburn et al. 2017), as well as the profile of 
successful invasive species (e.g. Van Kleunen  et  al. 
2010, Capellini  et  al. 2015, González-Suárez  et  al. 
2015, Allen et al. 2017b). Species distribution models 
have been used to estimate drivers of invasion and 
the potential spread of invasive species (Bellard et al. 
2016). Finally, broad-scale meta-analyses have 
allowed escaping from idiosyncrasies of single studies 
to synthesize the generalized secondary effects of 
defaunation on biological communities (e.g. Baum 
and Worm 2009, Gardner et al. 2019), with broad-
scale simulations based on trait-based approaches 
further uncovering secondary effects of human impacts 
(Donoso et al. 2020, Enquist et al. 2020).

Improving data accessibility and filling knowledge 
gaps

Evidence-based conservat ion depends 
on systematically assembled ecological data. 
Macroecologists (and other ecologists working 
at broad scales) have invested heavily in collating 
such data and, by doing so, have recently created 
a number of key publicly accessible databases of 
species occurrence (e.g. OBIS-SEAMAP, Halpin et al. 
2006, BIEN, Maitner  et  al. 2018), abundance 
(e.g. PREDICTS, Hudson  et  al. 2014, BioTIME, 
Dornelas et al. 2018, TetraDENSITY, Santini et al. 2018, 
RivFishTIME, Comte et al. 2020), traits (e.g. PanTHERIA, 
Jones et al. 2009, TRY, Kattge et al. 2011, EltonTRAITS, 
Wilman et al. 2014, AmphiBIO, Oliveira et al. 2017), 
and population demographics (e.g. COMPADRE, 
Salguero-Gomez  et  al. 2015, COMADRE, Salguero-
Gómez et al. 2016). One of the key features is that these 
are standardised databases, allowing easier access to 
primary data otherwise hard to obtain and synthesise, 
and therefore offering the possibility to easily query 
spatio-temporal information on species occurrence, 
abundance and/or traits, which can readily inform 
biodiversity assessments and conservation plans (e.g. 
Edgar et al. 2016, Blowes et al. 2019, Enquist et al. 
2019, Williams et al. 2019, Antão et al. 2020).

Crucially, such data compilation efforts have exposed 
spatial, temporal, and taxonomic biases and uncertainties 
in biodiversity knowledge (González-Suárez et al. 2012, 
Edgar et al. 2016, Meyer et al. 2016, Conde et al. 2019, 
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Dornelas et al. 2019) - the pervasive Eltonian, Linnean 
and Wallacean shortfalls. While these shortfalls remain 
an issue across ecology and conservation (Whittaker et al. 
2005, Hortal et al. 2015), macroecological efforts have 
prompted research into statistical methods to address 
data gaps (Blackburn and Gaston 1998, Penone et al. 
2014, Johnson et al. 2020), extract valuable information 
from opportunistically collected data (Isaac et al. 2014), 
and devise top-down approaches to guide future data 
collection (Rocchini et al. 2011, Stropp et al. 2016, 
Dornelas et al. 2019).

Furthermore, macroecology has unveiled statistical 
relationships that are often used in conservation to 
make inferences on poorly known areas or species. 
For instance, there are fairly comprehensive datasets 
for some traits (Wilman et al. 2014), while data for 
other traits (e.g. home range area, dispersal distance, 
reproductive traits) are only available for a relatively 
small number of species. Spatial and reproductive 
traits, however, provide key information for biodiversity 
conservation, including species minimum required 
area, colonisation potential and population resilience. 
Larger mammals, for example, live at lower population 
densities (Silva and Downing 1995), disperse longer 
distances (Whitmee and Orme 2012), tend to have 
slower reproductive rates and smaller reproductive 
outputs (Bielby  et  al. 2007), and require smaller 
populations for persistence (Hilbers  et  al. 2017). 
Conservation research has relied on such statistical 
relationships to estimate missing information relevant 
to conservation assessments or planning (Pacifici et al. 
2013, Visconti et al. 2016, Santini et al. 2019, Bird et al. 
2020). Because trait values span several orders of 
magnitude across taxa, inferred estimates facilitate the 
reduction of uncertainty for biodiversity conservation 
assessments, planning and projections, which would 
otherwise ignore key differences between species 
and would thus be even more taxonomically and 
geographically biased.

Providing tools for biodiversity assessments
The quantification of biodiversity patterns and how 

they change in space and time are both a key goal of 
macroecology (McGill et al. 2015) and fundamental 
for conservation actions across scales. In an effort 
to standardize, quantify and monitor changes in 
biodiversity, macroecologists have started to propose 
the systematic use of biodiversity indicators (e.g. Pauly 
and Watson 2005, https://www.bipindicators.net/, 
Collen et al. 2009), and more recently of several Essential 
Biodiversity Variables that span from genetic diversity 
to ecosystem structure and function (Pereira  et al. 
2013, Kissling et al. 2018, Jetz et al. 2019, EBVs, https://
geobon.org/ebvs/what-are-ebvs/). Such metrics can be 
used as indicators in biodiversity monitoring programs 
and ultimately inform policy-relevant scenarios.

Conservation science is increasingly integrating 
macroecological knowledge into global biodiversity 
assessments and projection of species extinction 
risks (Visconti  et  al. 2016, Carvajal-Quintero  et  al. 
2017, Ceballos  et  al., 2017, Santini  et  al., 2019, 
Barbarossa  et  al. 2020). Global conservation 

assessments and macroecological research are 
progressively considering different biodiversity 
dimensions, e.g. taxonomic, functional and 
phylogenetic diversity, and how these change spatially 
and temporally (i.e. beta-diversity) (Thuiller et al. 2015, 
Socolar et al. 2016, Brum et al. 2017, Pollock et al. 
2017, Blowes et al. 2019, Rapacciuolo et al. 2019). 
Additionally, macroecological trait-based approaches 
and phylogenetic comparative methods have been 
adopted to predict which species are intrinsically more 
vulnerable to extinction (Purvis  et  al. 2000, Fisher 
and Owens 2004, Cardillo et al. 2005a) and may first 
go extinct in the future (Cooke et al. 2019b), as well 
as to predict the likely conservation status of poorly 
known species (Bland et al. 2015a), and even to design 
protected areas (Miatta et al. 2021).

Macroecologists have substantially contributed to 
develop species distribution modelling approaches 
(SDM; Guisan and Thuiller 2005), which have become 
a key tool for species conservation assessments 
(Guisan et al. 2013). SDMs have been used to quantify 
protected area coverage (Araújo et al. 2004), project 
species ranges shifts, contraction or expansion 
under alternative environmental and socioeconomic 
scenarios (Pearson and Dawson 2003, Thomas et al. 
2004), and for informing conservation planning and 
prioritization (Kremen et al. 2008). The development of 
user-friendly tools for predicting species distributions 
(e.g. “Maxent”, Phillips  et  al. 2004, “BIOMOD2”, 
Thuiller  et  al. 2009, “sdm”, Naimi & Araújo 2016, 
“wallace”, Kass  et  al. 2018) has prompted much 
theoretical and applied research in conservation 
at different spatial scales. Further methodological 
advances have enabled accounting for species co-
occurrence (potentially species interactions) on 
species’ distributions (JSDMs, Pollock et al. 2014) and 
their responses to environmental change (Clark et al. 
2014). More recently, joint dynamic SDMs (JDSDMs, 
Thorson  et  al. 2016) and hierarchical modelling of 
species communities (Ovaskainen et al. 2017) have 
enabled integrating species distribution and/or 
abundance data, traits, phylogenetic relationships and 
environmental predictors to estimate community-wide 
change via both biotic and abiotic mechanisms. 
These methods have yet to be broadly applied to 
conservation, but have great potential for making 
more realistic predictions of community responses 
to global change (Rapacciuolo and Blois 2019), e.g. 
applying context-dependent JSDM (Tikhonov  et  al. 
2017) along gradients of human disturbance.

SARs are commonly employed to assess the 
impact of land-use change and habitat loss globally 
(e.g. Chaudhary et al. 2015), and more recently have 
been combined with SDM modelling and conservation 
planning to assess the extent to which meeting global 
biodiversity targets would result in a reduction of 
species extinction risk globally (Hannah et al. 2020, 
Jung et al. 2021). Similarly, SADs have been recently 
used to identify global hotspots of rarity for plant 
species, and predict an increased risk of extinction 
in these regions due to high human pressures and 
expected climate change (Enquist et al. 2019).
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Recently, BILBI (the Biogeographic Infrastructure 
for Large-scaled Biodiversity Indicators) has integrated 
advances in macroecological modelling, biodiversity 
informatics, remote sensing and high-performance 
computing to assess spatio-temporal changes in 
biodiversity at ~1km grid resolution across the 
terrestrial surface of the planet while reducing 
taxonomic biases (Hoskins  et  al. 2020). These 
approaches have already been used for protected 
area assessments (Ferrier et al. 2004), to quantify the 
contribution of wilderness areas to global biodiversity 
conservation (Di Marco et al. 2019a), and to forecast 
the risk of extinction of vascular plant biodiversity 
under climate and land-use change (Di Marco et al. 
2019b).

Species distribution models and threat mapping 
products are widely used to delineate regional to 
global conservation plans. These broad-scale planning 
exercises can guide actions to meet global conservation 
targets (Pouzols et al. 2014, e.g. Venter et al. 2014) 
and provide an holistic view on how to account for 
numerous conservation priorities simultaneously. 
For example, O’Connor  et  al. (2021) revealed that 
large gains in biodiversity protection can be achieved 
with little additional conservation effort in Europe. 
By projecting species distribution in the future, 
Titley  et  al. (2021) identified globally important 
transboundary areas where international cooperation 
will fundamental to mitigate the effects of climate 
change on biodiversity, and where physical barriers 
may be most detrimental to conservation. While the 
direct implementation of such plans in the real world 
are still limited, some have successfully been applied, 
by adjusting regional plans to local contexts in close 
collaboration with local stakeholders (e.g. the Cape 
region in South Africa and the Great Barrier Reef in 
Australia; Fernandes et al. 2005, Knight et al. 2006, 
Pressey et al. 2013).

Improving outreach actions
Broad-scale macroecological biodiversity 

assessments regularly inform technical reports on 
the status and trends of biodiversity (Fig. 2; IPBES, 
GEOBON, Living Planet Report, State of Nature reports, 
Hof  et  al. 2015), which are then used for setting 
national and international targets for biodiversity 
conservation (e.g. AICHI targets, Tittensor  et  al. 
2014). This, in turn, influences supranational (e.g. 
LIFE projects in Europe) and national allocation of 
funding for conservation actions in order to meet 
the agreed targets. For example, Natura 2000, the 
largest network of protected areas in the world, is a 
European strategy for biodiversity conservation that 
was established using a biogeographical approach 
(Evans 2012). Natura 2000 involves local conservation 
actions, land managers, conservation practitioners 
and researchers who are asked to periodically 
reassess species checklists, and limit or mitigate the 
environmental impacts of planned infrastructures 
(Evans 2012).

Global and regional macroecological analyses 
can be very powerful in raising public awareness 

on biodiversity trends and conservation (Fig. 2; e.g. 
Cardinale et al. 2012, Ceballos et al. 2015, Urban 2015, 
Soroye et al. 2020), which is key to ensure biodiversity 
research and conservation are not relegated to a 
marginal role under economic uncertainty and priority 
fluctuations within limited budgets (Bakker  et  al. 
2010, Sayer  et  al. 2012). Broad-scale conservation 
assessments are frequently in the top 100 of the 
most mentioned articles online according to the 
Altmetric score, an index designed to quantify media 
attention (e.g. https://www.altmetric.com/top100). 
This is fundamental because media attention can 
directly affect public interest, which may have strong 
influence on policy makers and the decisions they 
make. Media may be more likely to report on scientific 
research with broad implications across large areas 
or taxonomic groups than for single species (unless 
highly charismatic) or sites. Additionally, approaches 
focused on natural capital or ecosystem services 
that are inherently macroecological (across taxa and 
temporal and spatial scales) have indeed focused 
on quantifying tangible benefits of nature to people 
(Guerry  et  al. 2015), and serve the very practical 
purpose of raising awareness of the value of nature 
that goes beyond aesthetic, cultural or intrinsic values. 
The pressing need for efficient biodiversity assessment 
and conservation planning, and the importance of 
public awareness is highlighted by the fact that none 
of the set Aichi Biodiversity Targets for 2020 have 
been met for the second consecutive decade (Global 
Biodiversity Outlook 2020).

Conservation contributions to Macroecology
Knowledge transfer between the two disciplines has 

not been unidirectional (Gaston & Blackburn 2003). 
First, public engagement and conservation monitoring 
activities have contributed to the development of 
macroecology (Fig. 2). Early broad-scale explorations 
of macroecological patterns were possible thanks to 
initiatives like the Audubon Christmas Bird Counts 
(e.g. Preston 1980, Bock and Ricklefs 1983). Several 
citizen science initiatives such as iNaturalist (https://
www.inaturalist.org/; feeding directly into GBIF), eBird 
(ebird.org) or the UK and North American Breeding 
Bird Surveys currently provide large amounts of data 
for macroecological analyses (Brown and Williams 
2019), as do more recent marine initiatives, such as 
the Reef Life Survey (Edgar & Stuart-Smith 2014). 
Provided sampling biases are properly accounted 
for (Isaac  et  al. 2014), these extensive datasets 
can provide crucial biodiversity information across 
spatial, temporal and taxonomic scales larger than 
most typical biodiversity data sources (Edgar  et  al. 
2016, Chandler et al. 2017). Much macroecological 
science has also relied on data originally produced 
for conservation assessments; IUCN range maps, for 
example, have been widely used as proxies of species 
distribution to investigate macroecological patterns 
(Roll et al. 2017, Cooke et al. 2019a).

Second, the urgent conservation need to quantify 
and mitigate how multiple anthropogenic drivers 
threaten biodiversity across scales and realms 
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(Kerr  et  al. 2007, Halpern  et  al. 2019, IPBES 2019, 
Bowler  et  al. 2020) has proved to be a catalyst 
for macroecological innovation and stimulated 
macroecological research with real-world applications 
(Fig.  2). Numerous recent analyses relying on 
conservation science insights have unveiled the role 
of humans in shaping multiple current biodiversity 
change patterns. Such efforts have for example 
revealed a greater dependency on human pressure 
than life history and environmental drivers in explaining 
species range size (Murray and Dickman 2000, Di Marco 
and Santini 2015). Additionally, current geographic 
patterns of species richness (Torres-Romero and 
Olalla-Tárraga 2015, Sebastián-González et al. 2019), 
body mass distribution (Rapacciuolo  et  al. 2017, 
Santini et al. 2017), and functional and phylogenetic 
diversity (Faurby and Svenning 2015) are heavily 
influenced by humans. Similarly, broad-scale patterns 
of species movements (Tucker et al. 2018), population 
abundance (Benítez-López et al. 2019, Tucker et al. 
2020, Santini and Isaac 2021) and ecological network 
structure (Fricke and Svenning 2020) appear distorted 
by human presence. Recent extinctions and invasions 
likely caused by human activities have also altered 
the number and distribution of biogeographic realms 
(Bernardo-Madrid et al. 2019). In the ocean, overfishing 
has historically greatly altered patterns of life history, 
biomass and community structure (Jennings and 
Blanchard 2004, Tittensor et al. 2009, Halpern et al. 
2019). Most of the ocean area is currently experiencing 
increasing cumulative impacts (Halpern et al. 2019), 
with particular emphasis on climate change effects 
(Stuart-Smith et al. 2015, Antão et al. 2020). Ultimately, 
insights from conservation have led to an improved 
understanding of the drivers of macroecological 
patterns (Gaston and Blackburn 2003).

Strengthening the link: challenges and 
opportunities

Challenges
Despite numerous shared links, there still remain 

challenges in strengthening and developing further 
connections and synergies between macroecology and 
conservation science. First, there is a question of trade-
off between generality and specificity. Macroecologists 
often focus on correlations and tolerate unexplained 
variance that may be less relevant at broad scales and/
or when analysing many species, but becomes crucial at 
finer scales and for particular contexts (Lawton 1999). 
This can make macroecology somewhat detached from 
socio-ecological dynamics that managers face at the 
local scale (Gaston and Blackburn 1999, Kerr  et  al. 
2007). However, such deviations from macroecological 
predictions are expected, and a crux of scientific 
research is to understand whether such exceptions 
are valuable to identify important additional drivers, 
uncover more complex mechanisms and eventually 
promote a deeper understanding of ecological systems 
(Marquet et al. 2014).

Macroecology generally operates at broad 
taxonomic, temporal or geographic scales which 

are relevant only for some aspects of conservation 
(Fig. 1). Scepticism and misunderstandings can arise 
when trying to interpret, extrapolate or apply results 
obtained at different scales and data resolutions. 
For example, conservation analyses performed 
across broad spatial scales or many species (e.g. 
Visconti  et  al. 2016, Hof  et  al. 2018) are generally 
too coarse or uncertain to inform the conservation of 
single species or individual sites. Yet, they can be used 
to develop plausible scenarios of biodiversity change 
in response to societal decisions (Leclère et al. 2020, 
Schipper et al. 2020), which in turn are useful to plan 
conservation actions and inform policy (Hannah et al. 
2020, Jung  et  al. 2021, Soto-Navarro  et  al. 2020). 
Conversely, single species or population analyses 
provide specific information to guide management 
of the focal species or population, but are unsuitable 
for generalizing to other species or areas. The trade-
off between generality and specificity is important to 
consider regarding the scale of interest. Ultimately, 
conservation decisions are scale-dependent (Hartley 
and Kunin 2003), with different scales addressing 
different goals and benefiting from different disciplines 
(Fig. 1). Global and regional assessments informed by 
macroecology may enable prioritizing among different 
potential actions, such as focusing conservation 
efforts on particular species or areas (Brooks et al. 
2006, Venter  et  al. 2014, Pollock  et  al. 2017, 
Schipper  et  al. 2020), though conservation actions 
in practice will ultimately need to be implemented 
at national and local scales. While macroecological 
research cannot inform all aspects of conservation, 
it can provide a generalized and broad-scale context 
within which to consider conservation assessments 
and decisions that can then be tailored to individual 
species- or local-scale contexts (Fig. 2). An example 
are biodiversity hotspots (Myers et al. 2000), within 
which Conservation International has extensively 
invested in local conservation actions (https://www.
conservation.org/priorities/biodiversity-hotspots).

One possible reason why macroecology may 
be unable to contribute more strongly to local 
conservation is that it has not yet succeeded in 
identifying the driving mechanisms of many observed 
ecological patterns (McGill and Nekola 2010, Currie 
2019, McGill 2019). Statistical relationships can arise 
from multiple processes acting simultaneously, and 
multiple processes can lead to the same statistical 
pattern, which often results in several competing 
hypotheses. This makes the search for mechanisms 
particularly challenging in macroecology, and has led 
to calls for macroecological theories to be based on 
first principles (Marquet et al. 2014, 2015), although 
it has been argued that some mechanisms may have 
already been identified even if not recognized as such 
(McGill and Nekola 2010). An improved mechanistic 
understanding of macroecological patterns can 
increase our predictive capacity across scales, as 
well as transferability across space, time and taxa 
(Yates  et  al. 2018), and thus has the potential to 
make macroecological insights more applicable to 
local contexts (Connolly  et  al. 2017). On the other 
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hand, in the absence of a complete understanding of 
underlying mechanisms, observed correlations within 
a given domain can be used for predictions within the 
same domain (Currie 2019). Clearly, given the high 
frequency of non-informative correlations among 
variables in nature (Currie et al. 2020), an uncritical 
inference from large-scale statistical relationships can 
even be deleterious for conservation (e.g. Warren et al. 
2014, 2020, Fourcade et al. 2018, Santini et al. 2021). 
While statistical relationships across species or large 
areas can hold varying degrees of uncertainty, when 
interpreted with caution, they are often preferable 
to expert-based approaches which, despite being 
fairly common in conservation, have proved to have 
low predictive capacity (Camerer and Johnson 1991, 
McCarthy et al. 2004).

A second challenge is that macroecologists and 
conservation scientists generally publish in different 
journals (Fig. 3) and attend separate meetings, which 
potentially limits reciprocal understanding and 
communication. This lack of communication can be 
further accentuated by the different scopes of the two 
disciplines (fundamental vs target-oriented research; 
Soulé 1985, Brown and Maurer 1989), influencing 
how science is performed and communicated. This 
dichotomy has recently led to important controversies 
on the interpretation of results on local biodiversity 
change, with conservation scientists focusing on 

species decline, and macroecologists focusing on 
both negative and positive trends (Dornelas  et  al. 
2014, Gonzalez et al. 2016, Vellend et al. 2017). These 
discussions are tightly linked to the focal spatial scale 
of change (local versus global), while highlighting 
the complexity of integrating such macroecological 
insights with key conservation actions, such as 
implementing protected areas, ecosystem restoration, 
or invasive species management (Primack et al. 2018). 
Conservation science may also require higher levels 
of pragmatism than macroecology. Rapid biodiversity 
loss calls for swift actions, which can mean making 
decisions even with high uncertainty and limited 
empirical knowledge (Soulé 1985). Macroecologists 
may instead present findings tentatively focusing on 
limitations and uncertainty without the pressure of 
needing a recommendation or decision (Rapacciuolo 
2019). Conservation scientists may consequently 
perceive macroecology as too focused on the 
theoretical questions, without proposing practical 
solutions or addressing ongoing biodiversity change. 
Improved communication between the two disciplines 
could be achieved through more hybrid conferences 
(e.g. International Biogeography Society meetings) 
and journals (e.g. Diversity & Distributions, Global 
Change Biology), and through joint calls for grants 
fostering collaborations between macroecologists and 
conservation scientists. A recent analysis on the flow of 

Figure. 3. Flow of citations between journals whose scope is focused mainly either on macroecology or conservation, and 
hybrid journals between 2008 and 2017 (readapted from Fig. 2 in Benítez-López & Santini 2020). The outer circle width 
per journal indicates the total citations exchanged with other journals, whereas the inner circle indicates the proportion 
of outgoing citations. 135 papers were sampled in 2008 and all their citations were tracked for 10 years (further details 
on the data and methods in Benítez-López & Santini 2020). Journals are labeled using their official abbreviation.
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citations among ecology journals (Benítez-López and 
Santini 2020) shows that conservation journals more 
frequently cite macroecology journals than vice versa, 
while hybrid journals tend to cite both conservation 
and macroecology journals more often than each group 
cites each other (Fig.  3). This suggests that hybrid 
journals potentially serve as key connectors between 
the two disciplines and provide a necessary forum for 
researchers working at their interface.

If misunderstandings are common within the 
research community, these are even more common 
between the research community, conservation 
practitioners and land managers (Prendergast et al. 
1999, Cardillo and Meijaard 2012, Rapacciuolo 
2019). Macroecology and broad-scale conservation 
studies often come with no or vague guidelines for 
conservation managers. This is again often due to 
the different goals and publication venues, but also 
to different backgrounds that hamper good reciprocal 
understanding. Researchers are often under pressure 
to publish high impact papers that emphasize scientific 
novelty instead of delineating guidelines and actions 
based on existing knowledge (Williams et al. 2020). 
Conservation practitioners may regard academic 
findings as of limited value and too theoretical for 
practical implementation (Prendergast  et  al. 1999, 
Cardillo and Meijaard 2012, Rapacciuolo 2019). 
Additionally, the objectives often diverge, with 
researchers frequently concerned with understanding 
the processes and identifying proactive actions aimed 
at anticipating further decline, while practitioners are 
commonly limited to immediate actions on already 
declining species (Cardillo and Meijaard 2012). 
Increased collaboration between macroecologists, 
conservation researchers and practitioners can help 
translate scientific findings and even reframe questions 
so they address conservation-related issues and 
ultimately provide clear guidelines for management. 
Conservation practitioners should also, whenever 
possible, consider proactive and predictive approaches 
to conservation planning (Cardillo and Meijaard 2012, 
Travers et al. 2019, Jézéquel et al. 2020).

Opportunities
Sutherland and colleagues (2009) proposed a 

list of 100 questions worth exploring in biodiversity 
conservation. We outline several of those questions 
that can benefit from a macroecological approach. 
For example, conservation studies often focus on 
estimating biodiversity responses to isolated threats, 
with little consideration towards potential interaction 
effects among those threats. Yet, such interactions 
are highly prevalent and exhibit geographical patterns 
across the globe (Halpern et al. 2019, Bowler et al. 
2020, Schipper  et  al. 2020). Macroecological 
approaches can help to understand these relationships. 
For example, land-use change and climate change can 
interact resulting in impact exacerbation or mitigation 
(Hof et al. 2018, Williams et al. 2019). Similarly, over-
exploitation of wild species can be further exacerbated 
by habitat loss and fragmentation that increase human 
accessibility (Gallego-Zamorano et al. 2020, Romero-

Muñoz  et  al. 2020), or similarly by the combined 
effects of fishing and climate change (Halpern et al. 
2019). Integrative assessments and models (such as 
GLOBIO) work in this direction, by modeling several 
anthropogenic pressures on ecosystems and combining 
them under different assumptions (Schipper  et  al. 
2020).

As noted above, another promising avenue 
for macroecology is the shift from correlative to 
more mechanistic approaches that focus on causal 
relationships allowing to model several ecological 
dynamics simultaneously (Harfoot  et  al. 2014, 
Connolly et al. 2017). Data-driven approaches alone are 
in fact deemed insufficient to grasp the complexity of 
ecological systems, and a better integration of theory 
and data is often advocated (Marquet et al. 2014). 
Mechanistic models can contribute to this by assessing 
how well the predictions of theoretical models adhere 
to reality and their implications in complex systems, 
therefore suggesting hypotheses to be tested with data. 
However, diverse opinions exist in this regard, with 
other authors advocating for different approaches (see 
e.g. Currie 2019). Mechanistic approaches have been 
successfully used to explore the synergistic effects of 
habitat loss and fragmentation (Bartlett et al. 2016) 
or the occurrence of tipping points and non-linear 
dynamics in perturbed ecosystems (Newbold et al. 
2016). These approaches also hold great potential to 
inform and improve conservation and management 
actions, which has been shown to be an under-
researched area in conservation (Williams et al. 2020).

A future challenge for global conservation is 
developing a cost-efficient monitoring of biodiversity 
trends. Classical approaches to risk monitoring, e.g. 
the IUCN Red List, rely on expert-based assessments 
with periodical re-evaluations to update species 
conservation status. Given the high financial effort 
required for these tasks, we risk having assessments 
only for certain taxonomic groups, with those 
assessments becoming outdated as re-evaluations 
cannot be regularly conducted (Rondinini et al. 2014). 
An alternative approach, often proposed but not 
yet implemented, is to use comparative extinction 
risk modelling to disentangle the mechanisms that 
underpin higher extinction risk (Cardillo et al. 2005b, 
Bland et al. 2015b, Di Marco et al. 2015) or increase 
species vulnerability to threats such as road mortality 
or wildlife trade (González-Suárez  et  al. 2018, 
Scheffers  et  al. 2019). Once trained, these models 
could be used to predict species’ risk using trait data 
and up-to-date information on human pressures. 
Periodically updating information on human pressures 
might help identify those species likely to experience 
changes in their risk status, and provide experts with a 
tool that can guide reassessment efforts strategically 
(Santini et al. 2019). Predictive models of extinction 
risk can also be combined with maps of land-use 
change to explore spatially-explicit future scenarios, 
helping to identify both high-risk and high-resilience 
areas (Powers and Jetz 2019).

The macroecological approach can also be extended 
to investigate problems that are not directly related 
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to species extinction risk, but are equally relevant 
for conservation science. For example, expansion of 
zoonotic diseases is becoming a global concern, which 
is exacerbated by habitat fragmentation, increasing 
contact between wildlife and humans, wildlife trade, 
and bushmeat consumption (Chomel et al. 2007). These 
issues offer fertile ground for in-depth macroecological 
explorations that can identify ecological drivers of 
risk and explore mitigation scenarios (Han  et  al. 
2016, Stephens  et  al. 2016, Allen  et  al. 2017a), as 
well as identifying previously unknown major wildlife 
disease reservoirs (Pandit et al. 2018). Similarly, food 
production can have obvious impacts on biodiversity; 
therefore, predicting how climate change will alter the 
geography of food production has become a priority 
to plan mitigation measures (Hannah  et  al. 2013, 
Kehoe et al. 2017, Polaina et al. 2018). Broad-scale 
analyses can also consider how human welfare and 
migrations are related to climate change, and identify 
susceptible groups and areas (Bathiany et al. 2018, 
Xu et al. 2020), thus potentially anticipating impacts 
on biodiversity and reducing conflict probability. 
Conservation science is interconnected with multiple 
social and political aspects (Hintzen  et  al. 2019). 
For example, the conservation of species that lead to 
conflicts with humans (e.g. large carnivores) is not only 
dependent on habitat conditions or prey availability, 
but also on societal perception (Arbieu et al. 2019). 
In this context, macroecological models could be 
fine-tuned to incorporate additional information, 
such as human perceptions and values, and use the 
available information to make predictions in poorly 
known areas. Attempts in this direction have been 
made (Dressel et al. 2015), but can certainly be further 
improved.

A renowned problem in conservation is the “shifting 
baseline syndrome”, consisting in a gradual shift of 
the reference conditions as perceived by humans 
(Pauly 1995), which affects our ability to quantify the 
alteration of ecosystems by humans. Macroecology 
often focuses on the estimation of spatio-temporal 
‘baselines’, attempting to disentangle the effect of 
humans on broad-scale diversity patterns to estimate 
the distribution of species or traits expected in the 
absence of humans (Jennings and Blanchard 2004, 
Faurby and Svenning 2015, Rapacciuolo et al. 2017, 
Santini et al. 2017, Lewandowska et al. 2020, Santini 
and Isaac 2021). This is a relatively new research 
avenue with much potential for contributing to 
conservation, for instance in the framing of restoration 
or rewilding actions.

Macroecology can further contribute to global 
conservation planning by highlighting synergies 
and trade-offs between global conservation targets 
(Blanchard  et  al. 2014, Di Marco  et  al. 2016). 
An illustrative example is provided by the Aichi 
Target 11, which states that at least 17% of terrestrial 
and 10% of marine areas should be protected (CBD 
2010), “especially areas of particular importance for 
biodiversity and ecosystem services, […..], ecologically 
representative and well-connected systems of 
protected areas […]”. When a limited amount of 

area can be protected, acknowledging the trade-offs 
between different sub-objectives becomes critical. 
For example, biodiversity-rich areas do not necessarily 
correlate with areas of high carbon sequestration (Di 
Marco et al. 2018, Jung et al. 2021, Soto-Navarro et al. 
2020), while ecological representativeness may differ 
from important biodiversity areas (McGowan et al. 
2018), and lead to different plans than those that 
would maximize connectivity between protected areas 
(Santini et al. 2016). An improved understanding of the 
relationship between different facets of biodiversity 
and ecosystem services is therefore fundamental for 
informed conservation planning (Rodrigues and Brooks 
2007, Rapacciuolo et al. 2019).

Concluding remarks
Macroecology has already made substantial 

contributions to conservation science by offering a 
new broad-scale top-down perspective, harnessing 
insights from regional and global ecological processes 
(Currie 2019, McGill 2019). A full integration of the 
two disciplines is probably neither possible nor 
desirable, but further connectedness is possible 
and could be mutually beneficial. The interface 
between macroecology and conservation science is 
a particularly fruitful area of investigation, and there 
remains untapped potential for macroecology to guide 
conservation science, by linking cross-scale and cross-
taxa patterns and dynamics, simultaneously evaluating 
multiple threats and species, and generating improved 
predictive models (Travers et al. 2019). Ultimately, a 
fundamental goal of conservation science is to be able 
to understand, forecast and act on biodiversity changes 
and its effects on human wellbeing. Conservation will 
benefit from using all tools available to effectively 
address biodiversity and environmental challenges. 
While macroecology might not provide answers to all 
these challenges, it is poised to gain an increasingly 
central role in guiding conservation actions and 
averting the ongoing biodiversity crisis.
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