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Quantifying Causal Pathways  
of Teleconnections
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Niall Robinson, Elena Saggioro, and Theodore G. Shepherd

ABSTRACT: Teleconnections are sources of predictability for regional weather and climate, but 
the relative contributions of different teleconnections to regional anomalies are usually not un-
derstood. While physical knowledge about the involved mechanisms is often available, how to 
quantify a particular causal pathway from data are usually unclear. Here, we argue for adopting 
a causal inference-based framework in the statistical analysis of teleconnections to overcome 
this challenge. A causal approach requires explicitly including expert knowledge in the statisti-
cal analysis, which allows one to draw quantitative conclusions. We illustrate some of the key 
concepts of this theory with concrete examples of well-known atmospheric teleconnections. We 
further discuss the particular challenges and advantages these imply for climate science and argue 
that a systematic causal approach to statistical inference should become standard practice in the 
study of teleconnections.
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The term “teleconnection” is used to refer to a recurrent climatic effect resulting from a 
spatially distant forcing (Wallace and Gutzler 1981). For instance, the phase of El Niño–
Southern Oscillation (ENSO) in the tropical Pacific impacts precipitation in California 

(Swain 2015; Chang et al. 2015), parts of Australia, South Africa, and South America 
(Iizumi et al. 2014; Dai and Wigley 2000). Several other climate modes such as the Madden–
Julian oscillation (MJO), the North Atlantic Oscillation (NAO), the quasi-biennial oscillation 
(QBO), the Indian Ocean dipole (IOD), and the Pacific decadal oscillation (PDO) have been 
described, and their interconnections as well as their remote impacts have been extensively 
studied using observations, climate models and physical theory (Trenberth et al. 1998; 
Hoskins and Karoly 1981; Wang et al. 2017; Bjerknes 1969; Walker 1925).

Due to their relevance for regional weather and climate, teleconnections remain an extreme-
ly active area of research. One key task is to quantify teleconnection strength in both models 
and observations. For example, understanding potential biases in the strength of teleconnec-
tion signals is important to improve their representation in numerical models (Vitart 2017), 
which is key to improving forecasts on time scales ranging from subseasonal to multi-
decadal (Mariotti et al. 2020; Lang et al. 2020; López-Parages and Rodríguez-Fonseca 2012). 
Moreover, given that much of the uncertainty in regional climate projections under global 
warming is associated with teleconnections (Shepherd 2014), attributing ensemble spreads 
to changes in large-scale drivers can help to understand and constrain the projected changes 
(Zappa and Shepherd 2017; Kretschmer et al. 2020; Maraun et al. 2017; Mindlin et al. 2020).

However, robustly estimating the effects of a teleconnection from data remains a chal-
lenging task due to the often simultaneous influences of multiple climate modes. For 
instance, quantifying the causal influence of the stratospheric polar vortex (SPV) on the 
NAO is difficult, as both the SPV and the NAO are known to be influenced by the MJO, and 
this influence is likely modulated by the phases of ENSO and the QBO (Barnes et al. 2019; 
Cassou 2008; Lee et al. 2019). Analyzing a teleconnection pathway in isolation, for example, 
using pairwise correlation, can therefore lead to wrong inferences about its causal effect 
(Runge et al. 2014; Kretschmer et al. 2016).

One key problem is that there is no established framework to systematically account for 
the influence of other teleconnections affecting the pathway in question. While knowledge 
about the causal mechanisms at play is often available, how to isolate and quantify a par-
ticular effect from data are usually unclear. This disconnect between physics and statistics 
is exemplified by the American Meteorological Society’s definition of a teleconnection as a 
“correlation in the fluctuations of a field at widely separated points,” further stating that 
“such correlations suggest that information is propagating 
between the distant points through the atmosphere.”1 Climate 
scientists are well aware that correlation does not necessarily 
imply causation, but how to overcome this mantra in statistical 
practice and connect the two perspectives in a quantitative manner is unclear. The differ-
ence between correlation and causation becomes crucial when one considers out-of-sample 
use of the statistical relationships, such as understanding the influences of model biases 
(Bracegirdle and Stephenson 2012; Kretschmer et al. 2020), storylines of regional climate 

1	https://glossary.ametsoc.org/wiki/Teleconnection
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change (Shepherd 2019), or unprecedented events (Diffenbaugh et al. 2017). Moreover, it is im-
portant just for understanding the relative role of different causal factors, which is a typical goal 
in teleconnection studies (Junge and Stephenson 2003; Jiménez-Esteve and Domeisen 2018; 
Barnes et al. 2019). In short, a process-based framework to quantify the causal teleconnection 
pathways apparent in correlations is sorely needed.

Here we advocate for a formal causal framework in the statistical analysis of telecon-
nections, which can be obtained by grounding it in causal inference theory (see sidebar). 
Statistical analysis in weather and climate science is usually done in the context of physical, 
hence causal, reasoning, but this reasoning is often only informal. The reasoning can be for-
malized by expressing expert knowledge about physical mechanisms in the form of a causal 
network. This has several advantages. First, it forces the researcher to be explicit about their 

Causal inference theory in a nutshell
Despite a clear physical conception of causality, a mathemati-
cal formalization has long been missing, and only emerged 
in the last few decades (Pearl and Mackenzie 2018). These 
major methodological advances are already successfully ap-
plied in many research disciplines such as epidemiology 
(Greenland et al. 1999), psychology (Rohrer 2018), and medical 
research (Richens et al. 2020), but there are only a few examples 
from climate science in the context of weather attribution 
(Hannart et al. 2016) and model assessment (Hirt et al. 2020).

In causal statistics, a causal influence from a process, repre-
sented by the random variable X, to another process, represented 
by the random variable Y, means that intervening in X while 
keeping everything else fixed changes the probability distribution 
of Y (Pearl 2000; Pearl et al. 2016). Mathematically, such (usually 
only hypothetical) interventions are described with the so-called 
do-operator. The interventional conditional probability, denoted 
by P(Y|do(X)), generally does not coincide with the observational 
conditional probability of Y given X, denoted by P(Y|X). For ex-
ample, the measured pressure by a barometer (X) and the actual 
pressure (Y) have a strong statistical association and observed 
values of X will also be good predictors of Y. However, as X does 
not cause Y, intervening in X, e.g., by moving the needle of the 
barometer by hand to X = x, will not change the surrounding 
pressure, and thus P(Y|do(X) = x) ≠ P(Y|X = x). In contrast, inter-
ventions in the pressure will lead to a change in the barometer 
needle.

Causal inference theory shows that quantifying causal effects 
to predict the effects of interventions purely based on observed 
data and without doing any actual experiments or interventions is 
sometimes possible. In other words, it can be possible to extract 
the desired interventional probability from the observed prob-
abilities. The underlying idea is that past (naturally occurring) 
interventions in X that led to changes in Y are present in the data 
but are biased by other processes that affect both X and Y. To 
isolate the causal effect from X to Y, one thus has to account for 
the influence of such confounders.

A necessary requirement for causal inference is to first define 
a plausible causal model of the hypothesized data-generating 
mechanisms, usually expressed graphically in the form of a causal 
network. Note that it is not necessary (nor would it be possible) 
to represent the full climate system in such a network. Instead, 

the network represents a reduced model of the truth, tailored to 
the purpose at hand. If one is for instance interested in the causal 
effect of X on Y, only those processes that could confound the 
analysis, i.e., common drivers of X and Y, have to be included. 
Representing assumed physical relationships in the form of a 
causal network has several advantages. First, it makes it easier 
for others to grasp the assumptions of the analyst and follow their 
argument. Second, such a network transforms expert knowledge 
into mathematical objects to which the established rules of prob-
ability theory apply. This makes it easy to understand how causal 
information flows along the links in the network. In particular, 
identifying the confounding factors that one needs to control for 
to extract a particular causal effect from data follows directly 
from the network structure.

For some graphical intuition, one can think of the links in a 
network as pipes which allow the flow of information between 
the nodes. Each causal network consists of combinations of 
“chains” (X → Z → Y), “forks” (Y ← Z → X), and “collider” 
structures (X→ Z ←Y). While the information flows along the 
links of chains and forks, which is to say that statistical associa-
tion (i.e., correlation) of X and Y is present, it is “blocked” by 
the common effect Z in a collider structure, implying statistical 
independence of X and Y (i.e., no correlation). Once one controls 
for the variable Z in the first two cases (i.e., the mediator in 
a chain or the common driver in a fork), which is the same as 
blocking the information flow, X and Y become independent 
conditional on Z. In contrast, controlling for the common effect Z 
in a collider structure “opens” the otherwise blocked path from 
X to Y and introduces a statistical association between X and Y 
conditional on Z.

Thus, to quantify a particular causal pathway in the network 
one has to control for the correct processes. While it is neces-
sary to block the effect of a common driver, it can lead to a bias 
if done for a common effect or an indirect pathway. In many 
cases, one can identify the correct adjustment set at a glance or 
by following relatively simple rules [see, e.g., Cinelli et al. (2020) 
for a summary overview of good and bad adjustment sets in 
networks]. For more complex setups, one can draw on a compre-
hensive mathematical theory, providing rules of when and how 
it is possible to extract a causal effect from data (Pearl 2000; 
Pearl et al. 2016).
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assumptions, which makes it easier for others to follow their argument. Second, it allows to 
understand how causal information is propagating and where noncausal correlation is ex-
pected. Finally, how to remove the influence of common drivers to extract a particular causal 
effect from data follows directly from the network structure. These advantages can be gained 
by moving from reasoning informally with causal narratives, to reasoning formally with 
causal networks. While this only involves small changes in statistical practice, it can lead to 
significant differences in the framing of the problem and in the interpretation and useability 
of the results. As Harold Jeffreys noted in his seminal work on the theory of probability, “It is 
sometimes considered a paradox that the answer depends not only on the observations but 
on the question; it should be a platitude” (Jeffreys 1961).

The purpose of this paper is not to detect causal relationships (which is a different issue) 
but to show how existing knowledge about physical mechanisms can be used to quantify 
teleconnection pathways. We illustrate this with a number of well-known teleconnection 
examples. Mostly, we do this using multiple linear regression (MLR), but all the concepts 
extend naturally into the nonlinear context, as we illustrate with our final example. Finally, 
we discuss particular opportunities and some practical challenges for the use of a causal 
framework in climate science.

Data
In all examples, we use monthly NCEP reanalyses2 covering 
1949–2019 (Kalnay et al. 1996). Time series are constructed 
by area averaging over different regions, variables, and time 
bins. All time series are standardized by removing the multi-
year seasonal mean and dividing by the multiyear standard 
deviation, and detrended by removing the multiyear linear fit slope. We recognize that NCEP 
reanalysis data have their limitations, but they serve our purpose of illustrating some of 
the key principles and methods of causal inference theory with well-known examples of 
teleconnections. For the same reason, we do not clutter the text with confidence intervals 
and p values, and rely on previous literature for establishing the physical relevance of our 
examples.

In example 1, we consider summer-mean data (June–August) of precipitation in Denmark 
(DK; 50°–60°N, 2°–15°E) and the Mediterranean (MED; 36–41°N, 10°–30°E), and an index of 
the NAO provided by NOAA.3 In example 2, we consider winter-
mean data (December–February) and follow Chang et al. (2015) 
to calculate an index of precipitation over California (CA) and 
of the North Pacific jet stream (Jet), the latter based on daily 
differences of regionally averaged sea level pressure. The El Niño 3.4 index (ENSO) is from 
NOAA. In example 3, austral spring/summer data (October–December) of ENSO is considered, 
and we follow Byrne et al. (2019) to calculate a Southern Hemisphere (SH) jet index based 
on zonal-mean zonal wind data (Jet; 55°–65°S) at 850 hPa, and an SH stratospheric polar 
vortex breakdown index (SPV), expressed in the number of days following 1 October of each 
season (Black and McDaniel 2007). In example 4, late-autumn averages (October–December) 
of Barents and Kara sea ice concentrations (BK; 65°–85°N, 10°–100°E), together with sea level 
pressure over the North Pacific (NP; 30°–65°N, 160°–220°E) and the Ural Mountains region 
(URAL; 45°–70°N, 40°–85°E) are considered. Zonal-mean wind velocities at 10 hPa during 
winter (January–March) are averaged to construct an index of the Northern Hemisphere SPV 
(60°–75°N). In example 5, we consider ENSO and precipitation in Australia (AU; 12°–38°S, 
117°–152°E) during austral spring (September–November). The IOD is calculated as the differ-
ence between sea surface temperature (SST) anomalies in the western (10°S–10°N, 50°–70°E) 
and eastern (10°S –0°, 90°–110°E) tropical Indian Ocean.

2	https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.

html

3	https://psl.noaa.gov/data/climateindices/list/
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Causal reasoning in the statistical analysis of teleconnections
Teleconnections are commonly analyzed using MLR, a simple and powerful tool to quantify 
linear dependencies. However, regression coefficients can easily be misinterpreted, or not 
fully exploited, if the underlying data-generating mechanisms are not taken into account. In 
contrast, when MLR is combined with physical reasoning, causal conclusions are possible, 
as we discuss below in more detail.

In this context, causal networks4 provide a simple graphical 
tool to facilitate the process-based analysis of teleconnections 
(Pearl 2009, 2013). Causal networks consist of nodes, repre-
senting the physical variables involved in teleconnections 
(e.g., ENSO, the NAO), and links, indicating the presence and 
direction of the assumed causal relationship between these 
variables. As a starting point, causal networks can simply be 
thought of as a very intuitive way to qualitatively outline a set 
of physical hypotheses, something that is already widely used 
in climate science in an informal manner. Schematic over-
views summarizing the key findings of a paper are, for instance, often presented in this way 
(Jiménez-Esteve and Domeisen 2018; Lee et al. 2019).

Throughout this paper, we use causal networks to present the teleconnections we aim to 
quantify. We first consider a few simple examples involving three variables.

Example 1: Common drivers. Precipitation in Denmark and in the Mediterranean region 
in summer are negatively correlated (r = −0.24). Climate scientists would generally agree 
that this observed association does not reflect a direct causal relationship between the two 
features (and thus would not be called a teleconnection) but rather stems from both regions 
being affected by the position of the North Atlantic storm track as, e.g., described by the 
summertime NAO index (Folland et al. 2009; Bladé et al. 2012). In other words, the NAO is 
a common driver of summer precipitation in DK and MED. This assumption, as illustrated in 
Fig. 1, has implications for understanding the origin and strength of the correlation between 
DK and MED.

First, it can be tested if the hypothesis of no direct causal relationship between DK and MED 
is consistent with the observed data. To test this, assuming linear dependence, we calculate 
the partial correlation of DK and MED conditioned on the common driver NAO. That is, we 
regress out the effect of the NAO from DK and MED separately and then correlate the residuals. 
Indeed, the partial correlation of DK and MED conditioned on NAO reduces to 0.01, which we 
interpret as indistinguishable from zero, meaning that their correlation is entirely explained 
by the effect of the NAO, consistent with and 
validating our assumption.

Second, our physical knowledge (or hy-
potheses) can be harnessed to quantify the 
causal effects of the NAO on DK and MED. 
Here we make the further (reasonable) as-
sumption that our system is complete for this 
purpose, i.e., that there are no further com-
mon drivers acting on both NAO and MED 
or NAO and DK. We can then estimate the 
causal effect by regressing DK on NAO, giving 
a standardized causal effect of −0.58; i.e.,

DK =–0.58NAO+ ,ε

4	There are different ways to refer to causal net-
works in the literature, but the most common 
is directed acyclic graph (DAG). “Graph” is the 
mathematical term for network, “directed” 
means the links between nodes have a direc-
tion, and “acyclic” means that no causal loops 
are permitted (also see “Particular challenges” 
section). Here, we stick to the more physical term 
of a causal network.

Fig. 1. Causal network showing the hypothesized causal 
influence of the summertime North Atlantic Oscillation 
(NAO) on precipitation in Denmark (DK) and the Mediter-
ranean (MED).
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with ε denoting noise. This means that a change in NAO by one standard deviation implies 
a decrease in DK by 0.58 standard deviations. In the same way, we can estimate the effect 
of NAO on MED, which is found to be 0.42. These numbers can be interpreted as the average 
causal effect of the NAO on summer precipitation in these regions, under the assumption of 
the causal network structure and linear dependence between variables.

Note that the product of the causal links (−0.58 × 0.42 = −0.25) approximately coincides 
with the correlation of −0.24 between DK and MED. This is a practical property of linear 
models (with standardized variables) called the path-tracing 
rule5 (Pearl 2013). This rule follows from simple algebra and 
expresses how statistical associations (correlations) reflect the 
underlying causal effects.

While the above example may seem oversimplistic, it shows 
how scientific knowledge guides the data analysis. A causal 
interpretation of regression and correlation coefficients is only 
justified if one has hypotheses of the underlying causal mecha-
nisms. These physical hypotheses can be tested explicitly (as we did above using partial cor-
relation), where possible, and should be updated in case they are not supported by the data.

Example 2: Mediating pathways. Figure 2 schematically summarizes a large body of evidence 
of how a Rossby wave train excited by SST anomalies in the tropical Pacific (ENSO) affects 
the position of the North Pacific jet stream (Jet) and thereby wintertime precipitation in CA 
(Chang et al. 2015; Horel and Wallace 1981; Trenberth et al. 1998; Hoskins and Karoly 1981).

Suppose we are interested in quantifying the effects of ENSO on CA and of Jet on CA. One 
naive way to do so would be to use MLR to quantify their contributions, giving

CA=0.05ENSO+0.79Jet+ .ε

However, the very small regression coefficient of ENSO cannot be interpreted as its causal 
effect on CA. Rather, it shows that the effect of ENSO on CA is almost fully mediated via Jet. In 
the linear case, controlling for a variable is the same as including it in the regression model. 
Thus, by including Jet in the model above, we have blocked (or regressed out) the very causal 
pathway from ENSO to CA (via Jet) that we intended to measure. In contrast, the regression 
coefficient of Jet of 0.79 can be interpreted as the causal effect of Jet on CA, provided there 
are no additional common drivers of Jet and CA (as assumed in our causal model). Including 
ENSO in the regression was not needed to quantify the contribution of Jet on CA, but neither 
did it do any harm (Cinelli et al. 2020), as 
ENSO does not confound the relationship 
between Jet and CA.

Correctly quantifying the causal effect 
of ENSO on CA could be done by simply re-
gressing CA on ENSO, giving a causal effect 
strength of 0.34 (i.e., CA = 0.34ENSO + ε′). 
Alternatively, and perhaps more informative-
ly, one can separately estimate the strength of 
the individual links along the pathway, and 
then multiply them to obtain the strength of 
the full pathway. Here we have an effect of 
ENSO on Jet of 0.37 (i.e., Jet = 0.37ENSO + ε″)  
and of Jet on CA of 0.81 (i.e., CA = 0.81Jet + 
ε′″). The product along the pathway (0.37 × 

5	It says that the correlation of any two variables 
in a network is the sum of products of the causal 
effects along all “open” paths connecting the 
two. The term “open path” is explained in the 
sidebar on causal inference theory.

Fig. 2. Causal network showing the hypothesized mediated 
causal influence of El Niño–Southern Oscillation (ENSO) on 
winter precipitation in California (CA) via the position of 
the North Pacific jet stream (Jet).

Unauthenticated | Downloaded 01/04/22 01:14 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y D E C E M B E R  2 0 2 1 E2253

0.81 = 0.30) is approximately the same as estimating the effect of ENSO on CA directly (0.34), 
as expected from the path-tracing rule.

This simple example illustrates that conditioning on a “mediator,” here Jet, controls away 
the effect that one might actually aim to measure. It is often the practice in climate science, 
especially in the context of statistical predictions, to include different climate indices in a 
regression model to predict some regional target variable. While this may be unproblematic 
for purely predictive, within-sample purposes, it can lead to spurious interpretations regard-
ing the individual contributions of different drivers, as illustrated here.

It is worth noting that from a statistical perspective, examples 1 and 2 are indistinguishable. 
They both involve a target variable Y (DK, say, and CA), and two potential explanatory 
variables X (MED and ENSO) and Z (NAO and Jet), each of which are correlated with Y. 
Regressing Y on both X and Z indicates a conditional independence between Y and X, 
showing that the information pathway between X and Y (reflected in their correlation) is 
indirect, passing through Z. However, the physical interpretation of the pathway depends 
entirely on the assumed direction of the causal relation between X and Z, which is oppo-
site in the two examples (X ← Z → Y in example 1 and X → Z → Y in example 2). Yet this 
crucial feature of the analysis is completely invisible in the purely statistical formulation  
of MLR.

Example 3: Direct and indirect pathways. The following example is a combination of the previ-
ously discussed mediator and common driver effects. We again consider ENSO which is known 
to influence the SH jet (Jet) in early austral summer (L’Heureux and Thompson 2006). However, 
ENSO also affects the timing of the breakdown of the Southern Hemispheric polar vortex (SPV) 
which in turn impacts the jet position (Domeisen et al. 2019; Saggioro and Shepherd 2019; 
Byrne et al. 2019). In summary, ENSO influences Jet directly, via a tropospheric pathway, 
and indirectly via SPV, also called the stratospheric pathway (see Fig. 3).

As there are no assumed common drivers of ENSO and Jet, the total effect of ENSO on Jet 
can be quantified by regressing Jet on ENSO, giving a standardized effect strength of −0.14. 
The individual strengths of the two causal pathways can be estimated separately. To quantify 
the direct (tropospheric) pathway, one has to block the effect mediated via SPV; i.e., one needs 
to control for SPV. Expressed in a linear regression model, this gives

Jet =–0.04ENSO+0.39SPV+ ,ε

meaning that the direct effect of ENSO is 
estimated to be only −0.04. For the indirect 
(stratospheric) pathway, the link from ENSO 
to SPV can be calculated without further con-
ditioning, i.e., by regressing SPV on ENSO di-
rectly, which gives an average effect strength 
of −0.26. However, to quantify the contribu-
tion from SPV to Jet, one has to control for the 
common driver ENSO, thus include ENSO in 
the regression; this yields a causal effect of 
SPV on Jet of 0.39, as already found above.

Put together, it follows that the strength of 
the indirect, stratospheric pathway is −0.10 
(=−0.26 × 0.39) while that of the direct, tro-
pospheric pathway is only −0.04; i.e., the 
effect of ENSO on the Jet via the stratosphere 

Fig. 3. Causal network showing the hypothesized direct ef-
fect of ENSO on the position of the Southern Hemisphere 
jet stream (Jet), and its indirect causal influence mediated 
via the late-spring breakdown of the stratospheric polar 
vortex (SPV).
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is (for the data and time period analyzed here) twice as large as the tropospheric link, which 
is consistent with recent findings (Byrne et al. 2017, 2019). We again note that the sum of 
the tropospheric and stratospheric pathways (−0.10 – 0.04 = −0.14) is, as expected from the 
path-tracing rule, approximately equal to the total effect of ENSO on Jet as calculated above.

While quantifying direct and indirect effects between correlated processes through 
the path-tracing rule is widely appreciated in other fields of science, e.g., psychol-
ogy (Montoya and Hayes 2017), it has not yet permeated climate science (an exception is 
Junge and Stephenson 2003) where correlation between explanatory variables is generally 
regarded as a problem for the application of MLR (von Storch and Zwiers 1999; Wilks 2011). 
Making a causal hypothesis on the physical basis for the correlation resolves this statistical 
indeterminism. As with examples 1 and 2, here the physical interpretation of the correla-
tion between ENSO and Jet depends on the assumed direction of causal influence between 
ENSO and SPV. Thus, instead of having to add a caveat that “correlation does not imply 
causation,” which makes the result ambiguous, we can embed the statistical analysis within 
an expert-based causal framing and thereby make the numbers useable. For example, 
Saggioro and Shepherd (2019) showed that the observed delay in SPV breakdown in the last 
decades of the twentieth century, which is attributed to the development of the ozone hole, 
well predicts the observed poleward shift in Jet. This makes sense as a nonstationary forcing 
of SPV, which is unrelated to ENSO, can be expected to induce a nonstationarity in Jet through 
the same causal effect of SPV on Jet found in the stationary regression model.

Example 4: Blocking the correct paths in the network. The advantages of explicitly defin-
ing a causal network become most apparent when there are more than just a few variables 
and processes involved, such that it quickly becomes confusing and difficult to understand 
how statistical association is inherited from the causal relations. This is illustrated in the 
next example.

In recent years, sea ice loss in the Barents and Kara Sea region in autumn (BK) has been sug-
gested to cause a weakening of the wintertime Northern Hemisphere SPV (Kim et al. 2014). This 
remains a controversial hypothesis, partly due to inconsistent model results (Screen et al. 2018; 
Cohen et al. 2020; Kretschmer et al. 2020). Quantifying the causal effect from BK on SPV from 
observed data is, however, challenging, as several potential common drivers have to be taken 
into account (see Fig. 4). For example, both 
ENSO and the MJO can affect the SPV via al-
tered pressure anomalies over the NP, which 
can also lead to changes in BK via a Rossby 
wave train connecting the Pacific with the At-
lantic (Jiménez-Esteve and Domeisen 2018; 
Warner et al. 2020). Moreover, sea level pres-
sure variability over URAL has been shown 
to affect BK (Tyrlis et al. 2019) but is also a 
well-documented driver of SPV variability 
(Kretschmer et al. 2018b). The role of URAL 
is particularly tricky to disentangle as the 
hypothesized teleconnection from BK to 
SPV is proposed to be mediated via URAL 
(Kim et al. 2014; Kretschmer et al. 2016).

Representing these different mechanisms 
in a causal network not only considerably 
simplifies the description of the data analysis 
but also helps to understand which factors 

Fig. 4. Causal network showing the hypothesized pathway 
from Barents and Kara sea ice in autumn (BK) to SPV in 
winter, through effects on sea level pressure over the Ural 
Mountains region (URAL). The latter is also assumed to af-
fect BK. Moreover, ENSO and the Madden–Julian oscillation 
(MJO) influence North Pacific sea level pressure (NP), and 
thereby both the SPV and BK.
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need to be controlled for in order to isolate the causal effect from BK to SPV. Importantly, it is 
not necessary to control for all common drivers. Instead, according to causal inference theory 
(see sidebar), one needs only to “block” the confounding pathways in the network linking BK 
and SPV other than the causal pathway (linking BK to SPV via URAL) that we aim to measure. 
From the network it is clear that the common drivers of BK and SPV, namely, ENSO and MJO, 
are both mediated via NP. Thus, conditioning on NP is sufficient to block not only the direct 
influence of NP, but also the indirect influence of ENSO and MJO via NP. Accounting for the 
influence of URAL is more difficult, as it is assumed to be both a common driver (i.e., we need 
to block its influence), and a mediator (i.e., blocking its path would regress out the effect we 
aim to measure). Here we make use of the causal assumption that the effect comes after the 
cause. To then block the confounding role of URAL without blocking its role as mediator, we 
condition on URAL during the same autumn months as BK, assuming that its mediating role 
involves some longer time lag. In summary, and assuming linear dependencies, our regres-
sion model to quantify the causal effect of autumn BK on winter SPV is

JFM OND OND OND
SPV = BK + NP + URAL + ,a b c ε

giving an effect of a = 0.21. Importantly, the regression coefficients of NP (b = 0.27) and 
URAL (c = 0.00) cannot be interpreted as their causal effects on SPV. Instead, their causal 
effects would have to be estimated in different (appropriate) regression models, which would 
follow from the network structure. This again emphasizes the importance of a causal fram-
ing of MLR, as otherwise the regression coefficients are physically uninterpretable [see also 
Kretschmer et al. (2020), which addresses the causal role of BK in future SPV changes].

We stress once more that the correctness of the estimate of the causal effect of BK on SPV 
is (apart from sampling uncertainty) conditional on the causal network, our assumption of 
linear dependence, and the choice of data. For example, researchers could disagree with the 
assumed links in the network or they might consider different relevant time periods and lags. 
While all of these aspects are nontrivial and could be addressed with different sensitivity 
tests, it is important to note that the same concerns hold for any type of statistical analysis. 
The central point here is that if one wishes to have plausible estimates of causal effects, then 
one needs to account for the correct confounding processes and this implies making the causal 
assumptions explicit. Indeed, unless this is done, differences between studies can arise from 
differences in assumptions that are only implicit and invisible to a purely statistical analysis.

Example 5: Measuring nonlinear dependencies. So far, we have only quantified causal links 
using MLR, which is adequate when describing linear relationships. A common approach to 
estimate nonlinear dependencies is through calculating conditional probabilities of different 
subcategories of the involved variables, often shown in contingency tables (Barnes et al. 2019; 
Lee et al. 2019). However, just as for MLR, the purely statistical relationships are not physically 
interpretable unless the conditional probabilities are embedded within a causal framework. 
We illustrate this through our final example.

ENSO is a key driver of Australian precipitation (AU) in austral spring (Maher and Sherwood  
2014; Cai et al. 2011) and exhibits its influence on AU through various pathways (see 
also example 3). In particular, ENSO influences the IOD, another important driver of AU 
(Black et al. 2003). Figure 5 summarizes these causal assumptions.

The influence of ENSO on the IOD, and thereby on AU, has been suggested to exhibit asym-
metries in strength, implying that the relationship is nonlinear (Cai and van Rensch 2013; 
Cai et al. 2012). To quantify the influence of ENSO and IOD on AU, we first stratify ENSO 
into terciles describing La Niña, neutral, and El Niño states. Similarly, we stratify the IOD 
into terciles describing its negative, neutral, and positive phases. For AU we differentiate 
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between the two categories of above and 
below average values, AU+ and AU−. This 
choice is convenient because the effect on AU 
can then be represented by a single number, 
since the two probabilities add up to unity. 
The resulting conditional probabilities for 
above-average AU, i.e., P(AU+|IOD, ENSO), 
are shown in Table 1a. The strength of the 
conditional dependence can be read as the 
deviation of the conditional probabilities 
from their default value of 50%.

The joint probabilities of IOD and ENSO, 
denoted P(IOD, ENSO), are shown through 
the contingency table in Table 1b. This shows 
the strong association between the two driv-
ers, with no or almost no occurrences of the combinations El Niño–IOD negative and La 
Niña–IOD positive, and an enhanced likelihood of the opposite combinations. Together, these 
two tables provide the complete statistical information of any particular combination of the 
three indices, written P(AU, IOD, ENSO). For AU+ events it is the product of Tables 1a and 1b, 
i.e., P(AU+|IOD, ENSO) × P(IOD,ENSO). For AU− events, it is 1 minus the value in Table 1a 
times the entry in Table 1b, i.e., [1 – P(AU+|IOD, ENSO)] × P(IOD,ENSO). However, these joint 
probabilities do not themselves provide any causal information. Instead, causality enters in 
how we read the tables, which depends on our underlying assumptions.

From the marginals in Table 1a we can see an association of both ENSO and IOD with AU, 
with the negative phases of both indices increasing the probability of above-average rainfall, 
and the positive phases decreasing it. Since we consider ENSO as a common driver of IOD and 
AU, we need to control for it in order to isolate the causal IOD–AU relationship. We do this 
by conditioning the IOD–AU association on the phase of ENSO, which is represented by the 
columns in Table 1a. The added information provided by IOD, given ENSO, is represented by 
the Bayes factor P(AU|IOD, ENSO)/P(AU|ENSO), which for AU+ is the ratio of the conditional 
probability to the marginal probability in the bottom entry of the same column. We can see 
from this that the phase of IOD has barely any effect on AU for either La Niña or El Niño. 
For example, the Bayes factor for IOD+ during El Niño is 0.24/0.22 = 1.09, meaning that the 
probability of AU+ during El Niño phases is increased by only 9% if the IOD is positive. When 
ENSO is neutral there is a suggestion that IOD+ decreases the probability of AU+, while IOD− 
has a weaker positive effect.

The dependencies in the network further allow us to interpret and decompose the causal 
effects. The causal effect of ENSO on AU, for instance, can be found by marginalizing over IOD:

( ) ( ) ( )∑
3

=1

AU ENSO = AU ENSO,IOD IOD ENSO .
i i

i

P P P

Here i = 1, 2, 3 represent the three phases of IOD, and the equation applies for any combination 
of AU and ENSO phase. In the linear case the calculation reduces to the path-tracing rule, with 
regression coefficients replacing Bayes factors. The first factor in the product can be read off 
Table 1a, while the second factor is the ratio of the corresponding entry in Table 1b divided 
by its marginal, which is 0.33. For example, the effect of La Niña on AU+ is quantified as

( )( )
( )

( )( )
( )

( )( )
( )

0.17 0.14 0.03
0.83 + 0.80 + 1.0 ,

0.33 0.33 0.33

Fig. 5. Causal network showing the hypothesized direct 
effect of ENSO on spring precipitation in Australia (AU) 
and its indirect causal influence mediated via the Indian 
Ocean dipole (IOD).

Unauthenticated | Downloaded 01/04/22 01:14 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y D E C E M B E R  2 0 2 1 E2257

which recovers the value of 0.83 
in the marginal dependence in 
Table 1a.

Note that if we reversed the causal 
assumption between ENSO and 
IOD, Table 1 would be entirely un-
changed. Yet our reading of Table 1 
would be completely different, as we 
would then infer that IOD affects AU 
through both a direct and an indirect 
pathway, and that the Bayes factor 
from ENSO, given IOD (determined 
by reading Table 1 row-wise rather 
than column-wise) is quite consid-
erable. In this alternative reading of 
Table 1, the causal attribution of AU 
would be more equally shared between IOD and ENSO.

In this simple case, the difference in interpretation of the conditional probabilities can be 
explained in words. For more complex sets of interacting teleconnections, as in example 4, 
where two-dimensional contingency tables are no longer feasible, it is necessary to be more 
explicit and rigorous about how the causal assumptions enter into the interpretation of the 
numbers, otherwise fallacious inferences may result.

The general point we wish to make with this example is that a causal network framework 
is a fully nonparametric approach. The choice of method to quantify the causal effect of 
interest depends entirely on the researcher, bearing in mind the purpose of the calculation 
and the limitations of the available data. While defining meaningful subcategories of a vari-
able can be a challenge on its own (Falkena et al. 2020), there exist a plethora of methods to 
quantify nonlinear dependencies. For example, next to transfer entropy (Runge et al. 2012), 
different machine learning methods have been used to estimate nonlinear causal dependen-
cies (Chernozhukov et al. 2018; Blakely et al. 2021). However, nonlinear methods generally 
require large datasets, often justifying a linear approach, especially when using the short 
observational record. The relative benefit of using a nonlinear over a linear approach can be 
quantified using various metrics such as the Bayesian information criterion.

Opportunities for climate science
Once a climate scientist has developed a theory of the causal relationships of the processes they 
are considering, by drawing the network explicitly they can use the rules of causal inference to 
determine which covariates to include and which to exclude for their specific analysis. There are 
several fundamental aspects where such formal causal reasoning could help to make progress.

First, using causal networks and following the rules of causal inference provides an easy 
and transparent way to quantify teleconnection pathways, and different hypotheses could 
be tested in this way. Such a diagnostic approach has immediate benefits for analyzing 
teleconnections in the observational record and is also particularly suitable for evaluating 
their representation in climate models. For example, huge ensembles can be needed to detect 
(often only small) teleconnection signals (Smith et al. 2020). Comparing the causal effects is 
more efficient (Kretschmer et al. 2020); it can moreover shed light on the dynamical sources 
of model differences and should help in understanding potential signal-to-noise issues 
(Scaife and Smith 2018).

Quantifying teleconnections in climate model ensembles can also help to reduce uncer-
tainties of regional weather and climate predictions. On both subseasonal-to-seasonal (S2S) 

Table 1. (a) Conditional probabilities for above-average AU, i.e., 
P(AU+|IOD, ENSO). The rightmost column and bottom row represent 
the marginal probabilities, P(AU+|IOD) and P(AU+|ENSO), respective-
ly. The default probability for above-average AU is P(AU+) = 1/2.  
(b) Joint probabilities for IOD and ENSO phases, P(IOD, ENSO). The 
default probability is 1/9.

(a) La Niña Neutral El Niño Marginal

IOD negative 0.83 0.50 — 0.67

Neutral 0.80 0.43 0.17 0.52

IOD positive 1.0 0.25 0.24 0.30

Marginal 0.83 0.43 0.22 0.50

(b)

IOD negative 0.17 0.17 0.00

Neutral 0.14 0.10 0.09

IOD positive 0.03 0.06 0.24
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and multidecadal time scales, for instance, it can enable process-informed bias adjustments 
(Specq and Batté 2020; Mariotti et al. 2020). In the context of climate projections, causal 
estimates are, for example, expected to provide more robust emergent constraints on re-
gional weather (Maraun et al. 2017). The causal flow in a network further provides a built-in 
narrative to communicate the sources of uncertainty. More precisely, uncertainties in the 
response of a regional climate hazard to anthropogenic global warming can be decomposed 
into different physically self-consistent probabilistic storylines (Shepherd 2019), providing 
important information for decision makers. In this context, networks could also easily be 
expanded by including impact variables, such as wildfires or crop yield in a specific region 
(Lloyd and Shepherd 2020; Lehmann et al. 2020; Guimarães Nobre et al. 2017). In this way, 
one can quantify the contribution of climatic effects to these impacts in conjunction or in 
combination with nonclimatic drivers such as land use, which could also be included in the 
network.

A causal network approach can also be useful to guide model interventions to test the 
influence of regional processes. Such interventions are currently used both in S2S predic-
tions (MacLeod et al. 2021) and climate projections (Ceppi and Shepherd 2019) to determine 
the causality of modeled teleconnections. Defining a causal network in these cases, too, is 
beneficial in order to check whether the experimental setup is consistent with observational 
knowledge about causality. In other words, comparing the effects derived from the observa-
tions (using causal inference rules) with those obtained by climate model experiments allows 
for a causality-based cross validation of model and observational data.

Finally, we see large potential for a causal inference-based approach to connect classical 
atmospheric dynamics with novel machine learning techniques (Bareinboim and Pearl 2016; 
Hernán et al. 2019; Pearl 2019). Both communities often lack a common language, making 
successful collaborations difficult (Knüsel et al. 2019). To allow for a better physical inter-
pretability of findings from deep learning (e.g., novel extracted climate features), causality-
based approaches could, for example, be used to evaluate them against expert knowledge. 
In turn, deep learning methods could also be used to quantify known causal pathways, 
potentially providing a more powerful way to estimate nonlinear dependencies from large 
spatiotemporal climate data (Luo et al. 2020; Ham et al. 2019). Overall, causal reasoning can 
help build trust in purely data-based findings and is key to physics-guided machine learning 
(Reichstein et al. 2019; Knüsel et al. 2019).

Particular challenges
The various temporal scales of dependencies in the climate system can be difficult to address. 
Note that loops and cycles are generally not permitted in a causal network. This might seem 
contradictory at first given a fully coupled climate system including strong autodependencies. 
However, depending on context, time lags and different time scales of expected cause–effect 
relationships can resolve this issue to a reasonable degree (Kretschmer et al. 2020, 2016). In 
our examples, we restricted ourselves to seasonal-mean data to avoid statistical issues aris-
ing from autodependence (McGraw and Barnes 2018; Runge et al. 2014), and also ignored 
potential effects of interannual memory. Note, however, that time information can also be 
incorporated in the network where necessary. For example, the “past” of a process can be 
included as an extra node, with autodependence reflected by a link from the past to present.

The question arises of how one sets up a causal network in the first place, as detecting relevant 
causal pathways is arguably a key challenge. Causal discovery algorithms (Runge et al. 2019a), 
such as the PCMCI algorithm (Runge et al. 2019b), which aim at reconstructing the causal 
interconnections from a given set of time series, can be useful in this context and can comple-
ment the data analysis. For example, they can be used in determining the relevant time lags 
of interactions (Saggioro and Shepherd 2019; Barnes et al. 2019; Kretschmer et al. 2016). 
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Several successful applications exist in the context of teleconnections (Kretschmer et al. 2016; 
Di Capua et al. 2020; Siew et al. 2020; Kretschmer et al. 2018a; Samarasinghe et al. 2021; 
Barnes et al. 2019; Ebert-Uphoff and Deng 2012) and the methodologies, based on principles 
of causal inference, are being further advanced to deal with more complex settings such as 
regime-dependent causal dependencies (Saggioro et al. 2020), contemporaneous causal rela-
tions (Runge 2020), and latent confounders (Gerhardus and Runge 2021).

Another challenge is that relevant processes should be included in the network, mean-
ing that there exist no confounders. This can never be fulfilled for an object as complex 
as the climate system. (Of course, the same criticism applies to any statistical analysis.) 
However, processes not explicitly included can be represented as noise. Consequently, one 
self-consistency test is to see whether the residuals really look like noise, or instead appear 
to contain some kind of structure which might suggest the need for another explanatory 
variable. Also note that it is possible to include unknown drivers in the network and to treat 
this type of uncertainty explicitly within causal inference theory (Pearl 2009).

While the above concerns have to be carefully taken into account, in the context of tele-
connections there is usually enough expertise available to draw a plausible causal model to 
articulate physical hypotheses. Every climate science paper invokes, in some way, physical 
hypotheses, as any statistical study design (including the choices of variables, time scales, 
data preprocessing, and the applied methods) depends on causal assumptions which are of-
ten not stated explicitly. Causal networks, in contrast, turn these claims into testable objects, 
making research conclusions more transparent and traceable.

Summary and conclusions
An improved understanding of teleconnection pathways is crucial to reduce uncertainties 
about regional climate projections under global warming as well as to improve forecasts be-
yond the weather time scale. Part of the challenge lies in closing the gap between the physi-
cal concept of a teleconnection, which is causal, and its mathematical description, which is 
correlational.

Here we have argued for adopting causal networks and causal inference theory as a general 
framework to articulate and quantify teleconnection pathways. While data analyses in climate 
science generally include the mantra-like statement that correlation does not imply causation, 
this is usually simply a caveat. However, while correlation may not imply causation, it does 
reflect causation; it is just that the causation may be indirect. Extracting the causal effects 
“hidden” in correlations is possible, but it requires systematic causal reasoning based on the 
physical knowledge about the involved processes.

Causal inference requires that hypotheses on the physical mechanisms that generated the 
data are made first, before any conclusions are drawn. Based on the assumptions encoded 
in the form of a network, the causal effects can then be estimated from the observations by 
following relatively simple rules. Here we discussed some examples from climate science and 
quantified the relevant teleconnection pathways in reanalysis data. The provided cases show 
how causal reasoning should guide the data analysis to obtain more reliable estimates of 
causal effects. In our view, seeking “objectivity” in data-driven approaches is not necessarily 
worthwhile, as it requires ignoring physical knowledge, which is usually crucial to achieve 
meaningful results. While practical challenges of data analysis remain, such as choices of the 
optimal climate indices, time scales, and data products, this applies to any statistical analysis. 
We argue that the transparent and deductive nature of causal network analysis can help in 
overcoming many of the limitations faced in current studies and in reconciling differences 
between the conclusions of different studies.

Importantly, a causal approach is not meant to compete with traditional climate model 
experiments or physical theory. Instead, it serves as a scaffold to build scientific intuition 
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into the statistical analysis of the data. We argue that both basic physics and data science are 
needed to make progress in climate science and that causal theory is a framework for better 
reconciling the two.
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