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INTRODUCTION

There is no lack of significant open questions in the field of hydrology,
regardless of whether we are trying to understand catchments, groundwa-
ter aquifers, hillslopes or any other possible control volume (an incomplete
list of examples is: Beven, 2019a, 2019b; Beven et al., 2019; Bishop
et al., 2008; Bloschl et al., 2019; Brown et al., 2010; Fan, 2019; Fenicia
et al., 2013; Lavers et al., 2020; McDonnell, 2003; McDonnell et al., 2010;
Milly et al, 2008; Montanari et al., 2013; Seneviratne et al, 2010;
Sivapalan, 2009; Tetzlaff et al., 2009; Van Loon, 2015; Wagener
et al, 2010, 2021). Example questions from these papers include:
What is the spatial and temporal variability of flood and drought
events, is this variability changing, and how could it be altered by
land management and climate change? What is the importance of
preferential flow for groundwater recharge? How do vegetation and
soils interact and evolve with climate to control evapotranspiration?
Where does water go when it rains? How will hydrological connec-
tivity between freshwater bodies (rivers, floodplains, lakes, ground-
water) be altered by future human alterations to the hydrological
cycle? How do changes in hydrological systems interact with, and
feedback to social systems? What is the total subsurface storage at
scales useful for defining some “process response unit”? What are
the controls on fluxes of water and solutes in different layers in rela-
tion to subsurface hydrological functioning and land management?
And so forth.

However, most of these questions do not have one general defin-
itive answer, even though we usually understand the basic physics
underlying the problem. Rather, the answer will vary with the location
we study, as well as with the space-time scale or time period we ana-
lyse. The search for a unique and general answer is elusive unless we
focus on basic process mechanisms due to the dominant control of
widely varying local boundary conditions and system properties
(McDonnell et al., 2007). The main question for hydrology is rather
how its processes manifest themself at the chosen scale of interest
given the specific boundary conditions and physical system properties
present. Our hydrologic world shows tremendous space-time variabil-
ity of environmental conditions, further modified by varying degrees
of human activity, including in Great Britain (consisting of Scotland,
Wales and England) where the landscape has been managed

to the continental scale. In this opinion piece, we begin to discuss the elements of
and point out some knowledge gaps in the perceptual model of the terrestrial water
cycle of Great Britain. We discuss six major knowledge gaps and propose four key
ways to reduce them. While the specific knowledge gaps in our perceptual model do
not necessarily transfer to other places, we believe that the development of such per-
ceptual models should be at the core of the debate for all hydrologic communities,

and we encourage others to have a similar debate for their hydrologic domain.

catchments, hydrology, knowledge gaps, perceptual model, science questions

intensively for hundreds of years (Crane, 2017). Therefore, for a par-
ticular location, such as a catchment, we must assess the above ques-
tions in the context and the history of co-evolving climate, geology,
land cover, topography, soils, water management and so forth (see
Bloomfield et al., 2011, for an example in the Thames River basin).
Studying a specific hydrologic question for a particular location and
time period at a particular space-time scale is as much a problem of
understanding the influence of local boundary conditions and system
properties (Beven, 2019a) as it is a question of understanding some
fundamental laws and mechanisms (Dooge, 1986). Here, we will use
Great Britain (GB) as our target region for this discussion. GB provides
significant variability in hydrologically relevant characteristics as dis-
cussed below but does not contain any transboundary basins. GB is
particularly diverse in terms of its hydrogeology with units varying in
age from Pre-Cambrian to Recent, resulting in significant diversity in
aquifer types, while its climate is predominantly temperate oceanic in
the Kodppen-Geiger climate classification, though with some upland
sub-arctic oceanic areas and highly varying rainfall patterns (Darwish
etal.,, 2018).

We propose that an open, shared and evolving perceptual model of
GB's hydrology is critical to tailor our science questions, as it would be
for any other study domain from the plot to the continental scale. The
accumulated knowledge about the hydrology of a particular place—
obtained through a multitude of activities including direct observations,
experimentation or modelling—forms a hydrologist's perceptual model of
that place. A perceptual model is the summary of our current under-
standing and knowledge of a particular system (e.g. a catchment) pres-
ented in qualitative or quantitative ways (Beven, 1987, 2009, 2012;
Gupta et al., 2008; Wagener et al., 2007; Westerberg et al., 2017). We
assume here that a perceptual model is a (at least partially qualitative)
conceptualization of a hydrologic system, thus similar to conceptual
models used in hydrogeology where such conceptualizations have
played a more important role than in other sub-domains of hydrology so
far (Enemark et al., 2019). At some level, such perceptual models are spe-
cific to an individual person because experience and knowledge levels
vary between us, and we have been taught to access new information in
different learning frameworks - thus enabling us to escape Plato's cave
with varying degrees of success (https://en.wikipedia.org/wiki/Allegory_
of_the_cave).
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In this opinion piece, we start to discuss the elements of and
point out some knowledge gaps in the perceptual model of the terres-
trial water cycle of Great Britain (GB). We further provide some ideas
about how one might fill these gaps and thus advance our knowledge
and understanding as a community. In a previous related commentary,
we already discussed the current need for observational advance-
ments (Beven et al., 2019). Here we provide the more detailed con-
text, partially driving the need for this advancement. We propose that
attempting to develop a shared perceptual model of the hydrology of
GB (or of elements of its hydrology) is the right vehicle to galvanize
the hydrologic community in this region to share what we know and
what we do not know. This discussion should reveal how widespread
our questions are (Is a question limited to a small domain?), and how
transferrable newly gained knowledge is if we were able to answer a
specific question (Does the answer transfer to other places, maybe
with a few additional measurements, or would we have to investigate
each location in the same way?). How similar or dissimilar perceptual
models are for different locations, and therefore how transferable, is
part of the question. It also forces us to argue why and how new
understanding gained in one location might be helpful in a different
location and to assess the trade-off between information gained and

effort made to collect this information.

2 | TOWARDS APERCEPTUAL MODEL OF
GREAT BRITAIN'S HYDROLOGY

model for GB's

hydrology does not exist, which is why we make a start here. Figure 1

Currently, an open and shared perceptual

FIGURE 1 Theimage shows
a simple perceptual model (term
as defined in Beven, 2012) of * *
generic terrestrial hydrological
processes potentially occurring in
a typical GB catchment (image is
building on Brutsaert, 2005 and
Toth, 1963). The perceptual
model should visualize main
catchment functions related to
water and energy, including
partition (interception, infiltration,
percolation, etc), storage (canopy,
depression, channel,
groundwater, soil moisture, etc.)
and release (actual
evapotranspiration, streamflow,
groundwater, interception loss
etc.) (as defined in Black, 1997
and Wagener et al., 2007).
Additional functions such as
incatchment transmission of
fluxes could also be part of the
perceptual model
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provides a simple generic perceptual model of catchment hydrology
with typical processes one might find in regions with temperate oce-
anic climate while ignoring spatial variability of processes for now.
The model contains the main catchment functions that we might aim
to define through the perceptual model (Black, 1997; Wagener
et al, 2007). These catchment functions include how and where
water/energy is partitioned inside a catchment (through interception,
infiltration, percolation, recharge etc.), how and where water is stored
(canopy, depression, channel, groundwater, soil moisture, etc.) and
how and where water is released from our control volume, that is, the
catchment (actual evapotranspiration, streamflow, inter-catchment
groundwater, deep percolation, interception loss etc.). Topographically
delineated catchments will often not be closed in terms of their sub-
surface fluxes (e.g. Fan, 2019; Liu et al., 2020; Toth, 1963). Catch-
ments will further vary in the sense that different stores and fluxes
will dominate depending on the specific physical and climatic setting.
For example, variability in precipitation and energy across GB is a first
order control on differences in the long-term water balance, separated
further by geological differences, which can lead to climatically similar
regions being hydrologically different (Gnann et al., 2020; Laizé &
Hannah, 2010; Wilson et al., 2013). A perceptual model for a particu-
lar place is also unlikely to be constant in time, but rather will evolve
with changing climatic boundary conditions (e.g. increasing or
decreasing the release through atmospheric losses); with land-use or
water management alterations (e.g. changing partitioning at the land
surface, reservoir storage and abstractions); with geomorphological
change at the coast or inland after flood events; or with the availabil-
ity of new types of observations. Perceptual models will also differ in

their level of granularity, depending on the information available, the
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subsequent purpose of the model (e.g. to build a simulation model or
to define an experiment), or the preferences of the hydrologist who
created it (Beven & Chappell, 2021; Wagener et al., 2021).

We could start with a common initial perceptual model for a type
of catchment or a larger domain which is subsequently tailored when
more specific locations are considered (see the models of everywhere
concept by Beven, 2007, and Blair et al., 2019; or a specific example
for groundwater recharge by Hartmann et al., 2015). Perceptual
models of some places have been published and discussed in great
detail. McGlynn et al. (2002) discussed the evolution of the perceptual
model of hillslope flowpaths in the Maimai catchment, New Zealand.
Wrede et al. (2015) and Lischeid (2008) discussed how competing
hypotheses about potential perceptual models might be tested using a
multitude of activities, including experimentation and modelling.
Kaandorp et al. (2018) took a relatively sophisticated pre-existing per-
ceptual framework and tailored it to four catchments across Europe
(including the Thames, GB), with necessary simplifications to account
for different types of information available in the different basins. The
authors subsequently used the perceptual models within a DPSIR
(Drivers, Pressures, State, Impact and Response model of intervention)
framework to assess the implications for groundwater-surface water
interactions under multiple (resource and quality) stressors. This per-
ceptual framework grew out of a detailed typology of groundwater-
surface water interactions previously established by Dahl et al. (2007),
guided by common considerations of catchment scale, geomorphol-
ogy and aquifer lithology.

Different hydrologists will likely start with somewhat dissimilar
perceptual models when analysing the same location, though we hope
that these perceptual models would converge with time as our knowl-
edge increases and as that knowledge is shared and debated—at least
regarding a system's dominant characteristics and functions. If our
perceptual models do not converge and remain significantly different,
even if we have access to the same information, that is, maybe
because multiple hypotheses about how the system might work are
consistent with available data, then this suggests that additional infor-
mation is still required through new measurements, detailed modelling
or other means to resolve the differences—thus guiding future
research. If our scientific world was perfect and we could measure
and characterize everything we wanted, then our perceptual models
would just be based on physical principles (our hydrologic laws) with-
out the need for subjective interpretations, though this would appear
to be currently unachievable in most cases due to our persistent
inability to measure all system properties, states and boundary condi-
tions at relevant resolutions (Beven et al., 2019; Savenije, 2009).

Various strategies to build perceptual models have been proposed
(Buttle, 2006; Wagener et al., 2007). For example, in the US, the
hydrologic landscapes idea of Winter (2007) assumes basic controls of
climate, topography and geology, and has been applied across scales
(Wolock et al., 2004). In the United Kingdom, the Hydrology of Soil
Types (HOST) framework, which is driven by conceptualizations and
characterisations of shallow subsurface properties and hydrogeology
(Boorman et al., 1995), might be the closest available strategy devel-

oped specifically for our study domain. However, internal

inconsistences and a level of complexity beyond our knowledge have
been highlighted as problems with the current framework
(e.g. Chappell & Ternan, 1992). Though the system might still be a
good starting point for further development. HOST is one of the foun-
dations of the Flood Estimation Handbook (Centre for Ecology and
Hydrology, 1999), the UK industry-standard approach to estimate
design floods. However, adding further controls in a perceptually
more consistent way could be done in a top-down fashion using a
comparative hydrology approach (Falkenmark & Chapman, 1989) or
machine learning strategies (e.g. Nearing et al., 2021) to identify pat-
terns of likely similarity in catchment function. Starting with climate
and working downwards (Bower et al., 2004; Sawicz et al., 2011), one
could add or replace controlling processes across space scales
(e.g. Addor et al., 2018) and time scales (Sivapalan et al., 2003). Alter-
natively, one could attempt a bottom-up strategy using process-
models if a high-granularity is considered from the beginning
(e.g. Troch et al., 2013).

Key hydrologically relevant characteristics of GB's landscape that
would form the basis for a national perceptual model are organized in
Figure 2 (left column) - grouped into relatively coarse classes to simplify
discussion (derived from Coxon et al., 2020). GB's landcover is domi-
nated by grassland with arable agricultural regions being more prominent
in the east, while patches of forest and urban centres characterize
smaller areas. The topography of GB is characterized by rolling hills, hav-
ing led to approaches such as the topographic index (Beven &
Kirkby, 1979), which quantifies the hydrologic relevance of this feature
on saturated areas and the wider hydrologic response. Higher topo-
graphic variability is found in the north and in the west. Peat cover and
soils developed from glacial till influence infiltration capacity, leading to
faster responding catchments in areas with higher clay content in south-
ern GB and upland peat covered areas in southwest England, Wales, the
Pennine chain and large parts of Scotland. In southern England, hydrol-
ogy is strongly influenced by highly permeable geology within and across
catchments, leading to significant groundwater recharge rates and inter-
catchment groundwater exchange.

This landscape has partially evolved in response to climatic and
human impacts (e.g., landscape cover change), and will continue to do
so in the future (Figure 2, right column). It is important to consider
that this is a process of feedbacks and interactions (and not a one-
way impact chain). For example, the distribution of different rock
types has resulted in the current topography (higher land in the west
associated with more durable formations), thus in turn affecting the
distribution of orographic precipitation in GB. In many areas, land-
scape and hydrology still reflect what was left by glacial and periglacial
processes at the end of the last glaciation. Similarly, topography and
landscape (for example the location of exploitable natural resources,
such as coal) have affected where urbanization, and hence human
impact, has developed. Due to anthropogenic climate change the
intensity of extreme rainfall events is particularly projected to increase
in the east and the south of GB (Kendon et al., 2014). This expected
change goes along with projections of increasing numbers of hot
days—defined as days with a temperature above 25°C—in the south-

ern parts of GB, especially around London (Kennedy-Asser
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FIGURE 2 Data layers for a perceptual model of GB's hydrology separated into landscape characteristics (left column) and climate change as
well as human activities (right column). The organization of each layer is relatively simple on purpose to enable subsequent discussion. Left
column from top to bottom: Land cover from CEH land cover map 2015 and grouped into four broad classes. Topography is 50 m NextMap DEM
classified into four classes - 500 m. Soils - Percentage clay obtained from soils data from Cranfield and James Hutton institute. Some minor gap
filling was applied. Classes are 30% for 'high clay'. Peat cover is also included given its role in controlling water flow paths and its widespread
cover in GB (Xu et al.,, 2018). Geology - permeability map is taken from the BGS (www.bgs.ac.uk/datasets/permeability/). Dark blue is 'very high',
light blue is 'very low' class. Right column from top to bottom: Precipitation projections taken from UKCP18 12 km regional climate projections -
Averaged across all ensemble members. Precipitation is not bias corrected (though we found spatial patterns to be consistent with bias corrected
products). Calculated average 5-day annual maximum for a baseline period (1980-2000) and far future (2060-2080) - These periods match those
used by the met office. Calculated percentage change in the 5-day annual maximum. Light blue is 20% change. Temperature projections taken
from UKCP18 12 km regional climate projections - Average taken from all ensemble members. Calculated average number of 'hot days' > 25°C
per year for baseline period (1980-2000) and far future (2060-2080) - These periods match those used by the met Office. Calculated change in
number of days exceeding this threshold. Light yellow is 1-3 additional days per year of >25°C, red is >14 additional days per year of >25°C.
reservoir data taken from Coxon et al. (2020) - Organized by type (colours) and storage capacity. Groundwater abstractions data taken from
Coxon et al. (2020)

SOME KEY KNOWLEDGE GAPS IN OUR
PERCEPTUAL MODEL OF GREAT BRITAIN'S
HYDROLOGY

et al., 2021). More direct influences on the terrestrial hydrologic cycle 3 |
come from human activities such as reservoir building and groundwa-
ter abstractions. Reservoirs for water supply and flood storage are
widely distributed across England and Wales (though less common in

the more groundwater dominated east), while reservoirs in Scotland
largely focus on hydroelectric power production in line with the
higher topographic gradient found there. Regions of high groundwater
abstractions can especially be found around urban centres and where

aquifers are more productive.

So, what are some of the gaps that we currently see in our perceptual
model of GB's hydrology? Below, we discuss—and visualize in
Figure 3— some of the existing knowledge gaps that need to be over-
come. These gaps limit our ability to quantify the catchment functions

discussed above, and they restrict our predictive understanding
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regarding how these functions might be altered by climate change or
direct human activity, that is, what is the elasticity of the hydrologic

system?

1. Accounting for groundwater fluxes to close open water balances:
GB contains large regions of highly permeable aquifers, where
catchments are regularly connected to a wider regional groundwa-
ter system (Allen et al., 1997), resulting in losses or gains of water
through subsurface flowpaths (Ameli et al., 2018). In the wetter
regions of the world, like GB, where subsurface flow dominates
riverflow and most rivers are perennial, this subsurface-surface
exchange is likely dominated by subsurface permeability and loca-
tion of the catchment within the wider landscape (Allen
et al., 2010; Fan, 2019) - which can be an issue even in small head-
water catchments (Mufioz et al., 2016). While the presence of such
losing or gaining catchments is widely acknowledged, we lack a GB
wide quantification of this problem, thus leading for example to
unresolved problems in modelling these basins (Lane et al., 2019).
The differences between the surface (topographic) and groundwa-
ter basin (and its seasonal and inter-annual variability) are
unquantified for all but a few case study catchments (Hughes
et al., 2011).

Quantification of this groundwater exchange will also require a
more precise quantification of other related fluxes and an attribu-
tion of uncertainties in the water balance to its components,
e.g. precipitation (Liu et al., 2020). We require a nationally consis-
tent perceptual understanding of catchment and aquifer controls
on spatio-temporal variation in recharge and groundwater dis-
charge to rivers. Mansour et al. (2018) produced the first national
long term average model of recharge but is it consistent with exis-
ting perceptual models of the wider terrestrial hydrosphere?

Similarly, there is no equivalent national perceptual model of the
variability of GW discharge or of GW-SW interaction along
the river network.

. Coastal catchments: River gauges will typically be located at some

distance from the coast, which leaves a potentially significant area
in between gauged catchments and the coast for islands such as
GB. Even though catchment water balances are influenced by dis-
tance to the coast (e.g. Fan, 2019; Luijendijk et al., 2020), these
influences are generally poorly quantified, e.g. due to a lack of tidal
gauges in case of GB. Currently submarine groundwater discharge
is poorly constrained in GB although it plays a significant role in
regulating seawater intrusion (particularly along the eastern coast)
as well as the flux of nutrients and other diffuse pollution to the
near costal marine environment (Slomp & Van Cappellen, 2004;
Werner et al., 2013). Better quantification of this coastal exchange
through rivers and sub-marine groundwater is needed to under-
stand potential future changes to coastal ecosystems, including the
potential for future compound flood events (Moftakhari
et al,, 2019; Speight et al., 2015). Coastal flooding and erosion are
significant  challenges around GB  (Climate  Change
Committee, 2018), with sea level rise set to increase the impor-
tance of interactions between storm surges, wave overtopping and
hydrological systems (rivers, urban drainage and agricultural drain-
age). Complex dependencies between these systems exist over
multiple scales (Svensson & Jones, 2002, 2004), although progress
has been made in developing integrated frameworks for combined

risk assessments of inland and coastal flooding (Lamb et al., 2010).

. Data uncertainty: It is not just scientific questions regarding the

importance and character of hydrologic processes that require tai-
loring to specific places. It is highly likely that assessments of
uncertainties in the measurements of all hydrological variables are

FIGURE 3 Key knowledge gaps in
our perceptual model of GB hydrology.

How much do humans affect Human influences-grey catchments
the terrestrial water balance? with 'high' human influences from

either urbanization (>25% coverage),
high surface water or groundwater
abstractions (>0.5 mm/day) or high

How much water is exchanged
? . . .
between catchments? reservoir capacity relative to mean

flow. Groundwater exchange-blue and

How and where is submarine yellow catchments underlain by >50%
groundwater exchanged? 'very high' permeability aquifers (www.
bgs.ac.uk/datasets/permeability/),
Impacts of changing land with yellow catchments also being
cover on surface within 10 km of the coast. Land cover
partitioning? changes- green catchments are

How does
observational
uncertainty vary
across GB?

priority catchments on the 'Woodland
for Water' scheme that aims to create
woodland to reduce flood risk. Climate
change - Light red shaded area is >7
additional days >25°C from UKCP18
data (see Figure 2 caption), while
purple shaded area is >20% increase in
the 5-day annual maximum from
UKCP18 data (see Figure 2 caption)
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waves on droughts?

(S Influence of future extreme
000 rainfall on flooding?
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place and time specific and variable across GB. An assessment of
stage-discharge rating curves by Coxon et al. (2015) for 500 UK
gauging stations showed that the uncertainty in these curves var-
ied significantly across catchments and across flow ranges, thus
showing that the assumption of a single generic degree of
expected uncertainty across a wide range of catchments would be
misleading. Hence, we have to consider that the insight gained
from such observations is associated with uncertainties that vary
across locations as well as in time. This will also apply to the post-
processing of hydrological variables (Herschy, 1999) as well as
their use in modelling and forecasting (Flack et al., 2019). There
are also widely acknowledged uncertainties in both catchment-
wide estimates of precipitation and evapotranspiration, making it
difficult to close the water balance without allowing for that uncer-
tainty. Though use of new sensors might help to reduce such
uncertainties (e.g. Wallbank et al., 2021). This problem is for exam-
ple reflected in the apparent wide variations in runoff coefficients,
even in fast responding catchments (e.g. Beven, 2019b).

. Climate change impacts on GB hydrology: Climate change projec-
tions suggest that atmospheric circulation patterns across GB will
change, though the extent of this change is highly uncertain
(Shepherd, 2014). How climate and weather patterns (especially
with regard to extremes) will be altered is thus unclear, but some
trends are more likely than others (Garner et al., 2017; Watts
et al., 2015). Within currently available historical observations, air
temperatures have risen, and winter rainfalls have become more
intense, while projections suggest reduced summer flows and
larger and more frequent flooding, although with large uncer-
tainties (Cloke et al., 2013; Kay et al., 2021; Watts et al., 2015).
Probabilistic event attribution studies have shown that historical
greenhouse gas emissions have already contributed to increased
risk of flooding within the context of specific extreme events
(quantified for the floods in winter 2013-14, which affected large
parts of GB, by Schaller et al., 2016 and Kay et al., 2018). Future
GB precipitation and temperature extremes are expected to
change in both magnitude and frequency, and even in the type of
event (De Luca et al., 2019; Kendon et al., 2014). An increasing fre-
guency of localized summer storms is projected to go hand in hand
with more frequent and more widespread droughts (Guillod
et al., 2018). Which catchments are more sensitive to changing
atmospheric boundary conditions and drivers, as well as land cover
change (Bower et al., 2004; Prudhomme et al., 2009a, 2009b)?
Where will changing summer storm intensities lead to increased
flooding, how might this affect spatial changes in recharge, and
where will the response of extreme rainfall be more dampened
(Gnann et al., 2020)? Across drought affected domains, which
catchments will see the drought signal move through soil moisture
and groundwater stores more quickly than others, and which
catchments will recover first when the drought subsides (Wendt
et al., 2020)? For example, there is evidence of increased fre-
guency and magnitude of groundwater droughts over the 20th
century based on an analysis of long-term GW level records in the

GB chalk - driven by increased evapotranspiration due to global

warming (Bloomfield et al., 2019). How these questions are
addressed should depend on how the hydrological perceptual

model varies across GB.

. Human activity: Society is increasingly modifying terrestrial fluxes

of water through land-use change, abstractions/returns, damming
and other activities, leaving very few GB catchments with a 'natu-
ral' flow regime (Harrigan et al., 2018). Jones et al. (2019) suggest
that 97% of GB's river network is fragmented through artificial bar-
riers, with barrier density estimates of 0.48 barriers/km in Scotland
to 0.63 barriers/km in Wales, and 0.75 barriers/km in England.
Further large-scale infrastructure to buffer future hydrological
extremes has already been recommended by the National Infra-
structure Commission (NIC, 2018a, 2018b, 2018c), while policy
changes are expected to reform water abstraction management. In
recent years, the impacts of human activity on river flows has been
studied, e.g. using paired catchment analyses (Van Loon
et al., 2019). However, many human impacts are poorly quantified
or even unquantified since abstraction estimates and operational
reservoir rules are held by private companies who perceive it as a
disadvantage to release such information. Attributing and dis-
entangling the influence of large scale (e.g. climatic) and local scale
(e.g. abstractions) influences of hydrologic regimes is therefore
problematic (Wendt et al., 2020). For example, natural recharge to
groundwater aquifers is complemented by leakage from almost
half a million kilometres of water pipes running through the UK's
subsurface, which, across England and Wales alone, lose just under
3 billion litres of water every day due to leaks (WaterUK, 2020).
These interactions are further complicated by the co-evolution of
society and climate. For example, future changes in temperature
will likely lead to changes in agricultural practices and a need for
more irrigated agriculture, thus exacerbating pressures on water
supplies. A key question is therefore how strongly our perceptual
models are defined by anthropogenic activities (Westerberg
etal, 2017)?

. Land cover changes: Climatic changes such as those to precipitation

and atmospheric evaporative demand explain significant fractions
of the larger-scale trends in observed streamflow patterns in the
United Kingdom (Vicente-Serrano et al., 2019). However, land-use
change can have significant local/regional impacts on catchment
functions including recharge or evapotranspiration in relation to
floods and droughts (Dadson et al., 2017). English water companies
have recently committed to planting 11 million trees by 2030 as
part of their commitment to achieving 'net zero' carbon emissions,
(WaterUK, 2021) and the United Kingdom government has com-
mitted to protecting an additional 4000km? of land across the
United Kingdom while increasing woodland to 12% of the total
land cover by 2060 (DEFRA, 2019). Will these changes—that will
alter the partitioning of moisture and energy at the land surface—
have a measurable impact on river flows and groundwater
recharge? This effort is unlikely to impact GB hydrology as a
whole, but it might matter locally depending on where trees are
planted. It ties in with a shift in management interventions towards

more natural solutions that can reduce the frequency and severity
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of flooding, though questions about the overall benefit and possi-
ble negative side-effects of such measures remain (Cooper
et al., 2021; Page et al., 2020). Open questions also remain regard-
ing the efficacy of such approaches and the sensitivity of runoff
extremes or low flows to land cover change for catchments across
space and time scales, as well as their wider (possibly unintended)
impact on ecosystem services. Most observations on the effects of
land cover on flooding originate from a very limited number
of small catchments such as the Plynlimon catchment experiments
(see Marc & Robinson, 2007), with large-scale impacts still unclear
- that is, most studies to date suggest you cannot see land-use
change impacts on floods in catchments >50km? (Dadson
et al, 2017; Rogger et al., 2017). Nonetheless flooding in larger
catchments can be mitigated through the use of off-channel stor-
age areas and by reconnecting rivers with natural floodplains.
While land cover changes are accelerating, their detailed conse-
guences are thus complex and not easy to determine (Levia
et al,, 2020).

4 | WHATIS NEEDED TO FILL THESE AND
SIMILAR GAPS?

Hydrology so far largely lacks a wider discussion of gaps or inconsis-
tencies in our perceptual models across larger domains (Beven &
Chappell, 2021; Wagener et al., 2021). Few examples of such discus-
sions are available (Kingston et al., 2020). While the number of
discussions at the catchment scale are slowly increasing, they are far
from being the norm and the inclusion of perceptual models—
summarizing the hydrologist's system understanding—is still surpris-
ingly rare in hydrologic publications. While detailed discussions about
the hydrology of individual catchments is important, we need to
understand how our perception of catchment functions differs
(at least in relative terms) from each other across larger domains if we
want to create generalizable and transferrable knowledge, including
our ability to make prediction.

Understanding relative difference (rather than absolute) in catch-
ment behaviour is often a good start to improve our expectations
about catchment responses—potentially even beyond observed his-
torical variability (Rogger et al., 2012). Also, in hydrology, it is easy to
get lost in detail, thus a first order assessment of even simple percep-
tual models in a top-down fashion might be a meaningful start for a
discussion of regional hydrology and a way to galvanize (regional)
hydrological communities (this could start with few relatively simple
perceptual models tailored in a top-down fashion, e.g., Hartmann
et al., 2015). Integrating what we have learned from both empirical
regionalization approaches for breadth (e.g., Addor et al., 2018) and
from model-based analyses in fewer places for depth (e.g. Bloomfield
et al., 2011) might be the best strategy to build up robust understand-
ing for regional hydrology and predictions (Beven, 2007; Gupta
et al., 2014; Wagener & Montanari, 2011). Such an approach has two
important consequences: (1) It precludes us from using a single model

structure everywhere because it demands tailoring of any simulation
model to local/regional perceptual models including consideration of
the uncertainties in the perceptual model. Hence, we would move fur-
ther away from applying single model structures across large domains.
(2) While modular modelling frameworks have been postulated as the
answer to the need for variable computational model structures, such
frameworks can ultimately only be meaningful for scientific advance-
ment if the computational model structures considered to represent a
catchment are selected based on their consistency with the underly-
ing perceptual model for this location—rather than because they pro-
duce reasonable values of some statistical performance metric.

We close with a few suggestions on how we might tackle our
knowledge gaps. These suggestions should be seen as complementary
to the previously discussed need for additional and new observational
methods to reduce the uncertainty in the hydrological observations
we obtain (Beven et al., 2019).

e First, we need a national focus to develop an open, shared and
evolving perceptual model as a learning framework for the hydro-
logic community to help overcome some of the issues that limit
our progress. Understanding the state of knowledge in a field such
as hydrology is difficult, given that much of knowledge is created
through a large number of (often) small-scale studies, which we do
not integrate (Evaristo &
McDonnell, 2017). The transferability of this knowledge to other
scales or locations has also been difficult - partially due to our

regularly and  consistently

inability to characterize hydrologically relevant catchment features
that determine how processes interact (McDonnell et al., 2007). A
national perceptual model would enable a stronger focus on
knowledge accumulation as a community and would open up new
opportunities on how we communicate the results of our studies
(e.g. Garner et al., 2017; Wagener et al., 2021). We envisage an
evolving national perceptual model based on principles of compar-
ative hydrology, continuously advanced through regular revision
based on dialogue and synthesis (maybe through regular work-
shops as part of our national meetings). The National River Flow
Archive (https://nrfa.ceh.ac.uk) provides a digital starting point
through its linguistic descriptions of individual catchments and
their properties. This could be combined with the semi-empirical
HOST methodology (or its revisions), the BGS groundwater con-
ceptualization (BGS, 2020), further extended through other rele-
vant properties (Kral et al., 2015) (Figure 2).

e Second, the amount of hydrologically relevant data currently
accessible for research is still significantly lower than the amount
of data that exists (Hannah et al., 2011). Insights into the hydro-
logic variability present across GB can only come from spatially
diverse and temporally extensive datasets on hydrologic functions
(stores and fluxes), catchment properties, human activities etc.
While the amount of freely available data has grown greatly in
recent years (e.g. Coxon et al., 2020), more effort is needed to
make additional data accessible. Data that is often not freely avail-
able in GB include those on soils, on land cover, on groundwater

and on human activities (especially abstractions and reservoir
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management). This lack of access might be because the data are
privately held, because the data are held by a public organization
but in inaccessible form, because the data are only available under
specific (and difficult to reach) individual agreements, or for other
reasons. A concerted effort to itemize all available (significant) data
(currently openly accessible or not) and to identify the bottlenecks
that limit access (legal agreements, finance, lack of digitization,
etc.), would be a tremendously beneficial investment. Most hydro-
logical data collected in GB is done so by environmental regulators
(and to a lesser extent the water companies)—not by the research
community. Enabling the research community to utilize such data—
even though their uncertainties might be difficult to assess as dis-
cussed above—would further expand our ability to characterize the
water environment significantly, and to understand where data
gaps really exist.

e Third, modelling and monitoring must be seen as a connected and
integrated activity (Harrigan et al., 2020). Essentially, observations
generally become hydrologically meaningful after they have been
processed through some type of data-processing model
(e.g., streamflow based on rating curves or spatial rainfall based on
some interpolation model) and we use hydrological models to
extrapolate and interpolate hydrologic dynamics to include addi-
tional processes, or to move across scales and locations. A national
simulation model ensemble (necessary to avoid biasing the result
to a particular model) should be connected to data assimilation and
sensitivity analysis tools to quantify the potential value of new or
better data for uncertainty reduction and to assess our ability to
distinguish between competing hypotheses in the presence of
unavoidable uncertainties. Further attributing uncertainty in the
model outputs to its sources would help us to distinguish whether
we need new models, better observed data or better theory
(Wagener & Pianosi, 2019). Such a hydrologic observation-
simulation system-experiment (OSSE) framework (e.g. Zeng
et al., 2020) would enable the testing of the potential value of
additional or new data in synthetic experiments prior to actually
investing in new monitoring sites etc. (see discussion in Beven
et al, 2019). The point here is not to suggest that operational
(non-research) monitoring by regulators or private companies
should be adjusted to be optimal for the research community
(clearly companies and regulators have their own objectives). The
point is rather that any research-focused monitoring should be
built around the full existing operational monitoring so that dupli-
cation is avoided, and the value of long-term observations is
realized.

o Fourth, linking our hydrological simulations explicitly to an evolving
perceptual model would directly allow for the testing of competing
hypotheses, and it would enable us to highlight opportunities for
further measurements or even for fundamentally new measure-
ments. There is no reason why this interaction should not also
include data-based models (e.g., building on the rich tradition of
hydrologic regionalization across GB). The argument developed
earlier in favour of tailored models was explored by Beven (2007)

as a concept of”” models of everywhere” that explicitly includes the

testing of local hypotheses and predictions using local data and
knowledge. The technology landscape now offers great opportuni-
ties to implement and operationalize these concepts (Blair
et al., 2019; Gil et al., 2019), which could be linked to regionalized
hydrologic signature constraints in an uncertainty framework
(Wagener & Montanari, 2011) so that statistical- and process-
based hydrology are merged as well.

A national effort including an evolving perceptual model focused on
dominant processes down to the small catchment scale, a national
ensemble of the main hydrologic models and the accessibility of avail-
able data including metadata on their uncertainties would provide a
vehicle to advance GB hydrology and its community at an unprece-
dented rate. Though we should further clarify this statement: (1) We
propose a perceptual model (or model framework) for GB. We do not
suggest that such models should in general be defined by administra-
tive boundaries (but rather hydrologically meaningful ones), though
GB has the advantage of being an island (or set of islands). It is impor-
tant to stress that implementing such a perceptual model is also full of
challenges since we would have to define a framework in which (spa-
tial) qualitative and quantitative information can be combined, which
allows frequent interaction by a multitude of users, and allows for the
highlighting of inconsistencies or uncertainties (Gil et al., 2019). (2) A
national ensemble of simulation models is required for at least two
reasons. One, local simulation models need to reflect local perceptual
models and consider data available for conditioning/hypothesis test-
ing (both local or interpolated), so no single model structure is likely to
be equally suitable everywhere (including the option that no suitable
model structure is available). Second, hydrologists regularly disagree
on how to simplify reality for model development, how to set bound-
ary conditions, what granularity of processes is needed etc. Hence,
building on the multitude of large-scale hydrologic models increasingly
available will help to assess in how far these decisions matter, and, if
they do, which choices are more appropriate. In the long-term, we
would hope that these advancements would also influence opera-
tional methods and tools.

Here, we provided an insight into the current discussion across
the GB hydrological community about where we have specific knowl-
edge gaps, whether these gaps have widespread influence or relate to
specific hydrologic settings, and what vehicles we might utilize
to advance this discussion and to accumulate and advance our joint
knowledge of GB hydrology. We hope that this discussion will feed
into the evolving debate about how we best further our understand-
ing of hydrology more widely by encouraging similar debates
elsewhere.
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