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Abstract

In this paper, we obtain some interesting reproducing kernel estimates and some Car-
leson properties that play an important role. We characterize the bounded and compact
Toeplitz operators on the weighted Bergman spaces with Békollé-Bonami weights in terms
of Berezin transforms. Moreover, we estimate the essential norm of them assuming that they
are bounded.
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1 Introduction and Results

Let C be the complex plane and D(0,r) := {z € C : |z| < r} for r > 0 the Euclidean
open disc with center 0 and radius r. We denote by the unit disc D := D(0, 1) for short. If
W is a positive measure on D and p > 0, we denote L? (1) the Lebesgue space over D with
respect to . That is, L? (i) consists of all functions f defined on ID for which

1/p
1 f e = [ /D If(z)l”du(z)] < o0,

When p > 1, || - |r(u) defines a norm and L? (1) becomes a Banach space.
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C.Tong et al.

Let dA denote the Lebesgue area measure on D. If u is a positive locally integrable func-
tion on D, i.e. positive u € Ll] o, (dA), let L?(u) denote the space of measurable functions
on D that are pth power integrable with respect to udA. That is

1/p
1 f o == ( /D If(z)l”u(z)dA(z)> < oo,

The Bergman space A”(u) is defined to be a subspace of analytic functions in L (u)
with L? (u)-norm. We write A? = A?(1) for short. The most common reproducing kernel
for the unit disc has the form |
(1 —wz)?
for w, z € D, and it corresponds to the space AZ,

The following notations will be used throughout the paper. For a weight « and E C D,
we set u(E) = [pudA, A(E) = [, dA. We denote by

du . _ fE f(@)du(z)

Ky(z) =

(g :
e W(E)
for integrable f and measure .
If we define P by
J(w)
Pf() = | ————dA(w).
D (1 —wz)?

The problem of characterizing the weights for which the Bergman projection P is a
bounded orthogonal projection from L?(u#) to A?(u) was solved by Békollé and Bonami
[1, 2]. They found that these weights are precisely u € B).

By condition Let S(a) be the set

a
S(a) = {7Z :Re (az) < o}.
1—az
We say u satisfies B, condition, or u € B, if
,oyda \ Pl
[ulp, = su u)dA <<u7p/”> ) <1
i seblls Sta)

where 1/p + 1/p’ = 1. Recently, the sharp estimates for the L”-continuity of the Bergman
projection are investigated in [9] and [10] respectively.
The inner product of the Hilbert space A%(u) is given by

(s 82y = fD F )@ u(w)dAw).

where f, g € A%(u). The reproducing kernel of AZ%(u) will be denoted by K (z, w). Itis well
known that K (z, w) = K (w, z). If L; is the point evaluation at z € D, thatis L, f = f(z)
for every f € A%(u). It follows by the Riesz representation that

K(z,2) = (K(, 2, K D) gy = 1K G D5 = 1Ll

Given a positive Borel measure u on ID, the Toeplitz operator 7}, associated with p on
AZ%(u) is the linear transformation defined by

T f() = /D F)K G w)dp(w). zeD.
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The Berezin Transform of Toeplitz Operators...

Let u be a finite positive Borel measure on ID that satisfies the condition

/DIK(E,z)PdM(g) < .

Then the Toeplitz operator 7}, is well-defined on A%(u).
Recall that the pseudohyperbolic metric d : D x D — [0, 1) is defined by

—w

Z

Denote by
Az,r) ={weD:dz w) <r}

the pseudohyperbolic disk centered at z with radius r. For a finite positive Borel measure p
on D and r > 0, the average function fz, is defined as

L uAG )
nr(z) = u(A(z,r))i’ z € D.

It is well known that the Berezin trasform plays a role in the theory of Toeplitz operator.
The Berezin transform of the Toeplitz operator 7}, is given by

i(z) = (Tyk, kz)AZ(u)a z €D,

where k;(w) := K(w, 2)/IIK (-, 2)|| o2(,) is the normalized reproducing kernel of A%u). By
a straightforward computation one has

(Tuf. 8 azqy = (> &) r2@ap)- (1.1)

It follows that the Berezin transform [t can be formulated by
i) = [ e)Pdue), 2 eD.

Constantin [5] characterized the Toeplitz operator on Az(u) in terms of the Carleson
measure. The motivation of this paper is to characterize the Toeplitz operator in terms of its
Berezin transform. Now we are in the position to state our main theorems.

Theorem 1.1 Let pg > 1 and u € By, Suppose that § € (0, 1) is the one in Theorem 2.7
and 0 < r < 8. The following assertion are equivalent:

(1)  The Toeplitz operator T, is bounded on A2(u).
(i) @ is bounded on D.
(iii) 1, is bounded on D.

The following theorem charaterizes the compact Toeplitz operators on AZ(u) with
Békollé-Bonami weights

Theorem 1.2 Let pg > 1 and u € By, Suppose that § € (0, 1) is the one in Theorem 2.7
and 0 < r < 8. The following assertions are equivalent:
(i)  The Toeplitz operator T, is compact on A%®).
(i) lim a(z) =0.
|z|—>1

(i)  lim 75 (z) = 0.
|z|—>1

@ Springer



C.Tong et al.

Next, we will study the Schatten class of Toeplitz operators T, € S, (Az(u)) in terms
of the Berezin transform. Recall that if 7' is a compact operator on a Hilbert space H, then
there are orthonormal sets {e,} and {0, } in H such that

o0
Tx = Zs,,(x, e, Ho,, X € H,
n=1
where s, = 5,(T) is the nth singular value of 7. The Schatten class S, = S, (H) consists
of those compact operators 7 on H for which the singular numbers sequence {s,} of T
belongs to £7, thatis ), |s,|? < oo.

Theorem 1.3 Let p > 1, po > 1 and u € Bp,. Suppose that  is a positive Borel measure
on D such that the Toeplitz operator T, is compact on A2(u). Then T, €S, (Az(u)) if and
only if i € LP(d),) where d, = | K,||*u(z)dA.

Let /C be the set of all compact operators on a Banach space 3. For any bounded linear
operator T : B — B, the essential norm of T is defined by
IT||le =inf{|T — K| : K € K}.

It is clear that ||T|, = O if and only if T € K. Finally, we show the conditions for
Toeplitz operators to be compact, see the above theorem, in term of the essential norm
estimates because essential norm estimates give us a further information. The essential norm
of a bounded operator is the distance from the operator to the space of the compact operators.

Theorem 1.4 Let u be a finite positive Borel measure on ID. Suppose that T,, is a bounded
operator on Az(u). Then, one has,

1T lle > limsup fi(z) = lim sup fz; (2).

|z]—1 lz|—>1

Throughout the paper, we use the following notations:

® () < 0> means that there is a constant C > 0 (independent of the key variable(s))
such that 01 < CQ»;
® Q= Qsifboth Q1 $ Qrand 0r < Q1.

2 Preliminaries and Basic Properties

The pseudohyperbolic metric obeys the following so-called strong triangle inequality:

Pz, ¢) + p(¢, w)
w) <
I+ p@z, Op G, w)
for all z, w, ¢ € D. Furthermore, if 0 < r < 1, then whenever z, w € D with p(z, w) < r,

oz,

I =zl =1 —w] =l —wz 2.1
and forall ¢ € D
L7
_g“z ~1
I1—¢w

where the constants involved depend only on r. We will denote by

Az, r):={weD:plz,w) <r}

@ Springer



The Berezin Transform of Toeplitz Operators...

the pseudohyperbolic disk centered at z with radius 7.
We will also use the following class of weights which is denoted by C,. For p > 1, a
positive locally integrable weights u belongs to C,, or say u satisfies C, condition if

dA 77p\d4 -
ulc, = sup(u u? p> <1
[ ]C,, Zeg( >A(z,r) (( A(Z,r)) ~
where 1/p+1/p’ = 1. Condition C, seems to depend on a choice of » < 1, but it is known
that the same class of weights is obtained for any » € (0, 1) and B, C C,. To see this,
we note that for a given r, there is a @’ € D such that A(a,r) C S (a’ ) with comparable
volumes, for more details see [7].
It is not hard to see that S(a) is “equivalent” to the set S(¢, k) for ¢ = a/|a| € 0D and
h =1 — |a] in the sense that S(¢, h) C S(a) C S(¢, 2h), where

S, h)y={zeD: |l —zL| <h}.

See more details in [7].
The point evaluations on A” (1) are bounded linear functionals for p > 0. To be precise,
we have the following estimate.

Lemma 2.1 (Lemma 3.1in [7]) If po > 1, p > 0,0 < r < 1 and a weight u € C,, we
have
lf@)I” < Cu(A(Z,r))_lf Lf (w)[Pu(w)d A(w),
A(z,r)
where the constant C > 0 depends on r, p and the C,, constant [u]c 0°

In the Békollé setting, Bergman metric balls have comparable weighted areas when their
centers are close.

Lemma 2.2 (Lemma 2.2 in [5]) Suppose u € C, for some p > 1. Let t,s € (0, 1), and
z, w € Dwith p(z, w) < r for some r > 0. Then we have

u(Az, 1)) ~u(A(w, s)),

where the constant is independent of 7 and w.

Similarly, if u € B, it is worthy to be noted that
u(Aa, r)) = u(S(a)) (22

whenever A(a,r) C S (a/ ) with comparable volumes. To interested readers we can refer
[7] and Lemma 5.23 in [13] for more details.
Fors > 0and 0 < r < 1, we denote by

N

Cu@ =T

Test functions play a crucial role in our proofs. Constantin [4] gives an estimate of the
the norm of G3, in terms of the weighted area of Euclidean disks inside ). We can adopt
an alternative method to estimate the norm of G, in terms of the weighted area of S(a) (or
S(¢, h) equivalently). Our method relies on a popular decomposition of D which is used
repeatedly in many papers. See Theorem 1 in [12] for instance. The first two authors obtain
the same estimate on the unit ball by an analogue method, see [11]. For the sake of clarity,
we reprove it here.

@ Springer
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Lemma 2.3 Let p > 0, po > 1 and the weight u € B),,. We have

1 1
u(Sw))» u(S(w))?
W\ <« s <
(1 _ |w|)5 ~ ”Gw”Ll () ~ - |w|)max{2p0/p,s}

where the constant involved is independent of w € D.

(2.3)

2(1 = |w)) = >[I —zw| = (1 — |w.

Proof If z € S(w) C S(w/|wl, 2(1 — |w])) then
1—z|i > |1 — zib| —

(5~ )
zlw—-—
w lw]
Rearranging this inequality, we have 1 — |w| > |1 — zw|/3, and it follows immediately

o (S(w)) 1
u w
A tons o ————u()dA) < |G, .
(I —Jwhrs ™~ /S(w) [1 —zw|PS @dA@ = w”Lp(u)

To prove the rest conclusions of the lemma, we firstly consider the case whens > 2pg/p.
We denote by

Wk
E,=S ﬁ,2(1—|w|) . k=0,1,2,...,
w

and Eo = Ey, Ek =FEr\ Ex—1, (k=1,2,...). Itis easy to see that

/Ek dA(z) ~ <2k(1 - |w|))2.

Then we can obtain the following estimate under this decomposition of D.

Ifz € Eo, |1 —zw| > 1 — [w|, and
o ifze Eyfork>1,
- w X
[1—zw| = l—zm - =fw) 2 2°(0 — [w)).
Since u € B, for every positive integer k, we have
A(Ep)P A(E)P°

<
<u—P6/Po) (Eg)Po—1 - (M—P()/Po) (Eg)Po—1

) ke 2\ Do
< (A(E") ) " W(Eo) < ((2<1|w|>)) u(Eo) = 2%70u(Ey).

/ u(z)dA(z) <
Ex

A(Eop) (1 —|w[)?
Noting that s > 2pg/p, we can estimate the norm ||G3, || L» ) as follows,

1
”GisUHIL)p(u) = Amu(z)dA(z)

e ¢}

1
B ,;)/Ek Wu(z)dfx(z)
3 1
< Arre 1 1 N
~ ,(2:(:) 2kPY(l — |w|)ps ﬁk u(Z)dA(Z)

e e}

S = whp A 2K S (=

k=0
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The Berezin Transform of Toeplitz Operators...

Now we have proved that (2.3) holds for s > 2pg/p. The case s = 2pg/ p follows from
Lemma 3.1 in [4] and also Lemma 2.1 in [5]. So we have
1
S(w))r
2po/p < u
”Gw ||Ap(u) ~ (1 — |w|)2p0/p'
When s < 2pg/p, we can see

u(S(w))?
(1 — |w|)2po/p’

That completes the proof. O

G311 apuy < 2270 P7S | GZPOIP || gy =

The following covering lemma will play a role.

Lemma 2.4 (Theorem 2.23 in [13]) There exists a positive N such that for any 0 < r <1
we can find a sequence {ay} in D with the following properties.

1) D =UA(ak, r);
(2)  The set A(ag, r/4) are mutually disjoint;
(3) Each point z € D belongs to at most N of the sets A(ay, 2r).

Any sequence satisfying the conditions in Lemma 2.4 will be called an r-lattice. Note
that |ax| — 17as k — oo. In what follows, the sequence {ax} will always refer to the
sequence chosen in Lemma 2.4.

2.1 Carleson Measures

Let0 < p < g < 00. A positive Borel measure ¢ on ID is called to be a g-Carleson measure
for AP (u) if the embedding I : AP(u) — L9(du) is bounded. We have the following
Carleson embedding theorem.

Lemma 2.5 Supposeq > p >0, po > land 0 < r < 1. Letu € B),, be a weight and . is
a positive Borel measure on D. Then the following conditions are equivalent.

(@) The embedding I : AP (u) — L9(duw) is bounded, that is

1/q 1/p
( /D If(z)lqdu(z)> < ( /D If(Z)Ipu(z)dA(z))

for every analytic function f on D.

b)) wu(S@) < u(S(a))q/”for every a € .

(¢) Thereisanr > 0 such that u(A(a, r)) < u(A(a, /P for every a € D.

(d) There is an r > 0 such that w(A(ag, r)) < u(Aag, M)/P for the sequence {ay)
described in Lemma 2.4.

(e) Denote by

, 1 1—|w?\’
8w(@) = —) .
v w(A(w, r)4/P \ 1 -z
For anys > 2po/p
qs

w2
Ll w(Aw, r)™Pdu) S 1. (2.4)

s 4 _
”gw“Lq(d;L) _/I.D‘ 1—z0

@ Springer
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Furthermore, the “geometric norm” of the measure i, the L4(d ) norm of g3, and the
operator norm of the embedding are comparable:

— u(A(z, r)) s 4 q
su (z) :=sup—————— ~ su ~ |1 .
et ) = Ay ep8w o = M- Lo

Proof The equivalence (a) and (c) was proved by Constantin in [5]. We are going to prove
@=(b)=(c)=(d)=(a)=(e)=(c).
First we prove (a)=(b). By choosing a s > 2po/p we get

w(S(a)) < e u(S(a))4/p
aﬂwWNﬁwu—mwww 1Galir) S (1 —lapes’

where we use condition (a) in the second inequality and Lemma 2.3 in the third inequality.
To prove (b)=-(c), we let r be sufficiently small and fixed. It will be done to prove
w(Aa, r)) S u(Aa, r))4/P for each |a| > tanh(2r). As we state before Lemma 2.1, there
isaa’ € Dsuchthat A(a,r) C S (a’) with comparable areas. By Eq. 2.2, we have
w(A@, ) < i (S (@) Su(s@)”” S ua@,m.

The proof of (¢) = (d) is obvious.
We next prove (d) = (a). If f is holomorphic in D, then by Lemma 2.1 we have

/Lﬂmwmu@
D
1
< S 4 dA d
~ Xk:/A(ak,r) u(Aag,r)) (-A(ak,r) If @)uo) (w)> e

1
< PR 4 dA d
~ Zk:/A(ak,r) u(Aag,r)) (/A(ak,Zr) L/ @) 7uw) (w)) e

_ 3 AbG@n

Tu(w)dA
u(Ala, r) u(A(ak,zr))|f(w)| u(w)dA(w)

N Z/A( ) )u(A(ak, 2r))%|f(w)|q7p|f(w)|pu(w)dA(w)
aj ,2r

”f”A”“>§:./‘ | f () |Pu(w)dA (w)

(ax,2r)
S 1

where the last inequality is deduced by Lemma 2.4.
Now we prove (a)=(e). Assume that the identity I : A?(u) — L9(du) is bounded. By
Lemma 2.3, we have

1 - |w|2
”gw”L‘I(du) 1—z0

To see (e)=(c), we assume that (2.4) holds. Then

= [w\* -q/p
o \T= 200 u(Aw, )~ Pdu(z) S 1.
w,r .

w(Aw, r)"Pdu(z) S llgy 1%, = 1-
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Considering that |1 I_J’Z‘)l)zl ~ 1 when p(z, w) < r, we find that the left hand side is
equivalent to
n(A(w, r))
u(A(w, r)a/r-
That completes the proof. O

2.2 Reproducing Kernels

The key point to prove the main theorems is to estimate the normalized reproducing kernel
functions &, (w) from below. We start our discussion by the following lemma which estimate
the reproducing kernel functions on the diagonal.

Lemma 2.6 (Lemma 4.1 in [5]) Suppose py > 1 andu € Bj,. Let K (z, w) be the Bergman
kernel in A%(u) and r € (0, 1). Then we have the following estimate

K(z,2) ~u(AG )", zeD,
where the constant involved is independent of 7 € .

Now we can estimate the normalized reproducing kernel |k, (z)| when z and w are close
enough. Our strategy is to update the method of Lemma 3.6 in [8] to our setting.

Theorem 2.7 Suppose pg > 1 and u € Bp,. There is a sufficient small § € (0, 1), such that

lkw(2)1> =~ K (z, 2)

whenever 7 € A(w, §).

Proof For any fixed wg € D, consider the subspace A%(u, wg) of A%(u), which is defined
by

A2(u, wo) = {f € A2(u) : f(wo) = 0} .
We have the decomposition
A%(u) = A%(u, wo) ® Ly,

where L, is the one-dimensional subspace spanned by the function k,,, (z). If we denote
by Ky, (-, -) the reproducing kernel of AZ(u, wp), it is easy to see that

K(z,2) = Kuy (2, 2) + lkuy ()12

Hence we have |k, @)* < K(z,2). To prove the reverse inequality, we only need to
show that there exist constants 0 < C < 1 and 0 < § < 1, such that

Ky (z,2) < CK(z,2) (2.5)
whenever z € A(wy, 8). Let us consider the operator

f(@

Z—wp

(Suo f) @ =

We claim that S, is a bounded mapping from A%(u, wp) into AZ(u). Let us see the
proof. For every f € A%(u, wo), we have f@) = (- wo)f(z) when z € D(wy, €) for
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some € > 0 small enough and holomorphic f on D(wo, €). It is clear that Sy, f(z) = f(z)
whenever z € D(wy, €) and hence it is bounded on D(wy, €). Then we have

100 By = | 1

D\D(wg.e) 12 — W

2
- u(z)dA(z) + / |f () 2u(z)dA(2)

D(wo.€)

2
5/ O ()dae) + e
D\D(wp,e) €

< i||f||2 + et < o0.
= 2" lA2w

That means S, f € A%(u) for every f € A%(u, wo).
Define the Vi C — Cby V¢ o (&) = (z — wo)§. Then the point evaluation Uy, f =

f(z) on A%(u, wo) can be represented as
U,f,o = VuZ,OLszO
where L, is the point evaluation on A%(u). Hence
1030 142w, w0 > = 1V lesCl Lzl a2y ¢ ISwo I 42, wg)— 420 -

Note that || V,f,o lcc = |z — wol. To estimate the norm of §,,, for any f € A%(u, wo),

let g(z) = f(z)(z — wo)~' = (Swyf)(2). Then g € A%(u), since S,,, maps A%(u, wo)
into A2(u). According to Lemma 2.6, we fix a r € (0, 1) so that there is a constant C
independent on the choice of z € D with K(z, z) < Cu(A(z, r))~!. Hence we have

Il = [1ePuaa=| [+ [ |iePuda=n
D (wo.z)  D\A(wo.7)

where k is an integer. By the reproducing property we have
8(2) = /D K(z, w)g(w)u(w)dA(w)
It follows that
u=/ 18(2)Pu(2)dA(2)

A(wo,r/k)

< 1K ¢ 21320 18152y 1 (VA R)
/A(wo,r/ K A%(u) AZ(u)

= K (z, Du)dAQ@) - 18152,
/A(wo,r/k) A

By Lemma 2.6, we obtain

/ K (z, 2)u(z)dA(z) < C/ u(A(z, 1) u(z)dA(z)
A(wo,r/k) A(wo,r/k)
i eu—— u(@)dAR)

u(A(wo, r)) Ja(wo, %)

(A f)
u(A(wo, )’
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The Berezin Transform of Toeplitz Operators...

which converges to 0 as k goes to infinity. Combining this fact with
g%y = Te + i

now we can choose a k large enough such that

gl _dj“ 8@ Pu(dAE)
A%(u) D\A (wo.
2
= C”/ u(z)dA(z)
D\A (wo, k)
1 —woz |?

-/I‘))\A(wo I3 )

k\2 s
dA
= <r> 1- Iwol)2 /D\A(wo ) If@Fu@dAR)

C" (k/r)*
= W”f”AZ(u)

1
T |f @) Puz)dA )

— Wo

It then follows that

I S Il A2( 20 = m
u,wo)—>A*(u) — 1— |w0| ’

where C” is independent on wy, k is an integer and r € (0, 1) is fixed. Hence

NUZ a2y c < NVENeo Ll 42— ¢ S0 A2 (g 4200

~ VC'(k/r)|z — wol L.
2
= 1— |w0| Il A2 (u)—C

Since Uy, and L are point evaluations on A2(u, wo) and A%(u) respectively, by the

Riesz representation we have
||U ||A2(u w )_)(C I(w()(Z Z) and ”L ||A2(u)_)(c = K(Za Z)-

We let p(z, wo) < 8 where § € (0, r) will be specified later. We obtain that

kv/C' 1 — woz|
Kyy(z,2) < r 1= Jwol ——p(z, wo)K(z,2)
kv/C" |1 —woz C"k
<$é -QK(Z,Z)ES K(z,2)
r 1 — |wo| r

where C"” is independent on wy and z by Eq. 2.1. We now choose § > 0 such that (C"'k/r)-
d < 1, and this completes the proof of (2.5) and of the theorem. O

The following proposition is proved by Chacén in [3] which is going to be employed in
the proof of the compactness.

Proposition 2.8 Let po > 1. If u € Bp,, then the normalized kernel function k,, converges
to zero weakly in A2).

The next Proposition is a classical result, its proof is similar to that one given by K. Zhu
in [14, Theorem1.14].
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Proposition 2.9 Let po > 1 and u € Bp,. A linear operator T on A%(u) is compact if and
only if IT full g2y —> O whenever f,, — 0 weakly in A®w).

3 Proof of Theorem 1.1
Proof The equivalence (i)<(iii) was proved by Constantin in [5] Theorem 4.1.

We prove “(ii)=(iii)” first. Since 0 < r < §, we use Theorem 2.7, Lemmas 2.6 and 2.2
to see that

i) = / e (0)Pdi(c) =~ f K@ 0)du(c)
A(z,r) A(z,r)

du(¢) = du@) =m@. @D

1
n /A(z,r) m m A(z,r)

To prove “(iii)=>(ii), by Lemma 2.1 one has that

1
kw))< —— k. (O)Pu(2)dA(Q),
[z (w)|” S W(Aw. ) A(W)I () |"u(8)dA)

where z € Dand r > 0. Let {a;} and r > 0 be chosen as in Lemma 2.4. We can use Lemma
2.2, Fubini’s Theorem and Lemma 2.4 to conduct the following computation

(aj.r)

i@ =3 [ kP
i=1

> 1
< _ k. (O)2u()dA)d
<2 /A oy FATY A(W)| (OPu(@)dA)du(w)
< o KA T) °°/ (VA
R N ; A(a_,.,zr)' O Pu@)dA©)
< supitr (2),

zeD

where the last inequality follows the fact that (3) in Lemma 2.4. That completes the proof.
O

4 Proof of Theorem 1.2

Proof Let I : A%(u) — Lz(du) be the identity. According to the observation
T, =11

and the vanishing Carleson embedding theorem (Theorem 3.3 in [5]), we have that T},
is compact on A%(w) if and only if ‘llimlm(z) = 0. Hence we have the equivalence
=

“(i)<(iii)”. “(ii)=-(iii)” is an obvious consequence of the inequality (3.1).
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To prove “(iii)=>(ii)”, assume that |llim1 1r(z) = 0. Let {a,} and r € (0, 8] be chosen as
Z|—

in Lemma 2.4. For any € > 0, let N be the integer that j1, (a,) < € whenevern > N. We
can find a compact subset K C DD such that K D U;V:l A (a s r). Then we have that

i@ < [ ke Paue+ Y [ Pdeo) =10 + 1),

>N Aaj,r)

Since (iii) means that 7, is compact, Proposition 2.8 implies that \1|im1 Iz) = 0. To
Z|—

complete the proof, we estimate II(z) as follows: by Lemmas 2.1 and 2.4, we have

@ < ) /A i #A@ ) A(w o )Ikz(E)IZM(C)dA(f)dM(w)
j>N aj.r w,r
u(Aaj,r)) 2
<
~ ]S>N M(A(aj,r)) Z /A(aj 2r) K OFHEOIA)
S supfiy(aj) < e,
j>N
which gives the desired result. O

5 Proof of Theorem 1.3

Let T be a compact operator and & : Rt — R™ a continuous increasing function. The
authors of [6] introduce the following class of operators on a Hilbert space H. Say that
T € S, (H) if there is a positive constant ¢ > 0 such that

> hiesa(T)) < o0

n=1

where s, (T) is the nth singular value of T.

To study the Schatten class of the Toeplitz operators on the Bergman spaces with Békollé-
Bonami weights, we follows the strategy of [6]. The following Lemma is the generalized
version of Theorem 6.2 in [6].

Lemma 5.1 Let po > 1, u € By, and h : R* — R™T an increasing convex function.
Let 1 be a positive Borel measure on D such that the Toeplitz operator T, is compact
on A%(u). Then T, € S (Az(u)) if and only if there is a constant C > 0 such that
Jph (Cii(2)) dry(z) < o0 where dhy(z) = | K, |Pu(2)dA(2).

Proof Assume that 7, € S, (Az(u)). Thatis ), h(Cs,) < oo for some positive constant
oo

C. Let {e,,} be an orthonormal set in AZ(u) and T, = ) sn(, en)ey, the canonical decom-
n=1

position of the positive operator T, where s, are also the eigenvalues of 7),. Note that k; is
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the normalized reproducing kernel functions in A%(u). We have > ks, en) 2 =1 by the
Parseval formula. Then it follows by the convexity of /& and Jensen’s inequality that

/D h (Cii(2) d(z) = /D B (CUTke ko) 2gy) i (2)

= /h (Z Csn|(kz,en)Az(u)|2> dh,(2)
D

n=1

< /D S h(Con ke, en) a2y Pdha (@)
= /D Y h(Cs)IK G, D2 len () Pdh (z)

= 205 [ len@Pu@dAG) = Y h(Cs) < oo,
n D n

Conversely, we assume that fD h(Ci(z))dr,(z) < oo for some C > 0. By Lemmas 2.1,
2.4, 2.6 and Theorem 2.7, we obtain

(Ten, en) = /D len ()P ()
< / WG )~ / len ®) P (€)dAE)d 1 (2)
D A(z,68)

~ f TRk f len®) 2u()dAE)d ()
D A(z,8)

By Fubini’s theorem, Lemma 2.2 and Theorem 2.7, we get

(Ten, en) = / ( / K(m)du(z)) len(®) Pu(E)dAE)
D A(,5)

< f ( f |k§(Z)|2dM(Z)|)€n(§)|2u($)d1‘\(€)
D A(€,9)

< / () len(®)Pu)dAE).
D

It then follows by Jensen’s formula that

Y h(Ci{Tyen, en)) S / h(CEE) | D len®) | u@)dAE)

n=1 D n>1
= /Dh(CML(S))IIK(-,E)Ilzu(%“)dA(S)
= /Dh(C1[L(S))d>»u(§) < 0o0.
Therefore T}, € S (A%(w)). O

As a direct consequence of Lemma 5.1, we give the proof of Theorem 1.3 which is the
Schatten class of the Toeplitz operators on A% (u).

Proof of Theorem 1.3 Let h(t) = t? where p > 1 and use Lemma 5.1. O
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Another application of Lemma 5.1 is on the decay of the eigenvalue of 7}, which is
regarded as a generalization of Theorem 6.4 in [6].

Corollary 5.2 Let po > 1 and u € Bp,. A continuous decreasing function n : R — R*
satisfies n(t) — 0 and n(t) >~ n(tlogt) ast — oo. Let hy) be the function that h,(n(t)) =
1/t. Then s,(T,) = O(n(n)) if and only if

/ hy(C(z))dAr,(z) < oo
D

for some positive constant C.

Proof Use Lemma 6.1 in [6] and Theorem 5.1. O

6 Proof of Theorem 1.4

In the proof of Theorem 1.1 we obtain &, (z) < ft(z), for z € D and r € (0, §). Therefore,
it is enough to prove
limsup 2(z) < 1Ty lle < limsup 72 (2).

lz|—>1~ lz|—>17

Firstly, we start with the lower estimate. We take an arbitrary compact operator K on A% (u).
By Proposition 2.8, the normalized reproducing kernel {k,} converges to 0 weakly in A2 (u).
Then, || Kk, 42,y — O as |z| = 17, by Proposition 2.9. Therefore,

17, — K|l = limsup [[(T,, — K)kz || 42y = limsup [| Tk || g2(,)- (6.1)
|lz|—>1— |lz]—>1—
Since (6.1) holds for any compact operator K, it follows that
1Ty lle > Timsup (| Tyuk: [l 42 - 6.2)

|z]—>1—

On the other hand, since T}, is bounded, we have
a(z) = |<Tukz’ kz)AZ(u)| = ||Tukz||A2(u)-

Combining this with (6.2), we get the lower estimate.

Now we prove the upper estimate for the essential norm of Toeplitz operators T,. Sup-
pose {e, } is a complete orthonormal system of A%(u). Forn € N, we define an operator Q,
by

n
Onf = Z(f, ejlazwej, forany f e A% (u).
j=1
The operators Q,, is compact on A2w).LetR, =1— Q,.Itis easy to see that R} = R,
and R,zl = R,,. Furthermore, we have

Him [|Ryfllg2q) =0, forany f e A%(u).
n—-4o00

For p > 0, let D, = D\ D(0, p) and du,(z) = xp,(2)du(z), where xp, is the
characteristic function on D,,. By the definition of the average function of ,, we can see

1

(o], (2) = u(A(z, 1) Jaernnp,

du(€) = dpu(§).

u(A(z,r)) A(z,r)ND,
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To finish this proof we need two following lemmas that we are going to prove later at the
end of this paper. The first lemma is the identity (1.1) that we mentioned in the beginning.

Lemma 6.1 Let (1 be a positive measure on D and u € Bp,, with pg > 1. Suppose T, is
bounded on A%(u). Then

(T f. &) sy = /D FEOT®duE). fige Aw.

Proof Fubini’s theorem and reproducing kernel formula give

Ty f, &) a2y = fD ( fD f(&)KZ@)du(s))@u(z)dA(z)

= /Df(é) (A@Kg(z)a(z)dA(z)) dp(&)
= /Df(s>m du(®)

= /11; [ g® du(®).
This finishes the proof. O

Lemma 6.2 Suppose T, is bounded on A%(u). For any p > Qandr € (0, 8), one has

—

lim  sup  [TuRn fll 2 S Sup [1p],(2) (6.3)
n—+00 114200 =1 uBn S AL (d ) zeD[ P]r
and -
lim  sup RaS 2 S sup[1], ). (6.4)
n—-+00 1£ 1 p20=1 n (dw) e [ P]r

Lemma 6.3 Suppose T, is bounded on A%(u). For anyr € (0,68) and p > r, one has

—

sup [up],(2) S sup 4 (2).
zeD z2€Dp—y

Assume that all results given by Lemmas 6.2 and 6.3 are true. Since Q, is compact,
T, Qy, is also compact. Therefore, we have
||T,u||e =< ”Tu - T,uQn” = ”TuRn“-
It is easy to see that
||TuRnf||iz(u) = ||Rnf||L2(d,,,) ||TMRnf||L2(dM)-
Moreover, we have

T2 < ITuRal®> < sup IRufli2ay 90 ITuRnf U2

2= 1£ 1420 =1

Taking n — oo, by Lemmas 6.2 and 6.3, we have

2 2
IT 7 < (suﬂg [Mp],(z)) S( sup ﬁ?(z)) :
ze

z2€Dp—y
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Letting p — r + 1, we obtain

1T lle < limsup r (2).

lz|—>1~—

This completes the proof.
6.1 Proof of Lemma 6.2

Since the proofs of (6.3) and (6.4) are almost the same, we only prove (6.3). First, we show

lim  sup / TR f ()7 dpa(z) = 0, (6.5)
D(0,p)

PE £ g2y =1
Since Ty R, f € A2(u), we obtain

TR £ = TR f, K2 g2 = 10 RaTE KD 2] < 1 a2y 1R T Kol g2

where the first equality follows from the reproducing property. Then, we get

sup / |TuRnf(z)|2du(z)§/
D(O,p)

IRaT K112, A1 (2).
171 2= pOp " “

Therefore, it is enough to prove

: * 2 _
nli{lgo DO.p) ”Rn TM KZ ”Az(u) d/’L(Z) =0.

This follows from Lebesgue’s dominated convergence theorem because of
IRn T K < 1T 1K Ny = 1Tl 32y K (25 2)

and K (z,z) € L*(D(0, p), d ).
Next, we prove

swp [ RSP S s i) ) (6.6)
11200 =17 D, zeD

This comes from

/D T Ro f P dpu(2) = /D T R f (D) it (2)

A

/D (151 () | Ty R f (2)Pu(z) dA(2)
S sup [l DT Ra f 130
zeD
S T 1 12 SUP (11 (2.
zeD

From Egs. 6.6 and 6.5 we obtain 6.3 and complete the proof.
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6.2 Proof of Lemma 6.3

By definition of the averaging,
(o], @ : Ay ()
Upl| (@) = ———= jz
rir W@ ) Jaern "’
1

R d
u(A(z, 7)) Jae.nnp, e

By Theorem 2.7, we obtain

—

(o], @ S f Ik (8)1* dp(£). (6.7)
A(z,r)ND,
By Lemma 2.1, we have

k- (8)1* < Ik (5)|? u(s) dA(s),

u(Aé, ) Jaen

for any £ € A(z, r). Plugging this into Eq. 6.7, by Lemma 2.2 and Fubini’s theorem, we
have

(ol @) < /

A(z,r)ND,

Xaes,r) (&) 2
" d k dA
/D(/‘A(Z'rml)p LAE. ) M(é)) lkz(s)]” u(s) dA(s)

XA (&) / 2
Xa6nB) 4 k- dA
e (fm,rm,, u(aE ) (E)) p @) uls) dAGs)

/D X () 1k ()12 uls) dA(s) du(€)

N

IA

= sup

1
seD </A(z,r)ﬁA(s,r)ﬂDp u(Aé,r))

Now we show that A(z,r) N A(s,r) N D, = @, forany s € D(0, p — r). Indeed, if
EeA(z,r)NA(s,r)N Dy, wehave d(&,s) <randd(0,&) > p, so that

d(0,s5) = d(0,8§) —d(&,s) = p—r,

du(%‘)) .

which means that s ¢ D(0, p — r). Therefore,

—

1
L@ < — 4
ol @ S e, (fA(z,rm(s,mDp NG (5)>

1
S osup ———— / du(é)
seD,_, U(A(s, 1)) ( AG.P)NAGs,1)ND,

S osup [ (s),
s€Dy—y

which completes the proof.
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