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Abstract
In this paper, we obtain some interesting reproducing kernel estimates and some Car-
leson properties that play an important role. We characterize the bounded and compact
Toeplitz operators on the weighted Bergman spaces with Békollé-Bonami weights in terms
of Berezin transforms. Moreover, we estimate the essential norm of them assuming that they
are bounded.
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1 Introduction and Results

Let be the complex plane and 0 for 0 the Euclidean
open disc with center 0 and radius . We denote by the unit disc 0 1 for short. If
is a positive measure on and 0, we denote the Lebesgue space over with

respect to . That is, consists of all functions defined on for which

d
1

.

When 1, defines a norm and becomes a Banach space.
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Let d denote the Lebesgue area measure on . If is a positive locally integrable func-
tion on , i.e. positive 1 d , let denote the space of measurable functions
on that are th power integrable with respect to d . That is

d
1

.

The Bergman space is defined to be a subspace of analytic functions in
with -norm. We write 1 for short. The most common reproducing kernel
for the unit disc has the form

1

1 2

for , and it corresponds to the space 2.
The following notations will be used throughout the paper. For a weight and ,

we set d , d . We denote by

d d

for integrable and measure .
If we define by

1 2
d .

The problem of characterizing the weights for which the Bergman projection is a
bounded orthogonal projection from to was solved by Békollé and Bonami
[1, 2]. They found that these weights are precisely .

Bp condition Let be the set

1
Re 0 .

We say satisfies condition, or , if

sup d
d 1

1

where 1 1 1. Recently, the sharp estimates for the -continuity of the Bergman
projection are investigated in [9] and [10] respectively.

The inner product of the Hilbert space 2 is given by

2 d

where 2 . The reproducing kernel of 2 will be denoted by . It is well
known that . If is the point evaluation at that is
for every 2 . It follows by the Riesz representation that

. . 2 . 2
2

2
2 .

Given a positive Borel measure on , the Toeplitz operator associated with on
2 is the linear transformation defined by

d .
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Let be a finite positive Borel measure on that satisfies the condition

2d .

Then the Toeplitz operator is well-defined on 2 .
Recall that the pseudohyperbolic metric 0 1 is defined by

1
.

Denote by

the pseudohyperbolic disk centered at with radius . For a finite positive Borel measure
on and 0, the average function is defined as

.

It is well known that the Berezin trasform plays a role in the theory of Toeplitz operator.
The Berezin transform of the Toeplitz operator is given by

2

where 2 is the normalized reproducing kernel of 2 . By
a straightforward computation one has

2 2 d . (1.1)

It follows that the Berezin transform can be formulated by

2d .

Constantin [5] characterized the Toeplitz operator on 2 in terms of the Carleson
measure. The motivation of this paper is to characterize the Toeplitz operator in terms of its
Berezin transform. Now we are in the position to state our main theorems.

Theorem 1.1 Let 0 1 and 0 . Suppose that 0 1 is the one in Theorem 2.7
and 0 . The following assertion are equivalent:

i The Toeplitz operator is bounded on 2 .
ii is bounded on .
iii is bounded on .

The following theorem charaterizes the compact Toeplitz operators on 2 with
Békollé-Bonami weights

Theorem 1.2 Let 0 1 and 0 . Suppose that 0 1 is the one in Theorem 2.7
and 0 . The following assertions are equivalent:

i The Toeplitz operator is compact on 2 .
ii lim

1
0.

iii lim
1

0.
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Next, we will study the Schatten class of Toeplitz operators 2 in terms
of the Berezin transform. Recall that if is a compact operator on a Hilbert space , then
there are orthonormal sets and in such that

1

where is the th singular value of . The Schatten class consists
of those compact operators on for which the singular numbers sequence of
belongs to , that is .

Theorem 1.3 Let 1, 0 1 and 0 . Suppose that is a positive Borel measure
on such that the Toeplitz operator is compact on 2 . Then 2 if and
only if where 2 .

Let be the set of all compact operators on a Banach space . For any bounded linear
operator , the essential norm of is defined by

inf .

It is clear that 0 if and only if . Finally, we show the conditions for
Toeplitz operators to be compact, see the above theorem, in term of the essential norm
estimates because essential norm estimates give us a further information. The essential norm
of a bounded operator is the distance from the operator to the space of the compact operators.

Theorem 1.4 Let be a finite positive Borel measure on . Suppose that is a bounded
operator on 2 . Then, one has,

lim sup
1

lim sup
1

.

Throughout the paper, we use the following notations:

1 2 means that there is a constant 0 (independent of the key variable(s))
such that 1 2;

1 2 if both 1 2 and 2 1.

2 Preliminaries and Basic Properties

The pseudohyperbolic metric obeys the following so-called strong triangle inequality:

1

for all . Furthermore, if 0 1, then whenever with ,

1 1 1 (2.1)

and for all
1

1
1

where the constants involved depend only on . We will denote by
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the pseudohyperbolic disk centered at with radius .
We will also use the following class of weights which is denoted by . For 1, a

positive locally integrable weights belongs to , or say satisfies condition if

sup d
d 1

1

where 1 1 1. Condition seems to depend on a choice of 1, but it is known
that the same class of weights is obtained for any 0 1 and . To see this,
we note that for a given , there is a such that with comparable
volumes, for more details see [7].

It is not hard to see that is “equivalent” to the set for and
1 in the sense that 2 , where

1 .

See more details in [7].
The point evaluations on are bounded linear functionals for 0. To be precise,

we have the following estimate.

Lemma 2.1 (Lemma 3.1 in [7]) If 0 1, 0, 0 1 and a weight 0 , we
have

1

where the constant 0 depends on and the 0 constant 0
.

In the Békollé setting, Bergman metric balls have comparable weighted areas when their
centers are close.

Lemma 2.2 (Lemma 2.2 in [5]) Suppose for some 1. Let 0 1 , and
with for some 0. Then we have

where the constant is independent of and .

Similarly, if 0 , it is worthy to be noted that

(2.2)

whenever with comparable volumes. To interested readers we can refer
[7] and Lemma 5.23 in [13] for more details.

For 0 and 0 1, we denote by

1

1
.

Test functions play a crucial role in our proofs. Constantin [4] gives an estimate of the
the norm of in terms of the weighted area of Euclidean disks inside . We can adopt
an alternative method to estimate the norm of in terms of the weighted area of (or

equivalently). Our method relies on a popular decomposition of which is used
repeatedly in many papers. See Theorem 1 in [12] for instance. The first two authors obtain
the same estimate on the unit ball by an analogue method, see [11]. For the sake of clarity,
we reprove it here.
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Lemma 2.3 Let 0, 0 1 and the weight 0 . We have
1

1

1

1 max 2 0
(2.3)

where the constant involved is independent of .

Proof If 2 1 then

2 1 1 1 1 1 .

Rearranging this inequality, we have 1 1 3, and it follows immediately
that

1

1

1
d .

To prove the rest conclusions of the lemma, we firstly consider the case when 2 0 .
We denote by

2 1 0 1 2

and 0 0, 1, 1 2 . It is easy to see that

d 2 1
2
.

Then we can obtain the following estimate under this decomposition of .

If 0, 1 1 , and
if for 1,

1 1 1 2 1 .

Since 0 , for every positive integer , we have

d
0

0 0 0 1

0

0 0 0 0 1

0

0

0
2 1

2

1 2

0

0 22 0
0 .

Noting that 2 0 , we can estimate the norm as follows,

1

1
d

0

1

1
d

0

1

2 1
d

0

1
0

1

2 2 0

0

1
.
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Now we have proved that (2.3) holds for 2 0 . The case 2 0 follows from
Lemma 3.1 in [4] and also Lemma 2.1 in [5]. So we have

2 0

1

1 2 0
.

When 2 0 , we can see

22 0 2 0

1

1 2 0
.

That completes the proof.

The following covering lemma will play a role.

Lemma 2.4 (Theorem 2.23 in [13]) There exists a positive such that for any 0 1
we can find a sequence in with the following properties.

1 ;
2 The set 4 are mutually disjoint;
3 Each point belongs to at most of the sets 2 .

Any sequence satisfying the conditions in Lemma 2.4 will be called an -lattice. Note
that 1 as . In what follows, the sequence will always refer to the
sequence chosen in Lemma 2.4.

2.1 CarlesonMeasures

Let 0 . A positive Borel measure on is called to be a -Carleson measure
for if the embedding d is bounded. We have the following
Carleson embedding theorem.

Lemma 2.5 Suppose 0, 0 1 and 0 1. Let 0 be a weight and is
a positive Borel measure on . Then the following conditions are equivalent.

a The embedding d is bounded, that is

1

d
1

for every analytic function on .
b for every .
c There is an 0 such that for every .
d There is an 0 such that for the sequence

described in Lemma 2.4.
e Denote by

1 1 2

1
.

For any 2 0

d
1 2

1
1. (2.4)
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Furthermore, the “geometric norm” of the measure , the norm of and the
operator norm of the embedding are comparable:

sup sup sup d d .

Proof The equivalence (a) and (c) was proved by Constantin in [5]. We are going to prove
(a) (b) (c) (d) (a) (e) (c).

First we prove (a) (b). By choosing a 2 0 we get

1

1

1
d

1

where we use condition (a) in the second inequality and Lemma 2.3 in the third inequality.
To prove (b) (c), we let be sufficiently small and fixed. It will be done to prove

for each tanh 2 . As we state before Lemma 2.1, there
is a such that with comparable areas. By Eq. 2.2, we have

.

The proof of c d is obvious.
We next prove d a . If is holomorphic in , then by Lemma 2.1 we have

d

1
d d

1

2
d d

2
d

2
2 d

2
d

where the last inequality is deduced by Lemma 2.4.
Now we prove (a) (e). Assume that the identity d is bounded. By

Lemma 2.3, we have

d
1 2

1
d 1.

To see (e) (c), we assume that (2.4) holds. Then

1 2

1
d 1.
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Considering that 1 2

1 1 when , we find that the left hand side is
equivalent to

.

That completes the proof.

2.2 Reproducing Kernels

The key point to prove the main theorems is to estimate the normalized reproducing kernel
functions from below.We start our discussion by the following lemma which estimate
the reproducing kernel functions on the diagonal.

Lemma 2.6 (Lemma 4.1 in [5]) Suppose 0 1 and 0 . Let be the Bergman
kernel in 2 and 0 1 . Then we have the following estimate

1

where the constant involved is independent of .

Now we can estimate the normalized reproducing kernel when and are close
enough. Our strategy is to update the method of Lemma 3.6 in [8] to our setting.

Theorem 2.7 Suppose 0 1 and 0 . There is a sufficient small 0 1 , such that

2

whenever .

Proof For any fixed 0 , consider the subspace 2
0 of 2 , which is defined

by
2

0
2

0 0 .

We have the decomposition

2 2
0 0

where 0 is the one-dimensional subspace spanned by the function 0 . If we denote
by 0 the reproducing kernel of 2

0 , it is easy to see that

0 0
2.

Hence we have 0
2 . To prove the reverse inequality, we only need to

show that there exist constants 0 1 and 0 1, such that

0 (2.5)

whenever 0 . Let us consider the operator

0
0
.

We claim that 0 is a bounded mapping from 2
0 into 2 . Let us see the

proof. For every 2
0 , we have 0 when 0 for
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some 0 small enough and holomorphic on 0 . It is clear that 0

whenever 0 and hence it is bounded on 0 . Then we have

0
2
2

0 0

2

d
0

2 d

0

2

2
d 2

1
2

2
2

2 .

That means 0
2 for every 2

0 .
Define the

0
by

0 0 . Then the point evaluation
0

on 2
0 can be represented as

0 0 0

where is the point evaluation on 2 . Hence

0
2

0 0
2 0 2

0
2 .

Note that
0 0 . To estimate the norm of 0 for any

2
0 ,

let 0
1

0 . Then 2 , since 0 maps 2
0

into 2 . According to Lemma 2.6, we fix a 0 1 so that there is a constant
independent on the choice of with 1. Hence we have

2
2

2 d

0 0

2 d I II

where is an integer. By the reproducing property we have

d

It follows that

I
0

2 d

0

2
2

2
2 d

0

d 2
2 .

By Lemma 2.6, we obtain

0

d
0

1 d

1

0 0

d

0

0
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which converges to 0 as goes to infinity. Combining this fact with

2
2 I II

now we can choose a large enough such that

2
2

0

2 d

0 0

2

d

0

1 0

0

2 1

1 0
2

2 d

2

1 0
2

0

2 d

2

1 0
2

2
2 .

It then follows that

0 2
0

2
1 0

where is independent on 0, is an integer and 0 1 is fixed. Hence

0
2

0 0
2 0 2

0
2

0

1 0
2

Since
0
and are point evaluations on 2

0 and 2 respectively, by the
Riesz representation we have

0
2
2

0 0 and 2
2 .

We let 0 where 0 will be specified later. We obtain that

0

1 0

1 0
0

1 0

1 0

where is independent on 0 and by Eq. 2.1. We now choose 0 such that
1, and this completes the proof of (2.5) and of the theorem.

The following proposition is proved by Chacón in [3] which is going to be employed in
the proof of the compactness.

Proposition 2.8 Let 0 1. If 0 , then the normalized kernel function converges
to zero weakly in 2 .

The next Proposition is a classical result, its proof is similar to that one given by K. Zhu
in [14, Theorem1.14].
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Proposition 2.9 Let 0 1 and 0 . A linear operator on 2 is compact if and
only if 2 0 whenever 0 weakly in 2 .

3 Proof of Theorem 1.1

Proof The equivalence (i) (iii) was proved by Constantin in [5] Theorem 4.1.
We prove “(ii) (iii)” first. Since 0 , we use Theorem 2.7, Lemmas 2.6 and 2.2

to see that

2d d

1
d

1
d . (3.1)

To prove “(iii) (ii), by Lemma 2.1 one has that

2 1 2 d

where and 0. Let and 0 be chosen as in Lemma 2.4. We can use Lemma
2.2, Fubini’s Theorem and Lemma 2.4 to conduct the following computation

1

2d

1

1 2 d d

sup
1 2

2 d

sup

where the last inequality follows the fact that (3) in Lemma 2.4. That completes the proof.

4 Proof of Theorem 1.2

Proof Let 2 2 d be the identity. According to the observation

and the vanishing Carleson embedding theorem (Theorem 3.3 in [5]), we have that
is compact on 2 if and only if lim

1
0. Hence we have the equivalence

“(i) (iii)”. “(ii) (iii)” is an obvious consequence of the inequality (3.1).
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To prove “(iii) (ii)”, assume that lim
1

0. Let and 0 be chosen as

in Lemma 2.4. For any 0, let be the integer that whenever . We
can find a compact subset such that 1 . Then we have that

2d 2d I II .

Since (iii) means that is compact, Proposition 2.8 implies that lim
1
I 0. To

complete the proof, we estimate II as follows: by Lemmas 2.1 and 2.4, we have

II
1 2 d d

sup
2

2 d

sup

which gives the desired result.

5 Proof of Theorem 1.3

Let be a compact operator and a continuous increasing function. The
authors of [6] introduce the following class of operators on a Hilbert space . Say that

if there is a positive constant 0 such that

1

where is the th singular value of .
To study the Schatten class of the Toeplitz operators on the Bergman spaces with Békollé-

Bonami weights, we follows the strategy of [6]. The following Lemma is the generalized
version of Theorem 6.2 in [6].

Lemma 5.1 Let 0 1, 0 and an increasing convex function.
Let be a positive Borel measure on such that the Toeplitz operator is compact
on 2 . Then 2 if and only if there is a constant 0 such that

where 2 d .

Proof Assume that 2 . That is for some positive constant

. Let be an orthonormal set in 2 and
1

the canonical decom-

position of the positive operator where are also the eigenvalues of . Note that is
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the normalized reproducing kernel functions in 2 . We have 2 1 by the
Parseval formula. Then it follows by the convexity of and Jensen’s inequality that

2 d

1

2
2 d

2
2d

2 2

2 .

Conversely, we assume that d for some 0. By Lemmas 2.1,
2.4, 2.6 and Theorem 2.7, we obtain

2

1 2

2 2

By Fubini’s theorem, Lemma 2.2 and Theorem 2.7, we get

d 2

2 2

2 .

It then follows by Jensen’s formula that

1

1 1

1

2

1
2

1 .

Therefore 2 .

As a direct consequence of Lemma 5.1, we give the proof of Theorem 1.3 which is the
Schatten class of the Toeplitz operators on 2 .

Proof of Theorem 1.3 Let where 1 and use Lemma 5.1.
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Another application of Lemma 5.1 is on the decay of the eigenvalue of which is
regarded as a generalization of Theorem 6.4 in [6].

Corollary 5.2 Let 0 1 and 0 . A continuous decreasing function
satisfies 0 and log as . Let be the function that
1 . Then if and only if

d

for some positive constant .

Proof Use Lemma 6.1 in [6] and Theorem 5.1.

6 Proof of Theorem 1.4

In the proof of Theorem 1.1 we obtain for and 0 . Therefore,
it is enough to prove

lim sup
1

lim sup
1

.

Firstly, we start with the lower estimate. We take an arbitrary compact operator on 2 .
By Proposition 2.8, the normalized reproducing kernel converges to 0 weakly in 2 .
Then, 2 0 as 1 by Proposition 2.9. Therefore,

lim sup
1

2 lim sup
1

2 . (6.1)

Since (6.1) holds for any compact operator it follows that

lim sup
1

2 . (6.2)

On the other hand, since is bounded, we have

2 2 .

Combining this with (6.2), we get the lower estimate.

Now we prove the upper estimate for the essential norm of Toeplitz operators . Sup-
pose is a complete orthonormal system of 2 . For we define an operator
by

1

2 for any 2 .

The operators is compact on 2 . Let . It is easy to see that
and 2 . Furthermore, we have

lim 2 0 for any 2 .

For 0 let 0 and where is the
characteristic function on . By the definition of the average function of we can see

1 1
.
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To finish this proof we need two following lemmas that we are going to prove later at the
end of this paper. The first lemma is the identity (1.1) that we mentioned in the beginning.

Lemma 6.1 Let be a positive measure on and 0 with 0 1. Suppose is
bounded on 2 . Then

2
2 .

Proof Fubini’s theorem and reproducing kernel formula give

2

2

.

This finishes the proof.

Lemma 6.2 Suppose is bounded on 2 . For any 0 and 0 one has

lim sup
2 1

2 sup (6.3)

and

lim sup
2 1

2 sup . (6.4)

Lemma 6.3 Suppose is bounded on 2 . For any 0 and one has

sup sup .

Assume that all results given by Lemmas 6.2 and 6.3 are true. Since is compact,
is also compact. Therefore, we have

.

It is easy to see that
2
2 2 2 .

Moreover, we have
2 2 sup

2 1
2 sup

2 1
2 .

Taking by Lemmas 6.2 and 6.3, we have

2 sup

2

sup

2

.
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Letting 1 we obtain

lim sup
1

.

This completes the proof.

6.1 Proof of Lemma 6.2

Since the proofs of (6.3) and (6.4) are almost the same, we only prove (6.3). First, we show

lim sup
2 1 0

2 0. (6.5)

Since 2 we obtain

2 2 2 2

where the first equality follows from the reproducing property. Then, we get

sup
2 1 0

2

0

2
2 .

Therefore, it is enough to prove

lim
0

2
2 0.

This follows from Lebesgue’s dominated convergence theorem because of

2 2
2

2
2

2
2

and 0 .
Next, we prove

sup
2 1

2 sup . (6.6)

This comes from

2 2

2

sup 2
2

2
2

2
2 sup .

From Eqs. 6.6 and 6.5 we obtain 6.3 and complete the proof.
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6.2 Proof of Lemma 6.3

By definition of the averaging,

1

1

By Theorem 2.7, we obtain

2 . (6.7)

By Lemma 2.1, we have

2 1 2

for any . Plugging this into Eq. 6.7, by Lemma 2.2 and Fubini’s theorem, we
have

2

2

sup 2

sup
1

.

Now we show that for any 0 . Indeed, if
we have and 0 so that

0 0

which means that 0 . Therefore,

sup
0

1

sup
1

sup

which completes the proof.
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