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Abstract

This work studies nonhydrostatic effects (NHE) on the momentum flux of orographic

gravity waves (OGWs) forced by isolated three-dimensional orography. Based on linear wave

VOBV here (U, V)

theory, an asymptotic expression for low horizonal Froude number (Fr = ~a

is the mean horizontal wind, y and a are the orography anisotropy and half-width and N is the
buoyancy frequency) is derived for the gravity wave momentum flux (GWMF) of vertically-
propagating waves. According to this asymptotic solution, which is quite accurate for any value of
Fr, NHE can be divided into two terms (NHE1 and NHEZ2). The first term contains the high-
frequency parts of the wave spectrum that are often mistaken as hydrostatic waves, and only
depends on Fr. The second term arises from the difference between the dispersion relationships of
hydrostatic and nonhydrostatic OGWSs. Having an additional dependency on the horizontal wind
direction and orography anisotropy, this term can change the GWMF direction. Examination of
NHE for OGWs forced by both circular and elliptical orography reveals that the GWMF is reduced
as Fr increases, at a faster rate than for two-dimensional OGWs forced by a ridge. At low Fr, the
GWMF reduction is mostly attributed to the NHE2 term, whereas the NHE1 term starts to
dominate above about Fr = 0.4. The behavior of NHE is mainly determined by Fr, while horizontal
wind direction and orography anisotropy play a minor role. Implications of the asymptotic GWMF
expression for the parameterization of nonhydrostatic OGWs in high-resolution and/or variable-

resolution models are discussed.
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1 Introduction

Orographic gravity waves (OGWs) triggered by stably stratified airflow over topography
have been the subject of many studies over the last century. These waves can propagate upward
and thus have great importance for the large-scale circulation in the middle atmosphere (Fritts and
Alexander 2003). They are also closely related to various severe weather phenomena, like clear
air turbulence (CAT) and downslope windstorms occurring in the troposphere (Smith 1985). Given
that their horizonal spatial scales vary from a few to hundreds of kilometers, OGWs cannot be
fully resolved by numerical weather prediction (NWP) and general circulation models (GCMs).

As a result, the impacts of unresolved OGWs need to be parameterized (Kim et al. 2003).

Many parameterization schemes have been developed for subgrid-scale OGWs since the
1980s (e.g., Palmer et al. 1986; McFarlane 1987; Kim and Arakawa 1995; Lott and Miller 1997;
Scinocca and MacFarlane 2000; Kim and Doyle 2005), which are now routinely implemented in
various operational models for both weather forecasts and climate simulations. In general, these
schemes share many common assumptions, such as the columnar propagation of OGWs
(Plougonven et al. 2020). They also assume that OGWSs are generated in a non-rotating and
hydrostatic framework. A state-of-the-art NWP model, the Integrated Forecasting System (IFS)
model of the European Centre for Medium-range Weather Forecasts (ECMWF), has horizontal
resolutions typically on the order of 10 km. In these circumstances, the non-rotating assumption is
justified because the subgrid-scale OGWs are too short to be affected by the earth’s rotation.

However, this is not the case with the assumption of hydrostatic OGWs.

For small-scale OGWSs with horizontal wavenumber comparable to the Scorer parameter
(Scorer 1949), nonhydrostatic effects (NHE) play a key role in controlling the wave dynamics.

Using the stationary phase method, Smith (1979) theoretically studied the far-field OGWs excited
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by a narrow two-dimensional (2D) ridge, which are nonhydrostatic. A “dispersive tail” was found
to trail downstream of the mountain, which was also revealed in a number of numerical simulations
(e.g., Klemp and Durran 1983; Xue and Thorpe 1991; Zéangl 2003). This suggests that the wave
energy can, not only propagate upwards as in the case of hydrostatic OGWs, but also disperse
downstream. Owing to nonhydrostatic dispersion, the wave activity above the mountain is weaker
than in its hydrostatic counterpart, leading to a suppression of wave breaking (Zangl 2003).
Nonetheless, NHE on wave breaking can be modified by the interaction between OGWs and
critical levels, as studied in Guarino and Teixeira (2017) for three-dimensional (3D) OGWs excited
in directional shear flows past isolated mountains. These modeling results showed that wave
breaking tends to be inhibited when the background shear is weak while it is enhanced for stronger
wind shear. Besides wave breaking, NHE can also influence the gravity wave momentum flux
(GWMF) at the surface. The high-frequency parts of nonhydrostatic OGWs (i.e., short-wavelength
components) tend to be trapped in the lower troposphere (e.g., Wurtele et al. 1996; Doyle and
Durran 2002). Consequently, the GWMF associated with upward-propagating waves is smaller

than that existing in the hydrostatic case (e.g., Xue et al. 2000).

The GWMF at the surface is a key parameter in the parameterization schemes of OGWs.
It denotes the maximum GWMF that can be absorbed into the mean flow. Changes in the surface
GWMF can affect wave breaking at high altitudes (Xu et al. 2020) and thus redistribute the wave
momentum deposition, impacting the large-scale circulation in the middle atmosphere (Xu et al.
2019). However, NHE are not considered in any OGW parameterization scheme. This is mainly
due to the fact that there is no analytical solution for nonhydrostatic OGWSs except for very special
cases. To compensate for this, some OGW parametrization schemes (e.g., Lott and Miller 1997)

filter all orography of horizontal scale smaller than a few km out of the orography that serves as
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input to the OGW parametrization, assuming that it only causes turbulent orographic form drag
(TOFD) which is the object of a separate parametrization (e.g., Beljaars et al. 2004). However, this
filtering procedure is somewhat arbitrary, ignoring the influence of the flow characteristics on how
non-hydrostatic the OGWs are, and how reduced their GWMF is by NHE. In the present study,

this limitation will be overcome.

Smith (1980) proposed solving the wave equation of nonhydrostatic OGWSs numerically
using the Fast Fourier Transform (FFT) technique, which is apparently not suitable for the purpose
of OGW parameterization given its computational cost. Alternatively, ray theory has been widely
adopted to obtain the asymptotic solutions of nonhydrostatic OGWs. For instance, Smith (1979)
derived the far-field approximation of 2D nonhydrostatic OGWSs, while Marks and Eckermann
(1995) developed a ray-tracing model for 3D nonhydrostatic gravity waves in a rotating, stratified
and fully compressible atmosphere. Standard ray theory often utilizes the stationary-phase method
and the asymptotic solution is expressed in spatial coordinates (Shutts 1998). This spatial-ray
solution is inaccurate directly over the mountain because of the presence of ray caustics there. To
overcome this problem, Broutman et al. (2002) expressed the ray solution in the wavenumber
rather than spatial domain, i.e., Maslov’s method. This eliminates the caustics over the mountain
because rays in the spectral domain are well separated. Broutman et al. (2003) further extended
the so-called Fourier-ray solution to accommodate nonhydrostatic OGWSs, which showed good
agreement with numerical simulations. Nonetheless, the Fourier-ray solution also has caustics at
the buoyancy-frequency turning point for nonhydrostatic waves. Later, Pulido and Rodas (2011)
developed a higher-order ray approximation method, i.e., the Gaussian beam approximation
(GBA), for OGWs generated in vertically sheared flows. In the standard ray theory, each ray only

consists of a single monochromatic wavenumber (i.e., the characteristic wavenumber). On the
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contrary, the GBA uses a bundle of rays centered at the characteristic wavenumber (i.e., Gaussian
beams) for each ray, and considers diffractive effects. Therefore, the GBA solution is well defined
even at caustics. However, all these studies focused on the wave fields rather than on the GWMF
and hence OGW parameterization. Based on the GBA, Xu et al. (2017a, 2018) revised a traditional
OGW parameterization scheme by explicitly incorporating the horizontal propagation (e.g.,
Eckermann et al. 2015; Ehard et al. 2017) and directional absorption (e.g., Shutts 1995; Xu et al.
2012; Teixeira and Miranda 2009; Teixeira and Yu 2014) of OGWSs. The revised scheme was
implemented into the global Weather Research and Forecasting (WRF) model, and helped improve

the simulation of the stratospheric polar-night jet in the Northern Hemisphere (Xu et al. 2019).

Compared with the traditional parameterization schemes of OGWs, ray-tracing based
schemes have to keep track of a number of rays, which requires a significant amount of
computation (e.g., Song and Chun 2008; Amemiya and Sato 2016). This approach is thus not
suitable for operational use. Teixeira et al. (2008, hereafter T08) studied the surface GWMF
associated with vertically-propagating OGWs produced by nonhydrostatic and rotating flow over
a 2D ridge. Instead of calculating the GWMF numerically, an asymptotic expression was derived
by using Taylor expansion for weakly-nonhydrostatic and weakly-rotating conditions. Fortuitously,
the asymptotic expansion was found to be fairly accurate even for nonhydrostatic inertio-gravity
waves, i.e., when the nonhydrostatic or rotation effects were not weak. The analytical form of this
asymptotic expression of GWMF makes it promising for practical use in OGW parameterizations
in numerical models. However, TO8 only considered 2D OGWs forced by a ridge, while subgrid-
scale OGWs are intrinsically 3D (Lott and Miller 1997; Kim and Doyle 2005). In this work, an

asymptotic expression will be derived for 3D GWMF to accommodate the parameterization of 3D
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nonhydrostatic OGWSs. This provides a physically-based, flow-dependent, alternative to simply

filtering out the GWMF associated with waves shorter than a prescribed scale.

The rest of the paper is organized as follows. Section 2 presents the expression for surface
GWMF of 3D nonhydrostatic OGWSs from linear mountain wave theory. An asymptotic solution
is derived in section 3 for the linear nonhydrostatic GWMF associated with vertically-propagating
OGWs. The behavior of this GWMF solution is studied for both isotropic and elliptical mountains

in section 4. Finally, the paper is summarized and discussed in section 5.

2 Linear theory of nonhydrostatic OGWs

In the case of steady, adiabatic, inviscid, and Boussinesq flow, the governing equation for

the perturbed vertical velocity of gravity waves in spectral space is

2%w [NZKZ 1 9%D(2)

2l —
0z2 D(z)? D(z) 0z2 K ]W =0, (1)

where N is the Brunt-Vaisala frequency, K = k2 + 2 is the magnitude of horizontal
wavenumber vector K = (k, I), and D(z) = V(z)-K = U(2)k + V(2)l, with V(z) being a
horizontally uniform mean flow. The above equation is similar to Eg. (9) in Xu et al. (2012) except
for the last term K2 within the brackets, which denotes the NHE. The Earth’s rotation is neglected

because we only consider nonhydrostatic OGWs forced by relatively narrow orography.

In the parameterization schemes of OGWs, the mean flow is assumed to be constant when
calculating the surface GWMF (e.g., Lott and Miller 1997), although vertical wind shear (either
unidirectional or directional) definitely influences the GWMF (e.g., Grubisic et al. 1997; Teixeira

et al. 2004; Turner et al. 2019; Xu et al. 2020). Herein, we also make this assumption, to be
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consistent with existing parameterization schemes. For constant wind, i.e., V(z) =V, =

(Uo, V), EQ. (1) simplifies to

+m*w = 0, (@)

2172 _~
where m? = Nﬁf — K? is the squared vertical wavenumber, and D, = Vg - K = Ugk + V,yl =

0

|Vo|Kcos(p — ), with ¢ and y, being the directions of K and Vj, respectively. For vertically-
propagating OGWSs the magnitude of the horizontal wavenumber should be smaller than
| N

Vocos(p—1g)

. Otherwise, the vertical wavenumber will be imaginary, indicating evanescent waves

that decay exponentially with height.
Under the free-slip condition at the bottom boundary, i.e., w(z = 0) = V, - Vh(x,y), the
vertical velocity of upward-propagating OGWs can be determined as
w(z) = iDyh(k, De'™* (3)
where h(k, 1) is the 2D Fourier transform of the terrain elevation h(x, ). In idealized studies of
OGWs and their parameterizations (e.g., Phillips 1984; Lott and Miller 1997; Teixeira and
Miranda 2006), elliptical bell-shaped mountains are often adopted, a convenient example of which
IS:
h(x,y) = ho[1 + (x/a)* + (y/b)*] 73/, (4)
where ho is the mountain amplitude, and a and b are the mountain half widths in the x and y
directions, respectively. The horizontal aspect ratio (i.e., anisotropy) of the elliptical terrain is

quantified by y = %. The 2D Fourier transform of the terrain elevation is given by

ﬁ(k’ l) = Me—m (5)

and the GWMF at the surface is equal to
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—p 10 [N v wdxdy. (6)
Here p is the background air density, and v/ = (u’, v") and w' are the perturbed horizontal and
vertical velocities in physical space, respectively. On substitution of the 2D Fourier transforms of

v’ and w’ into the above equation and using the polarization relation between v’ and w', i.e., ¥ =

lﬁa_ (see the appendix of Xu et al. 2017b), one can readily obtain
+0 ~+00 K o [OW
v=anp 17 P55 (3 w") dkdl, (7)

where J(+) denotes the imaginary part of a complex number and the asterisk indicates complex
conjugate.

For the sake of computational convenience, elliptical polar coordinates are introduced, that

k = ak = Kcosp, [ = bl = Ksing. (8)
In this situation, the terrain spectrum has a simple form that only depends on X, i.e.,
R(R) =22k, ©)
Consequently, the GWMF can be expressed as
= ?fon fooo(cosqb, ysing)(cos?¢ + y?sin?¢) 713 <aw ’\*) dKdg. (10)

Substituting Egs. (3) and (9) into the above equation yields

[F (¢-0171 . (-0 -
= l_[fon fo T cos(p—x (COS¢:Y51n¢)\/% 1- [FT” cos(¢p — X)K] KZ?e 2Kde¢

(11)

where TT = 2pNhZb|V,| and y = atan( ) Note that y is the direction of V, = (U, ¥V,),

which is similar to the actual wind Vo but with the y velocity component scaled by the terrain

anisotropy. Only in the case of isotropic terrain (i.e., y = 1) or when the horizontal wind is aligned
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with the main axes of the orography (i.e., Uo = 0 or Vo = 0) is y equal to the actual wind direction.

For simplicity, it is still called the horizontal wind direction hereafter, unless otherwise stated.

. . . . V, .
The non-dimensional parameter Fr is defined as Fr = % which represents a measure of

NHE. It is similar to the traditional Froude number (Fr = %) that quantifies the nonlinearity of
0

OGWs (e.g., Miranda and James 1992), but with the mountain amplitude replaced by the mountain
width. It is thus called horizonal Froude number hereafter. Physically, the horizontal Froude
number can be viewed as the ratio between the period of buoyancy oscillation (1/N) and the
advection time of airflow past the mountain (a/|\70|). In the limit Fr — 0, i.e., slow airflow and/or
a broad mountain, the OGWs are predominantly hydrostatic. As Fr increases, NHE are more and
more important. In the limit Fr — oo, the airflow can quickly traverse the mountain, with no
internal OGWs excited.

In Eq. (11) the upper limit of the integral over K is [Fr cos(¢ — x)]~*, which indicates the
contribution to the GWMF coming from internal OGWSs, because evanescent waves produce zero
GWMF. This upper limit depends on the directions of both the mean flow and the horizontal
wavenumber. To facilitate the deduction of the asymptotic GWMF expression (see section 3), this

upper limit is set to Fr~1, i.e.,

Fr1 . (-1 12~ o =
Trune = l'[f: fo T (cosqb,ysln(p)\/% 1- [Fr cos(¢ _X)K] R?e~2KdRd¢.

(12)
This corresponds to an artificial truncation of waves with K between Fr~' and [Fr cos(¢ — x)] 7.
The latter value can go up to infinity when cos(¢ — y) — 0. Nonetheless, as will be shown below,

these high-frequency waves only give a weak contribution to the total GWMF.

10
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3 Asymptotic solution

Generally, a closed analytical form for Eq. (12) does not exist, and the GWMF must be
evaluated by numerical integration. Yet an asymptotic solution can be derived for weakly
nonhydrostatic OGWs at small Fr (see T08). In the limit Fr — 0, the nonhydrostatic term in Eq.

(12) can be approximated by

\/1— [Fr cos(qb—)()'[(v']2 ~ 1—%Fr2cosz(¢>—)()i('Z, (13)
based upon a Taylor series expansion around Fr = 0 up to first order. On substitution of Eq. (13)

into (12), the asymptotic GWMF (T, ) is given by the sum of Ty, T4y1, aNd Tyy2, as follows

o : cos(¢—x) © 52,2k g7
T =11 fO (COS¢), ]/Sln(]b)\/m(fo K“e dK)d(l), (14&)

T . cos(p—yx) 0 =5 _oF ,7F
TaSyl = —J1 fO (COSQ’), ]/Sln(]5) Jm (fFr_l KZE 2KdK)d¢), (14b)

1 T . cos3(¢p—yx) Fr-ls, o5 .~
Tasyz = —EFrZHfO (coscl),ysmqb)m(fo K*e 2KdK) do, (14c)

with T, = (TOx, roy) denoting the GWMF of hydrostatic OGWs. In deriving these equations, we
-1 P 0 ~ Z o~ 0 o~ s . . . .
have used fOFr K?e™?XdK = [~ K?e™**dK — [ _, K*e™*XdK. Using integration by parts, it

is easy to show that

[y R2e 2KdR =<, (15a)
[o-s R?2e™KdR = L (2Fr=2 + 2Fr~ + 1)e " = 2 L,(Fr), (15h)

_1 —_ _ —_ _
[T K*e ?KdR =2[3— (2Fr=* + 4Fr=3 + 6Fr~2 + 6Fr~" +3)e 2| = ~1,(Fr). (15¢)

RS

The I, term receives contributions from wavenumbers ranging from K = Fr=*to K = o. The
largest contribution of the integrand comes from K = 1 (see the solid line in Fig. 1), which

corresponds to the typical horizontal scale of the orography. On the contrary, the 14 term is made

11
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up of wavenumbers in the range between K = 0 and K = Fr~1, with the largest contribution from
the integrand being shifted to a higher wavenumber K = 2 (i.e., half the orography scale; see the
dashed line in Fig. 1). The response decays rapidly away from K = 1 for 1, and K = 2 for la,
especially towards the high-wavenumber tail of the spectrum (i.e., high-frequency waves). It is
noteworthy that this decay depends crucially on the exponential that results directly from the
Fourier transform of the terrain elevation, but any smooth topography will have a spectrum that

decays towards high wavenumbers (albeit in different ways). Substitution of Eq. (15) into (14)

yields
T, = gfon(coscp,ysinq’)) %dq’), (16a)
Tasyr = —L(Fr)To, (16b)
Tasyz = =5 Fr21,(Fr)[Ry (v, X)Tox Ry (v, X)Toy | (16c)
where

fn cos¢cos3 (p—x)

0 d¢
cos2¢p+y2sin2¢

R(.1) = = epessy (172)
OJ 2 25in2 v
cos“¢p+y“~sin“¢

fn sin¢>cos3(¢—x)

d¢
0 cos? Zsin2
/ P+y ¢ (17b)

n singcos(p—yx) ad
fo J 2 - ¥
cos2¢p+y2sinZ¢

R,(v,x) =

Tasy1 IS anti-parallel to t,, with its magnitude controlled by the I> term. T, , is more complicated,
depending not only on Fr but also on y and y. Given the difference between Rx and Ry, 1,5, may

be misaligned with t,. This suggests that NHE can change the direction of the GWMF as well as

its magnitude.

12
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In order to better understand the NHE, they are quantified by the ratio between the

asymptotic and hydrostatic GWMFs, i.e.,

~ asyx 1
T (Fr,y, 0 = =2 = 1= L,(Fr) = Fr*L,(Fr)R: (v, 1), (182)
~ as 1
By (Fry, 20 = 52 = 1= L(Fr) = S FrL(Fr)Ry (v, 1). (18b)

The second term on the right-hand-side (RHS) of Eq. (18) is related to T,y (hereafter, NHE1 for
short), which only depends on the horizontal Froude number. It denotes the wave components that
are mistaken as vertically-propagating internal waves in the hydrostatic approximation, but are
actually evanescent waves. The third term arises from t,,,, (hereafter, NHE2 for short), which is
attributed to the difference between the dispersion relationships of hydrostatic and nonhydrostatic

OGWs, i.e., the K2 term within the brackets of Eq. (1). As noted above, NHE2 can affect both the

magnitude and direction of the GWMF.
The above asymptotic expressions were derived for weakly nonhydrostatic OGWs. In the

limit Fr — 0, they simplify to
. (Fr - 0,y,%) = 1 = 2R, (y, O)Fr?, (192)
T, (Fr-0,y,0) =1- gRy(y,)()Frz. (19b)

As will be shown in section 4, the relative difference between the asymptotic and exact GWMFs

increases as the horizontal Froude number increases. Therefore, the asymptotic GWMF at Fr —

oo provides an estimate of the upper bound of the bias. Expanding the e~ 2 " term in Eq. (18) as

Fr — oo using Taylor series, one can readily find that
~ 4 2 -
£ (Fr = 0,7, = |5 = 2Ry, 0| Fr, (20a)

T, (Fr > o,y,x) = E — ERy(y,)()] Fr—3. (20b)

13
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At this highly-nonhydrostatic limit, the GWMF becomes extremely small (proportional to Fr—3),
given the trivial contribution from very small-scale OGWs (see Fig. 1). This result is not only
qualitatively correct, given that, without adopting the approximation expressed by Eq. (13), the
drag would also decrease to zero at high Fr, but even approximately quantitatively correct, as will

be shown next.

4 Results

In this section, the NHE will be firstly studied for the simple case of a circular mountain,
i.e., ¥y = 1. Then we will investigate the more general case of elliptical mountains with y # 1. In
the latter case, the mean flow can be either parallel or oblique to the main axes of the mountain,
which will be examined separately. These variants will henceforth be called “parallel flow” and
“oblique flow”, for short.

4.1 Isotropic terrain

For isotropic terrain, without loss of generality, the horizontal wind direction can be set to
3

x = 0 for simplicity, i.e., Vo = (Uo, 0). In this case, t,, = gp‘NhSan, Tyo = 0, Ry(1,0) = ”

R,(1,0) = 0, and Eq. (18) simplifies to
fdﬂﬂ=1—4ﬂﬁ0—%ﬁﬂhwﬂ

EFr‘z—1F7"_1+E+2F1”+2Fr2), (21)
4 2 PR 8

=1-2Fr2 o727 (-

where the subscript “c” indicates circular terrain. Clearly, 7. only depends on the horizonal Froude
number.

The variation of 7, with the horizontal Froude number is depicted in Fig. 2. For comparison,

the scaled asymptotic GWMEF in the case of 2D ridge is also shown, which is expressed as follows

[cf. Eq. (16) in TO8]

14
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Top(Fr) = 2222 = 1 — 2py2 4 o200 (—Fr—1 +2+3Fr+ %Frz). (22)

To_2D
It is clear that NHE weaken the GWMF. For both 2D and 3D OGWs, the asymptotic GWMFs are
in good agreement with their exact counterparts which are obtained via numerical integration of
Eq. (11) in this work and Eq. (10) in T08, respectively. The GWMF is only slightly overestimated
by Eqg. (22) for 2D flow and underestimated by Eq. (12) with respect to Eq. (11) for 3D flow for
moderate Fr. This justifies the choice of Fr~1 as the upper limit of the integral in Eq. (11), given
the simplifications this entails. Although adoption of the asymptotic approximation for the GWMF
slightly improves the agreement with Eqg. (11), the GWMF is still underestimated by a larger

fraction than it is overestimated in the 2D case. Note that 7. is always smaller than its 2D

counterpart. In the limit Fr - 0, ¥.(Fr) tends asymptotically to 1 — gFr2 while 7, varies as

1-— %Frz. In the opposite limit Fr — o, £, and %, tend asymptotically to

1

T.(Fr » o) = %Fr*, (23)

#yp(Fr — 00) = 2Fr2, (24)
respectively. %, is proportional to Fr~3 which decays faster than %,,. As shown by Fig. 2, the way
in which %, approaches zero as Fr increases is surprisingly accurate (as found in TO8 for 7,p)
given that the asymptotic approximation was developed for small Fr.

As stated in section 3, the NHE can be decomposed into two terms: NHE1 and NHEZ2.
Figure 3 displays these two terms as a function of the horizontal Froude number. The magnitude
of NHE1 exhibits an increasing trend with Fr. At lower horizontal Froude numbers (Fr <0.2), the
NHE1 term is very weak. This is because the lower limit of the integral in Eq. (15b) is given by
Fr~1, hence the NHE1 term mainly comes from high-frequency waves which produce negligible

GWMEF (Fig. 1). As Fr increases beyond 0.2 (corresponding to a cutoff horizontal wavenumber of
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K = 5), the magnitude of NHE1 term increases rapidly, reaching up to about 0.7 at Fr = 1. As Fr
approaches infinity, this term tends asymptotically to -1. The NHE2 term is jointly determined by
the squared horizontal Froude number (Fr?) and I given by Eq. (15c). As the horizontal Froude
number increases, each of these two factors increases and decreases, respectively. The latter effect
is due to the fact that the upper limit of the integral in Eq. (15c) decreases as Fr increases. As a
result, the magnitude of NHE2 firstly increases with Fr, peaking around Fr = 0.48 at a maximum
of about 0.1. It then starts decreasing as the horizontal Froude number increases. It is clear that
NHE2 plays a more important role in the flow regimes with low Fr whereas NHE1 dominates
above about Fr = 0.4.

4.2 Anisotropic terrain: parallel flow

For OGWs generated by elliptical mountains, we firstly study the special case of horizontal

wind parallel to the main axes of the orography, which are assumed to be aligned in the x and y

directions, i.e., y = 0 (mean flow along the x axis) or y = i% (mean flow along the y axis). In

this situation, ¥ only depends on the horizontal Froude number and on the terrain anisotropy.
Taking y = 0 for example, i.e., Vo = (Uo, 0), one obtains that z,,, = 0, R,,(y,0) = 0, and

frr cos4¢

— 2 ___d¢
0 2 2¢in2
cos“p+y“sin<¢
Reo(¥) = Ry(,0) = f,,“ . (25)

o T—————4¢
/cosz¢+y2 sinZ¢

Hereafter, the subscript “0” denotes the case with y = 0. The black line in Fig. 4 shows the

variation of R, (y) with y. Clearly, R,,(y) increases as y increases (i.e., from a ridge normal to

the flow to a ridge along the flow direction), showing substantial changes (by about 30%) from

y = 11—0 to y = 10. The fastest variation occurs near y = 1.
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To better reveal the influence of terrain anisotropy, the relative variation of 7, (y, Fr) with

respect to 7. is examined, which is defined as

_ Txo(V.Fr)-Tc(Fr) _ Txo(y.Fr)
Fry==""m = tem (26)

ATy (v,
At Fr = 0, At, is always equal to zero (Fig. 5). As the horizontal Froude number increases, the
AT, curves quickly diverge. In the case of mean flow perpendicular to the long axis of the
mountain (y < 1), Af,, is greater than zero, i.e., T,o(y,Fr) > ©.(Fr). This means that the
GWMF is less reduced than in the isotropic case, i.e., weakening of NHE. This is consistent with
the 2D-3D comparison presented in Fig. 2. In contrast, when the mean flow is aligned with the
long axis of the mountain (y > 1), NHE are enhanced, as suggested by the negative At,.

The At, curves become more and more flat as the horizontal Froude number increases,

tending asymptotically to their limits at Fr — oo, i.e.,

Doy, Fr = ) = =[1- 2Ry (y)) (27)
which is obtained on substitution of Egs. (20a) and (23) into Eq. (26). It is clear that the influence
of terrain anisotropy is controlled by R,.,(y). When the mean flow is aligned with the long axis of
the mountain, (the magnitude of) A%, is more notably enhanced than it is suppressed in the case

of mean flow perpendicular to the long axis of the mountain. For instance, at Fr = 1, At,, exceeds
3% at y = 8 while it is less than 3% aty = g This difference is attributed to the asymmetric
distribution of R,,,(y) about y = 1 (see the black line in Fig. 4).

While R, (y) changes substantially with y, that is not so much the case of At,,. For two

arbitrary y, say, (y1,72), the difference between their A%, gradually saturates as Fr — oo, i.e.,

Aty (y1, Fr — ) — Atyo(y2, Fr — o0) = % [Rxo(¥2) — Rxo(¥1)]. (28)
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This means that the influence of terrain anisotropy on R,,(y) can be only partially projected onto
A7, since the latter is at most % ~ 40% of the former. From Eq. (25), R,,(y) equals g and 1 at

y = 0 and y — oo, respectively. Bounded by the lower and upper limits of R, (y), the variation

of At, with y is thus always smaller than g X (1 - g) = % ~ 12.9%. When compared to NHE

in the isotropic orography case, i.e., R,o(1) = Z, the maximum positive and negative differences

12 3 3 12 2 3 1 .
are —— X (1 — Z) == 9.7% and 3 X (g - Z) === —3.2%, respectively.

From the above analysis, we can see that NHE in the parallel-flow case are only weakly
affected by terrain anisotropy. Instead, it is the horizontal Froude number that greatly impacts ,,
and this occurs both in the cases of circular mountains and 2D ridges (see section 4.1). Physically,
when the mean flow is parallel to the main axis of the elliptical terrain, e.g., when y = 0, as studied,

Vol

the horizontal Froude number is simplified to Fr = e ;]—"a Thus, the terrain width in the cross-

flow direction has little contribution to the flow advection time.

4.3 Anisotropic terrain: oblique flow

In this section, the general case of mean flow oblique to the main axes of the elliptical bell-
shaped mountain is examined to understand more thoroughly the impacts of terrain anisotropy and
horizontal wind direction on the asymptotic GWMF expression.

In addition to y = 0, Figure 4 also shows the variation of R,.(y, x) as a function of y for

three different horizontal wind directions, i.e., y = g, ~and 3?" These wind directions are chosen

in the range of [O, g) but the same results can be obtained for y in the range of [0, —g) This is

because R, (y, x) is symmetric about y = 0, i.e., R, (y,x) = R,(y, —x) in accordance with Eqg.

(17a). (Note that R, (y, ) isill-defined at y = + % where 7, vanishes.) The variation of R, (v, x)
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is not presented herein, but can be inferred from that of R,(y,x) because R,(y,x) =

R, (%% — X)- In the situation with y = g R, (y, x) increases as y increases, which is similar to

= R, (y, x) instead decreases as y increases. This

the case with y = 0. When y equals % or —

suggests a change in the trend of R, (y, x) with y for a horizontal wind direction between y = g

and y = % at which R,.(y, x) should be independent of y. As can be seen below, this occurs at

s
X=7¢
The distribution of R, (y, x) in y-y parameter space is shown in Fig. 6, with y and y in the

1 T . . 3 T .
ranges of [1—0, 10] and [O, E)’ respectively. R, (y, x) is always equal to Jaty =+, which can be
obtained analytically from Eq. (17a). Remember that R, (y, x) = %at y = 1 as well (see section

4.1). Therefore, the y-y space can be divided into four quadrants by the lines y = % andy =1.1In

the third and fourth quadrants (0 < y < %), R, (v, x) has an increasing trend with y. The more the

horizontal wind is aligned with the long axis of the elliptical mountain, the more markedly terrain

anisotropy affects R, (y, x). The greatest variation of R,(y, x) With y (Ryo(y = ) — Ry (y =
0)) occurs at y = 0, which takes the value % as derived in section 4.2. In the first and second

quadrants (i.e., % <xy< g), R, (y, x) decreases instead as y increases, and the influence of terrain
anisotropy becomes larger with y. In the limit of y = g R, (y, g) is ill-defined, yet it is equivalent
to R, (%,o) which is well defined. From Eq. (17b), R, (v > 0,%) = Ry(y > 0,0) = 1, and

R, (y — 00, g) =R,(y 2 0,0) = § As a result, the greatest variation of R,.(y, x) with y is § I.e.

twice that for y = 0. Similarly, the greatest variations of R, (y, x) with y (i.e., variations along the
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vertical rather than horizontal direction in the graph) on the left- and right semi-planes of the y-y
1 2 .
parameter space are - and 3 respectively.

As in the parallel-flow case, the relative variation of 7, (y, Fr) with respect to 7. is also

examined here, which is defined as

— TX(Y'XJFT.)_:EC(FT') — ‘T’x(y,)(,Fr) _
Fr)==""0m = nem L (29)

AT (v, x,

As Fr — oo, T, tends asymptotically to

For two pairs of (y, x), €.9., (¥1, x1) and (¥, x»), the difference between their £, is

~ ~ 12
Ty (Y1, X1, FT = ) = T (y2, X2, Fr > ) = 1 [Rx(¥2, X2) — Rx(y1, x1)]. (31)
Again, this means that the influences of terrain anisotropy and horizontal wind direction on

R, (v, x) have a relatively small impact on %,. From Fig. 6, the global maximal variation of

R, (y,x) withy and y is 2 Thus, under the influence of both terrain anisotropy and horizontal

wind direction, ¥, can change by ;—i X g ~ 25.8% at most as Fr tends to infinity. Compared to the

NHE in the isotropic terrain case, the maximum positive and negative differences are

12 3 3 12 1 3 5 . .
7 X (1 — Z) =5~ 9.7% and 7 X (g — Z) =—== —16.1%, respectively. At small horizontal

Froude number, the impacts of terrain anisotropy and horizontal wind direction are rather weak,
as will be shown below.

Figure 7 gives the distributions of A%, on the y-y plane at four different horizontal Froude
numbers: Fr = 0.1, 0.3, 0.5, and 1.0, respectively. Positive A%, is found in the first and third
quadrants, indicating an amplification of the NHE compared to the case of isotropic orography.

Conversely, NHE are weakened in the second and fourth quadrants, given the negative values of
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AT, existing there. At Fr = 0.1 (Fig. 7a) A%, is extremely small, implying that the terrain
anisotropy and horizontal wind direction have negligible influence on the NHE. At Fr = 0.3 (Fig.
7b), the impacts of terrain anisotropy and horizontal wind direction increase by more than 10 times
compared to those at Fr = 0.1. When the horizontal Froude number further increases to Fr = 0.5

and 1.0 (Figs. 7c, 7d), there occurs a consistent increase in the magnitude of At,., which can reach
up to 0.1 in the first quadrant (i.e., ¥ > 1 and % <y< g).
Figure 8 displays the variation of 7, as a function of Fr. Two elliptical mountains with y =

%(dashed lines) and y = 8 (solid lines) are selected, along with two horizontal wind directions

X = g (blue lines) and y = 3?” (red lines). From the above analysis, these configurations of terrain

anisotropy and horizontal wind direction tend to have a significant influence on the NHE. However,
as can be seen from Fig. 8, 7, is still mainly determined by Fr. At Fr = 0.1, 7, = 0.99, i.e., the
OGWs are almost purely hydrostatic. As Fr increases, 7, decreases rapidly to about 0.65 at Fr =
0.5, and further reduces to about 0.27 at Fr = 1.0. Compared with the horizontal Froude number,
terrain anisotropy and horizontal wind direction only play a minor role. This is due to the fact that
these two factors only affect the NHE2 term [see Eq. (18)]. At small horizontal Froude number
(Fr < 0.2), the NHE2 term is of greater importance than NHEL1 (Fig. 2), but At, is too weak to
exert a profound influence on £, (Fig. 7a). At moderate to large horizontal Froude number (Fr >
0.4), while A7, is significantly enhanced (Figs. 7c, 7d), the NHE2 term is exceeded by NHEL, thus
contributing less to 7,.

4.4 Surface pressure perturbation

Theoretically, the GWMF is equal to the pressure drag at the surface (e.g., Teixeira et al.
2004). In this section, the surface pressure perturbations are investigated to help understand the

impact of NHE on the GWMF. Herein, we only focus on the simple case of mean flow over circular
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bell-shaped mountains, because the horizontal wind direction and orography anisotropy play a
minor role on the NHE (as we have just seen).

Figure 9 depicts the distribution of the surface pressure perturbation obtained via numerical
integration of Egs. (A4). Note that the pressure perturbations are scaled with ﬁN|V|h0. At Fr =
0.1, the pressure field (Fig. 9a) shows a left-right anti-symmetric pattern about the orography
center, with positive and negative regions on the windward and leeward slope respectively (Smith
1980; Teixeira et al. 2004). In this weakly nonhydrostatic case, the pressure perturbation mainly
arises from vertically-propagating OGWs, with little contribution from evanescent waves (Figs.
9b, 9c). At Fr = 0.5, however, the surface pressure perturbation ceases to be perfectly anti-
symmetric about the mountain center (Fig. 9d). The maximum on the windward slope weakens
slightly as compared to that at Fr = 0.1, while the minimum on the lee slope also weakens notably
and moves downstream. In addition, a secondary pressure minimum occurs near the orography
center. This more complex pressure pattern is due to an enhanced pressure contribution from
evanescent waves (Fig. 9f), which is symmetric about the orography center (and thus produces
zero surface pressure drag). Concurrently, the pressure perturbation associated with vertically-
propagating OGWs weakens (Fig. 9e), giving rise to the reduction of GWMF.

Using the Taylor series expansion of the vertical wavenumber at small Fr (expressed by
Eq. (13)), one can also derive an asymptotic expression for the pressure perturbation associated
with vertically-propagating OGWs (see details in Appendix A), which is decomposed into three
parts (namely, po, p1 and pz) corresponding to Ty, Tasy1 aNd Tysy2, respectively.

Figure 10 shows the distribution of the asymptotic surface pressure perturbation at Fr =
0.1, which is also scaled by p‘N|\7|h0. The total asymptotic pressure perturbation (Fig. 10a) agrees

well with that in Fig. 9a. It is dominated by the hydrostatic part (Fig. 10b), because NHE are very
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weak at Fr = 0.1 (see Fig. 2). The maximum (minimum) pressure perturbation occurs about one
half-width away from the orography center, suggesting that the horizontal scale of the dominant
wave field is comparable to that of the mountain. This is consistent with the power spectrum of <,
which peaks at K = 1, i.e., K = a (Fig. 1). The pz pressure perturbation is extremely small (Fig.
10c), given the small magnitude of T, at this low horizontal Froude number (Fig. 3). A wave-

train pattern is found both upstream and downstream of the mountain, which can be ascribed to
the cos (%) and sin (%) terms in Eq. (A9b). This pattern is undiscernible in Fig. 10a because of

its small magnitude. The horizontal wavelength of ps is very short, since it originates mainly from
the high-frequency part of the wave spectrum [Eg. (A7b)]. Similar to po, the p2 pressure
perturbation is anti-symmetric about the orography center (Fig. 10d), but with negative (positive)
perturbations on the upslope (downslope) side. Consequently, p2 produces a pressure gradient
force opposed to that of po, contributing negatively to the total surface pressure drag. Moreover,
the p2 pressure perturbation is mainly confined to the region within one half-width of the mountain
to the orography center. This is also in agreement with the power spectrum of t,,, which peaks
at K = 2 (Fig. 1).

Figure 11 is similar to Fig. 10, but for Fr = 0.5. Compared to that at Fr = 0.1, the total
pressure perturbation is substantially reduced (Fig. 11a). The pressure perturbation extrema only
correspond to about 70% of those at Fr = 0.1. The scaled po (Fig. 11b) is independent of Fr, so it
is exactly the same as in Fig. 10b. The p1 pressure perturbation (Fig. 11c) increases markedly in
magnitude, reaching up to 60% of po. The p2 pressure perturbation is also enhanced (Fig. 11d).
However, unlike in the case with Fr = 0.1, p2 is smaller than p:1. This agrees with the major role
played by the NHE1 term at moderate-to-large horizontal Froude numbers (see Fig. 3). Moreover,

while the p: and p. pressure perturbations still display a wave-train pattern upstream and
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downstream of the mountain, their horizontal wavelengths have increased significantly. Taking p:
as an example, the dominant wavelength is approximately twice the orography half-width. This is
because, at Fr = 0.5, p1 is composed of wavenumbers ranging from K = 2 to o [see Eq. (A7b)].
In this spectral range, the greatest response of t,,,, corresponding to p; occurs at K = 2 (Fig. 1).
Owing to the enhanced p: pressure perturbation, the extrema of the total pressure perturbation
slightly move away from the orography center (Fig. 11a), implying an increase in the dominant
wavelength. This is reasonable, since short waves are removed by the NHE from the range of

waves that contribute to the GWMF.

5 Summary and discussion

It has been widely recognized that the parameterization of subgrid-scale orographic gravity
waves (OGWs) is essential for accurate numerical weather forecast and climate prediction. Many
efforts have been made to improve the representation of orographic gravity wave momentum flux
(GWMF) and its deposition into the mean flow in numerical models. With the development of
high-resolution global numerical weather prediction (NWP) and general circulation models
(GCMs), the horizontal scale of unresolved OGWs is becoming increasingly small. As a result,
the GWMF can be significantly impacted by nonhydrostatic effects (NHE). However, these effects
are not accounted for in even the state-of-the-art parameterization schemes, since there is in general
no analytical solution for nonhydrostatic OGWs. In some parametrizations (e.g., Lott and Miller
1997), the GWMF reduction that is known to occur for highly non-hydrostatic waves is mimicked
rather artificially by filtering the orography that is fed into the OGW parametrization. The present

study proposes the more physical approach of explicitly evaluating the NHE approximately.
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Using linear gravity wave theory, we have derived an asymptotic solution for the surface
GWMF of 3D OGWs, which is an extension of the 2D asymptotic expression studied in T08. The

intensity of the NHE can be quantified by the non-dimensional parameter called here the horizonal

Froude number, i.e., Fr = % This parameter is akin to the inverse non-dimensional mountain

half width % used in previous studies (e.g., Durran and Klemp 1983; Xue and Thorpe 1991; Zangl

2003) but with U replaced by V, = (U,,yV,). This extended definition is necessary due to the
horizontal anisotropy of the isolated orography that generates the 3D OGWs.

Based upon an asymptotic approach, the NHE are divided into two components (NHE1
and NHE2). The first component accounts for the high-frequency parts of the wave spectrum (i.e.,
short waves) that are mistaken as hydrostatic, upward-propagating waves in the hydrostatic
approximation. The GWMF associated with NHEL is parallel but opposite to the hydrostatic
GWMF. The second component is due to the difference between the dispersion relationships of
hydrostatic and nonhydrostatic OGWs. While NHE1 only depends on the horizontal Froude
number, NHE2 also depends on the terrain anisotropy and horizontal wind direction. In the
presence of NHE, both the magnitude and direction of GWMF can be changed.

The asymptotic GWMF expression derived here was investigated for OGW:s forced by both
circular and elliptical mountains for flows with various orientations. In the isotropic orography
case, NHE only depend on the horizontal Froude number, which is the same dependence as in the
2D-ridge case studied by T08. Compared to its 2D counterpart, the 3D GWMF is more strongly
reduced by NHE. Considering the two parts of the NHE, NHE1 is weaker than NHE2 at lower
horizontal Froude number, but its magnitude grows rapidly as the horizontal Froude number

increases. On the contrary, NHE2 firstly increases but then starts decreasing with the horizontal
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Froude number, with this change of trend occurring at about Fr = 0.48. Consequently, NHE1 starts
to be dominant in the reduction of the GWMF above about Fr = 0.4.

For OGWs generated by anisotropic terrain, when the mean flow is perpendicular to the
long axis of the orography (y < 1), the GWMF is less reduced than in the isotropic case,
suggesting a weakening of the NHE. This is consistent with the results of OGWs forced by 2D
ridges. Conversely, NHE are enhanced when the mean flow is parallel to the long axis or the
orography (y > 1). In the parallel-flow case, the NHE vary by no more than 12.9% with the terrain
anisotropy, and this occurs as the horizontal Froude number tends asymptotically to infinity. Since
this corresponds to a situation in which T approaches zero, the relevance of this effect is even more
limited. When the mean flow is oblique to the main axes of the mountain, NHE exhibit a greater
variation under the joint influence of terrain anisotropy and horizontal wind direction, with a
maximum value twice that of the parallel-flow case. Nevertheless, in either case, it is still the
horizontal Froude number that dominates the variation of the NHE.

Given the relatively weak influence of terrain anisotropy and horizontal wind direction on
the NHE, the asymptotic solution of the GWMF for isotropic terrain [i.e., Eq. (21)], which is
simply a function of the horizontal Froude number, may be used to quantify the NHE with a good
accuracy. Benefiting from the analytical form of this expression, the parameterization schemes for
hydrostatic OGWSs can be easily extended to nonhydrostatic conditions, which will inevitably
occur in high-resolution NWP and GCMs. It is noteworthy that the horizontal Froude number
depends on the horizontal scale of subgrid-scale orography, which is constrained by the model’s
horizontal resolution. Since the NHE are scale-aware (or scale-dependent), they make the
parametrization itself scale-aware. Recently, variable-resolution numerical models have generated

a growing interest (e.g., Skamarock et al. 2012; Davis et al. 2016; Zhou et al. 2019; Zhang et al.
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2019), as they can significantly reduce the computational costs, while allowing for high-resolution
modelling in areas of specific interest. A nonhydrostatic parameterization scheme will be
particularly useful for models with variable-resolution meshes, as it can adjust the parameterized
GWMF in the fine-resolution regions where NHE are expected to be important, while having little
influence in the coarse-resolution areas.

In our upcoming research, a traditional hydrostatic OGW parameterization scheme will be
revised taking into account NHE, based on the asymptotic expressions derived in the present study.
Then the revised scheme will be implemented in a high-resolution numerical model (with a grid
spacing on the order of 10 km) to investigate the impacts of NHE on the vertical momentum

transport of subgrid-scale OGWSs and their consequences for the large-scale circulation.
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Appendix A: Derivation of the asymptotic pressure perturbation at the surface
According to Eq. (7) in Xu et al. (2017b), for 3D OGWs generated by constant flow over
an isolated mountain, the polarization relation between the pressure and vertical velocity

perturbations in spectral space has the simple form:

p(k,1,2) = —i 2 p22E (A1)

K2 0z

Substitution of Eq. (3) into the above equation yields
p(k,1,2) = ipoy me™h(k, D). (A2)

Using inverse 2D Fourier transforms, the pressure perturbation in physical space is given by
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p(x,,2) = Re[ip [, [, Zmhk, 1) eiter+ty+ma gl (A3)

K2
where Re(-) denotes the real part of a complex number. For the elliptical bell-shaped mountain
under consideration, and using polar coordinates for the horizontal wavenumber [see Eqg. (8)], the

pressure perturbation of nonhydrostatic OGWs atz =0 is

= — ReliaNIV IR ([ ——Sosto—0)
p(x,v,0) = p(S,¥,0) = Re [”pN|V|h0 Jy I Testorsnig

\/1 — [KFrcos(¢p — )()]Zke‘ke"ksc"s(d’"w)dﬁdd) : (Ada)
which can be divided into two parts, i.e.,

_ i l55 m ¢[Frcos(p—)]7" __ cos(¢—x)
pew (S, ¥, 0) = Re [;levlhO fo fo [cos2p+y2sinZe X

\/1 — [KFrcos(¢ — )()]Zke_’?eikscos(d’_%dkdcpl. (A4b)

_ il T oo cos(p—x)
Pevascent (5, %,0) = Re | 2N T1ho [ i o1 T

Jl — [KFrcos(¢p — )()]zl?e"?eikscos(‘l"w)dl?dcpl. (A4c)

for vertically-propagating OGWs and evanescent waves, respectively. In the deduction of the
above equations, the following elliptical polar coordinate in physical space was introduced for

convenience;

x==

a

where S = i,/x2 + (yy)? and ¥ = atan (g)

Scos¥, Y = % = Ssin'¥, (A5)
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By expanding the vertical wavenumber for small Fr [see Eq. (13)], the asymptotic surface
pressure perturbation associated with vertically propagating OGWs can be approximated by the

sum of po, p1 and pz, namely,

po(S,%,0) = Re [ g |V, 7' =20y (¢, 5, W)dp | (A6)

cos2¢p+y2sin?

pi(5,9,0) = Re |~ £ pN|V|ho [} =BGy (g, 5, W) | (A6)

cosZ¢p+y2sin2

pa(5,9,0) = Re |~ L Fr2pN|V]ho [ =222, (g, 5, W)dp| (A6c)

cos2¢+y2sin?
with Go, G1 and Gz given, respectively, by

Go(,5,¥) = f, K eRliscost@=71la i = @2, (ATa)

G1(, S, W) = [, K eRliscos@=9)-1gK = 9=2e=0Fr™" (1 4 QFrY), (ATb)
G(,5,%) = [T R? eRliscosts-w-1lg g
= Q*[6 — e T (Q3Fr=3 + 3Q%Fr=2 + 6QFr~' + 6)], (A7c)
and
Q(¢,S, W) =1—iScos(¢p —¥) =1 —iu(e,S,¥). (A8)
Clearly, po is the pressure perturbation of purely hydrostatic OGWSs while p1 and p2 are the pressure
perturbations corresponding to Tsy1 and Tyeys.

Finally, after some lengthy but straightforward algebraic manipulations, one can obtain the

three components of the surface pressure perturbation associated with vertically-propagating

OGWs:
_ pN|V|hy (. cos(p—yx) 2u
po(S,W,0) = — [ NerrreerSe (A9a)
PNV o cos(d-1) 1 Jiweos(L)+(wsin(L)
pl (S, l‘IJ, 0) -_ T fO \/m (1+#2)2 eFT'_l dd)! (Agb)
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pa(s, W, 0) = 200

where

cos®(¢p—x) Fr?

]3(#)COS( )+]4(u)sm( )

0 Jcos2p+y2sinZ¢g (1+u2)* Jo(uw) — SFr1 do,
Jo(w) = 24(1 — pP)p,
1+u?
L) = .H(Z +2£ )
L) =1-p*+ Ll
Js(w) = p [24(1 —u?) - 6(“2_2(””2) 6(1:;2)2 (1:532)3 |
TL(w) = 6(u*—6u%+1) + 6(1+3MF22(1—;¢2) + 3(1_“;)7«(21+“2)2 N (1::;2)3.
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806

807  Fig. 7 Distribution of A7, in y- y parameter space at different horizontal Froude numbers: (a) Fr
808 =0.1,(b) Fr=0.3,(c) Fr=0.5, and (d) Fr = 1.0. The red line represents y = %while the blue line
809 indicatesy = 1.
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Fig. 8 Variation of the x-component of the normalized GWMF (£,.) in the oblique-flow case as a
function of the horizontal Froude number (Fr). Solid and dashed lines are fory =8and y = %

respectively.
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Fig. 9 Exact surface pressure perturbation (top) of nonhydrostatic OGWs forced by a circular bell-
shaped mountain, which is the sum of pew (middle) and pevanescent (D0ttom). See appendix for details.
(@) (c) and (e) are for Fr = 0.1, while (b) (d) and (f) are for Fr = 0.5. The pressure perturbations
are scaled with pN|V|h,. The axes are scaled by the mountain half width a. The black circle
indicates the contour of 0.5 ho, with ho being the maximum elevation of the mountain.
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Fig. 10 (a) Asymptotic surface pressure perturbation of nonhydrostatic vertically propagating
OGWs forced by a circular bell-shaped mountain at Fr = 0.1, which is the sum of (b) po, (¢) p1 and
(d) p2 (see appendix for details). The pressure perturbations are scaled with pN |V|h0. The axes are
scaled by the mountain half width a. The black circle indicates the contour 0.5 ho, with ho being

the maximum elevation of the mountain.
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828  Fig. 11 Same as Fig. 10 but for Fr = 0.5.
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