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An R-vine copula analysis of non-ferrous metal futures 

with application in Value-at-Risk forecasting 

 

Abstract 

We employ the R-vine copula approach to study the dependence structures between non-

ferrous metal commodity futures on the London Metal Exchange, focusing on the comparison 

before and after structural breaks. We find that the center of the dependence structures between 

non-ferrous metal futures shifts from copper to zinc after the first structural break in 2008 and 

moves back to copper after the second structural break in 2014. Additionally, we document 

that non-ferrous metals experienced an increase in the level of integration and tail dependence 

between 2008 and 2014, while this increase is shown to cease after 2014. We further develop 

an R-vine copula-based method for forecasting Value-at-Risk, and the backtesting results show 

superior forecasting accuracy over the benchmark methods. Our study is useful for market 

participants seeking to enhance their risk management for non-ferrous metals. 

Keywords: R-vine copula; dependence structure; financial crisis; Value-at-Risk 

JEL classification: C58, G01; L61 
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1. Introduction 

For most economies, non-ferrous metals are vital industrial materials. Due to the wide 

range of their indispensable industrial applications, the prices of non-ferrous metals have a 

significant influence on the extraction, processing, and manufacturing sectors (Watkins and 

McAleer, 2004). In recent years, a significant change has been witnessed in the metal markets. 

There was a surge in demand for metals in the early 2000s, mainly driven by emerging 

economies, followed by a market meltdown during the 2008 financial crisis period and a partial 

recovery following the crisis (Lyócsa et al., 2017). Distinct from other metal classes with which 

they share common demand factors, non-ferrous metals face an inelastic supply caused by 

producers’ rigid capacity constraints (Scherer and He, 2008). From an economic point of view, 

an inelastic supply combined with fluctuating demand provides persuasive reasoning as to why 

one might expect a volatile and complex dependence structure within the non-ferrous metal 

markets. 

Despite its industrial importance, the role of non-ferrous metals in asset allocation remains 

unclear due to concerns as to the effectiveness of portfolio diversification among non-ferrous 

metal futures. In other words, whether or not non-ferrous metals as a whole are qualified to be 
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regarded as a separate asset class remains controversial. Ciner et al. (2020) argue that assets 

within a separate asset class should demonstrate a high level of integration and a uniform 

response to common shocks. In view of these features, the dependence structure across non-

ferrous metals requires thorough analysis in order to uncover the time-varying patterns of 

integration among non-ferrous metals, particularly following structural breaks incurred by 

systematic shocks. Nevertheless, expanding the knowledge base on the dependence structures 

across non-ferrous metals is undoubtedly vital for hedgers who have physical exposure to these 

metals, speculators who seek to profit from statistical arbitrage strategy (e.g. pairs trading) 

across non-ferrous metal markets, as well as policy makers who aim to identify the potential 

need for regulatory changes (Todorova and Clements, 2018).  

Investment within non-ferrous metal commodity futures is being rapidly exploited by 

index funds, arbitrage traders, and Commodity Trading Advisors (CTAs). Among non-ferrous 

metal-based investment vehicles, index-tracking exchange-traded funds (ETFs) have received 

increased attention. Figure 1 shows the predominance of non-ferrous metals index-tracking 

ETFs in terms of assets under management (AUM). Specifically, index-tracking ETFs are 

designed to satisfy investors who seek broad exposure to a range of non-ferrous metals. For 
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example, the PowerShares DB Base Metals Fund (DBB), issued by Invesco, tracks an index 

composed of futures contracts on multiple non-ferrous metals (DBIQ Optimum Yield 

Industrial Metals Index). Thus far, its asset 

Figure 1: The Total AUM of non-ferrous metal-based ETFs 

Note: Index-tracking denotes the total AUM of all non-ferrous metal index-tracking ETFs, Metal-specific: Copper denotes the 

total AUM of copper ETFs, Metal-specific: Aluminum denotes the total AUM of aluminum ETFs, Metal-specific: Lead denotes 

the total AUM of lead ETFs, Metal-specific: Nickel denotes the total AUM of nickel ETFs. All data are openly available in 

ETF DATABASE at [https://etfdb.com/etfs/commodity/]. 

under management (AUM) has reached 86.41 million dollars. Most non-ferrous metal indexes 

are equal-weighted. ETFs which track these indexes can be regarded as equal-weighted 

portfolios, constituted by components of the target indexes. However, assessing an index-

tracking ETF’s Value-at-Risk (VaR) would generate bias, due to the ambiguity of the ETF’s 
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distribution. This ambiguity is rooted in the complexity of the dependence structure across each 

futures contract in the ETF’s portfolio. It is amplified by higher volatilities, non-zero skewness 

and heavy tails exhibited in commodity futures returns. (Del Brio et al., 2018).  

The question of how to efficiently measure the dependence structures between non-

ferrous metals is still under debate. To use an analogy, the use of linear correlation or 

cointegration as a measure of dependence is ultimately an “Achilles’ heel” (Liew and Wu, 

2013). To address this concern, the copula approach is widely applied in risk management and 

option pricing. Copula is a multivariate distribution function which is capable of characterizing 

non-linear dependence structures between financial assets. Copula function defines many new 

measures which also enable us to deeply exploit dependence in certain extreme scenarios, such 

as financial crises. However, the types of multivariate copula become increasingly limited as 

the data dimension expands (Brechmann and Czado, 2013). In addition, a multivariate copula 

implicitly equips each pair of marginals in a high-dimensional dataset with the same 

dependence structure, which fails to model the heterogeneity in the dependence structure across 

pairs of marginals (McNeil and Neslehova, 2009). Based on these drawbacks, Bedford and 

Cooke (2002) develop a new multivariate copula approach, the so-called vine-copulas. By 
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appealing to the pair-copula construction (PCC) method (Aas et al., 2009), the vine-copula 

approach is able to independently capture each bivariate dependence structure by constructing 

a multi-level tree. Moreover, Nagler and Czado (2016) develop a nonparametric method, which 

can overcome the “curse of dimensionality” in vine-copula parameter estimations. In this 

respect, the vine-copula approach is both more flexible and efficient in contrast to the 

multivariate copula approach. Thus, we employ the vine-copula approach in our research. 

Based on these lines of interest, it is worthwhile investigating the dependence structure 

between non-ferrous metal futures, in particular, to reveal the change that occurs following 

structural breaks. In this paper, we use the R-vine copula approach to study the dependence 

structures between major non-ferrous metal futures on the London Metal Exchange (LME), 

before and after structural breaks. We select five futures contracts traded in the LME, namely 

aluminum, copper, nickel, zinc, and lead. These metal futures have large trading volumes, and 

their underlying metals are widely used for industrial purposes. We find that the core of non-

ferrous metal futures, which is characterized by the non-ferrous metal that has the strongest 

dependence on the other four futures, shifts from copper to zinc after the first structural break 

and moves back to copper after the second structural break. The diversification benefit among 
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major non-ferrous metal futures diminishes after the first structural break and increases after 

the second structural break. Accordingly, we confirm the increasing presence of lower tail 

dependence between the five non-ferrous metal futures after the first structural break. However, 

this pattern disappears after the second structural break. Based on Nikoloulopoulos et al. (2012), 

we also develop an R-vine copula-based VaR forecasting scheme and the backtesting confirms 

its merits over other benchmark methods.  

This study contributes to the literature in three ways. First, we investigate the dependence 

structures between non-ferrous metal futures traded in the LME focusing on analyzing the 

change after structure breaks. This is an area of research which has received little attention in 

previous studies. Second, based on the R-vine copula analysis, we provide further evidence of 

a reduction in the diversification benefit among non-ferrous metals between 2008 and 2014. 

This complements the existing findings that fewer diversification benefits are detected in other 

types of markets after the financial crisis (Gerlach et al. 2006; Lu et al. 2012 and Silvennoinena 

and Thorp 2013). Third, the backtesting results for VaR forecasting show superior accuracy 

over benchmark methods before and after two structural breaks. Our study expands on the 

limited knowledge on non-metal futures, while the VaR forecasting scheme we developed, 
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combined with the statistical tests on structural breaks, may help to improve the risk 

management ability of index-tracking ETFs, CTAs, and arbitrage traders in non-ferrous metal 

markets, thus being of value to other investors, spot market participants, and market regulators. 

This paper is organized as follows: Section 2 reviews the relevant literature, Section 3 

explains the methodology, and Section 4 describes our dataset and discusses the results of the 

structural break testing and marginal distribution modelling. Section 5 analyzes the dependence 

structure results in depth. Section 6 interprets the VaR forecasting and backtesting results. 

Section 7 concludes the paper. 

 

2. Literature Review 

Many studies have focused on dependence and volatility across spot metal markets and 

futures markets. Choi and Hammoudeh (2010) confirm increasing correlations between spot 

markets of Brent oil, WTI oil, copper, gold, and silver. Specifically, Ciner (2001) finds no 

evidence of cointegration between gold and silver futures traded in Japan. Sensoy (2013) 

further documents that there is no significant impact on the volatility levels of gold and silver 

during the turbulent year of 2008. In contrast, Xu and Fung (2005) suggest a strong cross-
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market volatility spillover effect in gold, silver and platinum futures across U.S. and Japanese 

markets. A detailed review of studies on dependence and volatility across metals has been 

produced by Vigne et al. (2017)  

The copula approach has been widely applied to multiple fields in finance and 

econometrics (e.g. Embrechts 1999; Longin and Solnik 2001; Patton 2002; Patton 2006; Low 

et al. 2013). Early studies such as Junker and May (2005) and Nelsen (2006) mainly focus on 

the ability of bivariate copula in modelling two-dimensional dependence. However, the rapidly 

growing quantity of financial data has highlighted the superior ability of the vine copula 

approach in modelling high-dimensional dependence. A strand of literature aims to employ the 

vine-copula approach to explore a variety of dependence types, such as intra-market 

dependence (e.g. So and Yeung 2014; Abbara 2014; Markwat 2014), cross-market dependence 

(e.g. Ning 2010), inter- and intra-continental dependence (e.g. Huang and Ning 2017) and 

dependence within a supply chain (e.g. Pircalabu and Jung (2017) etc. Another strand of 

literature aims at identifying the time-varying pattern of the dependence via the vine-copula 

approach, particularly during a period of financial crisis (e.g. Zhang 2014; Huang and Ning 

2017). Moreover, recent studies also attempt to combine several cutting-edge methods in 
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finance and econometrics using copula to improve the performance of dependence modelling. 

For example, Mensi et al. (2017) develop a wavelet-based copula method to examine 

dependence structures between several commodity futures with implied volatility indexes. 

Tiwari et al. (2020) employ a time-varying market switching copula model to study dependence 

dynamics between gold and oil prices. 

VaR forecasting based on vine-copula has received increasing levels of attention in recent 

years. The results of previous studies that have adopted the copula approach to improve the 

accuracy of Value-at-Risk forecasting demonstrate its superior performance. (see e.g. Lu et al. 

2011; Nikoloulopoulos et al. 2012; Siburg et al. 2015; Weiss and Supper 2013; Zhang et al. 

2014 and references therein). It is noteworthy that Zhang et al. (2014) use C-vine, D-vine and 

R-vine copula to model the internal structures of 10 international stock indices and forecast 

their portfolio’s Value at Risk (VaR) and Expected Shortfall (ES). The backtesting results of 

VaR forecasting with three kinds of vine copula show sufficient accuracy. Yang et al. (2019) 

employ realized volatility to characterize dependence structure and risk spillover and 

implement a copula approach to calculate Conditional Value-at-Risk (CoVaR) and Conditional 

Expected Shortfall (CoES). Li and Wei (2018) combine the variational mode decomposition 
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(VMD) method with a copula approach to analyze conditional VaR (CoVaR) and delta CoVaR 

(ΔCoVaR) between oil and the stock market. 

 

3. Methodology 

3.1. Structural break test  

We employ a modified version of the statistical test developed by Kojadinovic et al. (2015) 

to detect structural breaks for Kendall’s 𝜏 in multivariate time series.1 𝑁 denotes the number 

of commodity futures studied and 𝑇 denotes the sample size. The log-returns of commodity 

futures constitutes an ℝ𝑁 -valued multivariate time series 𝑹 = (𝑹𝟏, 𝑹𝟐, ⋯ , 𝑹𝑻) . The 

statistical procedure builds on a general framework, whereby the null hypothesis aims to test 

whether 𝑹 has a constant conditional distribution function (CDF) 𝑭 over time. i.e. 

H0：∃ 𝑭 such that 𝑹𝟏, 𝑹𝟐, ⋯ , 𝑹𝑻 have c.d.f.  𝑭 

in contrast with the alternative hypothesis H𝐴 indicating the non-constancy of CDF. over time. 

Following Kojadinovic et al. (2015), a generalized test statistic for H0 is  

                                    𝑆𝑇 = max
2≤𝑡≤𝑇−2

|√𝑇 𝛾(𝑡, 𝑇) (𝑈𝑚,1:𝑡(𝑹) − 𝑈𝑚,𝑡:𝑇(𝑹))|                                  (1) 

                         
1
 The original test of Kojadinovic et al. (2015) is designed to detect structural breaks in Spearman’s rho. 
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where 𝛾(𝑡, 𝑇) =
𝑡(𝑇−𝑡)

𝑇
 and 𝑈𝑚,𝑡1:𝑡2

(𝑹) =
2 ∑ 𝑚(𝑹𝒊,𝑹𝒋)𝑡1≤𝑖≤𝑗≤𝑡2

(𝑡2−𝑡1+1)(𝑡2−𝑡1)
 for  1 ≤  𝑡1 ≤ 𝑡2 ≤ 𝑇. 

We emphasize that the change in the joint distribution function 𝑭 may be invoked by the 

change in the moments of 𝑭, such as change in the mean and variance, as well as by the change 

in the multidimensional dependence measured by Kendall’s 𝜏. According to Bücher et al. 

(2016), we can further detect whether the change of 𝑭 is incurred by changes in the moments 

or structural breaks in Kendall’s 𝜏 via the appropriate selection of 𝑚(𝑹𝒊, 𝑹𝒋). Thus, for any 

1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑇, we choose 𝑚(𝑹𝒊, 𝑹𝒋) = I(𝑹𝒊 > 𝑹𝒋) + I(𝑹𝒊 < 𝑹𝒋)  to allow tests for H0 

particularly sensitive to structural breaks in the Kendall’s 𝜏 of 𝑹. Under the null hypothesis 

H0 and some regular conditions (see Bücher et al. 2016 for details), we have 

                                                    𝑆𝑇

𝑑
→ 2𝜎𝑚1

sup
𝑠∈[0,1]

|𝓑(𝑠) − 𝑠𝓑(1)|                                                  (2) 

where 𝓑(∙) denotes a Brownian motion and the long run variance  

                                         𝜎𝑚1
2 = Ε(𝑚1(𝑹𝟏)2) + 2 ∑ Ε[𝑚1(𝑹𝟏)𝑚1(𝑹𝒊)]

∞

𝑖=2

                                    (3) 

with 𝑚1(𝒙) = Ε[𝑚(𝒙, 𝑹̂𝟏) − 𝑚(𝑹̂𝟏, 𝑹̃𝟏)]  for any 𝒙 ∈ ℝ𝑁  and 𝑹̂𝟏, 𝑹̃𝟏  indicating two 

independent random vectors that have the same distribution as 𝑹𝟏. 
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3.2. Marginal distribution modelling 

It is well known that financial time series typically exhibits autocorrelations and 

heteroscedasticity (Francq and Zakoian, 2019). As the copula analysis requires i.i.d. samples, 

a common choice is to apply an ARMA-GARCH model to remove autocorrelations and 

heteroscedasticity in financial time series to facilitate copula analysis (see Lu et al. (2014) and 

Apergis et al. (2020) and references therein). Moreover, Bollerslev (1987) emphasizes that 

leptokurtosis in financial time series could be more effectively captured by fitting the GARCH 

errors with Student’s t innovations. Therefore, we employ the GARCH (1,1) model with 

Student’s t distributed innovations for the marginal model2: 

 

        𝑅i,t = 𝜇𝑖 + 𝜎𝑖,𝑡𝜀𝑖,𝑡                                                                                                 (4)                                       

                      𝜎𝑖,𝑡
2 = 𝜔𝑖 + 𝛼𝑖𝑅𝑖,𝑡−1 + 𝛽𝑖𝜎𝑖,𝑡−1

2            𝑖 = 1, … , 𝑁,       𝑡 = 1, … , 𝑇                         (5)    

 

where 𝑅i,t denotes the log-return of futures contract 𝑖 in time 𝑡, 𝑁 denotes the number of 

commodity futures studied, 𝑇  denotes the sample size, and  𝜀𝑖,𝑡  follows Student’s t 

distribution with 𝜈𝑖 degree of freedom.  

                         
2  GARCH (1,1) model is an adequate model for our data according to the evidence from the autocorrelation and 

heteroscedasticity tests. Higher orders of both ARMA and GARCH models have experimented and there is no significant 

difference in the results. 
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After marginal distribution modelling, we need to re-examine the autocorrelations, 

heteroscedasticity, as well as the leverage effect to verify the existence of (approximately) i.i.d. 

standardized residuals, which are essential for the validity of copula analysis. The leverage 

effect is proposed to account for the asymmetry response of the volatility in relation to 

innovations in financial time series. Since Francq and Zakoian (2019) find the joint existence 

of heteroscedasticity, autocorrelation, and leverage effect in the sequence of the financial 

returns, the residuals derived from the marginal model are simultaneously verified by the 

Ljung-Box test (Ljung and Box 1978), the Lagrange Multiplier (LM) test (Engle 1982) and the 

Sign Bias test (Engle and Victor, 1993) which detect autocorrelations, heteroscedasticity and 

leverage effect, respectively.  

 

3.3. Vine-copula approach 

A copula is a multidimensional joint distribution function whose marginal is uniformly 

distributed on [0,1]. Sklar’s theorem endows a copula with the capacity to capture dependence 

structures. However, a single copula function can only characterize the dependence structure 

for two random variables. When the dimension is higher than two, a multivariate copula can 
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be used, however it forces the same dependence structure for each pair of random variables. 

This defect greatly restricts the ability of multivariate copula to capture multidimensional 

dependence structures.  

In principle, this approach decomposes a multivariate density function into the product of 

the marginal densities and a series of unconditional or conditional pair-copulas. Furthermore, 

various kinds of pair-copula families can be chosen to model the dependence of each pair of 

random variables. The construction of vine-copula models is diverse due to the different types 

of connections between nodes and edges and the different progressive relationships of tree 

structures. Bedford and Cooke (2002) proposed a graphical construction approach: the regular 

vine (R-vine). In this approach, the tree structure of each level is different. The nodes in each 

tree are connected through the edges, and each node comes from a specific edge in the previous 

tree. An edge only connects two nodes in each tree if they share a common node in the previous 

tree (proximity condition). A pair-copula characterizes paired random variables that 

correspond to each edge. 

Using the vine-copula approach to decompose n-dimensional random vectors  𝑋𝑛 =

(𝑋1, 𝑋2, … , 𝑋𝑛) will generate 𝑛 − 1 tree structures and 𝑛 × (𝑛 − 1)  pairs of random 
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variables that need to be characterized by pair-copula functions. If 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) denotes 

the joint density function of this random vector, the R-vine decomposition of the joint density 

function is as follows: 

 

                    𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = ∏ 𝑓(𝑥𝑖)

𝑛

𝑖=1

∏ ∏ 𝑐𝑗𝑒,𝑘𝑒|𝑑𝑒

𝑒∈𝐸𝑖

𝑛−1

𝑖=1

{𝐹(𝑗𝑒|𝑑𝑒), 𝐹(𝑘𝑒|𝑑𝑒); 𝑑𝑒}               (6) 

 

where 𝑓(𝑥𝑘), 𝑘 = 1,2, … , 𝑛 denotes the marginal density of 𝑋𝑛,  𝑐𝑗𝑒,𝑘𝑒|𝑑𝑒
(∙,∙) represents the 

pair-copula density corresponding to edge 𝑒 which connects nodes 𝑗 and 𝑘 in the 𝑖𝑡ℎ tree, 

and 𝐸𝑖  is a set that consists of all edges in the 𝑖th tree. 𝑑𝑒 = A𝑗 ∩ 𝐴𝑘, where A𝑗 and 𝐴𝑘are 

two sets of nodes in the first tree that are reachable by nodes 𝑗 and 𝑘, 𝑗𝑒 = A𝑗 − 𝑑𝑒，𝑘𝑒 =

A𝑘 − 𝑑𝑒. The second product symbol takes all 𝑛 − 1 trees, while the third product symbol 

takes all 𝑛 − 𝑗 pair-copula functions in the 𝑖𝑡ℎ tree. 

Each bivariate copula in vine-copula depends on two conditional cumulative distribution 

functions (CDF):  𝐹(𝑗𝑒|𝑑𝑒), 𝐹(𝑘𝑒|𝑑𝑒)  and conditioning variables in  𝑑𝑒 . The number of 

variables in 𝑑𝑒 increases when the tree level increases, which makes each bivariate copula a 

|𝑑𝑒| + 2 dimensional function to be estimated. Haff et al. (2010) suggest that it may still be 

possible to estimate a bivariate copula that depends additionally on the single conditioning 
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variable, using some sort of smoothing technique. However, at higher levels, this becomes 

difficult in a parametric setting and impossible in a non-parametric one. To make fast, flexible, 

and robust inferences, one must assume that each bivariate copula in a vine copula construction 

is independent of the conditioning variables. i.e. 

 

                       𝑐𝑗𝑒,𝑘𝑒|𝑑𝑒
{𝐹(𝑗𝑒|𝑑𝑒), 𝐹(𝑘𝑒|𝑑𝑒); 𝑑𝑒} = 𝑐𝑗𝑒,𝑘𝑒|𝑑𝑒

{𝐹(𝑗𝑒|𝑑𝑒), 𝐹(𝑘𝑒|𝑑𝑒)}                       (7) 

 

This is the simplifying assumption. Following Kurz and Spanhel (2017), we implement a 

constant conditional correlation (CCC) test to check whether the simplifying assumption can 

be relaxed in our data Technical details relating to the test are provided in Appendix A. 

 

3.4. Selection and estimation for R-vine copula 

The following three steps are necessary for fitting an R-vine copula specification to a 

given high-dimensional dataset: 

    (1)  Select a specific R-vine copula structure.  

(2)  Select the appropriate pair-copula family for each pair in the selected R-vine-copula 

structure.  
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(3)  Estimate the parameter(s) for each copula. 

The ideal method is to repeat steps (2) and (3) for every possible R-vine copula structure. 

However, 𝑛-dimensional random variables may have (𝑛
2

) × (𝑛 − 2)! × 2(𝑛−2
2 ) possible R-

vine copula structures (Morales-Napoles et al., 2010). Compared to the number of dimensions, 

the rapidly expanding number of R-vine copula structures makes the ideal method inefficient. 

We therefore use a sequential estimation method proposed by Dißmann et al. (2013). 

Dißmann et al. (2013) demonstrate that the copula families specified in the first tree of the R-

vine often have the greatest influence on the model fit. Joe et al. (2010) also stated that, in order 

for a vine-copula to show dependency for all bivariate margins, it is sufficient for the bivariate 

copulas in the first tree to display a dependence. Thus, the stronger the dependence that the 

first tree structure can capture, the more independent the transform variables in the subsequent 

tree structures are. Whether the first tree structure can fully capture the strongest dependence 

structure between variables is of vital importance. Based on these arguments, this method 

should be conducted from the first tree structure and steps (1), (2) and (3) repeated for each 

tree structure sequentially. Based on certain dependence measures, this method employs the 

maximum spanning tree (MST) algorithm as the selection criteria for the first tree and 
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subsequent tree structures. In other words, the tree structure that solves the following 

optimization problem is selected: 

 

                                                            max
𝑡𝑖∈𝑇𝑖

∑ |𝛿𝑖,j|     ,

𝑒𝑑𝑔𝑒𝑠 𝑒={𝑖,𝑗}𝑖𝑛
 𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔 𝑡𝑟𝑒𝑒 𝑡𝑖

i ≠ j                                            (8) 

   

where 𝑇𝑖 is a collection of all possible tree structures in the 𝑖𝑡ℎ tree, 𝑡𝑖 denotes a specific  

𝑖𝑡ℎ  tree structure, 𝑒 is an arbitrary edge in tree 𝑡𝑖 , and 𝛿𝑖,𝑗  is the dependence measure’s 

value between a pair of random variables corresponding to edge 𝑒. In this study, we use the 

Kendall′s τ as dependence measure 𝛿i,j in the MST algorithm. 

After the tree structure selection, we need to select an appropriate pair-copula family for 

each pair of random variables in this tree. Two approaches are widely used as selection criteria 

for pair-copulas: the copula goodness-of-fit test and the Akaike Information Criterion (AIC). 

Manner (2007) finds that, compared with the copula goodness-of-fit test, the AIC are more 

reliable in pair-copula selection. Therefore, we use the AIC as the pair-copula selection 

criterion. 

Finally, we apply the maximum likelihood estimation to estimate the parameters of each 

specified pair-copula in the corresponding tree. After parameter estimation, the transformed 
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variables used as input parameters for the next trees are obtained using the ℎ(·) function (Aas 

et al., 2009; Dißmann et al., 2013). The tree-wise selection and estimation procedure described 

here give sequential estimates of pair-copula parameters, which are quite quickly obtained and 

can be used as starting values for a full maximum likelihood estimation (Aas et al. 2009; Hobæk 

and Haff 2010). Since most of the pair-copula families can model the independence well, this 

method also reduces the difficulty of fitting high order tree structures. In addition to this, the 

sequential estimation can minimize rounding errors caused by high-order tree structures 

(Brechmann and Czado 2013). Our implementation is based on R packages “VineCopula” 

(Nagler et al., 2019) and “pacotest” (Kurz, 2019). 

 

3.5. Value-at-risk forecasting  

In order to shed light on the risk management of investors in non-ferrous metal markets, 

we employ an out-of-sample VaR forecasting procedure developed by Nikoloulopoulos et al. 

(2012). Recall that 𝑁 is the number of metal commodity futures we considered, 𝑇 is the 

sample size, and 𝐾 is the repetition time of simulation. The procedure can be summarized in 

the following steps: 
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(1)  We use the first 60% of the sample as the in-sample period3. For each 𝑖 = 1,2, … , 𝑁, 

the first 60% of the return sequence, i.e. {𝑅1
(𝑖)

, 𝑅2
(𝑖)

, … , 𝑅𝜏
(𝑖)

}, 𝜏 = 0.6 × 𝑇, is filtered by the 

marginal model to obtain approximately 𝑖. 𝑖. 𝑑. residual sequences: {𝜀1
(𝑖)

, 𝜀2
(𝑖)

, … , 𝜀𝜏
(𝑖)

}. 

(2)  For each 𝑖 = 1,2, … , 𝑁, convert standardized residual sequences into unit intervals by 

the empirical Probability Integral Transform (PIT) method. Denote the [0,1] variables by 

{𝑢𝑡
(𝑖)

, 1 ≤ 𝑡 ≤ 𝜏} , 𝑖 = 1,2, … , 𝑁. 

(3)  Use the R-vine copula approach to model high dimensional dependencies across 

different scaled sequences.  

(4)  For each 𝑖 = 1,2, … , 𝑁, {𝑢1,𝜏+1
(𝑖)

, 𝑢2,𝜏+1
(𝑖)

, … , 𝑢𝐾,𝜏+1
(𝑖)

} is obtained from simulating 

observations 𝐾 times from the R-vine copula specification in step (3) using the algorithms 

of Aas et al (2009).  

   (5)  For each 𝑖 = 1,2, … , 𝑁, convert {𝑢𝑗,𝜏+1
(𝑖)

, 1 ≤ 𝑗 ≤ 𝐾} to {𝜀𝑗,𝜏+1
(𝑖)

, 1 ≤ 𝑗 ≤ 𝐾}, use the 

quantile functions of the Student’s t distribution. 

(6)  For each 𝑖 = 1,2, … , 𝑁, forecast one step ahead 𝜎̂𝜏+1
(𝑖)

 and 𝜇̂𝜏+1
(𝑖)

 from the marginal 

model specification in step (1), then compute {𝑅𝑗,𝜏+1
(𝑖)

, 1 ≤ j ≤ K} using the following equation: 

 

                         
3
 Another proportion that yields similar results has also been tried. 
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                                     𝑅𝑗,𝜏+1
(𝑖)

= 𝜇̂𝜏+1
(𝑖)

+ 𝜎̂𝜏+1
(𝑖)

∙ 𝜀𝑗,𝜏+1
(𝑖)

 , 1 ≤ 𝑗 ≤ 𝐾,   1 ≤ 𝑖 ≤ 𝑁                     (9) 

 

(7)  For each 𝑖 = 1,2, … , 𝑁 , construct an equal-weighted portfolio and compute the 

portfolio returns according to the following equation: 

 

                                           𝑅𝑗,𝜏+1 =
1

𝑁
∑ 𝑅𝑗,𝜏+1

(𝑖)

𝑁

𝑖=1

,         1 ≤ 𝑗 ≤ 𝐾,   1 ≤ 𝑖 ≤ 𝑁                   (10) 

 

(8)  For 𝑞 ∈ {0.01, 0.05, 0.1} , calculate the 𝑞𝑡ℎ  quantile 𝑅𝜏+1(𝑞)  for {𝑅𝑗,𝜏+1, 1 ≤

j ≤ K}. Then 𝑉𝑎𝑅𝜏+1
𝑞 = −𝑅𝜏+1(𝑞) is the Value-at-Risk. 

(9)  We use a rolling window scheme (i.e. the length of the in-sample period is fixed to 

0.6 × 𝑇, the start and the end of the in-sample period moves 1 step ahead simultaneously) and 

repeat Step (1)-(8) to produce a 1-step-ahead forecast for each time point in the out-of-sample 

data. 

 

3.6. Value-at-Risk Backtesting 

Let {𝑅𝑡, 𝜏 + 1 ≤ 𝑡 ≤ 𝑇} denote the realized returns in the VaR forecasting period, where 

𝜏 and 𝑇 are defined in Section 3.4. For any 𝜏 + 1 ≤ 𝑡 ≤ 𝑇, define an indicator function: 

 

                                                          𝐼𝑡 = {
  1,       𝑅𝑡 < −𝑉𝑎𝑅𝑡

𝑞

  0,       𝑅𝑡 ≥ −𝑉𝑎𝑅𝑡
𝑞                                                       (11) 
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𝐼𝑡 = 1 means the occurrence of a violation. In theory, 𝑃(𝐼𝑡 = 1) = 𝑃(𝑅𝑡 < −𝑉𝑎𝑅𝑡
𝑞) = 𝑞 

and 𝑃(𝐼𝑡 = 0) = 𝑃( 𝑅𝑡 ≥ −𝑉𝑎𝑅𝑡
𝑞) = 1 − 𝑞 , therefore 𝑞  also represents the theoretical 

violation rate, which is defined in step (8) in Section 3.4. Moreover, the partial sum 𝑍𝑛 =

∑ 𝐼𝑡
𝑛
𝑡=𝜏+1  is binomially distributed with 𝑃(𝑍𝑛 = 𝑘) = 𝐶𝑛

𝑘𝑞𝑘(1 − 𝑞)𝑛−𝜏−𝑘  where 1 ≤ 𝑘 ≤

𝑛, 𝜏 + 1 ≤ 𝑛 ≤ 𝑇.  

We employ two types of VaR backtesting methods: the unconditional coverage test (UC 

test) and the conditional coverage test (CC test) proposed by Christoffersen (1998) and 

Christoffersen and Pelletier (2004), respectively, to evaluate the out-of-sample forecast 

accuracy of our VaR forecasting scheme.  

The unconditional coverage test is the log-likelihood ratio test with the following test 

statistic: 

                             𝐿𝑅𝑢𝑐 = −2 log
𝑃(𝑍𝑇 = 𝑀; 𝑞)

𝑃(𝑍𝑇 = 𝑀; 𝑞𝑒)
= −2 log

𝑞𝑀(1 − 𝑞)𝑇−𝜏−𝑀

𝑞𝑒
𝑀(1 − 𝑞𝑒)𝑇−𝜏−𝑀

                     (12) 

 

where 𝑀 is the number of violations in 𝑇 − 𝜏 samples and 𝑞𝑒 is the empirical violation rate, 

i.e. 𝑞𝑒 = 𝑀/(𝑇 − 𝜏). The unconditional coverage test only considers the number of violations 
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in the test sequence, whereas the conditional coverage test accounts for both the number and 

order of violations in the test sequence. 

    The conditional coverage test is also the log-likelihood ratio test, and the test statistic 

𝐿𝑅𝑐𝑐 has the following form: 

𝐿𝑅𝑐𝑐 = −2 log
𝑃(𝑍𝑇 = 𝑀; 𝑞)

𝑃(𝑍𝑇 = 𝑛01 + 𝑛11; 𝑞01, 𝑞11)
 

                                                       = −2 log
𝑞𝑀(1 − 𝑞)𝑇−𝜏−𝑀

𝑞01
𝑛01(1 − 𝑞01)𝑛00𝑞11

𝑛11(1 − 𝑞11)𝑛10
                 (13) 

 

where 𝑞𝑖𝑗 = 𝑃(𝐼𝑡 = 𝑗|𝐼𝑡−1 = 𝑖), 𝑛𝑖𝑗 = (𝑇 − 𝜏) 𝑞𝑖𝑗 , 𝑖, 𝑗 = 0,1, 𝑀 = 𝑛01 + 𝑛11 + 𝑛00 + 𝑛10 

is the number of violations in 𝑇 − 𝜏 samples, and 𝑞 is the theoretical violation rate. Under 

the null hypothesis, the limiting distribution of 𝐿𝑅𝑐𝑐 and  𝐿𝑅𝑢𝑐 are given below: 

 

                                              𝐿𝑅𝑢𝑐

𝑑
→ 𝜒1

2    𝑎𝑛𝑑    𝐿𝑅𝑐𝑐

𝑑
→ 𝜒2

2  ,           𝑛 → ∞                                (14) 

 

The null hypothesis is that the test sequence shows serial independence with violation rate 𝑞. 

Since the conditional coverage test is a mixed statistical test, it is designed to jointly test both 

the exceedance and the independence in an observed sequence. 

 

4. Data and preliminary results 

4.1. Data and Results for structural break testing 
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The literature documenting evidence of the weekend effect in various commodity spot 

and futures markets is extensive (e.g. Gay and Kim, 1987; Chang and Kim, 1988; Singal and 

Tayal, 2019). The weekend effect is defined as Friday’s return minus the following Monday’s 

return (Chen and Singal, 2003), which can add noise to the daily return of commodity futures 

and reduce the effectiveness of marginal distribution modelling. We therefore use the log-

return of weekly settlement prices4 of five major non-ferrous metal commodity futures, namely 

aluminum, copper, nickel, zinc and lead in the London Metal Exchange (LME). These metal 

futures have large trading volumes, and their underlying metal commodities are widely used 

for industrial purposes. For example, aluminum is broadly used in transportation and packaging 

due to its low density, and copper is mainly used to produce electrical wire and cable due to its 

high conductivity. LME offers a sizable platform where worldwide participants and investors, 

involved in the non-ferrous metal markets, can hedge against the risk arising from price 

fluctuation or seek to broaden their exposure to non-ferrous metals (Watkins and McAleer 

2006). LME is also the world’s largest international trading center for non-ferrous metals. For 

instance, approximately 95% of the total world trade in copper futures occurs through the LME. 

                         
4
 We do not use daily data because it tends to be much noisier and contains the weekend effect. 
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Our data was downloaded from DataStream, and the sample period starts from January 1, 

2002 to December 27, 2019.5 The period covers the global financial crisis in 2008 and the 

European sovereign debt crisis in 2010, which may incur multiple structural breaks in the 

dependence structure. Following Inclan and George (1994), we utilize a binary segmentation 

scheme based on the structural break test described in Section 3.1 to iteratively detect multiple 

change points for Kendall’s tau in our data. The test results suggest that the sample has two 

structural breaks. The first structural break occurs at August 22, 2008 and the second structural 

break occurs at January 31, 2014. The identification of structural breaks enables us to study the 

dependence structures between the five major non-ferrous metal futures, in particular, the 

variation in the dependence before and after structure breaks. Thus, we separate the sample 

into three periods:  

 Period 1 is from January 1, 2002, to August 22, 2008, and represents the period before 

the first structural break.  

 Period 2 covers from August 22, 2008, to January 31, 2014, and represents the period 

between the first structural break and the second structural break.  

 Period 3 spans from January 31, 2014, to December 31, 2019, and represents the period 

after the second structural break.  

                         
5
 We choose not to include the samples in 2020 due to the significant impact of COVID-19, which we will investigate in the 

future.  
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4.2. Descriptive statistics and marginal distribution modelling 

Table 1 summarizes the descriptive statistics for the weekly log-returns in the three 

periods. The log-returns of five non-ferrous metal futures present leptokurtosis in all three 

periods. Correspondingly, in most cases, the Jarque-Bera test for each non-ferrous metal 

futures indicates non-normality. The extreme values of the log-returns of non-ferrous metal 

futures in Period 2 are generally greater than those in Period 1. However, the extreme values 

in Period 3 decrease in contrast to those in Period 2. This evidence tentatively implies that the 

extent of the impact of the "tail events" on the European non-ferrous metal increases after the 

first structural break and decreases after the second structural break. 

The residuals derive from the GARCH (1,1) model, which we chose to fit with marginal 

distributions, have passed all diagnostic checks, including the Lagrange Multiplier test, the 

Ljung-Box test and the Sign Bias test in all three periods. This indicates that we have 

successfully obtained approximately i.i.d. residuals and there is no need to further employ 

asymmetrical GARCH models to improve the marginal distribution modelling. We also test 

the Goodness-of-Fit of Student’s t distribution to the innovations of marginals. We find that 
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the Student’s t distributed model is a suitable model for marginal distributions. One can refer 

to Appendix D for detailed results and analysis on marginal distribution modelling. 

Table 1. Descriptive statistics for weekly log-returns of five non-ferrous metal futures 

 

Period 1: Jan, 2002-Aug, 2008 

  Num. Min Max Mean Std.Dev. Skew Kurtosis p-value   

Al 345 -13.48 7.22 0.22 2.9 -0.56 1.62 0.0000 

CU 345 -13.89 10.39 0.47 3.62 -0.46 1.06 0.0000 

NIC 345 -19.97 13.82 0.34 5.23 -0.23 0.43 0.0526 

ZINC 345 -17.27 16.09 0.22 4.62 -0.19 1.2 0.0000 

LEAD 345 -16.95 23.35 0.4 5.08 -0.29 2.15 0.0000 
          

Period 2: Aug, 2008-Jan, 2014 

  Num. Min Max Mean Std.Dev. Skew Kurtosis p-value   

Al 283 -16.49 9.57 -0.15 3.58 -0.33 1.52 0.0000 

CU 283 -24.45 13.48 0.00 4.59 -1.22 5.74 0.0000 

NIC 283 -22.31 32.01 -0.09 5.68 0.34 4.48 0.0000 

ZINC 283 -17.75 11.46 0.08 4.61 -0.38 1.15 0.0000 

LEAD 283 -19.09 22.34 0.09 5.41 -0.04 1.59 0.0000 
          

Period 3: Jan, 2014-Dec, 2019 

  Num. Min Max Mean Std.Dev. Skew Kurtosis p-value   

Al 308 -10.96 11.89 0.01 2.49 0.39 2.26 0.0000 

CU 308 -6.28 10.61 -0.05 2.51 0.49 0.91 0.0000 

NIC 308 -10.6 13.54 0.00 3.92 0.28 0.04 0.1213 

ZINC 308 -7.16 10.47 0.05 3.03 0.21 0.07 0.3006 

LEAD 308 -10.42 11.73 -0.04 3.00 0.35 1.57 0.0000 

Note: AL: Aluminum, CU: Copper, NIC: Nickel, ZINC: Zinc, LEAD: Lead. p-value denotes the p-value of the Jarque-
Bera test. Num. is the number of observations. Min /Max denote the minimum or maximum value over the sample period. 
Mean is the mean value over the sample period. Std.Dev. represents standard deviation of the sample. Skew/ Kurtosis 
denote skewness or leptokurtosis of the sample respectively. 
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5. Dependence structure results  

In this section, we employ the R-vine copula to investigate the dependence structure 

between the non-ferrous metal futures we have considered in this paper, with a focus on 

studying the change after the structural breaks. 

Note that the simplifying assumption can overcome the curse of dimensionality in vine-

copula’s parameter estimation and can make inferences fast, flexible, and robust (Haff et al. 

2010). Before analyzing the dependence structure, we employ the CCC test to examine whether 

the simplifying assumption holds for each conditional bivariate copula in the vine copula. The 

results of the CCC test show that the simplifying assumption cannot be rejected in all three 

high-level tree structures at the 5% significance level in the three periods.  

Dißmann et al. (2013) highlights that most dependencies between marginal variables are 

specified in the first tree of R-vine. In light of this salient feature, the first tree structure of the 

R-vine copula in Period 1, Period 2 and Period 3 are displayed in Figures 2, Figure 3, and 

Figure 4, respectively. In the following section, we focus on discussing and comparing the 

dependence structure in the first tree of R-vine, before and after the structural breaks. The 

remaining tree structures, modeled by the R-vine copula in three periods, are listed in Table 2. 
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5.1. The dependence structure before the first structural break 

As shown in Figure 2, we can observe that there are three of four edges connected to 

copper in the first tree, while copper is not directly connected with lead. Thus, copper has the 

strongest impact on the dependence structure of the five futures before the first structural break, 

which can be regarded as the core of metal futures in their dependence structure. The indices 

of tail dependence between each pair of non-ferrous metals is equal to 0, indicating no tail 

dependence between copper and aluminum, copper and nickel, copper and zinc, or zinc and 

lead before August 2008.  

 

5.2. The dependence structure between the first and second structural breaks 

As shown in Figure 3, the dependence structures between each pair of non-ferrous metals 

in Period 2 are mostly modeled by sBB1, except for the pair of copper and nickel which is 

captured by sBB7 copula. Each pair of non-ferrous metals exhibits strong and asymmetrical 

lower tail dependence, except for the pair of zinc and copper. Zinc is not directly connected 

with nickel, while nickel has a connection with copper. There are three of four edges connected 

to zinc in the first tree shown in Figure 3. Thus, the core of metal futures in the dependence 
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structure becomes zinc in Period 2, which has the strongest impact on the dependence structure 

between the first and second structural break. 

 

Figure 2: The first tree structure of the R-vine copula in Period 1 

 

 
Note: Copula denotes the pair-copula family between the corresponding two futures, Kendall’s tau denotes the value of the 
pair-copula’s Kendall’s tau. UTD is the value of upper tail dependence coefficient. LTD is the value of upper tail dependence 
coefficient. The core of metal futures is defined to be one of the five non-ferrous metal commodity futures that has the 
strongest dependence with the remaining four. 

 

Figure 3: The first tree structure of the R-vine copula in Period 2 
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Note: Copula denotes the pair-copula family between the corresponding two futures, Kendall’s tau denotes the value of the 
pair-copula’s Kendall’s tau. UTD is the value of upper tail dependence coefficient. LTD is the value of upper tail dependence 
coefficient. The core of metal futures is defined to be one of the five non-ferrous metal commodity futures that has the strongest 
dependence with the remaining four.  
 
 

5.3. The dependence structure after the second structural break 

As shown in Figure 4, there is no tail dependence in most pairs of non-ferrous metals in 

Period 3, except for the pair of lead and zinc. The Student’s t copula between lead and zinc 

indicates symmetrical tail dependence. Similar to Period 1, there are three out of four edges 

connected to copper in the first tree. Thus, the core of metal futures in the dependence structure 
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moves back to copper in Period 3, which has the strongest impact on the dependence structure 

after the second structural break. 

 

Figure 4: The first tree structure of the R-vine copula in Period 3 

 

 

Note: Copula denotes the pair-copula family between the corresponding two futures, Kendall’s tau denotes the value of the 
pair-copula’s Kendall’s tau. UTD is the value of upper tail dependence coefficient. LTD is the value of upper tail dependence 
coefficient. The core of metal futures is defined to be one of the five non-ferrous metal commodity futures that has the strongest 
dependence with the remaining four.  

 

5.4. Comparison of dependence structures before and after structural breaks 

By analyzing the first-level tree structure formed by the five non-ferrous metal futures 

before and after the structural breaks, we find that the “general shape” in the first level tree 
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structure remains unchanged after two structural breaks. In all three periods, the first level tree 

structure has four edges. Three of them connect directly to the core of non-ferrous metal futures, 

while the last one combines two non-ferrous metal futures — however, the core metal in the 

dependence structure changes after the structural breaks. Before the first structural break, 

copper is in the center of the dependence structure. After the first structural break, zinc take the 

place of copper and becomes the center of non-ferrous metal futures in the dependence 

structure. However, after the second structural break, copper moves back to the center of 

dependence structure between non-ferrous metal futures. 

In Table 2, the range of Kendall′s τ in the first tree changes from [0.35, 0.5] to [0.45, 

0.57] after the first structural break. The increase in value means that the concordance between 

the five non-ferrous metal futures becomes stronger, which implies the disappearance of the 

diversification benefit among the major non-ferrous metal futures. The indices of upper and 

lower tail dependence in the first tree structure are uniformly equal to 0 before the first 

structural break. However, the range of the indices of upper and lower tail dependence in the 

first tree structure drastically increases to [0.17, 0.32] and [0.47,0.62], respectively, after the 
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first structural break. The overall degree of asymmetrical lower tail dependence between the 

five non-ferrous metal futures becomes higher after the first structural break. 

After the second structural break, the range of Kendall′s τ in the first tree shrinks to [0.31, 

0.40], implying a recovery in the diversification benefit among the major non-ferrous metal 

futures. The indices of upper and lower tail dependence in the first tree structure decrease to 

0，except between zinc and lead, which are equal to 0.33. The strong asymmetrical lower tail 

dependence between the five non-ferrous metal futures disappears after the second structural 

break. 

As shown in Figure 2 and Table 2, before the first structural break, the dependence 

structure between the five non-ferrous metal futures in the first tree of R-vine is captured by 

two types of bivariate copulas: Gaussian and sBB8. Note that Gaussian and sBB8 copula 

cannot measure tail dependence. We conclude that the overall extent of tail dependence is weak 

before the first structural break. However, after the first structural break, the dependence 

structure between the five non-ferrous metal futures in the first tree of R-vine is captured by 

sBB7 and sBB1 copulas. As shown in Figure 3, three of the total four edges are modeled by 

the sBB1 copulas; the remaining one edge is modeled by sBB7 copula. Note that the sBB1 
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copula has strong asymmetrical lower tail dependence. Therefore, we confirm the increasing 

presence of lower tail dependence between the five non-ferrous metal futures in the period 

between the first and second structural break. After the second structural break, the dependence 

structure between the five non-ferrous metal futures in the first tree of R-vine is captured by 

three types of bivariate copulas: Student’s t, Gaussian and Frank. Among these types of 

bivariate copula, only Student’s t has the ability to capture symmetrical tail dependence. Thus, 

we conclude that the prominent pattern of asymmetrical lower tail dependence between non-

ferrous metal futures disappears after the second structural break, while lead and zinc exhibit 

symmetrical tail dependence.   
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Table 2. The R-vine copula in Period 1, Period 2 and Period 3 

  Period 1: Jan, 2002- Aug, 2008  Period 2: Aug, 2008- Jan, 2014  Period 3: Jan, 2014- Dec, 2019 

Tree1

: 

Margins 2,3 2,1 4,2 5,4 
 

4,1 2,3 4,2 5,4  2,3 2,1 4,2 5,4 

 Family Gaussian sBB8 sBB8 sBB8  sBB1 sBB7 sBB1 sBB1  Frank Gaussian Gaussian Student’s t 

 τ 0.35 0.48 0.50 0.44  0.48 0.45 0.54 0.57  0.34 0.31 0.40 0.41 

 𝜆𝑈 0.00 0.00 0.00 0.00  0.32 0.40 0.50 0.17  0.00 0.00 0.00 0.33 

 𝜆𝐿 0.00 0.00 0.00 0.00  0.47 0.55 0.48 0.62  0.00 0.00 0.00 0.33 

Tree2

: 

Margins 1,3|2 4,1|2 5,2|4 
  

2,1|4 4,3|2 5,2|4 
 

 1,3|2 4,1|2 5,2|4  

 Family sBB7 Gaussian Gaussian   Gaussian sGumbel sBB7 
 

 Gaussian Frank Gaussian  

 τ 0.16 0.18 0.17   0.21 0.19 0.17   0.16 0.18 0.09  

 𝜆𝑈 0.02 0.00 0.00   0.00 0.00 0.02 
 

 0.00 0.00 0.00  

 𝜆𝐿 0.21 0.00 0.00   0.00 0.24 0.23   0.00 0.00 0.00  

Tree3

: 

Margins 4,3|1,2 5,1|4,2 
   

3,1|2,4 5,3|4,2 
  

 4,3|1,2 5,1|4,2   

 Family BB7 sClayton    Gaussian Tawn 
  

 Clayton Independent   

 τ 0.08 0.08    0.14 0.09 
  

 0.06 0.00   

 𝜆𝑈 0.01 0.02    0.00 0.11 
  

 0.00 0.00   

 𝜆𝐿 0.01 0.00    0.00 0.00    0.01 0.00   

Tree4

: 

Margins 5,3|4,1,2 
    

5,1|3,2,44 
   

 5,3|4,1,2    

 Family sClayton     Independent 
   

 Independent    

 τ 0.04     0.00 
   

 0.00    

 𝜆𝑈 0.00     0.00 
   

 0.00    

 𝜆𝐿 0.00     0.00 
   

 0.00    

                Note :1: Aluminum 2: Copper 3: Nickel 4: Zinc 5: Lead, Student’s t: Student-t copula, Gaussian: Gaussian copula, Frank: Frank copula, sClayton: survival Clayton copula, sBB1: survival BB1 copula, sBB8:survival BB8 copula, 
sBB7:survival BB7 copula sGumbel: survival Gumbel copula, sClayton: survival Clayton copula, Tawn:Tawn copula, Independent: independent copula, τ: Kendall’s tau, 𝜆𝑈: upper tail dependence coefficient, 𝜆𝐿: lower tail 
dependence coefficient. 𝜃1、𝜃1 denote the parameters of corresponding copula function. Margins represents a bivariate futures pairs among five metal commodity futures. Family shows bivariate copula fit between margins. 
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5.4. Discussion of results 

It can be observed that copper and zinc dominate the dependence structure across the five 

non-ferrous metals in different periods. Ciner et al. (2020) examine the return and volatility 

spillover across non-ferrous metals and report that copper and zinc act as the main stress-

transmitters between non-ferrous metals. Literature has also documented a stylized fact, this 

being that trading volume is positively correlated with volatility in commodity futures markets 

(see Garcia et al. 1986 and reference therein). In this respect, the relatively large trading volume 

may bring volatility to the price movement of copper and zinc and can drive information flow 

from copper and zinc to other non-ferrous metals. Moreover, Wu and Hu (2016) study the 

sensitivity of volatility clusters to the structural breaks in the non-ferrous metal markets. They 

suggest that copper and zinc are highly sensitive to structural breaks and that they are 

overvalued.     

As a base industrial material, copper is broadly used in a range of industries such as 

infrastructure, electronics, automobiles, etc. Consequently, copper has become a barometer of 

production in the manufacturing and construction industries. Before the crisis, while most 

developed countries had been suffering from slow economic growth, China's economy was 
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growing rapidly. The global shift in the manufacturing industry and large-scale urbanization in 

China created huge demand for copper. From statistics released by the International Copper 

Study Group (ICSG), the world's copper demand increased from 1.35 million tons in 1998 to 

1.81 million tons in 2007 (+34%). Within this 10-year-period, China's copper demand had 

increased drastically by around 0.35 million tons (+250%), which accounts for almost 80% of 

the total growth of the world's copper demand6. Thus, China had been the driving force of the 

world's copper demand in the pre-crisis period. Guo (2018) also demonstrates that China's 

demand for copper significantly affects the international copper market. 

As the world's largest producer and consumer of zinc, China accounted for roughly 41.3% 

of global zinc consumption by 20137. However, there were no zinc futures in China until the 

Shanghai Futures Exchange (SHFE) launched zinc futures in 2007 to facilitate price discovery 

in the zinc market and to satisfy zinc companies' increasing demand for risk hedging. Studies 

on price discovery of the same assets traded in multiple markets reveals that, in spite of the 

dominant role of the home market, its price discovery process is also significantly affected by 

                         
6
 Data source: ICSG 2008 Statistical Yearbook. 

7
 Quoted in Aronson, Abel. “Paradigm Shift,” Barron's, May 14, 2011. 
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foreign markets (Covrig et al., 2009). Literature suggests that information is prone to transmit 

from larger, more liquid markets to smaller, less liquid markets (e.g. Fung et al., 2003; 

Schneeweis and Yau, 1990; Xu et al., 2005). Thus, given the dominant role of China in the 

global zinc market and the late development of Chinese zinc futures, an understanding of 

SHFE's zinc futures may provide a new perspective that can be used to explain the central role 

of LME's zinc after the first structural break. 

   Ciner et al. (2020) document an increase in the level of connectedness between non-ferrous 

metals during Q3 2007-Q4 2013 and a decrease during Q1 2014-Q4 2016. We find that the 

level of integration, as well as the degree of lower tail dependence between the five non-ferrous 

metal futures, was strengthened by the first structural break but weakened by the second 

structural break. Since the first structural break occurs at August 28, 2008 and the second 

structural break occurs at January 31, 2014, our findings not only provide solid proof for the 

aforementioned evidence in Ciner et al. (2020), but also offer accurate and statistically robust 

dates for the changes. Moreover, the uniform change of integration and tail dependence after 

two structural breaks can be understood as a common response of the non-ferrous metal futures 

to the shocks caused by the structural breaks. A natural question to ask is why structural breaks 
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incur such a response pattern. As mentioned by Gromb and Vayanos (2010) and references 

cited therein, considerable numbers of investors who have exposures on both equities and 

commodities are value arbitragers and convergence traders. Once a large shock occurs in stock 

markets, they are unable to liquidate their risk positions because of borrowing constraints and 

other pressures. In order to fund the illiquidity, they are more likely to exit the commodity 

markets at the same time, which forms the commonality in the response pattern of commodity 

markets and cross-market contagion. 

In view of the presence of a common pattern among non-ferrous metals in response to the 

first structural break triggered by the 2008 financial crisis and the increase in the level of 

integration across these metals after the crisis, non-ferrous metals, as a whole, are more 

qualified to be a separate asset class after the crisis. A number of literatures document the 

evidence of a higher level of integration across multiple markets during or after financial crises. 

For example, Gerlach et al. (2006) examine the impact of the 1997 Asian financial crisis on 

the dynamic linkages within several Asia-Pacific real estate markets. They find that the 

integration level within the Asia-Pacific real estate markets is higher than those suggested by 

an analysis which incorrectly ignored the crisis. The results in Lu et al. (2012) indicate that the 
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integration between the US Real Estate Investment Trust (REIT) market and twelve 

international REIT markets intensifies considerably during turbulent market conditions. 

Silvennoinena and Thorp (2013) suggest that the integration level across equity, bond and stock 

markets increases significantly during the crisis period they studied.  

 

6. VaR Forecast and Backtesting Results 

In this section, we forecast the out-of-sample VaR of an equal-weighted portfolio and that 

of individual futures on non-ferrous metals using the scheme described in Section 3.4. The 

performance of the VaR forecasts are then examined by UC and CC tests, described in Section 

3.58. The results of the VaR exceedance test for an equal-weighted portfolio and individual 

non-ferrous metal futures are shown in Table 3. For comparison, a historical VaR forecast is 

computed to serve as a benchmark, the results of which are presented in Table 4. The repetition 

time K, which is defined in section 3.4, is fixed to 5000.  

                         
8
 Since the equal-weighted portfolio is widely examined in a number of literatures regarding VaR forecasting (see Siburg et 

al., 2015; Nikoloulopoulos et al., 2012; Lu et al., 2014). Other types of portfolios, such as the volume-weighted portfolio, can 

be analyzed in a similar way. 
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We can see from Table 3 and Table 4 that, in Period 1, almost all UC tests and CC tests 

for VaR forecasts based on R-vine copula cannot reject the null hypothesis of correct 

exceedance at 5% significance level, except that of aluminum and zinc. Aluminum rejects the 

null of 𝛼= 1% at 5% significance level and zinc rejects the null of 𝛼= 1% and 𝛼= 10% at 5% 

significance level. In contrast, the UC test and CC test for the historical VaR forecast rejects 

the null hypothesis in most cases. For example, both aforementioned tests for the equal-

weighted portfolio reject the null hypothesis of 𝛼= 5% and 𝛼= 10% at 5% significance level. 

The UC test for aluminum rejects the null hypothesis of 𝛼= 5% at 5% significance level. 

Nickel rejects the UC and CC tests hypothesizes of 𝛼= 1% and 𝛼= 10% at 5% significance 

level. Zinc and lead significantly reject the null hypothesis of both tests at three quantile levels. 

The test results in Period 2 are similar to those in Period 1. The UC test and CC test for 

R-vine copula based VaR forecasts of the equal-weighted portfolio reject the null hypothesis 

of 𝛼= 5% and 𝛼= 10% at 5% significance level. The UC test result for copper rejects the null 

hypothesis of 𝛼= 10% at 5% significance level. However, as shown in Table 4, the UC and 

CC tests for the historical VaR forecast reject the null hypothesis of different quantiles in each 

case, which creates a sharp contrast with the test results shown in Table 3. In Period 3, only the 
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UC test for copper’s R-vine copula based VaR forecast rejects the null hypothesis of 𝛼= 1% 

at 5% significance level, while the UC and CC tests for the historical VaR forecast cannot 

reject the null hypothesis of 𝛼= 1%, 𝛼= 5% and 𝛼= 10% in each case.  

In a comparative analysis on the results summarized in Table 3 and Table 4, we find that 

the R-vine copula VaR forecasts show superior forecasting accuracy over the historical VaR 

forecast in Period 1 and Period 2, regardless of whether in the portfolio case or in the individual 

futures cases. In Period 3, the R-vine copula VaR forecast performs as well as the benchmark 

method. These findings lead us to conclude that the R-vine copula VaR forecast has better 

overall performance than the historical VaR forecasting method. 
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Table 3(A). VaR exceedance test for Value-at Risk forecast based on R-vine copula 

 

 

 

R-vine copula Value-at-Risk forecast 

Period 1: Jan, 2002- Aug, 2008   Period 2: Aug, 2008- Jan, 2014  Period 3: Jan, 2014- Dec, 2019 

EW. Port. 

UC test / 𝜶 1% 5% 10%   5% 10%   5% 10% 

Exp.exceed 1 6 13  5 11  6 12 

Act. Exceed 1 11 16  2 4  3 8 

p-value 0.7324 0.1389 0.5416  0.0678 0.0084  0.1444 0.1616 

Decision Not Rej. Not Rej. Not Rej.  Not Rej. Rej.  Not Rej. Not Rej. 

CC test / 𝜶 1% 5% 10% 

 

5% 10% 

 

5% 10% 

p-value 0.9363 0.1279 0.6153  0.1820 0.0268  0.3197 0.2151 

Decision Not Rej. Not Rej. Not Rej.  Not Rej. Rej.  Not Rej. Not Rej. 

AL 

UC test / 𝜶 1% 5% 10%  5% 10%  5% 10% 

Exp.exceed 1 6 13  5 11  6 12 

Act. Exceed 6 8 13  3 6  4 13 

p-value 0.0034 0.6749 0.8189  0.2037 0.0661  0.3336 0.8585 

Decision Rej. Not Rej. Not Rej.  Not Rej. Not Rej.  Not Rej. Not Rej. 

CC test / 𝜶 1% 5% 10%  5% 10%  5% 10% 

p-value 0.0105 0.5574 0.7559  0.4108 0.1320  0.5478 0.2110 

Decision Rej. Not Rej. Not Rej.  Not Rej. Not Rej.  Not Rej. Not Rej. 
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Table 3(B). VaR exceedance test for Value-at Risk forecast based on R-vine copula 

 

 

R-vine copula Value-at-Risk forecast 

Period 1: Jan, 2002- Aug, 2008   Period 2: Aug, 2008- Jan, 2014  Period 3: Jan, 2014- Dec, 2019 

CU 

UC test / 𝜶 1% 5% 10%   5% 10%   5% 10% 

Exp.exceed 1 6 13  5 11  6 12 

Act. Exceed 2 11 16  2 5  2 8 

p-value 0.6191 0.1389 0.5416  0.0678 0.0261  0.0449 0.1616 

Decision Not Rej. Not Rej. Not Rej.  Not Rej. Rej.  Rej. Not Rej. 

CC test / 𝜶 1% 5% 10% 

 

5% 10% 

 

5% 10% 

p-value 0.8580 0.1401 0.6567  0.1820 0.0668  0.1295 0.2151 

Decision Not Rej. Not Rej. Not Rej.  Not Rej. Not Rej.  Not Rej. Not Rej. 

NIC 

UC test / 𝜶 1% 5% 10%  5% 10%  5% 10% 

Exp.exceed 1 6 13  5 11  6 12 

Act. Exceed 1 8 18  2 7  3 9 

p-value 0.7324 0.6749 0.2526  0.0678 0.1418  0.1444 0.2869 

Decision Not Rej. Not Rej. Not Rej.  Not Rej. Not Rej.  Not Rej. Not Rej. 

CC test / 𝜶 1% 5% 10%  5% 10%  5% 10% 

p-value 0.9363 0.5574 0.4999  0.1820 0.2140  0.3197 0.2785 

Decision Not Rej. Not Rej. Not Rej.  Not Rej. Not Rej.  Not Rej. Not Rej. 
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Table 3(C). VaR exceedance test for Value-at Risk forecast based on R-vine copula 

 

 

R-vine copula Value-at-Risk forecast 

Period 1: Jan, 2002- Aug, 2008   Period 2: Aug, 2008- Jan, 2014  Period 3: Jan, 2014- Dec, 2019 

ZINC 

UC test / 𝜶 1% 5% 10%   5% 10%   5% 10% 

Exp.exceed 1 6 13  5 11  6 12 

Act. Exceed 5 15 19  2 6  7 14 

p-value 0.0167 0.0058 0.1602  0.0678 0.0661  0.7465 0.6382 

Decision Rej. Rej. Not Rej.  Not Rej. Not Rej.  Not Rej. Not Rej. 

CC test / 𝜶 1% 5% 10% 

 

5% 10% 

 

5% 10% 

p-value 0.0471 0.0213 0.3480  0.1820 0.1320  0.6510 0.7650 

Decision Rej. Rej. Not Rej.  Not Rej. Not Rej.  Not Rej. Not Rej. 

LEAD 

UC test / 𝜶 1% 5% 10%  5% 10%  5% 10% 

Exp.exceed 1 6 13  5 11  6 12 

Act. Exceed 3 9 17  3 6  3 8 

p-value 0.2304 0.4324 0.3791  0.2037 0.0661  0.1444 0.1616 

Decision Not Rej. Not Rej. Not Rej.  Not Rej. Not Rej.  Not Rej. Not Rej. 

CC test / 𝜶 1% 5% 10%  5% 10%  5% 10% 

p-value 0.4555 0.3900 0.6767  0.4108 0.1320  0.3197 0.2151 

Decision Not Rej. Not Rej. Not Rej.  Not Rej. Not Rej.  Not Rej. Not Rej. 

Note: AL: Aluminum CU: Copper NIC: Nickel. EW. Port.: equally weighted portfolio. In each forecast step, the number of simulated observations for each metal commodity future is fixed to 
K=5000. R-vine copula Value-at-Risk forecast shows the results of VaR exceedance test for VaR generated by the scheme described in Section 3.4. Exp.exceed denotes the expected number of 
exceedances, Act.exceed denotes the actual number of exceedances, Decision represents the final decision of the corresponding statistical test at 5% significance level. Stat. denotes the value of 
corresponding test statistic. 𝜶 is the percentile threshold of VaR. In most cases during Period 2, no actual violation creates a zero denominator which leads to the invalidation of the unconditional 
coverage test, therefore, the test results of q=1% are not shown in this table. 



48 | P a g e  

 

Table 4(A). VaR exceedance test for historical Value-at Risk forecast  

 

 

 

Historical Value-at-Risk forecast 

Period 1: Jan, 2002- Aug, 2008   Period 2: Aug, 2008- Jan, 2014  Period 3: Jan, 2014- Dec, 2019 

EW. Port. 

UC test / 𝜶 1% 5% 10%   5% 10%   5% 10% 

Exp.exceed 1 6 13  5 11  6 12 

Act. Exceed 4 14 27  2 4  7 11 

p-value 0.0683 0.0143 0.0008  0.0678 0.0084  0.7465 0.6698 

Decision Not Rej. Rej. Rej.  Not Rej. Rej.  Not Rej. Not Rej. 

CC test / 𝜶 1% 5% 10% 

 

5% 10% 

 

5% 10% 

p-value 0.1682 0.0455 0.0035  0.1820 0.0268  0.6219 0.9129 

Decision Not Rej. Rej. Rej.  Not Rej. Rej.  Not Rej. Not Rej. 

AL 

UC test / 𝜶 1% 5% 10%  5% 10%  5% 10% 

Exp.exceed 1 6 13  5 11  6 12 

Act. Exceed 4 13 21  2 4  8 14 

p-value 0.0683 0.0328 0.0557  0.0678 0.0084  0.4769 0.6382 

Decision Not Rej. Rej. Not Rej.  Not Rej. Rej.  Not Rej. Not Rej. 

CC test / 𝜶 1% 5% 10%  5% 10%  5% 10% 

p-value 0.1682 0.0795 0.1415  0.1820 0.0268  0.4449 0.1475 

Decision Not Rej. Not Rej. Not Rej.  Not Rej. Rej.  Not Rej. Not Rej. 
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Table 4(B). VaR exceedance test for historical Value-at Risk forecast  

 

 

Historical Value-at-Risk forecast 

Period 1: Jan, 2002- Aug, 2008   Period 2: Aug, 2008- Jan, 2014  Period 3: Jan, 2014- Dec, 2019 

CU 

UC test / 𝜶 1% 5% 10%   5% 10%   5% 10% 

Exp.exceed 1 6 13  5 11  6 12 

Act. Exceed 4 10 20  1 5  5 9 

p-value 0.0683 0.2551 0.0968  0.0134 0.0261  0.6094 0.2869 

Decision Not Rej. Not Rej. Not Rej.  Rej. Rej.  Not Rej. Not Rej. 

CC test / 𝜶 1% 5% 10% 

 

5% 10% 

 

5% 10% 

p-value 0.1682 0.4777 0.2488  0.0465 0.0668  0.7100 0.2785 

Decision Not Rej. Not Rej. Not Rej.  Rej. Not Rej.  Not Rej. Not Rej. 

NIC 

UC test / 𝜶 1% 5% 10%  5% 10%  5% 10% 

Exp.exceed 1 6 13  5 11  6 12 

Act. Exceed 5 12 23  1 7  6 10 

p-value 0.0167 0.0700 0.0161  0.0134 0.1418  0.9340 0.4587 

Decision Rej. Not Rej. Rej.  Rej. Not Rej.  Not Rej. Not Rej. 

CC test / 𝜶 1% 5% 10%  5% 10%  5% 10% 

p-value 0.0471 0.1935 0.0263  0.0465 0.2140  0.7325 0.3133 

Decision Rej. Not Rej. Rej.  Rej. Not Rej.  Not Rej. Not Rej. 
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Table 4(C). VaR exceedance test for historical Value-at Risk forecast of individual non-ferrous metal futures 

 

 

Historical Value-at-Risk forecast 

Period 1: Jan, 2002- Aug, 2008   Period 2: Aug, 2008- Jan, 2014  Period 3: Jan, 2014- Dec, 2019 

ZINC 

UC test / 𝜶 1% 5% 10%   5% 10%   5% 10% 

Exp.exceed 1 6 13  5 11  6 12 

Act. Exceed 6 20 30  0 5  8 18 

p-value 0.0034 0.0000 0.0000  - 0.0261  0.4769 0.1137 

Decision Rej. Rej. Rej.  - Rej.  Not Rej. Not Rej. 

CC test / 𝜶 1% 5% 10% 

 

5% 10% 

 

5% 10% 

p-value 0.0105 0.0001 0.0003  - 0.0668  0.6319 0.2560 

Decision Rej. Rej. Rej.  - Not Rej.  Not Rej. Not Rej. 

LEAD 

UC test / 𝜶 1% 5% 10%  5% 10%  5% 10% 

Exp.exceed 1 6 13  5 11  6 12 

Act. Exceed 8 16 31  0 3  7 12 

p-value 0.0000 0.0022 0.0000  - 0.0021  0.7465 0.9042 

Decision Rej. Rej. Rej.  - Rej.  Not Rej. Not Rej. 

CC test / 𝜶 1% 5% 10%  5% 10%  5% 10% 

p-value 0.0003 0.0011 0.0000  - 0.0081  0.6219 0.2706 

Decision Rej. Rej. Rej.  - Rej.  Not Rej. Not Rej. 

Note: AL: Aluminum CU: Copper NIC: Nickel. EW. Port.: equally weighted portfolio. In each forecast step, the number of simulated observations for each metal commodity future is fixed to 
K=5000. Historical Value-at-Risk forecast denotes the results of VaR exceedance test for historical VaR. Exp.exceed denotes the expected number of exceedances, Act.exceed denotes the actual 
number of exceedances, Decision represents the final decision of the corresponding statistical test at 5% significance level. Stat. denotes the value of corresponding test statistic. 𝜶 is the percentile 
threshold of VaR. In most cases during Period 2, no actual violation creates a zero denominator which leads to the invalidation of the unconditional coverage test, therefore, the test results of q=1% 
are not shown in this table. 
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The VaR forecast and corresponding realized returns of the equal-weighted portfolio and 

each non-ferrous metal futures are shown in Figure 5 - Figure 7. The blue line denotes the time 

series of the realized returns and the red dotted line denotes the time series of the VaR forecast 

at 𝛼 = 1%. The brown dotted line denotes the time series of the VaR forecast at 𝛼 = 5% and 

the yellow dotted line denotes the time series of the VaR forecast at 𝛼 = 10%. In Period 1, 

we observe that the realized returns of the equal-weighted portfolio and each individual non-

ferrous metal futures exceed the VaR forecast at 𝛼 = 1% at least once. However, as shown 

in Figure 6 and Figure 7, the realized returns of the equal-weighted portfolio and each non-

ferrous metal futures do not exceed the associated VaR forecast at 𝛼 = 1% in Period 2 and 

Period 3. These evidences firmly support the findings and results in Table 3 and Table 4.
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Figure 5: Realized returns and VaR forecast for equally weighted portfolio and individual non-ferrous metal futures in Period 1 

 

Note: Realized Returns denotes non-ferrous metal futures returns. q%-VaR is the q-percentile VaR for individual futures. 
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Figure 6: Realized returns and VaR forecast for equally weighted portfolio and individual non-ferrous metal futures in Period 2 

 

Note: Realized Returns denotes non-ferrous metal futures returns. q%-VaR is the q-percentile VaR for individual futures. 
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Figure 7: Realized returns and VaR forecast for equally weighted portfolio and individual non-ferrous metal futures in Period 3 

 

Note: Realized Returns denotes non-ferrous metal futures returns. q%-VaR is the q-percentile VaR for individual futures. 
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7. Conclusion 

In this paper, we employ an R-vine copula to investigate the dependence structure of non-

ferrous metal commodity futures in three periods which are determined by two structural 

breaks. Our empirical results from the R-vine copula generate valuable insights for market 

participants, investors and speculators. Firstly, we find that the center of the dependence 

structure between the five non-ferrous metal futures changes from copper to zinc after the first 

structural break in 2008 and moves back to copper after the second structural break in 2014. 

During the period between 2008 and 2014, we argue that non-ferrous metals, as a whole, are 

more suited to be regarded as a separate asset class, which is consistent with Ciner et al. (2020). 

This is due to our observations that the risk diversification benefit among them diminishes and 

there is a significant increase in tail dependence between them. However, the presence of a 

high level of integration and strong lower tail dependence between non-ferrous metals has 

perished after the second structural break. The R-vine copula-based method shows superior 

performance for both the equal-weighted portfolio and individual futures in the out-of-sample 

data. The VaR forecast scheme we developed in this paper can be used as a useful tool for 

institutional investors (e.g., index-tracking ETF managers, CTAs) to manage the risk of their 
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portfolio or individual commodities. Future research may focus on investigating the impact of 

COVID-19 on the dependence structure of non-ferrous metals. 
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Appendix A. Test simplifying assumption 

Whether the simplifying assumption can be relaxed depends on the given dataset and the 

tree structure of the vine copula. Recently, Kurz and Spanhel (2017) proposed a new statistical 

method called the constant conditional correlation (CCC) test to check whether the simplifying 

assumption is suitable for each conditional bivariate copula in a vine copula. The idea of this 

test is that if a conditional copula can be represented by an unconditional copula then the 

correlation coefficient corresponding to a conditional copula is a constant with respect to 

conditioning variables. Based on this fact, the null hypothesis of this method is:   

 

                                                                      𝜌Ω1
= ⋯ = 𝜌Ω𝐿

                                                            (A. 1) 

 

where 𝜌Ω𝑖
∶= 𝐶𝑜𝑟𝑟(𝑈𝑗𝑒|𝐷𝑒

 , 𝑈𝑘𝑒|𝐷𝑒
| 𝐔𝐷𝑒

∈ Ω𝑖), 𝑈𝑗𝑒|𝐷𝑒
 and 𝑈𝑘𝑒|𝐷𝑒

are conditioned variables in 

conditional copula. 𝐔𝐷𝑒
 is a conditioning variables set. The support Ω0 of 𝐔𝐷𝑒

 is divided 

by a partition Γ ≔ {Ω1, … , Ω𝐿}, Ω𝑖 is an element in the partition Γ.  

Since the vector  𝜸(𝑛)(Γ) = (𝜌̂Ω1

(𝑛)
, 𝜌̂Ω1

(𝑛)
, … , 𝜌̂Ω𝐿

(𝑛)
) is asymptotically normal distributed, 

i.e.: 

                                          √𝑛 (𝜸̂(n)(Γ) − 𝜸(Γ))
𝑑
→ 𝑁(𝟎, 𝚺(Γ)),      𝑛 → ∞                                (A. 2) 
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where 𝜌̂Ω𝑖

(𝑛)
, 𝑖 = 1,2, … , 𝐿 is the sample Pearson coefficients, 𝜸̂(n)(Γ) is the vector-valued 

true conditional correlations, and  𝚺(Γ) is the asymptotic variance-covariance matrix. Kurz 

and Spanhel (2017) further derived a test statistic to test the null hypothesis by using the 

asymptotic normality of 𝜸̂(n)(Γ), and the test statistic is defined as follows: 

 

                                  𝑇𝑛(Γ) = (𝑾𝜸̂(𝑛)(𝛤))
𝑇

(𝑾𝚺̂(𝑛)(Γ)𝑊)−1  (𝑾𝜸̂(n)(Γ))                          (A. 3) 

 

where 𝚺̂(𝑛)(Γ) is the consistent estimator for 𝚺(Γ) and 𝑾 is a well-defined weight matrix 

(see Kurz and Spanhel, 2017). 

Under the null hypothesis and some regular conditions, 𝑇𝑛(Γ) converges in distribution 

to a χ2  distribution with degree of freedom 𝐿 − 1. i.e. 

 

                                               𝑛𝑇𝑛(Γ)
𝑑
→ χ2

𝐿−1  ,          𝑛 → ∞                                                (A. 4)   

 

This novel testing procedure can mitigate the curse of dimensions due to the discretizing of the 

conditioning variable set and the penalty incorporated in the test statistic. 
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Appendix B. Measure of dependence  

Many kinds of dependence measures can be defined based on the copula theory. This 

paper refers to two dependence measures: Kendall’s τ and the indices of tail dependence. 

 

B.1. 𝐾𝑒𝑛𝑑𝑎𝑙𝑙’𝑠 𝜏 

Kendall’s τ measures the concordance between two random variables. The higher the 

concordance between two random variables, the stronger the dependence. In the discrete case, 

given two random vectors with the same joint distribution and copula function (𝑋1, 𝑌1) and 

(𝑋2, 𝑌2), the vectors are said to be concordant if 𝑋1 > 𝑋2 whenever Y1 > 𝑌2, and 𝑋1 < 𝑋2, 

whenever 𝑌1 < 𝑌2 ; the vectors are said to be discordant in the opposite case. Kendall’s τ 

measures the difference between the probability of concordance and of the discordance 

between two independent random vectors. 

Definition: Kendall’s τ for two random variables 𝑋1 and 𝑋2 with copula 𝐶(𝑢, 𝑣), is: 

                                                      τ = 4 ∫ ∫ 𝐶(𝑢, 𝑣)

1

0

1

0

𝑑𝐶(𝑢, 𝑣) − 1                                              (B. 1) 

 

B.2. The indices of tail dependence 
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The indices of tail dependence measure the dependence in a tail, or extreme values of two 

random variables. In particular, there are two kinds of indices: the indices of upper tail 

dependence and the indices of lower tail dependence. 

Definition: 𝑋  and 𝑌  are two continuous random variables, with distribution functions 

𝐹𝑥(. ), 𝐹𝑦(. ). If 𝐶(. , . ) denotes the copula for 𝑋 and 𝑌, then: 

 

                                       𝜆𝐿 = lim
u→0

Pr (𝐹𝑥(𝑥) ≤ 𝑢|𝐹𝑦(. ) ≤ 𝑢) = lim
u→0

𝐶(𝑢, 𝑢)

𝑢
                           (B. 2) 

                                𝜆𝑈 = lim
u→1

Pr (𝐹𝑥(𝑥) ≥ 𝑢|𝐹𝑦(. ) ≥ 𝑢) = lim
u→1

1 − 2𝑢 + 𝐶(𝑢, 𝑢)

1 − 𝑢
               (B. 3) 

 

where 𝜆𝐿 and 𝜆𝑈 represent the indices of lower tail dependence and upper tail dependence 

respectively. 𝜆𝐿，𝜆𝑈 ∈ (0,1). If 𝜆𝐿 and 𝜆𝑈 take positive values, there exists tail dependence 

between the two random variables. The definition of these two measures is independent from 

the marginal distribution 𝐹𝑥(. ), and 𝐹𝑦(. ) and only relates to the copula 𝐶(. , . ).  

 

Appendix C. Bivariate copula families 

The vast majority of studies have confirmed the existence of extreme and asymmetric 

volatility in various financial asset markets. Therefore, we apply several bivariate copulas with 
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different tail dependence structures to fully capture the tail dependence between the variables 

considered in this paper. 

 

C.1. Elliptical copula family 

The Gaussian copula function is as follows: 

 

                                          𝐶𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑢, 𝑣; 𝜌) = 𝛷𝜌(𝛷−1(𝑢), 𝛷−1(𝑣); 𝜌)                                   (C. 1) 

 

where 𝜌 ∈ (−1,1) denotes the linear correlation coefficient between two random variables. 

Φ𝜌 is the bivariate normal distribution function. 𝛷−1 is the inverse of the univariate normal 

distribution function. The Gaussian copula has no tail dependence.  

The bivariate Student’s t copula is as follows:  

 

                                           𝐶𝜈
𝑠𝑡𝑢𝑑𝑒𝑛𝑡−𝑡(𝑢, 𝑣; 𝜌) = 𝑡𝜌 𝜈(𝑡−1(𝑢), 𝑡−1(𝑣); 𝜌)                                 (C. 2) 

 

where 𝜌 ∈ (−1,1) denotes the linear correlation coefficient between two random variables. 

𝑡𝜌 𝜈 is the bivariate t-distribution function with linear correlation coefficient 𝜌 and the degree 

of freedom 𝜈. 𝑡−1 is the inverse of the univariate t-distribution function. The t-copula exhibits 

symmetrical tail dependence. 
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C.2. Archimedean copula family 

The bivariate Archimedean copula function is: 

 

                                                    C(𝑢1, 𝑢2) = 𝜑[−1](𝜑(𝑢1) + 𝜑(𝑢2))                                          (C. 3) 

 

where φ: [0,1] → [0, ∞] is a continuous strictly decreasing convex such that φ(1) = 0 and 

 𝜑[−1] is the pseudo-inverse φ as follows: 

 

                                                   𝜑[−1] = {
𝜑−1(𝑡),      0 ≤ 𝑡 ≤ 𝜑(0)

        0,         𝜑(0) ≤ 𝑡 ≤ ∞  
                                        (C. 4) 

 

Table C1 presents some properties of the Clayton, Gumbel, Frank, and BB1 copulas that 

belong to the bivariate Archimedean copula families. We can see from Table C1 that the Frank-

copula has no tail dependence, the Gumbel-copula exhibits asymmetrical lower tail dependence, 

and the BB1 copula has asymmetrical upper dependence. 
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Table C1. Properties of some Archimedean copula families 

Name Function Para.range Kendall's 𝝉 Tail.dep. (l.u.) 

Frank − log (
e−θt − 1

e−θ − 1
) θ ∈ ℜ 1 −

4

θ
+

𝐷1(𝜃)

θ
 (0,0) 

BB8 − log (
1 − (1 − δt)𝜃

1 − (1 − δ)𝜃 ) θ ≥ 1, δ ∈ (0,1] 𝑔(𝛿, 𝜃) (2−
1
𝛿 , 2 − 2

1
𝜃) 

Gumbel (− log t)θ θ ≥ 1 1 −
1

θ
 (2,2 − 2

1
θ) 

BB1 (𝑡−𝜃 − 1)−𝛿 θ > 0, δ ≥ 1 1 −
2

𝛿(𝜃 + 2)
 (2−

1
𝜃𝛿 , 2 − 2

1
𝜃) 

Clayton 
1

𝜃
(𝑡−𝜃 − 1) θ > 0 

𝜃

(𝜃 + 2)
 (2−

1
𝜃) 

Note: 𝐷1(𝜃) = ∫
𝑐 𝜃⁄

𝑒𝑥𝑝(𝑥)−1

𝜃

0
𝑑𝑥 is Debye function. Para.range represents the range of parameters in copula function. 

𝑔(𝛿, 𝜃) = 1 +
4

𝛿𝜃
∫ (−(1 − (1 − 𝑡)𝜃))𝛿+1 ×

(1−(1−𝑡)𝜃)𝛿+1−1

(1−𝑡)𝜃−1

1

0
)𝑑𝑡. Tail.dep. (l.u.) denotes the values of lower and upper 

tail dependence indices. 

 

C.3. Survival copula 

A survival copula is a special rotated-copula function. The rotation of the copula greatly 

enriches the types of copulas and enables them to better capture the dependence. A copula 

function which is rotated 180 degrees is called the survival copula of the original： 

 

                                     𝐶180(𝑢1, 𝑢2) = 𝑢1 + 𝑢2 − 1 + 𝐶(1 − 𝑢1, 1 − 𝑢2)                                 (C. 5) 

 

In contrast, the Gumbel copula has an asymmetrical upper tail dependence, while the BB1 

copula exhibits an asymmetrical lower tail dependence. 
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Appendix D. Results for marginal distribution modelling  

The parameters estimation and statistical tests for the GARCH (1,1) model in Period 1 

are listed in Table D1. The Lagrange Multiplier test for almost all non-ferrous metal futures 

strongly reject the null hypothesis at lag 3, 5, and 7 at 5% significance level, except zinc, whose 

Lagrange Multiplier test reject the null hypothesis at lag 3 at the 1% significance level. In 

general, this evidence implies no heteroscedasticity in standardized residuals generated by 

marginal models. The Ljung-Box test for all five non-ferrous metal futures cannot reject the 

null hypothesis of no autocorrelation at lag 1, 2, and 5 at 5% significance level, which indicates 

no autocorrelation in standardized residuals generated by marginal models. The Sign Bias test 

for all five non-ferrous metal futures cannot reject the null hypothesis of no positive/negative 

volatility response at the 5% significance level. The above statistical results demonstrate that 

the GARCH (1,1) model is adequate for modelling marginal distributions of all five non-

ferrous metal futures in Period 1 and there is no need to further employ asymmetrical GARCH 

models. 

Table D2 lists estimations and statistical tests for GARCH (1,1) model in Period 2. The 

Ljung-Box test for each marginal model cannot reject the null hypothesis of no autocorrelation 
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Table D1. Parameter estimates and statistical tests for GARCH (1,1) in Period 1 

Parameter 
AL CU NIC ZINC LEAD 

Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

𝜇 0.1811 0.1402 0.3989 0.0205 0.4547 0.0789 0.2800 0.1507 0.3337 0.1178 

𝜔 0.1052 0.2479 0.2509 0.2324 1.0839 0.2663 0.1431 0.3917 0.3219 0.3632 

𝛼 0.1196 0.0008 0.1007 0.0057 0.0909 0.0337 0.0826 0.0012 0.1056 0.0054 

𝛽 0.8775 0.0000 0.8841 0.0000 0.8743 0.0000 0.9163 0.0000 0.8934 0.0000 

D.O.F.  63.2675 0.6779 35.976 0.5642 18.1901 0.3132 22.453 0.4182 7.1101 0.0119 

AIC 4.8044 5.2886 6.1072 5.6796 5.8762 

Logli.  -823.766 -907.2917 -1048.485 -974.7371 -1008.652 

LB test:           

lags Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

1 0.9517 0.3293 0.0159 0.8996 1.780 0.1821 0.6824 0.4088 1.794 0.1805 

2 1.6392 0.3303 0.2999 0.7957 1.784 0.3013 1.0589 0.4795 2.020 0.2594 

5 2.2473 0.5612 1.8065 0.6648 2.043   0.6082 1.8167 0.6623 3.574   0.3122 

LM test:           

lags Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

3 4.262 0.0389 0.0005 0.9823 0.0426 0.8364 0.0172 0.8957 0.4738 0.4912 

5 4.763 0.1166 0.5035 0.8826 0.9862 0.7370 2.0818 0.4534 2.3869 0.3919 

7 5.556 0.1740 1.7694 0.7660 5.7696 0.1575 4.2383 0.3135 2.7874 0.5546 

SB test:           

 Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

Negative  0.9484 0.3436 1.503 0.1336 1.1321 0.2584 0.0129 0.9897 0.0677 0.9461 

Positive  0.8263 0.4092   1.878 0.0613 0.8907 0.3737 0.9327 0.3517 1.6953 0.0909 

Note: AL: Aluminum, CU: Copper, NIC: Nickel, ZINC: Zinc, LEAD: Lead. Est./Stat. denotes estimated parameters or statistics. Shape is the 
degree of freedom for the fitted t-distribution. Logli. denotes log-likelihood value. LB test represents the Ljung-Box test. LM test represents the 
Lagrange Multiplier test. SB test represents Sign Bias test. Negative /Positive show the results of negative sign bias test and positive sign bias test 
respectively.  𝜇、𝜔、𝛼1、𝛽1 are estimated coefficients in equation (4.1) and (4.2). AIC is the value of Akaike information criterion. Lags denotes 
the lag-order of corresponding statistical test. 

 

at lag 1, 2, and 5 at 5% significance level, which indicates no autocorrelation in standardized 

residuals generated by the marginals. The Lagrange Multiplier test applied to each marginal  
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Table D2. Parameter estimates and statistical tests for GARCH (1,1) in Period 2 

Para.  

AL CU NIC ZINC      LEAD 

Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

𝜇 -0.1221 0.5067 0.1147 0.4973 -0.0917 0.7020 0.1057 0.6159 0.1111 0.6474 

𝜔 0.0000 0.9996 0.0673 0.6762 0.1789 0.4758 0.0000 0.9999 0.1579 0.4895 

𝛼 0.0249 0.5505 0.0827 0.0321 0.0509 0.0980 0.0403 0.0599 0.0660 0.0530 

𝛽 0.9713 0.0000 0.9114 0.0000 0.9356 0.0000 0.9543 0.0000 0.9233 0.0000 

D.O.F.  9.6752 0.0427 5.1026 0.0002 7.3833 0.0066 12.5992 0.1285 13.2814 0.1341 

AIC 5.3061 5.4710 5.9947 5.7297 6.0093 

Logli.  -745.8194 -769.1506 -843.2555 -805.7528 -845.3103 

LB test: 

  

        

lags Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

1 0.2502 0.6169 0.1817 0.6699 0.0299 0.8628 0.6586 0.4170 0.3757 0.5399 

2 0.2570 0.8201 1.1513 0.4517 0.3110 0.7896 1.0177 0.4925 0.4361 0.7244 

5 0.7903 0.9050 2.3848 0.5307 0.9836 0.8634 3.5930 0.3094 2.8267 0.4396 

LM test: 

  

        

lags Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

3 0.9536 0.3288 0.1180 0.7312 1.5550 0.2124 0.6959 0.4041 0.0065 0.9357 

5 1.2101 0.6718 1.8260 0.5111 2.7820 0.3230 1.3908 0.6215 0.9486 0.7482 

7 4.7716 0.2487 4.5460 0.2746 3.6360 0.4021 5.5490 0.1746 2.8856 0.5354 

SB test 

  

        
 

Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

Negative  0.6904 0.4905 0.2111 0.8329 1.2140 0.2258 1.5849 0.1141 0.3984 0.6906 

Positive  1.0252 0.3062 1.0054 0.3156 1.7750 0.0769 0.7931 0.4284 0.3686 0.7127 

Note: AL: Aluminum, CU: Copper, NIC: Nickel, ZINC: Zinc, LEAD: Lead. Est./Stat. denotes estimated parameters or statistics. D.O.F. is the degree of 
freedom for the fitted t-distribution. Logli. denotes log-likelihood value. LB test represents the Ljung-Box test. LM test represents the Lagrange Multiplier 
test. SB test represents Sign Bias test. Negative /Positive show the results of negative sign bias test and positive sign bias test respectively.  𝜇、𝜔、𝛼1、𝛽1 
are estimated coefficients in equation (4.1) and (4.2). AIC is the value of Akaike information criterion. Lags denotes the lag-order of corresponding statistical 
test. 

 



74 | P a g e  

 

model cannot reject the null hypothesis at lag 3, 5, and 7 at 5% significance level, which implies 

no heteroscedasticity in standardized residuals generated by the marginals. The positive and 

negative Sign Bias test for all five non-ferrous metal futures cannot reject the null hypothesis 

of no asymmetry volatility response at the 5% significance level. Therefore, the GARCH (1,1) 

is also adequate for modelling the marginal distributions of all five non-ferrous metal futures 

in Period 2 and there is still no need to use asymmetrical GARCH model. 

Table D3 shows estimations and statistical tests for GARCH (1,1) model in Period 3. 

Similar to the previous two periods, the results of Ljung-Box test for each marginal model 

indicate no autocorrelation in standardized residuals generated by the marginals. The Lagrange 

Multiplier test applied to each marginal model still cannot reject the null at lag 3, 5, and 7 at 

5% significance level, which also implies no heteroscedasticity in standardized residuals 

generated by the marginals. The results of positive and negative Sign Bias test for all five non-

ferrous metal futures documents no asymmetry volatility response at 5% significance level. 

Thus, the GARCH (1,1) is adequate for modelling the marginal distributions of all five non-

ferrous metal futures in Period 3 and there is still no need to use asymmetrical GARCH model. 

The goodness-of-fit for Student’s t innovations in the marginal models are evaluated by 

 



75 | P a g e  

 

Table D3. Parameter estimates and statistical tests for GARCH (1,1) in Period 3 

Parameter 
AL CU NIC ZINC LEAD 

Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

𝜇 -0.0306 0.8151 -0.1023 0.4512 -0.0117 0.9586 0.0369 0.8288 -0.1259 0.4176 

𝜔 0.7426 0.5302 0.1655 0.4353 0.0475 0.7424 0.2518 0.3649 0.2376 0.3077 

𝛼 0.0873 0.1435 0.0362 0.1184 0.0000 1.0000 0.0272 0.1934 0.0379 0.1071 

𝛽 0.7859 0.0017 0.9382 0.0000 0.9972 0.0000 0.9471 0.0000 0.9395 0.0000 

D.O.F.  12.1884 0.0480 10.1384 0.0638 99.3540 0.7802 80.9365 0.7281 6.3735 0.0080 

AIC 4.5993 4.6726 5.5985 5.0765 4.9967 

Logli.  -703.2854 -714.5843 -857.1674 -776.7853 -764.4905 

LB test:           

lags Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

1 0.1413 0.7070 0.1699 0.6802 0.3878 0.5335 0.0087 0.9257 1.3070 0.2530 

2 1.7817 0.3017 0.1901 0.8603 0.9845 0.5033 0.1004 0.9194 1.5080 0.3591 

5 5.3702 0.1260 2.5819 0.4887 2.0614 0.6040 1.5022 0.7394 2.9370 0.4187 

LM test:           

lags Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

3 0.0003 0.9872 1.3270 0.2493 1.1550 0.2826 1.0920 0.2960 0.1178 0.7315 

5 0.7154 0.8188 2.7040 0.3358 1.8170 0.5131 1.4470 0.6064 0.3003 0.9402 

7 1.0222 0.9099 4.5270 0.2769 4.2650 0.3100 1.8350 0.7521 0.6094 0.9674 

SB test:           

 Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

Negative  0.1502 0.8807 0.7693 0.4423 2.0139 0.0449 0.5283 0.5977 0.1304 0.8963 

Positive  0.7614 0.4470 0.4060 0.6850 0.1905 0.8491 0.4434 0.6578 0.2806 0.7792 

Note: AL: Aluminum, CU: Copper, NIC: Nickel, ZINC: Zinc, LEAD: Lead. Est./Stat. denotes estimated parameters or statistics. Shape is the 
degree of freedom for the fitted t-distribution. Logli. denotes log-likelihood value. LB test represents the Ljung-Box test. LM test represents the 
Lagrange Multiplier test. SB test represents Sign Bias test. Negative /Positive show the results of negative sign bias test and positive sign bias test 
respectively.  𝜇、𝜔、𝛼1、𝛽1 are estimated coefficients in equation (4.1) and (4.2). AIC is the value of Akaike information criterion. Lags denotes 
the lag-order of corresponding statistical test. 

 

Kolmogorov-Smirnov (KS) test and Cramer-von Mises (CvM) test. The results are summarized 

in Table D4. We find that KS test and CvM test for aluminum, copper, nickel, zinc and lead in 
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three periods fail to reject the null hypothesis at 5% level. This evidence suggests that Student’s 

t distributed model is a suitable model for marginal distributions. As Dißmann et al. (2013) has 

suggested that the innovation distribution is hard to identify. Rigorously, we follow them to 

transform the standardized residuals generated by the GARCH model into marginally uniform 

data by using the empirical PIT, rather than the parametric one. 
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Table D4. Goodness-of-fit test results for Student’s t innovations in three periods 

 Period 1: Jan, 2002- Aug, 2008  Period 2: Aug, 2008- Jan, 2014  Period 3: Jan, 2014- Dec, 2019 

 CvM p-value 

p-value 

KS p-value  CvM p-value KS p-value  CvM p-value KS p-value 

         AL 0.6784 0.7466  0.5659 0.6901  0.5041 0.6267 

CU 0.1766 0.1715  0.0626 0.0721  0.3382 0.4103 

NIC 0.6630 0.8375  0.3752 0.4865  0.7284 0.7110 

ZINC 0.4147 0.5516  0.4673 0.4227  0.9091 0.8746 

LEAD 0.0928 0.0847  0.6089 0.5421  0.0965 0.0847 

             
Note: AL: Aluminum, CU: Copper, NIC: Nickel, ZINC: Zinc, LEAD: Lead. KS-stat. denotes the Kolmogorov-Smirnov statistics. KS p-value denotes the p-value of the 
Kolmogorov-Smirnov statistical test. CvM p-value denotes the p-value of the Cramer-von Mises statistical test. 

 


