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Abstract. We prove a multivariate Lagrange-Good formula for functionals
of uncountably many variables and investigate its relation with inversion
formulas using trees. We clarify the cancellations that take place between
the two aforementioned formulas and draw connections with similar ap-
proaches in a range of applications.
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1. Introduction

Consider a power series of the form
(o]
_ 7A(z An
=ze — 2z 1.1
p(z) =2 gz i (1.1)

In a previous paper [23], we have expressed the inverse map ((v) (that is
p(z) = v if and only if z = {(v)) with the help of a tree generating functional.
The main focus is to formulate these results for uncountably many colors.
An uncountable color palette is completely natural if one studies thermody-
namic functionals for inhomogeneous systems in order to derive variational
or PDE formulations in different areas, for example in classical density func-
tion theory, liquid crystals, heterogenous materials, colloid systems, system of
molecules with various shapes or other internal degrees of freedom. This is be-
cause “colors” correspond to positions or other continuous degrees of freedom
(e.g., orientations).

If p and z are taking only nonnegative values, as in the above mentioned
applications, then the form (1.1) is natural.

For a single complex variable z € C, the inverse reads

() = vT°(v) (1.2)

where T°(v) solves

o0
o an [} n
T°(v) exp<nz_:1 T T°) ) (1.3)
and one recognizes the generating function for weighted rooted trees whose root
is a ghost (that is, the root does not come with powers of v in the generating
function).

On the other hand, as is well-known, the coefficients of v in the inverse
map ((v) (and any functions of z = ((v)) can be expressed in terms of the
Lagrange inversion formula. Formally,

[wmwzifﬂpg

B f(C(p(2) dz
‘%fpu (M@
1)

:27r1 p(z)" A
f
)

(Z)

;Z”“ p(z).

= ="

[o(=



Vol. 22 (2021) Lagrange Inversion and Combinatorial Species 1501

An additional integration by parts yields the more frequently encountered form
of the Lagrange inversion formula
n o 1 n—1 f(Z)

HCE) = 4 7 T (1.5)
see e.g., [15, Appendix A6] or the recent survey [18]. The multivariate case
is similar, with the determinant of a Jacobi matrix instead of the derivative
p'(z). There is a variety of multivariate forms, see [17,20,29] and [4,10,26] for
infinitely (countably) many variables.

Despite the large literature on Lagrange-Good inversion and the increas-
ing interest it attracts from combinatorialists, to the best of our knowledge
no analogue for uncountably many variables has been considered up to now.
Exception are [12,28], where combinatorial identities are generalized to an ar-
bitrary number of variables; however, the concept of summability by Mendéz
and Nava is a restriction which would not allow to treat the above-mentioned
applications. The first aim of the present note is to fill this gap: we propose
a multivariate Lagrange-Good formula for functionals of uncountably many
variables (Theorem 3.1).

The second aim is to clarify the relation with the tree formula from
Proposition 2.6 in [23]. Just as Gessel’s proof of the Lagrange-Good inversion
formula for finitely many variables, our proof starts from a representation of the
inverse in terms of trees. In contrast, determinants are associated with digraphs
that may have cycles; equality arises because of cancellations as clarified in
Proposition 3.4. There is actually more to this: when interested in proving
asymptotic formulas and checking the validity (absolute convergence) of the
power series, the tree formula is easier to handle. In fact, in [26], we had to
show that the determinant was bounded and then in [23], we realized that
the determinant is not actually there due to the cancellations and therefore
we deduced better bounds with less effort. The observation that determinants
might be a hindrance to asymptotic analysis is also behind determinant-free,
so-called arborescent forms of Lagrange-Good, see [5,8,19].

It is noteworthy that Good’s original motivation [20,21] for generalizing
Lagrange’s inversion formula was the enumeration of various kinds of trees,
thus starting from the functional equation satisfied by combinatorial generat-
ing functions. The antipodal view point is to start from the inversion problem,
consisting in solving a given functional equation; then one has two options:
either apply one of the versions of the Lagrange-Good inversion formula, or
derive an expression for the solution directly with trees. Solving inversion prob-
lems with different types of trees is common practice in many areas: Butcher
series in numerics, Gallavotti trees in RG group, Lindstedt series in KAM the-
ory [16], algebra [6,34], see Sect. 5 for more details and a discussion of the
relation to the approach taken in this paper.

The article is organized as follows. Section 2 recalls the multi-variate for-
mulas that we seek to generalize and introduces formal power series associated
with uncountable spaces. In Sect. 3 we set up the problem and present the
main result, which is then proven in Sect. 4. We draw connections to other
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inversion formulas based on trees in Sect. 5. “Appendix A” recalls some formu-
las for formal power series. For our proof, we propose a formalism of colored
species with uncountable color space, which allows us to adapt the proof given
by Gessel [17] for finitely many variables to the case of uncountably many
variables; this formalism is described in detail in “Appendix B”.

2. Preliminaries

2.1. Multivariate Lagrange inversion

Here, we recall the form of the Lagrange inversion formula for formal power

series in finitely many variables zq, ..., z4 € C that we seek to generalize. For
n = (ni,...,nq) € N§ we write 2" = 2" ---2j* and [2"]F(z) denotes the

coefficient of the monomial 2™ in the series F', i.e., if F(z) =), fn2", then
[Zn]F(z) = fa.

Suppose, we are given a family (A4;(z1,...,24))i=1,....4 of formal power
series whose coefficient of order zero vanishes, 4,(0) = 0. Define additional
formal power series!' pi,..., pq by

pi(z1,. .., 24) == zieXp(—A»(zh...,zd)). (2.1)
There is a uniquely defined family of power series ((1,...,(q) such that

Ci(Pl(z) ~-->Pd(z)) =2z, (i=1,...,d) (2.2)
as an equality of formal power series, furthermore (Cl, ..., Cq) also satisfies

pi((l(u),...,gd(l/)) =y (i=1,...,d) (2.3)
as an equality of formal power series in the variables vy, . .., vg. Let ®(z1,..., 2q4)

be yet another formal power series. Then,

Z8! @(Cl(u), A Cd(u))

) d 0
= [2"] {(I)(Z)exp (1; nkAk(Z)> et (% - Ziaza‘Ai(Z)>1§i7j§d} .

(2.4)

Equation (2.4) follows from [17, Eq. (4.5)], see also Theorem 8(b) in [7, Chapter
3.2]. Variants for countably many variables are available [4,10].
Specializing to ®(z) = z;, with k € {1,...,d}, we obtain

o d N
" G (v) = [2"] {zk exp (; nkAk(z)> det <6w 2 92 AZ(Z))gi,jgd} ;

(2.5)

compare (1.4) for d = 1. Conversely, Eq. (2.4) easily follows from Eq. (2.5) as
well. Equation (2.5) allows us to express the coefficients of the unknown reverse

1The choice of letters p; and z; as well as the exponential form of the map are motivated
by applications in statistical mechanics [26], where the z;’s and p;’s correspond to activity
and density variables and the index ¢ may refer to the type of a particle or a discrete set of
locations on a lattice. The exponential form in Eq. (2.1) will be crucial in the following.
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series (;(v) in terms of coefficients of the known series A;(z) and functions
thereof. Equation (2.5) should be contrasted with tree formulas derived from
the following functional equation (combining (2.1) and (2.3) )

Gu(v) = v exp(Ap(G W), - ). (2.6)

see also Sect. 5.

Our goal is to generalize Egs. (2.4) and (2.5) to a situation where the finite
set {1,...,d} is replaced with a possibly uncountable space X, and to provide
adequate combinatorial interpretations. The tree formula for the inverse in
uncountable color space was already proven in [23], it is recalled in Sect. 4.2.

2.2. Formal power series

Let us briefly motivate the definition of formal power series adopted in [23,
Appendix A]. A formal power series in finitely many variables z1, ..., zqg may

be written as
n

F(z1,...,2q) = Z %a(n) (2.7)

neNg

for some suitable family of coefficients a(n) where n! = n1!...ng4! but also as

F(z1,..,24 Zn' Z i, o oyin)ziy o 2, (2.8)

Lin=1
with coefficients f, (i1, ...,%n) that are invariant under permutation of the ar-
gument, where a(n) = f,(i1,...,9,), whenever #{i1,...,iq : i, = j} =n;

for all j € {1,...,d} and n = ny + ... + ng. Eq. (2.8) is less elegant than
the multiindex formula (2.7) but redeems itself by a straightforward general-
ization to uncountable spaces. (Other benefits of Eq. (2.8) are discussed by
Abdesselam in the context of Feynman diagrams and tensors [1, Sect. III].) If
{1,...,d} is replaced with a measurable space (X, X) it is natural to replace
sums with integrals and switch from a vector (z1,...,24) to a measure z(dx).
Accordingly, the power series we are interested in are of the form

= fo+ Z ; Fa(@y, . zn)2(day) - - 2(dzy), (2.9)
the coeflicients consist of a scalar fy € C and symmetric measurable func-
tions f, : X" — C, n € N. As usual for formal power series, we do not want
to deal with questions of convergence and downgrade (2.9) to a mnemotech-
nic notation for the sequence (f,)nen,. We also want to define function- and
measure-valued formal power series F'(¢; z), K(dg; 2).

Definition 2.1. Let (X, X) be a measurable space.

(a) A (scalar) formal power series on X is a family (f,)nen, consisting of a
scalar fy € C and symmetric measurable functions f, : X" — C.

(b) A function-valued formal power series is a family (f,)nen, of measurable
maps f, : X x X" — C such that (¢, z1,...,2,) — fu(g;x1,...,2,) is
symmetric in the x; variables.
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(¢) A measure-valued formal power series is a family (k,(dg; 1, ..., Zn))nen,
consisting of a measure kq(dg) on X and kernels &, : X x X” — R, such
that for each B € X, the map k,(B;-) is symmetric in the z; variables.

Definition 2.1(b) and (c) are formulated for functions of a single variable ¢ € X
and nonnegative measures, they extend in a straightforward way to functions
of several variables or complex measures. Standard operations such as sums
and products are defined in “Appendix A.” The operations turn the set of
scalar formal power series into an algebra that corresponds to the algebra of
symmetric functions from Ruelle [31, Chapter 4.4].

Ezample 2.2 (Exponential). Let ¢ be a nonnegative measurable function on
X, then the power series associated with the following exponential is

— 1
efx p(x)z(dz) _ 1 + Zl ] /n (p(g;l) . w(mn)z”(dw).

Ezample 2.3 (Monomials). Let m € N and ¢1,...,q, € X. Let ,, be the
Kronecker delta, equal to 1 if p = ¢ and 0 if p # ¢. Then for every measure z
on X, we have

D) 2am)) = [ Suny+++Bgpa ()

Xm

- %/ Z qu’i’ma(i) Zm(dw)v (210)

ce6,, i=1
which is of the form (2.9) with f, = 0 for all n # m.

Ezample 2.4 (The measure z(dq)). Let 2(dg) be a measure on (X, X). Then
for all B € X,

z(B):/Xllg(x)z(dx):/Xéx(B)z(dx):/Xkl(B;x)z(dx), (2.11)

with kernel kq1(B;x) = 0,(B), i.e., k1(dg; x) is the Dirac measure at z. Accord-
ingly, we may view z(dq) as a measure-valued formal power series in the sense
of Definition 2.1(c), with k, = 0 for all n # 1 and ky(dg;z) = 0,(dg). The
measure z(dq) replaces the set of monomials (z;);=1,... 4 that appear naturally
for power series of finitely many variables, with z(B) the analogue of » ;5 2.

2.3. Variational Derivatives and Extraction of Coefficients

Just as for usual power series, coefficients can be extracted by taking deriva-
tives at the origin. In our context, the correct notion of derivative is a varia-
tional derivative defined as follows.

Definition 2.5. Let F(z) = fo+ .o, % Jsen fn(@1,. .., xp)2"(dz) be a formal
power series, i.e., (fn)nen, is a family of symmetric functions as in Defini-
tion 2.1(a). The variational derivative of order k is the function-valued formal
power series with coefficients

5k f
<ﬁ)n(q1,...,qk;z1,...,xn) = fean(Q1y s Qs 1y Ty). (2.12)

Thus,
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Sk f =1 "

527((]1,..-,(119;2) = frlqr,- -, qr) +;E/X” fean(qrs- oy @m,x1,. .., Tn)2" (de).
(2.13)

In particular, fi(q1,-..,qx; 2) is equal to the term of order zero in the formal

ko
power series g?{(q; z). Below, we often use the notation

5* sk .
() @ = b0 (214)

Definition 2.5 is motivated by the following formal computation. For small
t € R and another measure p on X, we have

Fz+tp)=Fo+y — » t" / Folar, ..y n)2" " (da gy g)p" (dz )
n=1" k=0 JC[n] /X"
#I=k
oo 1 n n n .
=Fo+ ), ) ) (,)tk - Fa(qu, - @n—t,y1, - yk)z" " (dg)u* (dy)

e k k
=F)+ Y tﬁ/X O E 1, a2t ()
(2.15)

and

k

d

ok F
” W(qh...,qk;z)uk(dw). (2.16)

t=0

2.4. Fredholm Determinant

Let K : X x X — R be a kernel and K the associated integral operator in
L?(X, X, z(dx)), given by

(Ke)(¢) = / K(¢,q)=(dg).

For sufficiently regular kernels K, the Fredholm determinant det(Id — K) is

det(Ide):lei%/

det (K (5,4:)); 51, ) 2(da1) - 2(ddn),
X'n

(2.17)

see e.g., Sect. 3.11 in [32]. The right-hand side of (2.17) is always well-defined
as a formal power series in z, without any regularity assumptions on the kernel.
Accordingly, we adopt (2.17) as a definition of the Fredholm determinant on
the level of formal power series.

The definition is easily extended to kernels K, and associated operators
K, that are themselves given by formal power series, as in Eq. (3.5). That
is, suppose we are given a family of measurable functions kg : X x X — R

n=1
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and k, : X x X x X" — C such that (¢,q¢;21,...2,) — kn(q,¢521,...2,) is
symmetric in the x; variables, and define

o0 1 N
Kt ) = b )+ 32 0 [ hald' ) G,

The determinant det ((K.(¢;,¢q;))i j=1,....n) is a combination of products of
power series, the integral of formal power series is defined using (A.6). There-
fore, the n xn determinants and integrals in (2.17) stay well-defined as a formal
power series with K, instead of K. For the nth summand on the right-hand
side of (2.17), the first nonzero term in the power series expansion has degree
n, because of the “integration” with 2" (dx). Hence, the contributions for the
term of degree m € N in the formal power series of K, comes from summands
on the right-hand side for n < m. Therefore, the coefficient of the degree m is
a finite sum of finite products of the functions k,,, and hence the infinite series
on the right-hand side is rigorously defined as a formal power series.

We conclude with a remark that may be helpful for readers which are not
too keen on working with Fredholm determinants.

Remark 2.6. One can replace the Fredholm determinant with determinants of
finite matrices. Recall from Example 2.3 how to interpret z({q}) as a formal
power series.

Let n € N and (q1,...,q,) € X". Set Q = {¢; : ¢ = 1,...,n}. Then,
the nth coefficient of the Fredholm determinant det(Id — K,), evaluated at
(q1,---,Gn), is equal to the nth coefficient at (q1, ..., qn) of the (#Q) X (#Q)-
matrix

et ( (G = (b B0 0) ). (218)

One can replace @ by any Q' D @ without altering the coefficient

If one additionally wants to avoid the use of measures for z, because one
is either only interested in densities or maybe even in generalized functions,
then in order to compute the nth. coefficient it is sufficient to consider the
following determinant

) m(dzy) ... m(dz,),
(2.19)

/Xdet <((5(33j — ;) — Z(l'j>Kz<xi7xj))

i,j=1,...,n

where m is a reference measure on X, for example typically the Lebesgue
measure.

For both cases, more details can be found at the end of “Appendix A.”
The use of the Fredholm determinant gives the most natural connection to the
combinatorics. All other interpretations will give rise to the same result as the
coefficients of the associated formal power series are unchanged.
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3. Main Results
Let (X, X) be a measurable space and

A(g; 2) == Ap(q) + Z % /X An(g; e, ..y ep)z(dey) -+ 2(dey,)  (3.1)
=l Jxn

a function-valued formal power series in the sense of Definition 2.1(b). Thus,
each 4, : X x X" — C is a measurable function that is symmetric in the
xj-variables. Define a measure-valued formal power series p(dg; z) by

plz)(dq) = p(dg; 2) = 2(dq) exp(—A(g; 2)). (3.2)
The coefficients of the power series on the right-hand side are defined rigorously
by Egs. (A.9) and (A.7). We would like to determine the inverse power series
([v](dg) = ¢(dg;v), that is
(Cop)(dg; 2) = 2(dq), (po()(dg;v) = r(dg) (3.3)
with the composition defined by (A.13). In a previous article [23], we have
proven that the inversion is always possible on the level of formal power series,
and we gave sufficient conditions for the absolute convergence of the involved
power series. Precisely, concerning the formal inverse, we have proven that
there is a unique family of formal power series (qu )gex that solves the fixed
point equation

T, (v) = exp <Z % /xn An(g e, w0)Ty (V) -+ T, (v)v(dey) - - l/(dlfn)) ,
" (FP)

compare [7, Theorem 3.2.2] for finitely many variables. Moreover, the measure-
valued formal power series

¢[v](dg) := T (v)v(dg) (3.4)
(see again (A.7)) satisfies Eq. (3.3).

Further we have shown [JKT2019, Proposition 2.6] that the power series
T, is the generating function for rooted weighted trees whose root has color ¢
and is a ghost. (It does not come with powers of z in the generating functional.)
The tree formula for the inverse is recalled in detail in Sect. 4.2. Corollary 3.5
provides an alternative representation as the coefficient of another power series,
generalizing the multivariate Lagrange inversion formula (2.5).

First, however, we generalize Eq. (2.4) to uncountably many colors. The
determinant in Eq. (2.4) is replaced with a Fredholm determinant. Define the
kernel

Koldo0) = £ A(:2)
:(dq) = 5a(g) e 2)-
The variational derivative has been introduced in Definition 2.5, see also
Eq. (A.4). In particular,

=1
K.(¢,q) = Aigd)+ ) %/X A1 (g ¢ 21, ) 2™ (). (3.5)
2aml Jym
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Consider the formal operator
(b0 ) 1= [ el 7 Awe) = [ Kl e@sda (39)

which we may view as a (formal) integral operator in L?(X, X, z(dq)) with
kernel K, (¢, q). The Fredholm determinant det(Id— A, ) is defined, as a formal
power series, as in Sect. 2.4, see also Eq. (3.9) below.

Theorem 3.1 (Lagrange-Good inversion). Let p[z](dq) = z(dg) exp(—A(g; 2)),
where A is defined in (3.1). We denote by ([v](dq) the formal power series of
the inverse of p[z](dq). Let ®(2) = o+Y ney & [0 Pul(x)2"(d) be a further
formal power series.

Define a formal power series ¥ (using (A.13)) by

B(C0) = 00) =W+ Y [ Wl (da) (37)

Then, for alln € N and (q1,...,q,) € X", U, (q1,...,qn) is equal to the term
of order zero in the formal power series

5” n
52(q1) - 02(qn) {<I>(z) exp <; Algs; z)) det (Id — Az)} . (3.8)

By the definitions adopted in Sect. 2.4, the Fredholm determinant in (3.8) is
given by

det (Id — A.,)
=1+ ; (fnl')n /n det ((&éi)z‘l@j; z)>i7j_17“.’n> z(dzy) ... z(dzy),

we will sometimes use the heuristic notation

det(Id — A,) = det (Id — z(dgq) 52?(]/) A(g; z)) .

Remark 3.2. Following Remark 2.6, the Fredholm determinant in Theorem 3.1
can be replaced by usual determinants in two ways:

(1) Using restrictions, we get that
o
9.9'€

Q:={qli=1,...,n}. (3.11)

The replacement is also possible as well if we use instead of () any bigger

set Q' D Q.

where
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(2) If z has a density with respect to a reference measure m, which we denote
also by z, or if z is a generalized function one can replace the Fredholm
determinant by

/X det ((5(mj — ;) — Z(xl)&'(i:])A(z“ z))lj1n> m(dzy) ... m(dz,),
(3.12)

where the expression is well-defined for nice enough A; indeed see (3.9).

The usual determinant may feel more elementary; however, the Fredholm
determinant is defined as a series of usual determinants anyhow. If one wishes
to apply the theorem in a functional-analytic context the Fredholm determi-
nant may make sense as an actual determinant of an operator, while z({q})
in the finite matrix, could always be zero in the function space considered, for
example in LP-spaces.

Remark 3.3. We stress that the determinant in Eq. (3.10) is the determinant
of a matrix indexed by a set of colors @ and not by indices 4,5 € {1,...,n}.
Crucially, if ¢; = g; for some ¢ # j, the color ¢ = ¢; = g; gives rise to only one
row and column in the matrix. As a consequence, colors may repeat among
the ¢;’s but the determinant still be non-zero.

This is consistent with the determinant in Eq. (2.4) for finitely many
variables. In analytic proofs [20], the determinant comes in via a complex
change of variables in a contour integral. In particular, every variable z; ap-
pears only once in the determinant, even when we are interested in coefficients
of monomials with powers nj > 2. See also Eq. (A.21).

When ®(z) = 1, we have ¥,, = 0 for all n > 1, and we obtain the following
striking result.

Proposition 3.4. For alln > 1 and (q1,...,qn) € X", the term of order zero
in the formal power series

o n
52(q1) - 02(qn) {exp <; Algs; z)) det (Id — Az)} (3.13)

vanishes.

Note that the expression in the curly bracket also depends on n. Remark 3.2
applies here as well. These cancellations give rise to the inversion formula
expressed in terms of trees as given in Sect. 4.2. Similar cancellations happen
in [2] where the formal inverse is expressed as a one-point correlation function
p(l)(x) of an appropriately chosen complex Bosonic gas. In the latter case,
cycles are canceled by the partition function Z leaving one tree with root color
T.

Another special case of Theorem 3.1 corresponds to the choice ®(z) =
z(B) with B C X measurable. (The analogue for finitely many variables is

ZieB 2i.)
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Corollary 3.5 (Determinant formula for the inverse). For every B € X, the
nth coefficient of ((B;v), evaluated at (q1,...,q,) € X", is equal to the nth
coefficient of

2(B) exp (Z Algs; z)) det (Id — A.) (3.14)

evaluated at (q1,...,qn)-

The proposition provides an analogue for (2.5).

4. Lagrange-Good Inversion. Proof of Theorem 3.1

4.1. Enriched Maps, Cycle-Rooted Trees, Weights

A key ingredient of the bijective proofs by Labelle and Gessel [17,27] is a
graphical representation of mappings. Let us briefly recall some standard vo-
cabulary, following [7, Chapters 3.1 and 3.2]. Let V, .S be disjoint finite set.

A partial endofunction on U := V U S with domain V is a mapping
f:V = U=V US. Any partial endofunction is associated with a directed
graph G = (U, E), or digraph for short, with vertex set U and directed edges
E ={(v,f(v))|ve U} CcUxU. The digraph G may have self-edges (v, v),
called loops. Loops in G correspond to fixed points of the mapping, f(v) = v.
The graphs G obtained in this way have two types of vertices: Vertices v € V
have exactly one outgoing edge because f maps v to exactly one vertex f(v).
Vertices v € U \ V = S are sinks, i.e., they have no outgoing edge, because
they do not belong to the domain of f.

In both cases the out-degree in G of every vertex is either 0 or 1. We call
digraphs with this property functional digraphs. Clearly there is a one-to-one
correspondence between functional digraphs G and partial endofunctions f
and we often identify them, cf. Fig. 1.

In order to take into account the exponential exp(A(g; z)) in our formulas,
we enrich partial endofunctions with an additional structure: To each element
v € VUS, we add a set partition P, of the elements of the preimage f~1({v})
(the preimage is often called fiber of v). This is a special case of the R-enriched
structures often used in combinatorial proofs of Lagrange inversion formula
[7, Definitions 3.1.1 and 3.1.8]. It is customary to represent R-structure as a
structure on the incoming edges of the functional digraph; in our case, P, is
represented as a set partition of the incoming edges (w,v).

Definition 4.1. Let V' and S be finite possibly empty disjoint sets. If V is
empty, we set M[V] = M?[@] := @. If V is non-empty, we define M*[V] to
be the collection of pairs f = (f, (P,)vevus) such that

e fisamap f:V -V US.

e For each v € VUS, P, is a partition into non-empty sets of the preimage

F71({v}). If the preimage is empty we set P, = @.

Anelement f = (f, (Py,)vevus) € MS[V]is called enriched partial endofunction
on V U S, with domain V and sink set S, or enriched map for short.
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FIGURE 1. Relation between partial endofunction and the as-
sociated functional digraph. On the left-hand side, an endo-
function in the usual representation of a functions is given. On
the right-hand side, the functional digraph associated with the
endofunction in the left box is drawn

FI1GURE 2. Digraph of a typical enriched partial endofunc-
tion M?[V] containing vertex-rooted trees and cycle-rooted
trees. The vertices from V are depicted as black filled circles,
whereas the sinks S are depicted as unfilled circles. The small
lines crossing the edges of the graph represent the blocks W
of the partitions P,. For more details cf. Fig. 3
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For a typical element of M®[V] see Fig. 2. To lighten notation, if S = @, we
drop the superscript S and write M[V]. If S = {0} is a singleton, we drop the
braces in the notation and write M°[V] instead of M1°}[V].

A digraph G is connected if any two distinct vertices v,w can be con-
nected by a path from v to w or from w to v. The connected components of
functional digraphs are of two types: trees and cycle-rooted trees, by which we
mean the following.

Definition 4.2. Let G = (V U S, E) be a functional digraph with domain V',
that is a directed graph such that every vertex v € V has out-degree 1 and
every vertex w € S has out-degree zero.
(a) A cycle in G is a sequence vy, ..., v, in V such that (v;,v;11) € E for all
ie{l,...,n—1} and (v,,v1) € E. This includes loops (n = 1).
(b) G is a vertex-rooted tree if it is connected and it has no cycle. Then, S
is necessarily a singleton = {o}, the root is the unique sink o.
(¢) G is a cycle-rooted tree if it is connected and it has exactly one cycle.

Then, S must be empty.The unique cycle in G is called the root cycle of
G.

By some abuse of language, an enriched map or graph are called vertex-rooted
or cycle-rooted tree if the underlying graph G is vertex- or cycle-rooted tree,
respectively. The class of enriched maps f € M°[V] that are vertex-rooted
trees is denoted 7°(V).

Finally, we define weights of enriched maps. For f = (f, (P,)vevus) €
MP[V] and & € XYV the weight of f, given the coloring x, is

w(f,(Povevusi®) = [[ T Asw (@i (@w)wew). (41)
veVUS: WeP,
fHw)#o

We denote for short @y := (x4 )wew. For a graphical representation, see
Fig. 3.

4.2. The Tree Formula for the Inverse Power Series

For our further calculation, we need a combinatorial expression for the inverse
power series. Such a representation can be obtained directly without using
Lagrange-Good type formulas. We briefly recall the tree formula for the inverse
power series proven in [23]. Let

tn(mo; T1s--- ,an) = Z w (fa (Z’j)je[n]u{o}) (42)

feTe[n]
and

— 1
T;(v) =1+ Z ] / tn(xo; 1, ..., xn)v(dey) -+ v(de,) xo=4q. (4.3)
n=1

Lemma 4.3. The family (T, (v))qex fulfills the following functional equation as
formal power series

T, (v) = exp <Z % /X An(gG 1,y xn)T, (V) - T, (v)v(der) - - I/(d.’En)> .
=t Jxn
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FIGURE 3. The weight (4.1) of an enriched digraph
is a product of contributions of building blocks. The
left panel represents an enriched digraph with weight
Az(wo; w1, 22, x3) Ao (203 4, 75) A1 (20; 06) A2 (245 T7, 28) Ay (T4
x10)As(ws; 211, ¥12) A1 (255 x13). The right panel separates the
graph into the single building blocks, each of which corre-
sponds to a factor Agw (2y; (Tw)wew) in the graph weight.
The partitions are given by W; = {1,2,3}, Wy = {4,5},
Wi = {6}, Wi = {7,8,9}, Ws = {10}, Ws = {11,12},
W, = {13} and the partitions are Py = {Wy, W, W3},
Py ={Wy, W5}, and Ps = {Ws, Wr}

(4.4)

For finite spaces X, the lemma follows from Theorem 2 in Chapter 3.2 on
implicit species in the book by Bergeron, Labelle, and Leroux [7].

Proof. The lemma follows from [23, Lemma 2.1 and Proposition 2.6], we give
a self-contained proof for the reader’s convenience. Calling {V,...,V;,} the
partition P, of the vertices incident to the root o, we can rewrite t, using the
tree structure of the associated graph as

m

Z w (f5 (25) jermlutor) Z Z HB q; Vi), (4.5)

feT°n] m=1 {V1,...Vin }
partition of [n]

where we defined:

)i= Y Ayr(gzr,) > 11 ten @iy (46)

L;CV; (Jk)kEL,i keL;
Li#2 partition of V;\L;

(Compare with the calculations (formulas (26)-(28)) in the proof of Theorem
1 in [2]].) Note that according to (A.2) the expression B(q;V;) is the #V;th.
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coefficient in powers of v of

— 1
S [ Ao, w2 () T2, (r(den) - vda). (@)
n—l . n
According to (A.9), the right-hand side of (4.5) is the nth coefficient of the
exponential of (4.7). O

When dealing with generating functions of rooted trees we have two
choices, either look at trees rooted in a ghost or trees rooted in a labeled
vertex. In the univariate case (no colors), these give rise to two different gener-
ating functions T°(v) and T°*(v) related by T (v) = vT°(v). The multivariate
case (finitely many colors) gives rise to a relation of the type T (v) = v, 17 (v),
with ¢ the color of the root. This last relation should remind the reader of
the relation ((dg; v) = v(dq)T, (v) used to define ((dg;v) in (3.4). As a conse-
quence, we should expect that the measure-valued series ((dg; V) corresponds
to rooted trees with the root integrated over.

The next lemma makes this statement precise. It says that the series
¢(B;v) is given by a sum over rooted trees with root color in B.

Lemma 4.4. Let ((dg;2) = T, (q; 2)2(dq). The nth coefficient of ((B;v), eval-
uated at (q1,--.,qn), is equal to

<n(B7 q1y .-+, Qn) = Z ]]-B(QT)tnfl (q'r; (qz)ie[n]\{r}) (48)

r=1

and the term of order zero vanishes, (o(B) = 0.

Proof. The lemma is an immediate consequence of the definition (3.4) of
¢(dg;v) and Eq. (A.7). O

Theorem 4.5. For p given in (2.1) we have (¢ o p)(dg; z) = z(dg) and (p o
¢)(dg;v) = v(dq) as an equality of measure-valued formal power series, with
the composition defined in (A.13).

Proof. (Proof sketch) By the definition of p(dg;z) = exp(—A(qg; 2))z(dgq) and
Lemma 4.3, we have

(po¢)(dg;v) = e A @De(dgyv) = e <D T (1)1(dg) = v(dg). (4.9)

The previous chain of equalities is formal but it can be rigorously justified
by properties of operations on formal power series (e.g., associativity of the
product), defined in terms of coefficients only; we leave the details to the
reader. The equality ({op)(dg; z) = 2(dg) is proven by a similar argument and
another fixed point equation, see [23, Lemma 2.12]. O

4.3. Cycle-Rooted Forests. Proof of Proposition 3.4

For the proof of Proposition 3.4, we relate the right-hand side of Eq. (3.13) to
a sum over cycle-rooted forests and look for combinatorial cancellations. We
start with the exponential. Let E}(g; ) be the coefficients of the exponential
appearing in Proposition 3.4, i.e.,
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n oo 1
exp (Z A(qz';z)) =1+ E/Xk Ep(qr, - qn; @, ... op)2(der) - - - 2(de).
k=1

1=1

(4.10)

Figure 2 depicts a forest of vertex-rooted and cycle-rooted trees. The
vertices [n] \ I are represented as white.

Lemma 4.6. Let E}' be as in (4.10). Forn € N, g € X", and I C [n], we have

E%I(Ql?"'uqn;(qi)ief) = Z w(val?uqn) (411)
FeMInNI(])

Notice that Lemma 4.6 does not address general coefficients
ELi(q1,. .., qn; (zi)icr), but only the special case z; = ¢;. Roughly,
By (g1, -1 qn; (Ti)ier) is a sum over enriched maps from I to {1,...,n}, but
if x; # ¢; there are color-conflicts and the color-dependent weight of a map is
inappropriate to give a representation.

Proof. By exp (31—, A(gi;2)) = T, exp (A(g;; 2)) and (A.3), we can write
for all z € X!

E;}ﬁl(ﬁhwuv%z;w[): Z H Eiﬁjk(qk;wfk% (412)
IiyeeDn 1<k<n
1, #2
where Iy,...,I, are pairwise disjoint subsets, with I}, = @ allowed, whose
union is I and &y = (x;);cr. By (A.8), we have that:
Eyp(gsen)= Y. [ Aswlamzw), (4.13)

PreP(Iy) WeP,

where P(I)) is the collection of set partitions {W7i,..., W, } of I} into non-
empty sets W;. Combining the two, we obtain that

E%(Ql,m,qn;mz)z Z H H A#W(qk;ww). (4.14)

Iydn 1<k<n WEP,
Py,...,Py Iz #92

Each n-tuple (11, ..., I,) gives rise to a map f : I — [n] by defining f~!({k}) =
Iy; the correspondence is clearly one-to-one. Considering f = ( f (Pk)ke[n])
and x; = q; we recognize the weight w(f,q) and obtain (4.11). O

Next, we turn to the determinant on the right-hand side of Eq. (3.13). Write

det (Id — z(dgq) 522]’) A(g; z)) =1+ ’; % /ck Dy(x1,...,x,)2" (dz),

(4.15)

where @ = {¢; | i = 1,...,n} is defined as in (3.11). We start with the
interpretation of the left-hand side as a formal power series, cf. (3.9),
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det (Id - z(dq)ézfq/)A(q; z)) (4.16)

= - e U iz z z
_1+HZ::1 — /ndt<(52(pi)A(pa, )>i,j—1,...,n> (dp1) ... z(dpn)

and next we use the combinatorial interpretation of the matrix element

Mpyp/(z) = 52’(]7/) A(p’ Z)a (417)
which by Eq. (3.5) takes the form
— 1
My (2) = Z m Ak(p§p/7-’13[k])2’(dl’1) - z(day). (4.18)
= k! Jxr

In M), (%), we recognize the generating function for digraphs G' with vertices
0,0/, 1,...,k that have edges (o,0’) and (o,5), j = 1,...k. The vertex o has
color p, the vertex o’ color p’, and j the color ;.

We call such a digraph with the associated coloring a spike of type (p,p’)
and the edge (o, 0’) the base edge of the spike. A spike with base edge (o, 0’)
is identified with the enriched graph G that has the trivial partition consisting
of a single block, P, = {o’, x[;;}. See the left panel of Fig. 4 for an example of
a spike.

Concatenating base edges of spikes in a circular fashion gives rise to an
object consisting of a base cycle and additional incoming edges.

Definition 4.7. Let V be a finite non-empty set and f = (f, (P,)vev) € M[V].
We call f a crown if there exists a finite set B C V (the base of the crown)
such that:
.« F(V) =B,
e f restricted to B is a cycle,
o for all r € B, P, = {f~!({r})}, that is, the partition P, consists of a
single block.

Let K[V] be the collection of crowns on V.

The right panel in Fig. 4 shows are crown. The simplest crown is a loop.
The next lemma expresses the relevant coefficient of the determinant as a
sum over assemblies of crowns, with an additional factor (—1)° where s is the
number of crowns. The factor (—1)® is a crucial ingredient to cancellations in
the proof of Proposition 3.4.

Lemma 4.8. Let Dy, be as in (4.15). Then,
k

Di(ap) = _(-1° > TI[ > w(fiaw) (4.19)
s=1 Vi, Vo =1\ fieK[Vi)
where the sum is over set partitions {V1,...,Vs} of [k].

Proof. Using the definition as formal power series (3.9), we see that the mth
coefficient of the determinant is
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FIGURE 4. Left panel shows a spike with & = 4. The right
panel shows a crown, where the set of white vertices the base
B and V (as in Definition 4.7) is the set of all white and black
vertices. The partitions P, are symbolized by the small curved
lines crossing the edges

det <Id — 2(dg) A(q;z)) (1, -, Pm)

m

= (—1)"det ((&fpi)A(pj;z)) . ) . (4.20)

.....

b
62(q")

The definition of the determinant gives

det(—Mp,p, )1<ijcm = Y sen (o) [[(=Mp, 0., (4.21)
ceS,, i=1
which we may also write as
det(—Mpp i<ijem = »_ (=1 T] My, ), (4.22)
cES,, =1

with s(¢) the number of cycles in the cycle decomposition of the permutation o.

Indeed, let ¢ = 07 - - - 04 be the cycle decomposition into s cycles of respective
lengths ¢(c;). Then, >°7_, ¢(0;) = m and

(—1)"sgn(o) = (1" L))" = (-1, (1.23)

The sum in (4.22) is a sum over the following directed graphs. Each connected

component is a cycle (or loop). Each edge (p1, p2) contributes a factor M, ,,

and the sign is —1 to the numbers of cycles. By the definition (A.2) of the
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product of power series, the nth coefficient of (4.22) at (x1,...,x,) is
> 0 > [T pipo @) (4.24)
o€, (J1yeerdm) i=1
The sum is over ordered set partitions (Ji, ..., J;,) of [n] into m sets. Because

of Ay = 0, only non-empty sets J; # & contribute.

The expression (4.24) is a sum over permutations o € &, and sequences
(G1,...,Gy) of spikes with vertex sets {o;} U J; with disjoint J;’s and base
edge (04(;),0i). Such a sequence is naturally associated with the digraph G
with vertices {1,...,n} U {o1,...,0n}. Each connected component of G is a
crown, the base of the crown consists only out of vertices from {o1,...,0,,}
and all vertices not in the base are from {1,...,n}. The base of the crown
corresponds to a cycle in o. The mapping (o, (G1,...,Gp)) — G induces a
one-to-one correspondence between (i) pairs (o, (G1,...,Gy)) and (ii) collec-
tions of crowns with the vertices in the bases of the crown are the vertices
{o1,...,0m} and all of them are in some base of a crown.

Hence, the nth coefficient of (4.20) is given by

FeM[m+n]

where the primed sum is over enriched endofunctions on [k] whose connected
components are crowns. The next step is to drop the distinction betweed p
and @, which gives rise to a binomial coefficient (”+m) which cancels with the
factorial pre-factors, that is 1/m! in (3.9), 1/n! from (3.5) and k! = (n + m)!
from (4.15). The kth coefficient of det(id — M (z)) is therefore equal to

k
6(f)
) = Y e S ) )
m:l

FeM(k]

O

Proof of Proposition 3.4. Let E}' and Dy, be the coefficients of the exponential
and determinant as in (4.10) and (4.15). By (A.2), the power series in braces
in Proposition 3.4 has as kth coefficient

> EL (g @)Dy (@ )- (4.26)
IC[k]

In view of (A.4), we have to show, in order to prove Proposition 3.4, that
Z ELi(a;91) Dy 1 (@ 1) = 0. (4.27)
IC[n]

Note that x; is replaced by g; and k has to be equal to n. Hence, the list g;
is a part of gq.
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By Lemmas 4.6 and 4.8 , the left-hand side of (4.27) is given by

n—#I1 T
> 2 > X > wifia) [T(~w@an)).
IC[n] r=1 {Vi,..,V.} FeMminI\I(I) (G1se-Gr) k=1
part. of [n]\I eL(Vi)x--xK(V;)
(4.28)
In words, a sum over collections of crowns gi,..., g, with disjoint supports

Vi,...,V, and a forest f of cycle-rooted trees with root cycle in I C [n]\ U Vj
and vertex-rooted trees with root vertices in UVj. Each such tuple can be
mapped to a map F' € M|n]. The relation between weights is

w(Fiq) = w(fiqp) [] w@w av,)- (4.29)
k=1

The mapping (f, 31, .., gr) — F is surjective but not injective: each F' € M|n]
is a forest of cycle-rooted trees (no vertex-rooted tree). Each such cycle-rooted
tree can decide whether (a) it belongs to the forest f, or (b) it is split into a
crown g and attached vertex-rooted trees. Note that the set of splitting points
is uniquely determined. The two choices for a given F come with opposite
signs and sum to zero. O

4.4. Forests with Several Sinks. Proof of Theorem 3.1

The proof of Theorem 3.1 builds on the cancellations from Proposition 3.4.
The directed graphs in the proof of Proposition 3.4 consists of crowns and
vertex-rooted trees which can be combined in such a way that all connected
components are cycle-rooted trees. In contrast, for Theorem 3.1, the graphs
consist of crowns and two types of vertex-rooted trees. The first type is as in
Proposition 3.4, the second one is related to the coefficients of the power series
of ®. As in Proposition 3.4, the cycle-rooted trees cancel exactly with the first
type of vertex-rooted trees and only the second type of trees survives, which
is a combinatorical justification that the inversion is related to vertex-rooted
trees only.
Let us introduce a shorthand for a forest of trees

F;L@[n]; qp) = Z H tyv, (qe; (Qj)jew) (4.30)
(Ve)eer £€L
where is the sum is over ordered partitions (Vy)eer of [n] \ L, with V;, = &

allowed.

Lemma 4.9. Let n € N and (q1,...,q,) € X". Fiz L C [n] and consider sums
over pairs I, J C [n] such that [n] is the disjoint union of L, I, and J. Then,

n L I J I
E#I(QLuJul;‘h) = Z FILJr# 1(QL;‘111)E§12+# (qur,:41,), (4.31)
(I1,12)

where Iy, Iy are disjoint subsets of I such that Iy Uy = I (the sets I, I could
also be empty).
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Proof. By Lemma 4.6 we have that
E;LEI(QLUJUI;QI) = Z w(f;qus- - qn)- (4.32)
feMLUJ(I)
Define I as the union of all the vertices in I from connected components which

are vertex rooted trees with root vertex in L. Then, I5 is the set of all vertices
in I associated with root vertices in J. This correspondence is one to one. [J

Proof of Theorem 3.1. By the product formula (A.3), the nth coefficient of

D(2) exp <Z Alqi; z)) det (Id — z(dq) (Sz?q’)A(q; z)) (4.33)

at (q1,...,qn) is
> Our(qr)EL (@ a1)Dus(Qiay), (4.34)
(L,1,J)

where the sum is over ordered partitions L, I, J of [n] with empty sets allowed.
By definition (3.4) of ((dg;v) and definition (A.10) of the composition, the
nth coefficient of U(v) = ®({(v)) is

o Durar) Y, [l tee-1(ae@)iev) = D P%r(a)Fir(@p)a.),
LC[n] (Ve)eer €L LC[n]

(4.35)
where the sum is over ordered partitions (V;)eer, of [n]\ L, with V; = & allowed.
So we have to show that the expressions (4.34) and (4.35) are equal. Indeed,
by Lemma 4.9, we have that

Z ‘I)#L(‘IL)E;&I(Q[n] 1a1)Dya(a )
(L,1,J)

LA#I I J
= Z Pur(ar) Z F$L+#2(qLUI2§q12)Eﬁ1i+# (@r,05391,)Dxalay).
(L,1,7) (I1,12) : I1UI2=1

Using that L, J, I, Iy are disjoint with union [n], we obtain that
n J+H#i1
= Z ‘I)#L(qL)F#L(qLUIQ;qIQ) Z E§11+# (@r,07:91,)Dy(ay)
(LJ?) (11"])

Using the cancelations from Proposition 3.4 (most easily in the form (4.27))
we get that

= Z (I)#L(qL)FgL(qLUIQ 14r,),
(L,I2)

where L and I, are disjoint with union [n]. This is exactly (4.35). O

5. Discussion

In this final section, we discuss connections to similar methods in different
contexts. Some occurrences of trees in various areas of mathematics are listed
in Table 1.
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TABLE 1. Some occurrences of trees in different areas
of mathematics. The abbreviations KAM and QFT stand
Kolmogorov—Arnold-Moser and quantum field theory, respec-

tively
Algebra Bass-Connell-Wright tree formula for reverse power series [6]
Numerics Butcher trees [9]
Dynamical systems Lindstedt series in KAM theory
Analysis Faa di Bruno formula for derivatives of fi o fo0---0 fi, [25]
Gaussian fields, QFT Perturbative expansion of one-point correlation functions
QFT, renormalization Gallavotti-Niccolo trees, Hepp sectors
Combinatorics Implicit species [7, Theorems 3.1.2 and 3.2.1]
Probability theory Branching processes [20,21]

Random trees and random forests [30, Chapter 6]

5.1. Gallavotti Trees

For simplicity, let us consider a gas consisting of classical particles interacting
via a two-body potential V' at inverse temperature §. From basic statistical
mechanics, we can write the density p as a function of the activity z as follows:

p(z) =2+ nby2", (5.1)
n>2
where b, are the Mayer coefficients related to the pair potential V. We ob-
serve that one can invert the above expression following different strategies,
we present a few. From (5.1), solving for z, we have:

z=p(z) — Z nb, 2" (5.2)

n>2

By iterating over z and expanding the powers of the sums one obtains terms
either with p(z) or with z in which case we keep expanding. It is easy to visu-
alize this procedure; each iteration is a branching of a tree and each vertex of
the children either has a p(z) (and we stop) or it has a z and we continue to the
next generation. Hence, overall this expansion can be viewed as a power series
,in p(z) with the power representing the number of final points. This construc-
tion can be also found in in the Main Theorem 3 in [34] and in [6], see also
the survey [35]. We note that this method of inverting power series has been
already used in statistical mechanics, it is actually reminiscent of Gallavotti’s
approach to express the Lindstedt perturbation series in the context of KAM
theory [16].

We observe that in the above example trees are generated by iterating the
mapping z — p— > -, nby,z" and they provide a power series representation
of the fixed point solution of the mapping. We notice that other mappings can
be suggested and, as it is usually the case, they correspond to more or less
efficient methods. More precisely, some alternative mappings are

p
5.3
R SR (5:3)
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and

A=) where A(z) = Z a—"z”, (5.4)

Z — pe
n!
n>1

for some coefficients a,. In [23] we demonstrated, cf. Theorem 4.1, that (5.4)
has a much better radius of convergence at least in some regimes.

5.2. Abdesselam’s Approach

In [3], A. Abdesselam presents an alternative proof of Lagrange-Good multi-
variable inversion formula using a quantum field theory (QFT) model. Details
are given in the companion papers [1] and [2]. This reveals an interesting con-
nection between QFT calculations and Gessel’s combinatorial proof [17], and
seems to show a similar kind of cancellations. One ingredient of Abdesselam’s
proof is a representation of the one-point correlation function of some complex
bosonic field as a sum over trees, which connects to the representation of the
inverse in terms of trees. Another ingredient is a graphical representation of
a calculus of formal power series, coming with an algebraic formalization of
Feynman diagrams [1].

5.3. Other Connections

Tree expansions is a favorite topic in several areas of mathematics. Without
pretending of being exhaustive, we note Butcher series in computing higher
order Runge-Kutta methods [9,14] and the combinatorial structure in indexing
Hepp sectors in renormalization and regularity structures [22]. A common
feature is that they provide a power series representation of the solution of a
fixed point problem and as such we believe expansion methods of this type can
be widely used in applications. The techniques developed in this paper can be
used to extend these expansion in an infinite dimensional context, for example
in an inhomogeneous situation as in this paper.
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Appendix A: Formal Power Series

Here, we describe some operations on formal power series as introduced in
Definition 2.1, e.g.,

K(z) = Ko + Z % - Ky (xy,...,xn)2(dey) - - 2(dxy,) (A1)

where (X, X) is a measurable space z is a measure on (X, X), and Ky € C
is a scalar, and K, : X" — C are measurable maps that are invariant under
permutation of the arguments. Operations are defined purely in terms of the
sequence of coefficients.

Product. Let K, G be formal power series, then KG is defined by

(KG)n(l‘l,...,fL'n) = Z Z Kg((:Ej)jej)Gn,g((xj)je[n]\J>. (A.Q)

£=0 JC[n],#J=¢t

For a motivation of this definition, see e.g., [23, Appendix A]. The empty
set J = @ is explicitly allowed. As an operation on sequences of symmetric
functions, this is exactly the convolution in [31, Chapter 4.4]. It is not difficult
to check that the product is commutative and associative. Eq. (A.2) generalizes
to products KM ... K() ag

(K(l) . K(T))n(xl, ey ) = Z H K;gfx)/g ((zj)jev2) (A-3)

where the sum runs over ordered partitions (Vi,...,V;) of [n] into r disjoint
parts, with V; = @ explicitly allowed.

Variational derivative. For ¢ € X and K a formal power series over X, we
define
1

(WK)n(xh'”’x”) = (%)"(q;xl,...,xn) = Knp1(q, 1, .., x).
(A4)

For higher-order variational derivatives, see Definition 2.5.

Integrals. Measures K(dg;z) = F(q; 2)2(dq). Let F(g;z) be a function-valued
power series. The power series

I() = / F(g; 2)2(dg) (A5)
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is defined as the power series with coefficients Iy := 0 and

Li(x1,...,2p) := Z F, (x,»; (xj)je[n]\{r})~ (A.6)

r=1

The definition is motivated by the following formal computation:

[ Fan =3~ [ Bl @)

m=0

I
[M]8
3|~

L Falenii ) @)

m=0

m—+1

1 1
! /XW 7 2o (@i @pnanng) 2" (dw)

I
[M]8
3|~

m=0 r=1

n

] /Xn ZFn(x,.;w[n]\{r})z"(dw).
r=1

I
WE
3‘>—~

n=1

We also define the measure-valued formal power series K (dg; z) = z(dq)F(q; z)
as the power series with coefficients Ky := 0 and

Ko(dgizy,... 2n) =Y 80, (dg) Fp (05 (27) je i (r}) - (A7)
r=1

Composition I and exponential series. Let F(t) = > 7 f,t"/n! be a formal
power series in a single variable ¢ and K a formal power series on (X, X) with
Ky = 0. The formal power series F'o K on X is defined by (F'o K)g := fo and
for n > 1,

(FoK)p(xy1,...,2,) = Z Z Im H Ky, ((z5)jer,) (A8)

m=1{Ji,....Jmm }EPx =1

with P, the collection of set partitions of {1,...,n}. Note that only because
Ky = 0 the expression (A.8) is well-defined as a formal power series, because
only in this case the sum is finite. An important special case is F(t) = exp(t),
for which Eq. (A.8) becomes

(exp(K))n(@1,. .., 2n) = Z Z HK#Je ((x]’)jefe)v (A.9)

m=1 {J11-~~7Jm,}€pn =1

which is exactly the exponential on the algebra of symmetric functions from
[31, Chapter 4.4]. For a motivation of this definition, see again, e.g., [23, Ap-
pendix A].

Composition II. In order to define the compositions in (3.3), we need a more
general type of composition. Let G be a formal power series on X and F(g; z)
a function-valued power series

F(q;2) = Folq) + Z % /Xn Fo gz, ..., xn)2(dey) - - - 2(day,).
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Let K (dg; z) be the measure-valued formal power series K (dq; z) = F(q; z)2z(dq)
with coefficients (A.7). The composition H(z) := (G o K)(z) is defined as the
power series with coefficients Hy = 0 and for n > 1,

Hn(fbl,..., Z Z G l'j JGJ) Z HF#Vj(xﬁ(xv)vGVj)'

m=1 JC[n (Vi)jes: J€J
#J= m UjesVi=[n]\J

(A.10)
The summation is over partitions (V;);jes of [n] \ J with empty sets V; = @
allowed. Note that the sum is only over finitely many summands and hence

well-defined as a formal power series. The definition is motivated by the fol-
lowing formal computation:

oo 1 "
H(z) =Go+ Z ﬁ/x G (z1, ..., xm)F(x1;2) -+ F(2m; 2)2(dz1) - - - 2(dzm)
= m! Jxm
— 1
=Go+ Y ﬁ/XmGm(gcl,...,a;m)

m=1 °

m 00 1 N i

11| X ﬁ/ Fo,(zj3y)2"™ (dy) | 2™ (dz).

j=1 \n =0 "d* /X"

We group terms with the same sum n =m +ny + - -+ + n,,, write

n
A1l
m'Hn' n'(m,nl,...,nm) ( )

and note that the multinomial counts the number of ways to partition [n] into
sets J and (V});es in such a way that #J = m and #V; = n;. Exploiting the
symmetry of the integrands, we arrive at

=y i, Hy(xy,. .. 20)2"(d) (A.12)
=1 n.: Jxn

with H,, defined in (A.10).

Composition of two measure-valued series. The composition (A.10) easily ex-
tends to the composition of a measure-valued formal power series I' with a
formal power series of the form K(dg;z) = F(q; 2)z(dg), for which we have
defined the coefficients in Eq. (A.7).

Then, H =T o K is the measure-valued series which has by Eq. (A.10)
the coefficients for n > 1 and B C X,

Hn(B;xl,.. a:n : Z F#J B SCJ) Z HF#\/}(xj;(xv)ve\/j)~

JCln]: (Vi)jes:  J€J
tkad Ujes Vi=[n]\J

(A.13)

In treating the the compositions po¢ and op in Eq. (3.3), we need to consider I’
which are of the form I'(dg; z) = G(g; 2)2(dq) for some function valued formal
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power series G, that is by Eq. (A.7) again
n

To(dg) =0, T, (B;z1,...,2,) = Z 1(z,)Gr-1 (:cr; (a:j)j#r).

r=1

(A.14)

Then, also H is of the form H(dg;z) = J(¢;2)z(dq), where J is a function
valued formal power series and as above,

H,(B;xy,...,x,) = Z 1p(z)Jp—1(zr; (2)jr) (A.15)

r=1
with Hg = 0. Then, using Eq. (A.7), we can directly express

Ta(@yns-u) = > Guolayy) Y, T[ Fav (wisyy,). (A16)

JC[n]: (Vi)jes: jeJ
J#o UjesVi=[n]\J

This also implies that
H(dg;z) = (I'o K)(dq; 2) = (G o K)(q; 2)2(dq). (A17)
Restriction of power series Let Y C X, then one can define a restriction of the

formal power series to the set Y, denoted by K|y, in the following way: restrict
the coefficients of K to Y, that is, consider

K,lv:Y" > C, (z1,...,2,) — Kp(x1,...,2,).

One can consider K, [y also as a function on X" by defining K,, [y= 0 outside
of Y" and hence we may formally write

n

K(z)ly = Ko+ % /Xn Ko(w1, - mn) [[ 1v(@)2(dan) - 2(da)

i=1

o0
=Ko+ l' Kp(x1,. .. x)2(dzy) - - - 2(day,). (A.18)
n=1 neJyn
In case that the formal power series is an actual convergent power series,
the above restriction corresponds to restricting the function z — K(z) to all
measures which are zero outside of Y. In particular, when Y contains only
finitely many elements, then any measure zero outside of Y is of the form
z(dzx) = Zer 2,0, (dx) for some z, € Ry and hence, in this case, K |y can
be seen as a function on C#Y. The analogous construction works also for Y
with countable many elements, but not for uncountable many elements.

In order to compute the nth. coefficient of K evaluated at q1,...,¢q, € X,
that is K, (g1, ..., ¢n), it is sufficient to consider K [qg, where Q = {¢; : i =
1,...,n} is the set of colors in ¢1,...,¢g,. Notice that the set of colors @ has
cardinality smaller than n if colors are repeated in the vector, i.e., ¢; = g; for
some i # j. The relation between the coefficients is the following

————K(2) = [2"]K [q | Y 20, | .
qeQ



Vol. 22 (2021) Lagrange Inversion and Combinatorial Species 1527

where 2z 1= (24)qeq, 1 = (Ng)qeq, and ng = #{i € {1,...,n} : ¢, = ¢}, that
is the number of repetitions of the color g;.

This allows us to reduce the computation of the Fredholm determinant,
which appears in Theorem 3.1, to the computation of usual determinants

Lemma A.1. Let n € N and (q1,...,qn) € X". Set Q = {q; : i = 1,...,n}.
Then the nth coefficient of the Fredholm determinant det(Id—K,), evaluated at
(

(q15---5Gn), is equal to the nth coefficient at (q1,...,qn) of the (#Q) x (#Q)-
matrixc

st (3, — DKL) L) (A19)

Proof. We start with the more intuitive case of finite color set X = {1,..., ¢}
with ¢ € N. In this case, the Fredholm determinant is just the determinant of
an £ x { matrix,

det(Id — K.) = det( (6, — 2(@) K= (0 2), -, ,):

The analogue of (2.17) reads

o _1 r
det(Id — K,) = 1—1—2 (=1) Z det (K (x4, 25))ij=1,...r) Zay =+ * Zay.-
r=1

r!
(1,0 ) EXT

Suppose we want to know the coefficient of some monomial 21" - -- z;* in the
determinant. Then, clearly the only relevant contributions are from summands
(1,...,z,) with every entry x; contained in the support suppn = {z : n, >
1}, which plays the role of Q. The series is actually a sum, as all terms for

r > #Q are zero. Noticing that
1+Z ! Z det((Kz(xi,;vj))i’jzlw,r) Zgy 't R,
r=1 T1,...,LrESUPP T

= det((éw,y — z(2) K, (y, x))x,yesuppn)), (A.20)

we conclude

[2"] det(Id — K,) = [2"] det ((5%1, — (@)K (y, )

s ) - (A21)

Turning back to general sets X, the result follows as the coefficient only depends
on det(Id — K,) [g as discussed before the lemma. O

Determinants for z either with density or which are generalized functions. In
several applications, it is not natural to restrict z to points. In statistical
mechanics for example, it is typical that X € R? and z has a density with
respect to the Lebesgue measure. For such measures z the restriction to @ is
always zero. In quantum field theory, one considers z which are only generalized
functions and the restriction to points has no sense at all. However, one can re-
interpret the Fredholm determinant in another way and give an expression in
terms of usual determinants. Assume that z either has a density with respect
to a reference measure m or that z is a generalized function. The density we
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denote as well by z and the duality between test and generalized functions we
formally write as an integral. The nth. coefficient of (2.17) depends only on

1+ (—7’71')7" /XT det <(Kz($¢, xj))i,jzl,...,r> 2(21).. 2(zr)m(dzy) ... m(dz,),
r=1

(A.22)

where 2(q1) ... 2(¢n) are interpreted as the n-fold tensor product of generalized
functions. This shows that one can get the nth. coefficient by just computing
the determinant of an n x n-matrix

/n det ((5(%‘ — ;) - Z(xj)Kz(x“xj))

The determinant is well-defined, because in all expressions the generalized
functions z are evaluated at different points. The Dirac deltas cause no prob-
lem, because they only lead to dropping integrals. Indeed, one just obtain
(A.22), which is well-defined for generalized functions z.

) m(dzy) ... m(dz,).

ij=1,..n

Appendix B: Combinatorial Species with Uncountable Color
Space

Formal power series in finitely or countably many variables have a natural
interpretation as exponential generating functions for labeled, colored combi-
natorial species, which helps prove identities of power series identities indepen-
dently of any convergence considerations. This point of view is formalized with
Joyal’s theory of combinatorial species [7,24]. Power series in several variables
correspond to colored combinatorial species, also called multisort species [7],
with one variable zj, per color or sort. See the survey by Faris [13] for an ac-
count in the context of cluster expansions and [11] for applications to Feynman
diagrams.

This appendix extends the theory of combinatorial species generalizes
the theory of colored species to infinite, possibly uncountable color space C.
Such generalizations were in fact already proposed by Farris [12] as well as
Méndez and Nava [28]; however, their concepts of generating function there
are too restrictive for our purpose. Indeed their generating functions are sums
of monomials [], .~ 2,* indexed by multi-indices n = (nx)rec that have only
finitely many nonzero entries ny # 0. Our generating functions instead are
functions of measures z(dz) on the color space C. This is the kind of generating
function that appears naturally in the statistical mechanics of inhomogeneous
systems, where colors may correspond, for example, to positions z € R? in
space and the measure z(dz) is a position-dependent activity [33].

Another difference with [28] is a more nuanced notion of family of power
series. For finite color spaces and finitely many variables, it is natural to look
at families (F)gec of generating functions, e.g., for rooted colored trees that
have their root of color k. In our setup the relevant power series are either
function or measure-valued. For example, rooted colored trees give rise to a
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family (T5(2))scc indexed by sets B C C' instead of elements k € C' to each
set of colors B C C associate the generating function for trees whose root has
color in B.

We proceed with a short self-contained description of our formalism,
which is similar to [28] but has a different notion of generating function. We
start with the concrete example of graphs. Let C' be a non-empty possibly
infinite set, the set of colors. Let V be a finite set, e.g., V = {1,...,n} = [n]
with n € N; V is the set of labels. A C-colored, labeled graph on V is a pair
(G, ¢) consisting of (i) a graph G with vertex set V, (ii) a map ¢: V — C.
Thus, every vertex of the graph is assigned both a label v € V and a color
¢(v) € C. The pair (V, ¢) is a C-colored set. We write G(V, ¢) for the collection
of colored labeled graphs on V' with prescribed coloring c.

Admissible relabelings of vertices are formalized with bijections: Let (W, ¢)
be another finite colored set and ¢ : V' — W a color-preserving bijection, i.e.,
é(p(v)) = ¢(v) for all v € V. Relabeling the vertices v of a graph G € G(V,¢)
by w = ¢(v) we obtain a graph G € G(W, &). In this way, ¢ induces a bijection
between G(V,¢) and G(W, ¢). Choosing V = W = [n], we deduce that for ev-
ery permutation o € &,,, we have #G([n], c) = #G([n], c o o). Put differently,
#G([n], ¢) is a symmetric function of the variables ¢; = ¢(¢). The associated
formal power series

(oo}

S L[ w6l 2(der) - (den) B1)

n! cn

n=1

is the (exponential) generating function of the species of labeled, C-colored
graphs.

In the following, we consider the set of colors C' to be fixed once and for

all.

Definition B.1. A colored set is a pair (V, ¢) consisting of a finite set V and a
map ¢: V — C. A color-preserving bijection ¢ : (V,¢) — (W, ¢) is a bijection
from V onto W such that ¢ = co ¢.

The empty set V = & is considered a colored set. This is needed for the combi-
natorial counterpart of the variational derivative (see below) and allows for a
conceptualization of pinned vertices that are not integrated over in generating
functions. For example, we may be interested in the set of trees with vertex set
[n] U {,0} where x,0 ¢ [n] are two distinct elements not in [n]. Then, n =0
corresponds to trees with vertex set {x,o}.

Sometimes we write colorings as vectors (Cv)veV and not as maps v —

c(v).

Definition B.2. A labeled combinatorial species F' with colors in C' consists of
two rules:
(1) arule (V,c) — F(V,c) that assigns to every colored set a finite set (for
V = @ we write instead F(2)),
(2) a rule that assigns to every color-preserving bijection ¢ : (V,¢) — (W, ¢)
between colored sets a bijection ® : F'(V,¢) — F(W,¢) (relabeling),
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that satisfy the following: for all color-preserving bijections ¢1 : (Vi,¢1) —
(Va, c2), @2 : (Va,c2) — (Va,c3), the relabeling induced by 3 = @2 0 ¢ is the
composition of the relabelings, &3 = 5 0 O;.

Put differently, a colored combinatorial species is a functor from the category
of of colored sets (objects: finite colored sets, morphisms: color-preserving bi-
jections) to the category of finite sets. In concrete examples, the concept of
relabeling and its functorial property are often so natural that the rule ¢ — &
is left implicit.

Definition B.3. Let F be a labeled colored combinatorial species. Suppose that
for each colored map (V, ¢), we are given a weight function wy, : F(V,c) — C
and that for all color-preserving bijections ¢ : (V,¢) — (W,¢), waw,e o ® =
wey,z)- The pair (F,w) of consisting of the species I’ and the family w of
weights w(y,.) is a weighted colored species.

By a slight abuse of notation we shall omit the indices and use the letter w
both for the family of weight functions and for weight maps w : F(V,¢) — C.

Lemma B.4. Let (F,w) be a weighted colored species. Then for every n > 1,
every coloring c¢: [n] — C and all 0 € &,

doowlg = D wy.

geF([n],c) geF([n],coo)

Thus, 3~ cc((n),e) w(9) is a symmetric function of the color variables c(1), .. ., ¢(n)
and we may apply the notion of formal power series. The elementary proof is
left to the reader.

Definition B.5. The generating function of a weighted colored species (F,w)
is the formal power series

F(z) = 2(:) +Z / Z(:) )dcl) 2(den).
geF (o geF c

Ezample B.6. (Colored singletons) Let B C C' be a set of colors. The species
of singletons with color in B is the species

Fo(V.c) = {(V,e)}, V = {v} is a singleton and ¢(v) € B, (B.2)
0, else.

The associated generating function is

Fi(z) = /C Lp(er)2(der) = 2(B), (B.3)

compare Example 2.4.

Operations on formal power series correspond to operations on combina-
torial species. We provide formulas for non-weighted species only, the general-
ization to weighted species is straightforward.
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Cartesian product. Let F,G be two combinatorial species. We define a new
species F' X G by

(F x G)(V,¢) = U F(Vi,c

Vi,VaCV:
VinVo=g V1uVo=V

Vl) x G(Va,c

V)

The generating function is (F' x G)(z) = F(z)G(z), compare Eq. (A.2). Hence,
an F' x G-structure on V is a pair (f, g) consisting of an F-structure on V; and
a G-structure on Vs, with Vi, V5 a partition of V' into possibly empty sets.

Derivatives. Let (V,¢) — G(V, ¢) be some colored combinatorial species. Sup-
pose that for each finite set V there is a designated element o = oy, that is not
in V, see Definition 5, Remark 6, and Exercise 16 in [7, Chapter 1.4]. Given
q € C, we extend a coloring ¢ : V' — C to a coloring ¢ : V U {o} — C by
setting

cg0) =q, co(v)=c(v) (veV). (B.4)
Then we define a family (Fy,),ec of colored species by
G;(V, c) = G(V U {o},c;’), (B.5)

The generating function is

G =3 . /C £G(In] U {0}, (¢))jevurey) #(der) -+ 2(den), co =g

(B.6)
in which we recognize the variational derivative
0G 0
= (g = —— B.7
Gol2) = T (4:7) = 575G ), (B.7)

see Eq. (A.4). We may think of objects in G as objects of G rooted in o.
For example, when G = T is the species of non-rooted trees, then 77 can be
identified with the species of trees rooted in the non-labeled vertex (ghost) o
with prescribed root color q.

Pointing. Let G be a species and (V] ¢) a finite colored set. For B C C, define
Gy(V,e):={(g9,7) | g € G(V,e), r €V, ¢(r) € B}. (B.8)

For example, when G = T' is the species of the non-rooted trees, T corre-
sponds to rooted trees with labeled root and root color in B. We have

#Gy([nl,0) = > 1p(c(r) #G([n], o). (B.9)
Comparison with Eq. (A.7) yields

Gy(z) = / 15(g)G2(2)2(dg). (B.10)

Compare Lemma 4.4 and the paragraph preceding the lemma.
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