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Projected land ice contributions to 21*

century sea level rise
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The land ice contribution to global mean sea level rise has not yet been predicted with
ice sheet and glacier models for the latest set of socio-economic scenarios, nor with
coordinated exploration of uncertainties arising from the various computer models
involved. Two recent international projects generated a large suite of projections using
multiple models, but mostly used previous generation scenarios and climate models, and
could not fully explore known uncertainties. Here we estimate probability distributions
for these projections under the new scenarios using statistical emulation of the ice sheet
and glacier models, and find that limiting global warming to 1.5°C would halve the land
ice contribution to 21% century sea level rise, relative to current emissions pledges. The
median decreases from 25 to 13 cm sea level equivalent (SLE) by 2100, with glaciers
responsible for half the sea level contribution. The Antarctic contribution does not show

a clear response to emissions scenario, due to competing processes of increasing ice loss
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and snowfall accumulation in a warming climate. However, under risk-averse
(pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the
median land ice contribution to 42 cm SLE under current policies and pledges, with the
upper end (95" percentile) exceeding half a metre even under 1.5°C warming. This
would severely limit the possibility of mitigating future coastal flooding. Given this large
range (13 cm main projections under 1.5°C warming; 42 cm risk-averse projections
under current pledges), adaptation must plan for a factor of three uncertainty in the
land ice contribution to 21°% century sea level rise until climate policies and the

Antarctic response are further constrained.

Land ice has contributed around half of all sea level rise since 1993, and this fraction is
expected to increase'. The Ice Sheet Model Intercomparison Project (ISMIP62%?) for CMIP6*
and the Glacier Model Intercomparison Project (GlacierMIP?) provide the Intergovernmental

Panel on Climate Change (IPCC) with projections of Earth’s ice sheet and glacier

contributions to future sea level. Both projects use suites of numerical models®’® and
greenhouse gas emission scenarios’ as the basis of their projections, and a variety of

10,11,12,13 In

treatments are considered for the interaction between the ice sheets and the ocean
total, the projects provide 256 simulations of the Greenland ice sheet, 344 simulations of the
Antarctic ice sheet, and 288 simulations of the global glacier response to climate change
8141516 (see also Extended Data Table 1). Although these simulations represent an
unprecedented effort 6781018 their computational expense and complexity has meant that
they (i) focus mainly on previous generation emissions scenarios (Representation
Concentration Pathways’, RCPs) developed for the IPCC’s Fifth Assessment Report, not the
more diverse and policy-relevant Shared Socioeconomic Pathways (SSPs!®?%) that underpin
the IPCC’s Sixth Assessment Report, (ii) are driven mostly by a relatively small number of
older generation global climate models developed before CMIP6%!, and (iii) have incomplete

and limited ensemble designs.

To address these limitations, we emulate the future sea level contribution of the 23 regions
comprising the world's land ice (see Extended Data Table 2) as a function of global mean
surface air temperature change and as a consequence of marine-terminating glacier retreat in
Greenland and ice-shelf basal melting and collapse in Antarctica. The ensembles of ice sheet

and glacier models are emulated all at once for each region, using their simulations as
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multiple estimates of sea level contribution for a given set of uncertain input values, and we
incorporate the ensemble spread through the use of a ‘nugget 'term in Gaussian Process

emulation??23, Gaussian Process regression requires minimal assumptions about the
functional form, and provides uncertainty estimates for the emulator predictions®*; most
previous emulator-type approaches for sea level rise use parametric models, where the
functional form is assumed?>-?°. We then use the emulators to make probabilistic projections
for the glacier and ice sheet sea level contributions under five SSPs and under an additional
scenario reflecting current climate pledges (Nationally Determined Contributions, NDCs)?**
made under the Paris Agreement. Most projections presented are for the year 2100, but we
also estimate a full timeseries by emulating each year from 2016 to 2100. The details of our

emulation approach are described in the Methods.

Response to temperature and parameters

Most land ice regions show a fairly linear relationship of increasing mass loss with global
mean surface air temperature. Figure 1 shows the temperature-dependence of the sea level
contribution at 2100 for the ice sheets and peripheral glaciers (Fig. 1 a-f) and eleven other
glacier regions: four with large maximum contributions (Alaska, Arctic Canada North and
South, Russian Arctic: Fig. 1g-j), two with non-linear temperature-dependence, giving near
or total disappearance at high temperatures (Central Europe and Caucasus: Fig. 1k, 1), and the
three regions comprising High Mountain Asia (Fig. 1m-o0), which are important for local
water supply*2. Values of ice sheet parameters are fixed at two possible values for Greenland
glacier retreat and Antarctic basal melting, with no Antarctic ice shelf collapse; only
simulations using these values are shown. The ensemble designs are not complete — for
example, many fewer ice sheet simulations were performed under RCP2.6 than RCP8.5 — so
some of the apparent patterns in the simulation data are artefacts of the gaps, which the
emulator is intended to account for.

8,14.16 show clear

Greenland and the glaciers, which are dominated by surface melting
dependence on temperature. Fourteen of the nineteen glacier regions show approximately
linear relationships, and five are nonlinear (Fig. 1f, k, I; also Western Canada & U.S. and
North Asia, which have weaker nonlinearity: not shown). In contrast, East Antarctica (Fig.

Ic) shows a slight decrease in sea level contribution with temperature: snowfall increases,
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because warmer air can hold more water vapour, and this dominates over the increase in mass
loss due to melting!>!6. Finally, West Antarctica and the Peninsula (b, €) show little
detectable temperature-dependence, due to an approximate cancellation across varying
climate and ice sheet model predictions of snowfall accumulation and ice loss. Antarctic ice

sheet results are discussed in detail later (see 'Antarctic focus').

The ice sheet contributions depend strongly on the Greenland glacier retreat and Antarctic
sub-shelf basal melting parameters, which determine the sensitivity of the marine-terminating
glaciers to ocean temperatures (and surface meltwater runoff for Greenland). Figure 2 shows
these relationships; the Greenland parameter is defined such that more negative values

correspond to further retreat inland.

Land ice contributions in 2100

We use probability distributions for global mean surface air temperature (Fig. 3a: FalR
simple climate model*®) and ice-ocean parameters (Figs. 3b and 3¢ show « and y, which are
derived from the original parameterisation studies; ice shelf collapse is assigned equal
probability off/on) as inputs to the emulators. Time series projections for the land ice
contribution under all scenarios are shown in Fig. 3d, and probability density functions at
2100 for the Greenland ice sheet, Arctic Canada North, the glacier total, and West and East
Antarctica in Fig. 3e-i. The Antarctic ice sheet total under the NDCs is shown in (j). ('Risk-
averse' projections in (d) and (j) are discussed later.) Density estimates are less smooth for the
glacier and Antarctica totals than individual regions, because sums of regions are estimated
by random sampling rather than deterministic integration; these samples are shown for

Antarctica (j).

Our projections show that reducing greenhouse gas emissions from current and projected
pledges under the Paris Agreement (NDCs) enough to limit warming to 1.5 °C (SSP1-19)
would nearly halve the land ice contribution to sea level at 2100 (Table 1: median decreases
from 25 cm to 14 cm SLE). This halving is not evenly distributed across the three ice
sources: Greenland ice sheet mass losses would reduce by 70%, glacier mass losses by about

half, and Antarctica shows no significant difference between scenarios; this is not due to a



205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

237
238

lack of change in the Antarctica simulations themselves, but rather to the cancellation of mass

gains and losses mentioned above.

Average rates of mass loss for each ice sheet and the glacier total are within 1-2 cm/century,
of those of the 2013 IPCC Fifth Assessment Report? (see Methods: Comparison with IPCC
assessments), and the updated assessment for RCP2.6 in the 2019 IPCC Special Report on
the Oceans and Cryosphere in a Changing Climate (SROCC)!. However, SROCC revised the
projection for Antarctica under RCP8.5 up to 11 cm/century, close to the upper end of our
66% interval for SSP5-85 (though our projections may omit a commitment contribution of up
to about 2 cm/century; see Methods). Our results are therefore closer to the 2013 than 2019
IPCC assessment regarding the magnitude and unclear scenario-dependence for Antarctica.
Our 66% uncertainty intervals are narrower than the IPCC 66% (SROCC) and > 66% (ARS)
uncertainty intervals, as would be expected from the latter being open-ended, except those for
Greenland under SSP1-26: too few Greenland simulations were performed under low
scenarios (RCP2.6, SSP1-26) to constrain the emulator variance (see Fig. 1a; Methods:

'Parameter interactions').

Emulation allows us to additionally assess the sensitivity of projections to uncertainties in
their inputs as well as their robustness. If we use CMIP6 global climate models for the
projections (Extended Data Figure 3), instead of FalR, we find a slight increase in sea level
contributions due to the larger proportion of models with high climate sensitivity to carbon
dioxide®3-*: the 95™ percentile increases by 7 cm under SSP5-85. We estimate the potential
impact of reducing uncertainty with future knowledge by using fixed values for temperature,
or for the ice sheet retreat and basal melt parameters: the width of the 5-95% ranges reduce
by up to 13% and 17% respectively (tests 2-4 in Methods: Sensitivity tests; Extended Data
Table 3 and Extended Data Figure 4). In other words, the ice-ocean interface is a similar
magnitude contributor to, or larger, uncertainty for these projections as global warming under
a particular emissions scenario. When we assess the robustness of the projections to different
selections and treatments of the ice sheet simulations, we find this makes very little
difference (tests 2-4 in Methods: Robustness checks; Extended Data Table 4; Extended Data

Figure 5).

Antarctic focus
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No clear dependence on emissions scenario emerges for Antarctica. This is partly due to the
opposite scenario-dependencies of West and East Antarctica regions (Fig. 3f and g). But the
average response to emissions scenario for each region is also small. A key reason is the wide
variety of changes in the atmosphere and ocean in the global climate models. Figure 4 shows
ice sheet model simulations where both the high and low emissions scenario were run (two
climate models for Greenland, three for Antarctica). For the Greenland ice sheet, all
simulations predict increased mass loss under higher emissions (Fig. 4a: red shaded region).
For Antarctica, the picture is more complex, and mostly clustered according to the climate
model. Many West Antarctica simulations show the same straightforward response as
Greenland (Fig. 4b), particularly those that do not use the ISMIP6 basal melting
parameterisation (see Methods). However, the West Antarctica simulations driven by
CNRM-CM6-1 show the reverse, where mass gain through snowfall accumulation increases
more under high emissions than mass loss (which is predominantly ocean-induced). (Note
fewer simulations were driven by IPSL-CM5A-MR and CNRM-CM6-1 than by NorESM 1-
M, so their spread is necessarily smaller). East Antarctica and the Peninsula mostly also show
this latter response, though some simulations show other combinations: more mass loss under

low emissions than high, or mass loss under low emissions and mass gain under high.

It is challenging to evaluate which of these three climate models, or others used by ISMIP6,
are most reliable for Antarctic climate change. Ocean conditions and accumulation show
large spatio-temporal variability and are sparsely observed; models imperfectly represent
important processes, and it is unclear whether the newer CMIP6 models have improved
relative to CMIP5!335-38 Most of the climate models were from CMIP5, including
NorESM1-M and IPSL-CM5A-MR, and were selected by their success at reproducing
southern climatological observations (while also sampling a range of future climate
responses)!8. NorESM-1M has a lower than average atmospheric warming, hence less
snowfall, while IPSL-CM5A-MR is higher than average (particularly for East Antarctica)'®.
The newer CMIP6 models, including CNRM-CM6-1, were selected only by their availability.
Changing the selection or treatment of Antarctica simulations — e.g. using subsets of climate
models, or rejecting simulations with net mass gain early in the projections — do not result in
any substantial scenario-dependence (see tests 7-10 in Methods: Robustness checks;

Extended Data Table 4; Extended Data Figure 5).
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Uncertainty about the scenario-dependence of Antarctic projections is not new. The [PCC
Fifth Assessment Report (2013) stated 'the current state of knowledge does not permit an
assessment' of the dependence of rapid dynamical change on scenario. Some studies that
show strong scenario-dependence neglect the compensating accumulation part?®3°, use
extreme! ice shelf collapse scenarios®*, or the basal melt parameterisation uncertainty is the
same order as, or larger than, the scenario-dependence®’*%#!. To be clear, we do not assert
that Antarctica's future does not depend on future greenhouse emissions or global warming;:
only that the relationship between global and Antarctic climate change, and the ice sheet's
response, are complex, only partially understood, and involve compensating factors of

increasing mass loss and gain which result in a balance we are not yet confident about.

We test the sensitivity of the Antarctica projections to the basal melting parameter. The main
projections combine two distributions!? for y derived from observations of mean Antarctic
basal melt rates or the ten highest melt rates for Pine Island Glacier (see Methods). Using the
mean distribution decreases the median to ~0 cm SLE and the 95% percentile to ~8 cm SLE
for all scenarios; using the high distribution has less effect, increasing the median to 6 cm
SLE and the 95" percentile to ~16 cm SLE (Extended Data Table 3 and Extended Data
Figure 4: tests 5 and 6). We also try and reproduce the higher projections of ref. [26] using a
similar approach to sampling basal melt (see Methods), and find we only obtain similar
projections when using extreme values of our parameter range (Extended Data Table 3 and
Extended Data Figure 4: tests 7 and 8). This suggests ref. [26] could be interpreted as more
pessimistic projections: they use values of basal melt sensitivity to ocean temperature
consistent with those estimated for the Amundsen Sea region®®, which is currently

undergoing most change.

However, other factors can lead to similarly high projections. In particular, the sensitivity of
an individual ice sheet model to the basal melt parameter can have a large effect. This differs
widely across ice sheet models, and also depends on the climate model (Extended Data
Figure 6). Emulator projections based on a single model with high or low sensitivity are
shown in Extended Data Figure 5 (tests 4 and 5; Extended Data Table 4). These also do not
show strong scenario-dependence — just a 2-3 cm decrease under high emissions for the low
sensitivity model, because the snowfall effect is more apparent — but instead predict a high or
low sea level contribution, respectively, regardless of scenario (95" percentiles: 29-30 cm

and 7-9 cm, respectively). The high sensitivity of the first model (SICOPOLIS) is probably
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due to the way that sub-shelf melting is applied: over entire grid cells along the grounding
line, rather than just the parts detected as floating?®. We also show results from the four most
sensitive models, which are similarly high (Extended Data Table 4 and Extended Data Figure
5: test 6). We do not have sufficient observations to evaluate which ice sheet models have the
most realistic response, nor sufficient understanding to confidently predict how basal melt

13,36

sensitivity might change in future'>-°, and therefore use all models in the main projections

(see also 'Risk-averse projections' below).

The ice shelf collapse scenario has little effect on our projections. Switching it on increases
the Antarctic Peninsula and East Antarctic median contributions by 1 cm and 0-1 cm SLE
from 2015-2100, with no change for West Antarctica (Extended Data Table 3 and Extended
Data Figure 4: test 9-10). This is similar, within uncertainties, to the ice sheet simulations
(Extended Data Figure 7). The effect is small because surface meltwater is not projected to be
enough to cause collapses until the second half of the century, and even then only for small
number of shelves, mostly around the Peninsula'>. Some combinations of climate and ice
sheet models do project larger sea level contributions — in particular, 5 cm for East Antarctica
from the SICOPOLIS ice sheet model driven by HadGEM2-ES. The HadGEM2-ES climate
model projects extreme ocean warming in the Ross Sea'®, while SICOPOLIS has one of the
largest responses among the ice sheet models (as described above). If these two were found
to be the most realistic models, then the ISMIP6 ensemble and emulator may underestimate
the effect of ice shelf collapse by a few centimetres. Further results are in the Methods

("Parameter interactions').

Risk-averse projections

Given the wide range and cancellations of responses across models and parameters, we
present alternative 'pessimistic but physically plausible' Antarctica projections for risk-averse
stakeholders, by combining a set of assumptions that lead to high sea level contributions.
These are: the four ice sheet models most sensitive to basal melting; the four climate models
that lead to highest Antarctic sea level contributions, and the one used to drive most of the ice
shelf collapse simulations; the high basal melt (Pine Island Glacier) distribution; and with ice
shelf collapse 'on' (i.e. combining robustness tests 6 and 7 and sensitivity tests 6 and 10). This
storyline would come about if the high basal melt sensitivities currently observed at Pine

Island Glacier soon become widespread around the continent; the ice sheet responds to these

10
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with extensive retreat and rapid ice flow; and atmospheric warming is sufficient to
disintegrate ice shelves, but does not substantially increase snowfall. The risk-averse
projections are more than five times the main estimates: median 21 cm (95" percentile range
7 to 43 cm) under the NDCs (Fig. 3j), and essentially the same under SSP5-85 (Table 1;
regions shown in Extended Data Figure 4: test 11), with the 95" percentiles emerging above
the main projections after 2040 (Fig. 3d). This is very similar to projections® under an
extreme scenario of widespread ice shelf collapses for RCP8.5 (median 21 cm; 95" percentile
range 9 to 39 cm). The median is higher than ref. [26] for RCP8.5, though the 95™ percentile
is smaller. No models that include a representation of rapid ice cliff collapse through the
proposed 'Marine Ice Cliff Instability"** mechanism participated in ISMIP6. This hypothesis
is the process with the largest estimated systematic impact on projections: it could increase
projections by tens of centimetres, if both the mechanism and projections of extreme ice shelf

collapse are found to be robust?»#4,

Our risk-averse Antarctica projections increase the total land ice sea level contribution to 42
cm (95" percentile 25 to 67 cm) SLE under current policies and pledges (NDCs), and to 30
cm (95" percentile 12 to 56 cm) SLE even under SSP1-19. This means that plausible
modelling choices for Antarctica could change the median land ice contribution by more (17
cm SLE) than the difference between these emissions scenarios (12 cm SLE). This ambiguity
limits confidence in assessing the effectiveness of mitigation on the response of global land
ice to climate change. When combined, the effects of uncertain emissions and Antarctic
response lead to a threefold spread in median projections of the land ice contribution to sea
level rise, ranging from 13 to 42 cm SLE over 2015-2100, implying that flexible adaptation

under substantial uncertainty will be essential until either can be further constrained.

Not all modelling uncertainties could be systematically assessed here. Aside from the ice cliff
instability hypothesis, these include ice sheet basal hydrology and sliding; glacier model
parameters, ice-water interactions, and meltwater routing; model initialisation; and the use of
coarse resolution global climate models (and a single high-resolution regional model for the
Greenland ice sheet). The probabilities we present are therefore specific to our ensembles,
and adding new climate and ice sheet models, or exploration of new parameters, could shift
or broaden their distributions*’. However, our projections demonstrate the importance of
systematic design to assess as many uncertainties as feasible, and represent the current state-

of-the art in estimating the land ice contribution to global mean sea level rise.
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Figure 1. Ice sheet and glacier mass loss generally increases linearly with global mean
temperature. Projected mass changes from 2015-2100 in sea level equivalent (SLE) as a function of
global mean surface air temperature change over the same period for (a) Greenland ice sheet, (b, c)
West and East Antarctic ice sheets, (d) Greenland peripheral glaciers, (e, f) the Antarctic Peninsula
and Antarctic peripheral glaciers, (g-j) four glacier regions with large maximum sea level
contributions (Alaska, Arctic Canada North and South, Russian Arctic), (k, 1) two regions with
nonlinear temperature-dependence and total or near-total disappearance projected at high
temperatures (Central Europe and Caucasus); and (m-o) three regions comprising High Mountain
Asia. Central solid lines show the emulator mean, and shaded regions the mean £ 2 s.d.. For the ice
sheets (a-c, e), darker shaded regions use parameter values fixed at their default values (Greenland
glacier retreat: median; Antarctic sub-shelf basal melting: median of Mean Antarctic distribution;
Antarctic ice shelf collapse off), and lighter shaded regions use alternative values (Greenland: 75"
percentile; Antarctica: median of Pine Island Glacier distribution). See Methods for details. Points
show ice sheet and glacier simulations under RCP2.6/SSP1-26 (blue), RCP4.5 (yellow), RCP6.0
(orange) and RCP8.5/SSP5-85 (red). Solid circles for the ice sheets use the default ice-ocean

parameter value and open circles use the alternative value (other simulations are not shown). Glacier
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simulations are change in total volume, not volume above flotation; the estimated maximum sea level

contribution (i.e. current total glacier volume above flotation)*' is shown (horizontal dashed line).

Figure 2. Ice sheet mass loss strongly depends on ice-ocean parameters. Projections of sea level
contribution from 2015-2100 as a function of (a) Greenland glacier retreat parameter (k), and basal
melt parameter (y) for (b) West Antarctica, (c) East Antarctica, (d) Peninsula. Solid line shows
emulator mean estimate using fixed global temperature (projected by the global climate model most
used for simulations, under RCP8.5), and shaded regions show the mean £ 2 s.d. Symbols show ice
sheet models forced by this climate model for which simulations for at least three (Greenland) or four
(Antarctic) melt parameter values were available: circles use the ISMIP6 parameterisation for the ice-
ocean interface; crosses use other representations, and are assigned ensemble mean values of the
parameter; triangles show the Greenland ice sheet model for which two additional values of K were

run.

Figure 3. Projected land ice contribution to 21* century sea level rise and for selected regions at
2100. (a) Probability distributions for global mean surface air temperature change from 2015-2100
from the FalR simple climate model under the five Shared Socioeconomic Pathways (SSPs) and
current Nationally Determined Contributions (NDCs) (N = 5000 each). (b) Greenland ice sheet retreat
parameter (K) distribution (N = 10,000): vertical lines show the five values used for simulations:
median (solid), 25™ and 75" percentiles (dashed), and 5™ and 95" percentiles (dotted). (c) Antarctic
basal melt parameter (y) distribution (N = 8200): vertical lines show the six values used for
simulations: median (solid), 5™ and 95" percentiles (dashed) of the Mean Antarctic (black) and Pine
Island Glacier (grey) distributions (see Methods). (d) Projected land ice contribution to sea level (cm
SLE) from 2015-2100 under the five SSPs and NDCs. Solid lines and shaded regions: median and 5-
95™ percentiles (N = 11,500 per year per scenario): 5 year smoothing applied, with original data
shown as dots (interannual variation arises from annual sampling of emulator uncertainties). Pale
solid lines: 95™ percentiles of risk-averse projections. Box and whiskers show [5, 25, 50, 75, 95]™
percentiles at 2100 (N = 115,000 per scenario) for main projections (left) and risk-averse projections
for Antarctica (right). (e-j). Probability density functions for 2100 estimated for: (e) Greenland ice
sheet, (f) Arctic Canada North, (g) total for glaciers, (h, i) West and East Antarctica for all scenarios,
and (j) total for Antarctic ice sheet under main and risk-averse projections for the NDCs. Glacier and
Antarctic totals are less smooth because they are estimated from a sum of Monte Carlo samples from
each region, rather than deterministic integration (see Methods); these samples are shown for SSP1-19
and NDCs (N = 5000). Ice sheet projections do not include pre-2015 response, which is estimated to

add less than 1 cm to the Greenland contribution and up to ~2 cm to the Antarctic (see Methods).

19



684

20



685

686
687
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from 2015-2100

Main projections

Risk-averse projections

50 [5, 95]1% [17, 83]% 50 [5, 95]1% [17, 83]%
(cm SLE)

percentiles percentiles percentiles percentiles
Global glaciers
SSP119 7 [4, 10] [5, 9]
SSP126 85, 12] [6, 10]
SSP245 111[7,15] [9, 13]
NDCs 13 [9, 18] [11, 16]
SSP370 14 [10, 19] [12, 17]
SSP585 16 [12,21] [14, 19]
Greenland ice sheet
SSP1-19 2 [-6, 11] [-2, 7]
SSP1-26 3[4, 12] [-1, 8]
SSP2-45 51-2, 14] [1, 10]
NDCs 7 [0, 16] [3, 12]
SSP3-70 810, 17] [4, 13]
SSP5-85 10 [2, 20] [5, 15]
Antarctic ice sheet
SSP1-19 4[-5, 14] [-1, 10] 21 [6,42] [12, 32]
SSP1-26 4[-5, 14] [-1, 10] 21 [7,43] [12, 31]
SSP2-45 4[-5, 14] [-1, 9] 21 [7,43] [12, 31]
NDCs 4 [-5, 14] [-1,10] 21 [7, 43] [13, 31]
SSP3-70 41-5, 14] [-1, 10] 21 [8, 43] [13,31]
SSP5-85 41-5, 14] [-1, 10] 22 [8, 43] [14, 32]
Land ice
SSP1-19 13 [0, 28] [6, 21] 30[12, 56] [20, 43]
SSP1-26 16 [3, 30] (8, 24] 33 [15, 58] [22, 45]
SSP2-45 20 [7, 35] [13, 28] 38120, 63] [28, 50]
NDCs 25 [11, 40] [17, 33] 42 |25, 67] [32, 54]
SSP3-70 27 (13, 41] [19, 35] 44 (27, 70] [34, 56]
SSP5-85 30 [16, 46] [22, 39] 48 30, 75] [38, 61]
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Table 1. Projected land ice contributions to sea level rise in 2100 under different greenhouse gas
scenarios and Antarctic modelling assumptions. Projected changes to global glaciers, Greenland
and Antarctic ice sheets and land ice total from 2015-2100 in sea level equivalent (cm SLE) for five
Shared Socioeconomic Pathways (SSPs) and predicted emissions under the 2019 Nationally
Determined Contributions (NDCs). Ice sheet projections do not include pre-2015 response, which is
estimated to add less than 1 cm to the Greenland contribution and ~2 cm to the Antarctic (see
Methods). The glaciers include the Greenland and Antarctic ice sheet peripheral glaciers; the overlap

of Antarctic periphery glaciers with the ice sheet contribution is estimated to be less than 1 cm SLE.

Figure 4. Climate and ice sheet projections show a wide range of responses to greenhouse gas
emissions scenario. Sea level contribution at 2100 under high greenhouse gas emissions scenarios
(RCP8.5 or SSP5-85) versus low scenarios (RCP2.6 or SSP1-26), categorised by climate model
forcing (NorESM1-M and IPSL-CM5A-MR use RCPs; CNRM-CM6-1 use SSPs), without ice shelf
collapse. a, Greenland. b, West Antarctica. c, East Antarctica. d, Antarctic Peninsula. Filled circles
show ice sheet models that use the ISMIP6 parameterisations of the ice-ocean interface, while open
circles show models that used their own. Simulations in the red shaded regions have more mass loss
under high emissions (RCP8.5/SSP5-85) than low (RCP1-26/SSP1-26); those in the green shaded
regions have more mass gain under high emissions scenarios than low. Two regions with other

possible combinations are also labelled.
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Methods
Simulations

Ice sheet and glacier model simulations

Ice sheet and glacier simulations are from the Ice Sheet Model Intercomparison Project 6
(ISMIP6)** and Glacier Model Intercomparison Project Phase 28. Most are published
elsewhere . Additional simulations were run for this analysis (Extended Data Table 1) as
follows, where the names are group/model: 22 new Greenland experiments using [5%, 95"]
percentile values of the retreat parameter under different climate model forcings with
IMAU/IMAUICEI, and 113 Antarctic experiments with CPOM/BISICLES (N = 16),

ILTS PIK/SICOPOLIS (N =31), JPL1/ISSM (N = 10), LSCE/GRISLI (N = 30) and
NCAR/CISM (N = 26). Eight of the new Antarctic simulations were previous experiments
described in ref. [15] using a new model (CPOM/BISICLES), and the rest (105) used 37 new
combinations of previous uncertainties for additional exploration of basal melt (29) and ice
shelf collapse (5) under different climate model forcings, and the interaction of ice shelf
collapse and basal melt (3). CPOM/BISICLES is described in the ISMIP6 Antarctic
initialisation study’: here the B variant is used, but with minimum resolution 1 km rather than
0.5 km. All ice sheet projections are calculated relative to a control simulation with constant
present day climate (see 'Comparison with [PCC assessments' for an estimate of the

'committed' contribution this removes).

The glacier regions are listed in Extended Data Table 2 and all simulations are described in
ref [8]. Greenland ice sheet projections have the peripheral glaciers (region 5) masked out, so
there is no double-counting. The Antarctic periphery glaciers (region 19) are located only on
the surrounding islands, not on the mainland ice sheet; ice sheet models include some of the
larger islands, so there is some overlap in area, but the effect of this is estimated to be small

(see 'Comparison with IPCC assessments' for an estimate of this and other limitations).
All projections are calculated as annual global mean sea level contributions since 2015,

converting mass (for the glaciers) or mass above flotation (for the ice sheets) to sea level

contribution using 362.5 Gt per mm SLE.
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Global climate model simulations

We use projections of annual global mean surface air temperature change since 2015 from
the CMIP5 and CMIP6 global climate models used to drive the ice sheet and glacier models
to build the emulator. If multiple realisations (different initial conditions) for a model were
available, we use the mean of these. Data from 1850-2100 were downloaded from the
JASMIN/CEDA archive and ESGF on the 7" November 2019 and and 4" December 2019;
the CMIP6 snapshot was updated 28"-29 July 2020.

Emulation

An emulator is a fast statistical approximation of a computationally expensive simulator. This
can be used to predict the simulator response at untried input values — to explore the
uncertain input space far more thoroughly — for sensitivity analysis, to adjust the chosen
inputs, and to estimate probability distributions. We construct statistical models of the
simulated ice sheet and glacier sea level contribution as a function of the global mean surface
air temperature of the driving climate models — and also different representations of the ice
sheet-ocean interface — to make predictions under new emissions scenarios that incorporate
these uncertainties, as well as those arising from the different structures of the climate and ice

sheet models (and the emulators themselves).

Typically emulation is performed for one model at a time?*, but here we emulate each multi-
model ensemble all at once. This is made possible by the systematic design of the ISMIP6
and GlacierMIP projects, which explore uncertainties in global climate change and three ice-
ocean parameters simultaneously, and by our approach of applying emulation to multiple
models rather than (as is usual) one. The three ice-ocean parameters control: (1) how much
Greenland marine-terminating glaciers retreat (k) with increasing local ocean temperatures
and meltwater runoff; (2) how much Antarctic ice-shelf basal melting (y) increases with
increasing local ocean temperature; and (3) an on/off scenario of Antarctic ice shelf collapse

(O), which can increase glacier flow into the ocean when atmospheric temperatures rise*S.
We predict the 23 land ice regions separately — the Greenland ice sheet, the West and East

Antarctic ice sheets and Antarctic Peninsula, and 19 glacier regions — so the spatial

distribution of meltwater can be used in regional sea level projections.
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We choose and evaluate emulator structures using the year 2100 (Extended Data Table 2;
Extended Data Figures 1 and 2). Global mean surface air temperature projections are taken
from the FaIR simple climate model*’, because it can explore uncertainties more thoroughly
than the relatively small CMIP6 ensemble of (computationally expensive) general circulation
models. We use the same global mean temperature value across all land ice sources for each
individual estimate: in other words, we include any co-dependence arising from global

temperature. Full details are described in the following sections.

Global mean surface air temperature

Previous sea level emulation studies?>2%2%2 have typically used global mean temperature as
the main input, rather than regional climate variables. We follow this approach for several
reasons: to include correlation of land ice regions induced by global climate change (i.e. no
need to assume/estimate their correlations, or to treat them as independent), and to have a
larger sample of climate change projections. Using regional climate variables would improve
the signal to noise for the emulator, but would restrict us to using computationally expensive
general circulation models from CMIP5/6, for which there only a few tens of models. The
simple climate model FalR can be used to explore uncertainties in each scenario thoroughly,

using the latest assessments of equilibrium climate sensitivity.

Global mean temperature is the only regressor for the glacier regions. For the ice sheets, there

are additional terms derived from the ISMIP6 parameterisations of ice-ocean interactions.

Ice sheet model parameters

The Greenland glacier retreat parameter « (Fig. 3a; units km (m® s™')4°C™") is a scaling
coefficient relating marine-terminating glacier retreat to ocean temperatures and meltwater
runoff'®!!| where larger negative values indicate greater retreat of the glacier terminus in
response to warming. This is a continuous variable, but most simulations use one of three
values: the default, which is the median of the distribution in the parameterisation'!, kso =
—0.17, and the quartiles k25 = —0.37 and k75 = —0.06. One model uses 5" and 95 percentile
values, ks = -0.9705 and k95 = 0.0079. For ice sheet models that did not use this

parameterisation (N = 29 simulations)'4, we assign the mean value from the other simulations
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to minimise the impact on the emulator (k =-0.2073). One of these models (BISICLES) also
ran 'high' and 'low' retreat experiments by doubling and halving the ocean thermal forcing, to

which we assign the k25 and k75 values.

The Antarctic sub-shelf basal melt parameter y (Fig. 3b; units m a!) is the 'ocean heat
exchange velocity' scaling coefficient relating sub-shelf basal melting to ocean

1213 Two alternative distributions for y were derived in the parameterisation'>:

temperatures
the first from mean Antarctic melt rates, and the second from the 10 highest observations of
melt rate at the grounding line of Pine Island Glacier, where melt rates are currently highest.
The values of y estimated from Pine Island Glacier are an order of magnitude larger, and the
two distributions do not overlap. This is a continuous variable, but most simulations use one
of three values: the default, which is the median of the Mean Antarctic distribution,
MeanAntso = 14477, and the 5" and 95™ percentiles, MeanAnts = 9619 and MeanAntys =
21005. Further simulations used the same percentiles from the Pine Island Glacier
distribution: PIGso = 159188, PIGs = 86984 and PIGys = 471264. Some models' used an
alternative variant of the parameterisation in which only local ocean temperatures were used,
rather than a combination of local and regional, which uses a different tuning for y. However,
the values used are also the 50 [5, 95]" percentiles of those distributions, so we consider them

equivalent. For ice sheet models that did not use this parameterisation (N = 62 simulations),

we again assign the ensemble mean value (y= 59317).

The Antarctic ice shelf collapse parameter C is a switch that indicates whether a scenario of
ice shelf collapse was used, which can lead to glacier speed-up. A timeline of collapses was
derived according to the presence of surface meltwater on ice shelves above a threshold (725
mm a’!) for 10 years, estimated from surface air temperature projections*® in the global
climate model driving the ice sheet model (mostly CCSM4). This method does not predict
whether meltwater may be efficiently drained from the surface for a given ice shelf*’, thus
avoiding collapse. We use values of 1 or 0 indicating whether the scenario is implemented or

not.

Gaussian Process emulation

Gaussian Process emulation®® is non-parametric, treating the simulator as an unknown

mathematical function of its inputs. We use the R package RobustGaSP*® for its numerically
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robust parameter estimation>’. There are 23 emulators for the 2100 projections (Greenland ice
sheet, three Antarctic ice sheet regions, and 19 glacier regions) and 1955 emulators for the
full land ice time series (23 regions for each year from 2016 to 2100). An alternative to
predicting each year separately would be to model the temporal correlation explicitly, but we
prefer to use the simpler method, with fewer judgments, and allow temporal correlation to

emerge.

Nugget

We use a ‘nugget 'term to incorporate simulations from each multi-model ensemble. The

nugget is usually zero for deterministic models — the emulator predicts each simulation in the
ensemble exactly, i.e. the regression curve goes through all points — or a very small value, to
improve numerical stability or other properties’>?*. Here we allow the emulator to estimate
the nugget, and treat each multi-model ensemble as a set of outputs from a single stochastic
simulator or set of noisy observations. This approach has previously been used for emulating
stochastic simulators®! and for emulating climate models accounting for internal variability,
other inert inputs (uncertainties not explicitly modelled in the emulator), and approximations

52-57

of the model outputs’<~’. Our method is similar to the use of 'emergent constraints' for

climate models**38

, seeking relationships between past and future simulations across multi-
model ensembles to constrain them with observations, but here the predictors are inputs to the

models rather than their outputs for the past.

This approach does not require the simulations to be normally distributed but does assume
they are independent, which has been a long-standing difficulty of interpreting multi-model
climate ensembles. But with ice sheet models, although model names may be the same across
groups, each one has a very different set up, including physics approximations,
parameterisations, tuning, grid resolution, and — in particular — initialisation methods, which
have been shown to produce very different results even for simulations produced by the same
group® 714155961 "For glacier models, their structures are also vastly different, ranging from
simple scaling parameterisations to dynamic physical models®. We test two approaches to
account for any model dependence: a dummy variable (see below) and random effects

(‘Antarctic cross-check model’).

27



885
886

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910

911
912

913
914
915
916
917
918

Statistical model

Let y denote the simulated global mean sea level contribution for given region and year (in
cm SLE), and x the simulator inputs (see below). Following ref. [22], we write the simulator
as a function y = f(x), for which the Gaussian Process emulator is described by a mean

function;

E[f(x)] =h(x)" B,

where h(x) is a vector of regression functions and f the corresponding regression coefficients,

and a covariance function, with variance 6 and correlation function c(x, x’),

Cov[ f(x), f(x") ] = c?(c(x, x') + VI),

where v is the nugget term and I the identity matrix. So the prior for f(x) is:

p(fx) | B, 6%, 8, v)) ~ N(h(x)" B, *(c(x,x") + VD)),

where x are whichever model inputs are used for a given region, d are the correlation lengths
of the covariance function, and o?v is the variability not explained by the inputs. Parameters

(B, 6%, 8, v) are estimated from the simulation data.

The inputs x used in the regression functions are global mean temperature change, T, and, for
the ice sheets, the ice-ocean parameter values (k for Greenland; y, C for Antarctica), plus a
dummy variable denoting whether Greenland models used the retreat parameterisation. These

are discussed in the next section. All inputs are rescaled to have zero mean and unit variance.

Mean functions

The Gaussian Process mean function describes the large-scale response of the simulator to its
inputs, usually specified as a linear trend with the remainder described by a zero-mean

Gaussian process.

For the glaciers, the linear regressor is simply global mean temperature in the same year (T).

For the ice sheets, the additional ice sheet model parameters are k for Greenland, and y and C
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for Antarctica. We also try two types of dummy variable. The first is for the ice sheet and
glacier model names, so these can be treated distinctly in the emulator, but this leads to clear
overfitting (i.e. the model is too flexible in Figs. 1 and 2). The second represents whether an
ice sheet model uses the ISMIP6 retreat or basal melt parameterisation, to absorb any
misalignment between the imputed value and the effective value. Bayesian Information
Criterion (BIC) from a stepwise model selection (testing up to first-order interactions)
suggests this dummy variable is informative for Greenland, so we retain it (o, for open
parameterisation), but not for the Antarctic regions. The stepwise model selection suggests
we could reasonably include terms for the interaction between temperature and retreat for
Greenland, temperature and basal melt for West Antarctica, and temperature and collapse for
East Antarctica, but we choose not to, to avoid the risk of overfitting. The selection also
shows that collapse strongly dominates the Antarctic Peninsula response, and is may not be
needed for West Antarctica, but we retain all terms (i.e. T;, Y0, C) because we otherwise find
the covariance matrix is poorly conditioned. The resulting mean functions are hgns(x); ~ (T,
k, o) for Greenland, hais(x); ~ (Tj, yo, C) for the Antarctic regions, and hgiaciers(X); ~ (T;) for the
glaciers, where 4 ~ (a,b) means 4 is a linear function of @ and b, and i is the index for the

year.

Covariance functions

The covariance function describes the smoothness of the Gaussian Process. As in any
statistical modelling, there is a trade-off between improving accuracy and over-fitting. We
assess this using the usual leave-one-out procedure®>3. We fit the emulator to all ensemble
members but one, then predict the sea level contribution from this simulation; we repeat this
for every combination, noting the emulator error (residual) and uncertainty for each
prediction. We perform this for each of the 23 regional emulators for the year 2100 with five
covariance functions of varying smoothness — Matérn(5/2), which is the default in
RobustGaSP, Matérn (3/2), and three members of the power exponential family with high,
medium and low exponent values (o0 = 1.9, i.e. close to a squared exponential, the default
value; o = 1.0, exponential, and o = 0.1, for which the covariance function has a small effect

so the emulator approaches linear regression).

For 18 of the 19 glacier regions, we use the covariance function with the smallest

standardised Euclidean distance between the emulator predictions and simulations
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(standardised because, unlike simpler metrics such as root mean square error or mean
absolute error, it does not penalise larger errors if the emulator uncertainty intervals are
sufficiently large), as in ref [24]. For the Southern Andes (region 17), all covariance functions
give identical distances, so we use the default for RobustGaSP. For the ice sheets, we use the
covariance function that gives close to linear regression (power exponential, o = 0.1), rather
than the one with the minimum Euclidean distance, for various reasons. For Greenland, West
Antarctica, and the Antarctic Peninsula, the minimum distance covariance functions (power
exponential o = 1.0 for Greenland; Matérn(3/2) for the Antarctic regions) result in overfitting
for temperature (i.e. too much flexibility in Fig. 1). For East Antarctica, the minimum
distance covariance functions (Matérn(5/2)) result in an incorrect sign prediction under the
ice shelf collapse switch. Using the alternative covariance function solves all of these issues
and does not increase the standardised Euclidean distance by much: 4% for the Peninsula,
and 0.4-1% for the other three regions. The resulting covariance functions are given in

Extended Data Table 2.

Evaluating the emulators

After selecting the covariance functions for each regional emulator at 2100, we evaluate the
emulators further by plotting the emulator predictions against the simulations from the leave-
one-out procedure, and the standardised residuals (the difference between the emulator
prediction and the simulator, divided by the emulator standard deviation), and calculating the
percentage of simulations falling within + 2 s.d. (Extended Data Table 2 and Extended Data
Figures 1 and 2). We would not expect exactly 95% of the simulations to fall within 2 s.d., in
part because the predictions are not independent, but very low or high values would suggest
emulator over- or under-confidence. The region with the lowest percentage of predictions
within the uncertainty intervals is North Asia (region 10) with 89%, indicating slightly too
small emulator uncertainty estimates, and the highest is 98% (Scandinavia: region 8),

indicating the reverse.
Mean absolute errors for each emulator are given in Extended Data Table 2 and Extended

Data Figures 1 and 2: for the ice sheet regions they are 0.28 cm (Peninsula), 1.4 cm

(Greenland) and 1.5 cm (East Antarctica) and 2.0 cm (West Antarctica), and for the
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individual glacier regions they range from 0.0020 cm to 0.87 cm (Antarctic periphery: region

19). Mean absolute standardised errors are all less than 0.006.

The emulator underestimates the three to four highest West and East Antarctic contributions
by around 10-15 cm (Extended Data Figure 1b and 1c). The five highest of these are from the
SICOPOLIS model, which has a much greater sensitivity to basal melting than other models
(see main text, Robustness checks and Extended Data Figure 6), and use the highest value of
this parameter (y = PIGos). These simulations are therefore extreme: 1% of the 344
simulations, and the 97.5" percentile value of the basal melt parameter. There are process-
based reasons to expect that SICOPOLIS is an upper bound or overestimate (see main text).
When the emulator is calibrated with this model alone, it does not underestimate its highest
contributions (not shown). The resulting projections under the NDC scenario are shown in
Robustness checks (test 4); the difference with the main projections may be interpreted as the
maximum possible impact of this emulator underestimate, if SICOPOLIS were the sole
realistic ice sheet model. These are lower than the 'risk-averse' projections, which are made
with a subset of high sensitivity ice sheet models and other pessimistic assumptions (see main

text).

We therefore consider the emulators to be adequate for the predictions of large-scale sea level

contribution presented here.

Antarctic cross-check model

We perform a cross-check for the Antarctic ice sheet regions at 2100 using a linear mixed
model, with the ice sheet model name included as a random effect to deal with any systematic
uncertainty arising from dependence of ensemble members. This attributes some of the

uncertainty in the response to the ice sheet model used, and this uncertainty can then be

removed from the predicted PDF. We thus model the ensemble members as ‘similar but not
identical’, using a mean function of temperature and ice sheet parameters, plus a structured

error term which includes a systematic component according to the ice sheet model and a

noise component to capture other sources of variability such as initialisation.
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For the mean function (also linear), we use the logarithm of y as a regressor, so it is always
positive. Consequently we use the geometric mean as the missing value, rather than the
arithmetic mean. We use a dummy variable to denote these models, as for Greenland in the
GP emulator. The full global mean temperature change trajectories are used instead of only
the total change at 2100. To increase the signal-to-noise ratio, the annual means are reduced
to decadal means (2015-2029, 20302039, . . ., 2090-2100). There are thirteen distinct
forcings, each one the product of a global climate model and a scenario, so we represent the
forcing variables as twelve bisquare basis functions. These start as thirteen bisquare basis
functions, each one centred at one of the thirteen forcings, but one is dropped because
otherwise the model matrix becomes rank deficient when a constant is added. The one
dropped is the one with the smallest mean Euclidean distance to the other twelve. We use
bisquare kernels, where the standard deviation of each kernel is set to one tenth of the
maximum Euclidean distance between all pairs of forcings, to cover the forcing space with
non-zero values for the forcing regressors. We use the same distributions for temperature,
basal melt and collapse as the main projections, and set the dummy variable to represent

standard parameterisation models.

This emulator predicts 50 [35, 95]™ percentiles for the West Antarctic sea level contribution at
2100 of 2 [-4, 8] cm SLE for SSP1-26 and 3 [-4, 10] cm SLE for SSP5-85, which are very
similar to the GP emulator predictions of 2 [-5, 10] cm SLE and 3 [-4, 11] cm SLE. We test
the effect of changing the kernel standard deviation to one twelfth or one fourteenth of the
maximum Euclidean distance; the largest change is a 2 cm decrease in the 95™ percentile
under SSP5-85. For East Antarctica, the emulator with random effects predicts 2 [-3, 6] cm
SLE for both scenarios; the GP emulator predicts a small scenario-dependence, 2 [-4, 7] cm
SLE for the low emissions scenario and 0 [-5, 6] cm SLE for the high. For the Antarctic
Peninsula, the random effects predictions are O [-1, 2] cm SLE for both scenarios, and the GP
are the same. These similarities give us confidence that model dependence is not substantially
affecting our projections — i.e. that differences in model structure, resolution, calibration and
initialisation dominate over the similarities — although it would be worth investigating this in

more detail.

Sea level projections
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We use probability distributions for global temperature and the ice sheet model parameters as

inputs to each emulator to make the projections.

Global mean temperature projections

We use projections of global annual mean surface air temperature change since 2015 from
the FalR (Finite amplitude Impulse Response) simple climate model for the main projections.
We take the 500-member ensemble from reference [30]: SSP1-19, SSP1-26, SSP3-70, SSP5-
85 and a scenario estimated for the 2019 Nationally Determined Contributions. We also use

projections for SSP-245 generated with the same ensemble.

Ice sheet model parameter distributions

For Greenland, we sample from a kernel density estimate of the original & distribution (N =
191) with the same bandwith used in deriving the parameterisation!®!! (0.0703652) (Fig. 1b).

The dummy variable is always set to represent the standard ISMIP6 parameterisation.

For Antarctica, we combine the Mean Antarctic and Pine Island Glacier y distributions (N =
10,000 each), and sample from a kernel density estimate using three times the automatic
bandwidth (Silverman's 'rule of thumb'®4) to merge and smooth them into a near-unimodal
distribution that we truncate at zero (Fig. 1¢). For the collapse switch C, we sample randomly
from 0 or 1 with equal probability (8% of the ISMIP6 simulations have ice shelf collapse).
The ice shelf collapse scenario does not include the possibility of surface meltwater draining
efficiently from some ice shelves under certain conditions, thereby avoiding collapse, so we

feel this is a reasonable judgement.

Sampling

For the 2100 projections, we sample from the FalR ensemble (N=500) with replacement (N =
5000 for main and risk-averse projections; N = 1000 for robustness and sensitivity tests). For
the full time series, we use the 500 FalR projections directly without resampling. We make
one set of emulator predictions (23 regions) for each temperature value in a given year,
randomly sampling the relevant ice-ocean parameters (k, yo, C) once for each FalR ensemble

member.
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We integrate over the uncertain inputs (temperature in a given year, and ice-ocean
parameters) to obtain the final probability density functions (PDFs). Each regional emulator
predicts a Student-t distribution for a given set of these input values, defined by a mean and
standard deviation; we approximate this with a normal distribution, as in refs [55, 57], which
is accurate enough for this application. We use different integration methods for the 23
individual regional PDFs compared with the regional sums (Antarctica, global glaciers, and
land ice total). For the individual regional estimates, we use deterministic numerical
integration (the midpoint rule: we sum the Gaussian distributions for each emulator
prediction, then normalise). For regional sums we must use Monte Carlo sampling, because
the three ice sources (Greenland, Antarctica and glaciers) have different parameters, and we
also desire traceability of predictions to input values within a given ice source. We sample
once from the Gaussian distribution for each emulator prediction, then sum the regional
samples for a given temperature to estimate the PDF, smoothing with kernel density
estimation for figures (again using Silverman's 'rule of thumb'®* for the bandwidth). Sampling
is a more noisy method of integration than deterministic methods, so the PDFs for regional

sums are less smooth than those for individual regions.

Glacier maximum cap

We apply a cap to the glacier projections using estimates of their maximum sea level
contribution’!. Glacier model projections often exceed this cap in some regions, if near or
total loss is projected under high emissions, either because they report changes in total mass,
not mass above flotation, or because of errors in initial mass®, or both. We restrict values to
the maximum in the emulator mean predictions and then the PDFs (the latter exceeding the

cap due to emulator uncertainty).

Time series smoothing

Interannual variability arises in the time series due to sampling the emulator uncertainty for
each annual regional prediction. We apply a five year running mean in Fig. 3d to visualise the
expected smoothness of sea level contributions; projections provided in the Supplementary

Information are unsmoothed.
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Comparison with IPCC assessments

The ice sheet projections are made relative to control simulations with a constant recent
climate. This control includes both the model drift and, depending on the initialisation
method, any background contribution arising from forcing before 2015. This background
contribution should be added to the ice sheet projections, but is difficult to quantify. Five year
mean rates of sea level contribution since 1992/3 range from 0.1-0.8 mm/yr for the Greenland
ice sheet® and 0.1-0.6 mm/yr for Antarctica®®, but they would decrease in the absence of
forcing after 2014. Modelling work to quantify the background contribution from
Greenland®’ suggests a contribution of 0.6 = 0.2 cm SLE by 2100. Estimates made for this
study range from 0.3-0.8 cm under a range of retreat parameter values, k75 - K25
(IMAU/IMAUICEL1: 0.3-0.4 cm; CISM variant similar to NCAR/CISM: 0.4-0.8 cm). For
Antarctica, the dynamic commitment has been estimated to be 2 cm SLE at 2100 for the
Amunden Sea Embayment region of West Antarctica, where most mass loss is currently
occurring®®. Part of these trends may still be due to residual model drift. The committed
contribution could therefore add up to ~1 cm/century to our Greenland projections and ~2

cm/century to the Antarctic.

The Antarctic ice sheet models include some of the larger islands that are also included in
region 19, potentially leading to double-counting. However, median projections for region 19
range from 1-2 cm under different emissions scenarios, and the ice sheet models are much
lower resolution (i.e. the glaciers are likely less responsive), so the effect is expected to be of

order 0.5-1 cm SLE or less.

We average our projections over the 86 years and compare them with the average IPCC
ARS5?% and SROCC! projections over 95 years (the midpoints of 1986-2005 to 2081-2100) as
rates of cm SLE per century. For the glaciers, we project 8 cm/century SLE for SSP1-26 and
16 cm/century for SSP5-85 excluding the Antarctic peripheral glaciers (region 19: 1 cm and 2
cm, respectively), compared with 10 cm for RCP2.6 and 17 cm for RCP8.5 in ARS. For the
Greenland ice sheet, we project 4 cm/century SLE for SSP1-26 and 11 cm for SSP5-85,
compared with 6 cm for RCP2.6 and 13 cm for RCP8.5 in ARS. For Antarctica, we project 5
cm/century SLE for both scenarios; the ARS projections are 5 cm/century SLE for RCP2.6
and 4 cm for RCP8.5, while those for SROCC are 4 cm/century SLE for RCP2.6 and 11 cm
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for RCP8.5. The difference between scenarios for Antarctica in ARS arises only from

additional accumulation, because the dynamic contributions are assumed to be the same.

Glacier projections could be overestimated because meltwater routing to the ocean is not
accounted for (not all volume lost from the glaciers reaches the oceans), or underestimated
because only one glacier model includes ice-water interactions (i.e. frontal ablation of
marine- and lake-terminating glaciers). For the latter, we compare mean projections for the
GloGEM model to the emulator for RCP8.5/SSP5-85 and RCP4.5/SSP2-45 for key regions,
and find they are larger by less than 1 cm for Alaska and Russian Arctic (regions 1 and 9), by
less than 0.5 cm for Svalbard (7) and Arctic Canada South (4), and smaller than the emulator
for Arctic Canada North (3). All are within the emulator 95" percentile estimates. We may
slightly underestimate uncertainty in the global glacier total due to correlated errors across
models® by emulating the regions independently, though there are compensating advantages
(more accurate emulation; spatial pattern of meltwater); a similar argument applies to

Antarctica.

Sensitivity tests

We perform a number of checks to test the sensitivity of the ice sheet projections to changes
in the chosen inputs, predominantly the input distributions, but also the dataset in the final
test (see Extended Data Table 3 and refs [25, 26,30, 34, 39]). All results are shown for the
SSP5-85 scenario in Extended Data Figure 4 under the index given (where 1 is the main
projection); numerical values in the text refer to changes in the median and [5,95%"] percentile

estimates for the ice sheet under this scenario unless otherwise stated.

Robustness checks

We perform a number of checks to test robustness of the ice sheet projections to changes in
the simulation dataset (see Extended Data Table 4 and refs [14, 16, 24, 66]). Results are
shown for the NDCs scenario in Extended Data Figure 5 under the test index given (where 1
is the main projection); numerical values in the text refer to changes in the median and
[5,95"] percentile estimates under this scenario unless otherwise stated. The full datasets are

256 simulations for Greenland and 344 simulations for Antarctica.
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Parameter interactions

Retreat and basal melt vs temperature

Ice sheet projection uncertainties are constant across scenarios. However, tests with three ice
sheet models show that the range of projections from high to low values of the retreat
parameter (ko5 - k5) and basal melt parameter (PIGos - MeanAntso) is consistently smaller
under RCP2.6 than RCPS8.5, so the emulator uncertainty should be smaller at lower
temperatures. The ratios of ranges, RCP2.6/RCPS8.5, for each group/model + GCM are:

Greenland
e IMAU/IMAUICE + MIROCS5 =1.4097/8.3069 =0.17
e IMAU/IMAUICE + CNRM-CM6-1 =2.4813/9.7187 =0.26

West Antarctica
e JPLI1/ISSM + NorESM1-M = 0.40
e CPOM/BISICLES + NorESM1-M =0.57

East Antarctica
e JPL1/ISSM + NorESM1-M = 0.73
e CPOM/BISICLES + NorESM1-M =0.32

The emulator does not have sufficient data from lower emissions scenarios to reduce the
variance, particularly for Greenland. If other ice sheet models respond the same way as the

above, then adding more simulations may reduce the uncertainty for low SSPs.

Ice shelf collapse vs basal melt

The contribution due to ice shelf collapse does not increase with higher values of the basal
melt parameter in the models JPL1/ISSM and CPOM/BISICLES (0.1 cm difference for the
Peninsula in BISICLES; all other regional differences for both models < 0.02 cm).

Code availability
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R code and input data are available at https://github.com/tamsinedwards/emulandice. Each

simulation in the sea level projections file has a label in the 'publication' column for the
reference (Goelzer2020, Seroussi2020, Nowicki2020 or Marzeion2020), or 'New' if

previously unpublished.

Data availability

All global climate, simple climate, ice sheet and glacier model data used as inputs to this
study are provided with the code as described above. Main and risk-averse projections from
the analysis are provided in the Supplementary Information as annual quantiles for each of

the 23 regions, and the Antarctic, glacier and land ice sums.
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Extended Data

Extended Data Table 1. The additional 22 Greenland and 37 Antarctic ice sheet model experiments
not previously described elsewhere. Retreat parameter values ks and ks are the 5™ and 95" percentile
values of the retreat (k) distribution; basal melt parameter values MeanAnt;s, so, 951 and PIGys, 50, 957 are the
5t 50™ and 95™ percentile values of the Mean Antarctic and Pine Island Glacier basal melt (y)

distributions (see Methods).

Extended Data Table 2. Emulator structure and validation. Emulator covariance functions, and the
results of the leave-one-out procedure for each: the percentage of simulations that fall within the emulator

95% uncertainty intervals, and the mean absolute error.

Extended Data Figure 1. Emulator leave-one-out validation for ice sheets and 8 glacier regions. Left
of each subpanel: Emulator predictions versus simulations for each regional sea level contribution in the
year 2100, with percentage of predictions falling outside & 2 emulator standard deviations and mean
absolute error in cm SLE. Right of each subpanel: standardised residuals (emulated minus simulated,
divided by emulator standard deviation). Predictions falling outside + 2 emulator standard deviations are

shown in orange.

Extended Data Figure 2. Emulator leave-one-out validation for 11 glacier regions. As for Extended

Data Figure 1, but for the remaining glacier emulators.

Extended Data Figure 3. Temperature projections for 2015-2100 from FalR and CMIP6 ensembles.
Global surface air temperature projections under different greenhouse gas scenarios (see main text) from
the (a) FalR simple climate model ensemble (N = 5000; same as Figure 3a) and (b) CMIP6 global climate
model ensemble (N ~30 models per scenario: see Methods) sampled with a kernel density estimate (N =

1000).

Extended Data Table 3. Sensitivity tests. Tests of the sensitivity of the ice sheet projections to changes in
the chosen inputs. The test index, name, description and impact are detailed. Numerical values refer to
changes in the median and [5", 95"] percentile estimates for the ice sheet under SSP5-85, unless otherwise

stated; results for this scenario are shown in Extended Data Figure 4.

Extended Data Figure 4. Sensitivity of ice sheet projections at 2100 under SSP5-85 to uncertain
inputs. a, Greenland. b, West Antarctica. ¢, East Antarctica. d, Antarctic Peninsula. Indices refer to test
(see Extended Data Table 3). Box and whiskers show [5, 25, 50, 75, 95]™ percentiles. 1: Default; 2:
CMIP6 global climate model ensemble projections of global mean surface air temperature, instead of FalR

simple climate model; 3: fixed global mean surface air temperature; 4: fixed glacier retreat (Greenland) or
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basal melt (Antarctica) parameter. Antarctic regions only: basal melt parameter has 5: 'Mean Antarctic'
distribution; 6: 'Pine Island Glacier' distribution; 7: uniform, high distribution; 8: uniform, very high
distribution. Ice shelf collapse scenario: 9: off and 10: on. 11: Risk-averse projections using the high 'Pine
Island Glacier' distribution for basal melt (test 6), ice shelf collapse on (test 10), and the ice sheet and

climate models that give the highest sea level contributions (Extended Data Figure 5: test 6, 7).

Extended Data Table 4. Robustness checks. Checks performed to test the robustness of the ice sheet
projections to changes in the simulation dataset. The test index, name, description and impact are detailed.
Numerical values refer to changes in the median and [5™, 95™] percentile estimates for the ice sheet under

the NDCs scenario, unless otherwise stated; results for this scenario are shown in Extended Data Figure 5.

42



1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369

1370
1371

Extended Data Figure S. Robustness of ice sheet projections under Nationally Determined
Contributions to ice sheet/climate model simulation selection and treatment. a, Greenland. b,
West Antarctica. ¢, East Antarctica. d, Antarctic Peninsula. Indices refer to test (see Extended Data
Table 4). Box and whiskers show [5, 25, 50, 75, 95]™ percentiles. 1: Default; 2: Higher resolution ice
sheet models; 3: Ice sheet models with the most complete sampling of uncertainties (10 models for
Greenland, 4 for Antarctica); 4: Single ice sheet model with the most complete sampling of
uncertainties and (coincidentally) high sensitivity to retreat or basal melting parameter. Antarctic
regions only: 5: Alternative single ice sheet model with nearly as complete sampling but low
sensitivity to basal melt parameter. 6: Ice sheet models with the highest sensitivity to basal melt
parameter; 7: Climate models that lead to highest sea level contributions. 8: Ice sheet models with
2015-2020 mass change in the range 0-0.6 cm. 9: Only ice sheet models that use the standard ISMIP
melt parameterisations. 10: Higher basal melt value assigned to ice sheet models that do not use the

standard ISMIP6 melt parameterisations.

Extended Data Figure 6. Sensitivity to basal melting by Antarctic ice sheet and climate model.
Vertical lines show ice sheet models that do not use the ISMIP6 basal melt parameterisation, and the
basal melt value they are assigned. Ice sheet models includes the high and low sensitivity models in

Extended Data Figure 5: test 4 (ILTS PIK/SICOPOLIS) and test 5 (LSCE/GRISLI).
Extended Data Figure 7. Effect of Antarctic ice shelf collapse by climate model. Additional sea

level contribution at 2100 when using ice shelf collapse for six climate models, ordered by maximum

impact on the Peninsula contribution. (a) West and (b) East Antarctica, and (c) Peninsula.
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Additional Greenland experiments

Experiment name Scenario Climate model Retreat parameter
expe01 RCP8.5 NorESM1-M Kos
expe02 RCP8.5 NorESM1-M Ks
expe03 RCP8.5 HadGEM2-ES Kos
expe04 RCP8.5 HadGEM2-ES Ks
expe05 RCP2.6 MIROC5 Kos
expe06 RCP2.6 MIROC5 Ks
expe07 RCP8.5 IPSL-CM5A-MR Kos
expe08 RCP8.5 IPSL-CM5A-MR Ks
expe09 RCP8.5 CSIRO-Mk3-6-0 Kos
expel0 RCP8.5 CSIRO-Mk3-6-0 Ks
expell RCP8.5 ACCESS1-3 Kos
expel2 RCP8.5 ACCESS1-3 Ks
expel13 SSP5-85 CNRM-CM6-1 Kos
expel4 SSP5-85 CNRM-CM6-1 Ks
expel5 SSP1-26 CNRM-CM6-1 Kos
expe16 SSP1-26 CNRM-CM6-1 Ks
expel7 SSP5-85 UKESM1-0-LL Kos
expel8 SSP5-85 UKESM1-0-LL Ks
expe21 SSP5-85 CNRM-ESM2-1 Kos
expe22 SSP5-85 CNRM-ESM2-1 Ks
expe23 RCP8.5 MIROC5 Kos
expe24 RCP8.5 MIROC5 Ks

Additional Antarctic experiments
Experiment name Scenario Climate model Basal melt (yo) Ice shelf collapse (C)
Basal melt parameter values
expD1 RCP8.5 MIROC-ESM-CHEM MeanAntss Off
expD2 RCP8.5 MIROC-ESM-CHEM MeanAnts Off
expD3 RCP2.6 NorESM1-M MeanAntgs Off
expD4 RCP2.6 NorESM1-M MeanAnts Off
expD5 RCP8.5 CCSM4 MeanAntgs Off
expD6 RCP8.5 CCSM4 MeanAnts Off
expD7 RCP8.5 HadGEM2-ES MeanAntss Off
expD8 RCP8.5 HadGEM2-ES MeanAnts Off
expD9 RCP8.5 CSIRO-Mk3-6-0 MeanAntss Off
expD10 RCP8.5 CSIRO-Mk3-6-0 MeanAnts Off
expD11 RCP8.5 IPSL-CM5A-MR MeanAntss Off
expD12 RCP8.5 IPSL-CM5A-MR MeanAnts Off
expD13 SSP5-85 CNRM-CM6-1 MeanAntss Off
expD14 SSP5-85 CNRM-CM6-1 MeanAnts Off
expD15 SSP5-85 UKESM1-0-LL MeanAntgs Off
expD16 SSP5-85 UKESM1-0-LL MeanAnts Off
expD17 SSP5-85 CESM2 MeanAntss Off
expD18 SSP5-85 CESM2 MeanAnts Off
expD51 RCP8.5 NorESM1-M PIGs Off
expD52 RCP8.5 NorESM1-M PIGgs Off
expD53 RCP8.5 MIROC-ESM-CHEM PIGso Off
expD54 RCP8.5 MIROC-ESM-CHEM PIGs Off
expD55 RCP8.5 MIROC-ESM-CHEM PIGos Off
expD56 RCP8.5 CCsm4 PIGso Off
expD57 RCP8.5 CCsm4 PIGs Off
expD58 RCP8.5 CCSM4 PIGos Off
expT071 RCP2.6 NorESM1-M PIGso Off
expT072 RCP2.6 NorESM1-M PIGs Off
expT073 RCP2.6 NorESM1-M PIGos Off
Ice shelf collapse under different climate forcings
expE6 RCP8.5 NorESM1-M MeanAntso On
expE7 RCP8.5 MIROC-ESM-CHEM MeanAntso On
expE8 RCP8.5 HadGEM2-ES MeanAntso On
expE9 RCP8.5 CSIRO-Mk3-6-0 MeanAntso On
expE10 RCP8.5 IPSL-CM5A-MR MeanAntso On
Ice shelf collapse and basal melt interactions
expTD5 RCP8.5 CCSM4 MeanAntss On
expTD56 RCP8.5 CCsm4 PIGso On

expTD58 RCP8.5 CCSM4 PlGogs On




Region

Covariance function and hyperparameters

% predictions within

Mean absolute error

(a: exponent; v: roughness parameter) emulator 95% interval (cm)
Greenland ice sheet power exp (o = 0.1) 94.1 1.4
West Antarctica power exp (o = 0.1) 93.6 2.0
East Antarctica power exp (o = 0.1) 94.8 1.5
Antarctic Peninsula power exp (o = 0.1) 92.4 0.28
1: Alaska power exp (o = 1.0) 95.5 0.55
2: Western Canada and U.S. power exp (o = 1.9) 96.1 0.040
3: Arctic Canada North power exp (o = 1.9) 92.7 0.51
4: Arctic Canada South power exp (o = 0.1) 95.5 0.27
5: Greenland periphery power exp (o = 0.1) 94.9 0.36
6: Iceland power exp (o = 1.0) 95.5 0.13
7: Svalbard power exp (o = 0.1) 95.5 0.37
8: Scandinavia power exp (o = 1.0) 98.3 0.012
9: Russian Arctic power exp (o = 1.0) 94.9 0.41
10: North Asia power exp (a = 1.0) 89.3 0.0084
11: Central Europe power exp (o = 1.0) 97.4 0.0044
12: Caucasus Matérn (v = 3/2) 96.6 0.0020
13: Central Asia power exp (o = 0.1) 95.1 0.15
14: South Asia (West) power exp (o = 1.9) 96.4 0.11
15: South Asia (East) power exp (o = 0.1) 915 0.045
16: Low Latitudes power exp (o = 0.1) 95.5 0.0054
17: Southern Andes Matérn (v = 5/2) 92.1 0.16
18: New Zealand power exp (o = 0.1) 94.1 0.0024
19: Antarctic and Subantarctic periphery Matérn (v = 5/2) 92.9 0.87




Sensitivity tests

Description

Impact

2: CMIP6 temperature projections

Around 30 CMIP6 models are available at the time of analysis for four SSPs (31 for SSP1-26, 30
for SSP2-45, 27 for SSP3-70 and 31 for SSP5-85). Simulations are obtained and processed in
the same way as the subset used for the emulator calibration. We set missing 2100 values to
that of 2099 (for CAMS-CSM1-0, and two additional models for SSP3-70). We smooth the
temperature changes with a kernel density estimator and sample from this with replacement (N =
1000; Extended Data Figure 3).

We find a slight increase in projected sea level rise: median
and 95! percentile land ice contributions increase by 1-5 cm
and 4-7 cm across scenarios SSP1-26 to SSP5-85. This is
likely due to the greater number of simulations with high
equilibrium climate sensitivity in CMIP6 than FalR (and a
wider range than several recent past generations, 1.8-
5.6°C)34. The FalR ensemble is constructed to have a
climate sensitivity distribution in line with latest
understanding from multiple lines of evidence (5-95% range
2-5°C)%,

3, 4: Fixed global mean temperature and ice sheet melt parameters
We replace the input distributions with single values, to test the potential for reducing

uncertainties with improved knowledge

Using the FalR ensemble mean for global temperature, the
width of the 5-95% range for SSP5-85 reduces from 30 cm
to 26 cm. Using default values of the Greenland retreat and
Antarctic basal melt parameters (k = Kso; Yo = MeanAntso),

the 5-95% range decreases from 30 cm to 25 cm.

5, 6: Antarctic basal melt - Mean Antarctic and Pine Island Glacier distributions
We use the Mean Antarctic (test 5), or Pine Island Glacier (test 6) distribution for basal melt vy,

rather than the combined distribution, sampling from the original distributions with replacement.

Results are discussed in the main text.

7, 8: Antarctic basal melt - uniform distributions

We use two uniform distributions to reproduce the sampling strategy of ref [26]. This is an
emulation-type study based on a similar ensemble of climate and Antarctic ice sheet models to
ISMIP6, which uses a uniform distribution for basal melt sensitivity consistent with values
estimated for the Amundsen Sea region®. If we add projections of dynamic change from ref. [26]
to IPCC AR52 projections for surface mass balance (SMB), neglecting differences in time period,
the median projections are ~11 and ~13 cm under RCP2.6 and RCP8.5, and the 95t percentiles

are ~35 and ~54 cm (using median SMB values in both).

We reach similar values only with extreme values of the
basal melt parameter: we show here y ~ unif[PIGso, PIGgs]
and y ~ unif[P1Gso, 700000], where 700000 is 98.7th
percentile of the Pine Island Glacier distribution, which give
median projections of 10 cm and ~14 cm across all
scenarios. The 95" percentiles are roughly half those of the
other study: ~19 cm and ~24 cm.

9, 10: Antarctic ice shelf collapse off and on

We use only C=0 or C =1, rather than a random sample of the two.

Results are discussed in the main text.

11: Risk-averse Antarctic projections

We use the five global climate models with highest sea level contribution or for which ice shelf
collapse projections are available (Robustness test 7), the four Antarctic ice sheet models with
highest sensitivity to basal melting (Robustness test 6), the Pine Island Glacier distribution for
basal melt y (Sensitivity test 6) and ice shelf collapse on (Sensitivity test 10). We also use the
same y value for all three regions in a given projection, i.e. fully correlated rather than sampled
independently, to explore the tails more fully: this aspect broadens the distribution, increasing the
95t percentile by 2-4 cm and decreasing the 5t by 1 cm, and also decreases the median by 1
cm. We use N = 5000 temperature samples, as for the main projections. We do not use the
combinations that lead to the highest possible sea level contribution —i.e. the single most
sensitive ice sheet model (Robustness test 4), or the extreme distributions for basal melt
(Sensitivity test 7-8) — because we aim to provide plausible high-end projections, rather than

relying on a single model or unrealistic assumptions.

Results are discussed in the main text.




Robustness checks

Description

Impact

2: High resolution models
We use only Greenland ice sheet models with minimum spatial resolution less than 8 km (N =

215) and Antarctic ice sheet models with resolution less than 32 km (N = 303).

This results in differences of 0-1 cm for each ice sheet.

3: More balanced design

We restrict the input dataset to only the models with the most complete designs (i.e. the most
experiments). For Greenland, we use 10 of the 21 models: one with 28 experiments
(IMAU/IMAUICET1) and the nine models that ran all 14 experiments presented by refs. [14] and
[16] (AWI/ISSM1, ISSM2 and ISSM3, ILTS_PIK/SICOPOLIS1 and SICOPOLIS2, JPL/ISSM,
LSCE/GRISLI2, NCAR/CISM, VUB/GISMHOMv1), removing the dummy variable from the
emulator as there are no 'open' models in this set (N = 154). For Antarctica, we use four of the 16
models (ILTS_PIK/SICOPOLIS: N = 55, of which 13 do not use the ISMIP6 parameterisation;
JPL1/ISSM: N = 48; LSCE/GRISLI: N = 47; NCAR/CISM: N = 27) (total N = 177).

This results in differences of 0-1 cm for each ice sheet.

4, 5: Single ice sheet models

We use only the Greenland model with the most simulations (IMAU/IMAUICE1: N = 28), and a
single model for Antarctica (test 4: ILTS_PIK/SICOPOLIS, N = 48; test 5: LSCE/GRISLI, N = 47).
The two Antarctic models have high and low sensitivity to the basal melting parameter,
respectively (Extended Data Figure 6).

Using one Greenland model has little impact: the largest
change is 2 cm increase in the 95t percentile, due to this
model being at the upper end of the range in sensitivity to
the retreat parameter (Figure 2a: triangles). Using one
Antarctic model has far more effect: results are discussed

further in the main text.

6: Highest sensitivity Antarctic ice sheet models

We use the four Antarctic models with highest sensitivity to basal melting, i.e. largest 2100
contribution for y = PIGso, ice shelf collapse off and RCP8.5/SSP5-85 (decreasing order:
ILTS_PIK/SICOPOLIS: N = 48; ULBAETISh_16km: N = 21; ULBAETISh_32km: N = 21;
DOE/MALI: N = 8) (total N = 98).

Results are discussed in the main text.

7: Select climate models that result in highest Antarctic sea level contributions

We use only results from the climate models that lead to highest sea level contributions at 2100
under y = MeanAntso, ice shelf collapse off and RCP8.5/SSP5-85 (in decreasing order:
HadGEM2-ES, UKESM1-0-LL, MIROC-ESM-CHEM, NorESM1-M). We also include CCSM4, to
retain information on the effect of ice shelf collapse (N = 241). We also test the impact of using
only two of these climate models (not shown in Extended Data Figure 5): NorESM1-M (discussed
in the main text regarding scenario-dependence: Figure 4) and CCSM4 (for shelf collapse) (N =
164).

Using these five climate models results in +1 cm change to
median from SSP1-19 to SSP5-85 for West Antarctica, -1
cm for East Antarctica, and +1 cm for the total. NDCs
median increases by +2 cm relative to main projections.
Using only NorESM1-M and CCSM4 leads to +2 cm from
SSP1-19 to SSP5-85 for West Antarctica, -3 cm for East
Antarctica, and -3 cm decrease for the total, i.e. a weak

scenario dependence; no change to NDCs median.

8: Exclude Antarctic ice sheet models far from observed trend

We exclude simulations with 2015-2020 sea level contributions outside the range 0.00-0.60 cm,
motivated by recent observations. We use a satellite estimate® of the mass trend from 2012-
2017 (-219 + 43 Gt a') and reject simulations for which the mean trend over 2015-2020 is
outside the mean + 5 s.d. interval (N = 181). We choose this interval to allow for the trend
changing from one time period to the other, and for tolerance to model discrepancy?*, and
because it coincides with zero at the bottom end so is informative for excluding models with

mass gain at the start of the projections (as well as those with very rapid mass loss).

This results in +1 cm scenario-dependence for West
Antarctica and -2 cm for East Antarctica, and none for the

total; the NDCs median increases by 1 cm.

9: Exclude Antarctic ice sheet models that do not use ISMIP6 melt parameterisation
We exclude the ice sheet models that do not use the ISMIP6 basal melt parameterisation. (N =
282).

No scenario-dependence for West Antarctica or the total; -2

cm for East Antarctica. No change to NDCs median.

10: Impute higher basal melt value for Antarctic ice sheet models that do not use the ISMIP6 melt parameterisation

We assign models that do not use the ISMIP6 parameterisations a higher value for y (150,000;
slightly less than P1Gso), rather than the ensemble mean (59,317), reflecting the fact that such
models are often tuned to Amundsen Sea (high) melt observations, and approximately in line
with NCAR/CISM which was run in both modes (Extended Data Figure 6).

This results in +1 cm scenario-dependence for West
Antarctica, -1 cm decrease for East Antarctica, and no
change for the total; the NDCs median projection decreases
by 1 cm.




