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Summary

In this article, we present a goal-oriented adaptive finite element method for a class of subsurface
flow problems in porous media, which exhibit seepage faces. We focus on a representative case of
the steady state flows governed by a nonlinear Darcy–Buckingham law with physical constraints
on subsurface-atmosphere boundaries. This leads to the formulation of the problem as a variational
inequality. The solutions to this problem are investigated using an adaptive finite element method
based on a dual-weighted a posteriori error estimate, derived with the aim of reducing error in
a specific target quantity. The quantity of interest is chosen as volumetric water flux across the
seepage face, and therefore depends on an a priori unknown free boundary. We apply our method
to challenging numerical examples as well as specific case studies, from which this research
originates, illustrating the major difficulties that arise in practical situations. We summarise
extensive numerical results that clearly demonstrate the designed method produces rapid error
reduction measured against the number of degrees of freedom.

1. Introduction

The modelling of subsurface flows in porous media presents a multitude of mathematical and
numerical challenges. Heterogeneity in soils and rocks as well as sharp changes of several orders
of magnitude in hydraulic properties around saturation are the multi-scale phenomena that are
particularly difficult to capture in numerical models. In addition, physically realistic domains include
a wide variety of boundary conditions, some of which depend upon a free (phreatic) surface and
therefore also upon the problem solution itself. These boundary conditions are described by inequality
constraints. At points where the active constraint switches from one to the other, gradient singularities
in the solution can arise which must be resolved well to avoid polluting the accuracy of the solution.
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The situation is analogous to a thin obstacle problem, for which gradient discontinuities arise around
the thin obstacle (1). For these reasons, such problems are good candidates for h-adaptive numerical
methods, where a computational mesh is automatically refined according to an indicator for the
numerical error. It is the aim of such methods to provide the necessary spatial resolution with greater
efficiency than is possible with structured meshes.

A common model for steady flow in porous media in the geosciences is a free surface problem
where the medium is assumed to be either saturated with flow governed by Darcy’s law or dry with no
flow at all. The free surface is the boundary between the two regions with a no-flow condition applied
across it. Some authors solve this as a pure free boundary problem where the computational domain
is unknown a priori such as in (2). However, this means that as the domain is updated, expensive
re-meshing must take place, allowing fewer of the data structures to be re-used from one iteration
to the next. To avoid the difficulties of this approach, in (3), the problem formulation is modified
to a fixed domain in which flow can take place (such as a dam) and the pressure variable defined
on the whole domain, removing the need for changes in problem geometry and costly re-meshing
during numerical simulations. The theory of this type of formulation is described in detail in (4).
A good approximation theory is available for finite element methods applied to such problems. It
should be noted though that this model is a simplification, owing to the fact that it does not allow
for unsaturated effects.

To avoid the computational complexities of a changing domain, in this work, we consider the
porous medium to be variably saturated, and therefore we solve for pore pressure over the entire
domain (cf (5)). The results presented in (6) suggest that this approach is in fact necessary to accurately
represent the subsurface. It is also expected that this framework will allow relatively easy extension
to unsteady cases where unsaturated effects are extremely important for the dynamics.

Although there has been much study of this problem, there are relatively few examples of adaptive
finite element techniques being used. This is because the partial differential equation (PDE) governing
subsurface flow presents difficulties for the traditional theory of a posteriori estimation. This stems
from the behaviour of the coefficient of hydraulic conductivity, which depends on the solution itself
and approaches zero in the dry soil limit, leading to degeneracy of the PDE problem. This violates
the standard assumption of stability in elliptic PDE problems.

In an early work on the approximation of solutions to variational inequalities by the finite element
method, Falk (7) derives an a priori error estimate for linear finite elements on a triangular mesh in R

2

for the Poisson equation with inequality constraints on the boundary, providing optimal convergence
rates in the H1-norm. The author also remarks that due to the relatively low regularity of the solution,
higher order numerical methods can not provide a better rate. In situations such as this, local mesh
refinement comes into its own.

Traditional a posteriori estimation for finite element methods gives upper bounds of the form

‖u − uh‖E � Cε(uh, h, f ), (1.1)

where u is the exact solution to some partial differential equation, C is a positive constant, uh is the
numerical solution, h is the mesh function, and f is problem data. C is usually only computable for
the simplest domains and meshes, and can be large. The norm, ‖ · ‖E , is usually an energy norm: a
global measure chosen so that the asymptotic convergence rate of the method is optimal. In practical
computations, however, the user is often not interested in asymptotic rates that may never be reached
but would prefer a sharp estimate of the error to give confidence in the approximation.
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The dual-weighted residual framework for error estimation was inspired by ideas from optimal
control as a means to estimate the error in approximating a general quantity of interest. Pursuing
this analogy, the objective functional to be minimised is the error in numerically approximating a
solution to the PDE problem, the constraints are the PDE problem and boundary conditions, and the
control variables are local resolution in the spatial discretisation.

There has been a huge amount of work on error estimation and adaptivity using the dual-weighted
approach and it has shown to be extremely effective in computing quantities which depend upon local
features in steady-state problems in (8), heterogeneous media (9) and variable boundary cnditions
in variational inequalities (10, 11). In almost all cases the performance of the goal-based algorithm
cannot be bettered in efficiency. The goal-based framework also extends to time dependent problems,
where it has been applied to the heat equation by (12) and the acoustic wave equation by (13) among
others.

A common feature of numerical methods for seepage problems in the literature is that they are
designed around getting a good representation of the phreatic surface, namely the level set of zero
pressure head that divides saturated from unsaturated soil. There are however many other possible
quantities of interest such as flow rate over a seepage face that could represent the productivity of a
well. In this work, correct representation of the phreatic surface is prioritised only if it is important
for the calculation of the quantity of interest, and we let local mesh refinement do the work for
us, rather than expensive re-meshing of the free surface. Indeed, in the current framework, mesh
refinement is rather simple to implement and relatively cheap.

The dual-weighted residual method has been applied to linear problems with similar character-
istics. In (10), a simplified version of the Signorini problem is solved. The authors of (9) consider
a groundwater flow problem in which the focus is to estimate the error in the nonlinear travel time
functional. In both cases, the underlying PDE operator is linear.

The key step in deriving an a posteriori error bound for this variational inequality is the introduction
of an intermediate function that solves the unrestricted PDE corresponding to the inequality. This
allows the removal of the exact solution from the resulting bound. Finally, the unrestricted solution
allows the problem data to enter into the problem, allowing a fully computable a posteriori error
bound. In this article, we apply these cutting edge techniques of a posteriori error estimation and
adaptive computing to complex and relevant problems informed by geophysical applications. We
demonstrate that the error bound is sharp and allows for highly efficient error reduction in the target
quantity in a variety of situations which include geometric singularities, multi scale effects in layered
media and complex boundary conditions at the seepage face.

The remainder of the article is set out as follows. In section 2, we describe the seepage problem
and derive a weak formulation. The problem is discretised with a finite element method in section 3.
Section 4 is devoted to the derivation of a dual-weighted a posteriori estimate for the finite element
error. Sections 5 and 5.3 describe the particulars of the adaptive algorithm and our implementation of
it. Section 6 contains numerical experiments, to illustrate the performance of the error estimate and
adaptive routine in two test cases. Finally, section 7 contains the application of our adaptive routine
to two case studies with experimental data chosen to illustrate some of the most difficult cases that
arise in practice.

2. Description of problem

In this section, we give the mathematical formulation of the seepage problem and derive its weak
form. Let u denote the pressure head of fluid flowing in a porous medium in a bounded, convex
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domain � ⊆ R
N , N = 2 or 3 with boundary ∂�. The flow of the fluid is described by the flux

density vector q(u). Note that q(u) is not the fluid velocity v but is related to it by

v = q(u)

φ
, (2.1)

where φ is the porosity of the medium, that is, the proportion of the medium that may be occupied
by fluid. Flux density is related to the pressure field by

q(u) := −k(u)∇ (u + hz) , (2.2)

where hz is the vertical height above a fixed datum representing the action of gravity upon the fluid
and k is a nonlinear function that characterises the hydraulic conductivity of the medium. We refrain
from defining k precisely here as our analytic results only require abstract assumptions on the specific
form of k. For our computational experiments we will make use of a van Genuchten model (14),
which is defined in (5.4) and illustrated in Fig. 2. The modification of Darcy’s law following the
observation that hydraulic conductivity depends upon the capillary potential u is due to (15) and is
a generalisation of the standard Darcy law that applies to soil that is completely saturated. In this
case, the coefficient k introduces strong nonlinearity into the problem.

Now consider the steady state and suppose that f is a source/sink term. Then, we can combine
(2.2) with the mass balance equation

∇ · q(u) = f (2.3)

to obtain the equation of motion for steady-state variably saturated flow

−∇ · k(u)∇(u + hz) = f . (2.4)

To complete the above system and solve it, boundary conditions must be specified. We briefly
review the most relevant here and point an interested reader to (16) for a more complete list.

Boundaries that are in contact with a body of water can be modelled by enforcing a Dirichlet
boundary condition u = g, where g is some function chosen based upon the assumption that the
body has a hydrostatic pressure distribution. The boundary condition therefore enforces continuity
of pressure head across the boundary. A hydrostatic condition can also be used to set the water table
and can represent the prevailing conditions far from the soil-air boundary.

The flow of water across a boundary is given by the component of the Darcy flux, (2.2), that is
normal to the boundary. We will set q(u) · n = 0, where n is the unit outward normal vector to ∂�

to represent an impermeable boundary.
At subsurface-air boundaries, a set of inequality constraints must be satisfied. The ambient

atmospheric pressure is set as the zero point, and the pressure of water in the soil at such a boundary
can therefore not exceed zero. When this pressure is reached, water is forced out of the soil, creating
a flux out of the domain. The portion of a subsurface-air boundary at which there is outward flux is
known as a seepage face, and it is characterised by the following conditions:

u � 0, q(u) · n � 0, q(u) · nu = 0. (2.5)

We are now ready to state the full problem. We divide the boundary of �, ∂�, into �A, �N and �D
such that ∂� = �A ∪ �N ∪ �D. Here, �A stands for the portion of the boundary at which a seepage
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Fig. 1 A typical seepage problem. The upper part of the left lateral boundary is in contact with the atmosphere,
while the lower part is underwater. The height at which the level set u = 0 meets the boundary (marked with a
dashed line) is a key unknown in seepage problems.

face may form, and �N and �D, respectively denote portions of the boundary where it is known a
priori that Neumann (respectively Dirichlet) boundary conditions are to be applied. The problem is
to find u such that

∇ · q(u) := −∇ · k(u)∇(u + hz) = f in � (2.6)

q(u) · n = 0 on �N (2.7)

u = g on �D (2.8)

u � 0, q(u) · n � 0, q(u) · nu = 0 on �A, (2.9)

where f denotes a source/sink and g = g(hz) is an affine function representing hydrostatic pressure.
We also define the contact set to be the portion of the boundary along which the constraint u � 0 is
active which is precisely the seepage face

B := {x ∈ �A | u(x) = 0}. (2.10)

We refer to Fig. 1 for a visual explanation.

2.1 Weak formulation

In this section, we write the seepage problem (2.6)–(2.9) in weak form. To that end, let L2(�) be
the space of square Lebesgue integrable functions defined on �. Further, let Hk(�) be the space of
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functions whose weak derivatives up to and including order k are also L2(�). We then define the
following function spaces:

Vg = {v ∈ H1(�) | v = g on �D} (2.11)

Kg = {v ∈ Vg | v � 0 on �A}, (2.12)

where boundary values are to be understood in the trace sense. Let A be a measurable subset of the
domain �, v, w ∈ L2(�), then we write

(v , w)A :=
∫

A
v wdx (2.13)

as the L2(A) inner product. If the inner product is over �, we drop the subscript and if A is a subset
of the boundary ∂�, we interpret (v , w)A as a line integral.

We seek a weak solution u ∈ Kg satisfying (2.6)–(2.9). To that end, multiplying (2.6) by a test
function v ∈ K0 and integrating by parts, taking into account (2.7) gives

(q(u), n v)�A − (q(u), ∇v) = (f , v) ∀v ∈ K0. (2.14)

By the boundary conditions and the definition of the space K0, the boundary integral is negative so
that (2.14) can be written as:

(−q(u), ∇v) � (f , v) ∀v ∈ K0. (2.15)

We now extend the boundary data g to a function ḡ ∈ Kg by insisting that ḡ ≡ 0 on �A. We will
address the choice of function ḡ in Remark 3.1 but for now it is sufficient to assume such a choice
with this property exists. We may therefore set v = u − ḡ ∈ K0 in (2.14) to give

(q(u), n (u − ḡ))�A − (q(u), ∇(u − ḡ)) = (f , u − ḡ). (2.16)

Note that by (2.9) and the fact that ḡ vanishes on �A, the boundary contribution of (2.16) is zero.
This result can be subtracted from (2.15) to obtain the variational inequality in the standard and more
compact form for such problems. The problem is then to seek u ∈ Kg such that

(−q(u), ∇(v + ḡ − u)) � (f , v + ḡ − u) ∀v ∈ K0. (2.17)

In the seminal paper (17), existence and uniqueness of solutions is proved for problem (2.17) in
the case where k(u) ≡ 1, see also (18). This is extendable to monotone nonlinear operators, however
note the coefficient k that parametrises the soil properties is often such that the operator does not
satisfy this assumption as can be seen by the sharp gradients in Fig. 2, although the coefficients can
be regularised to mitigate this (19).

In the case k(u) ≡ 1, the obstacle problem on a convex domain where �A = ∂� is studied in
(3), and the regularity result u ∈ H2(�) is established. To the authors’ knowledge, no such result is
available for van Genuchten type nonlinearities, and in practical situations, the nature of the domain
and boundary conditions mean this level of regularity is unlikely. Indeed, our numerical results
indicate this cannot be the case as the problem lacks regularity around the boundary of the contact
set, shown in Fig. 1 as the boundary between B and �A\B.
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Fig. 2 The permeability coefficient as a function of pressure head u for different soil types. Note that k(u) → 0
as u → −∞ but KR > 0 for all u. Further, observe the smoothness of KR is quite different at u = 0 for different
soil types. This lack of regularity makes the numerical simulation of, say clay, particularly challenging. We
also note that these functions are scaled by the saturated hydraulic conductivity, KS , which varies enormously
between different soils. The mean value for different soil types is 5 × 10−6 ms−1 (sand), 5 × 10−9 ms−1 (slate)
and 1 × 10−8 ms−1 (clay).

3. Finite element method

In this section, we introduce a finite element method to discretise (2.17). Let us assume that the
domain � is polyhedral. Then we can define an exact subdivision of � into a finite collection T of
polygonal elements satisfying (20, section 2).

1. K ∈ T is an open simplex or open box, for example for N = 2, the mesh would consist of triangles
or quadrilaterals;

2. Two distinct elements intersect in a common vertex, a common edge or not at all (N = 2), and a
common vertex, edge or face or not at all (N = 3);

3. ∪K∈T K = �.

We assume in addition that �A aligns with the mesh in the sense that for all K ∈ T , ∂K ∩ ∂� is
either fully contained in �A or else intersects �A in at most one point (N = 2) or one edge (N = 3).
We make a similar assumption on elements lying on �D. For this choice of T , we define the space

Vg
h = {v ∈ Vg | v is bilinear on each K ∈ T } (3.1)

and the discrete subset

Kg
h = {v ∈ Vg

h | v � 0 on �A}. (3.2)
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Here, we make use of the fact that g is affine so that Vg
h is a subset of Vg. Note that for triangles

or quadrilaterals when N = 2 and tetrahedra and hexahedra when N = 3, since a function vh ∈ K0
h

is linear along an element edge it is fully determined by its nodal values, that is, the set {vh(x) |
x is a vertex of T }. Further, by the assumption thatT aligns with�A, it is enough to enforce vh(x) � 0
at this finite collection of points. This is not necessarily true for higher order finite elements, and for
this reason we restrict our attention to those of total degree 1.

Remark 3.1 (Choice of the function ḡ) Now we are in a position to describe the construction of
an appropriate extension ḡ of g. We define the space

Vg, 0 = {v ∈ Vg | v = 0 on �A} (3.3)

and corresponding finite element space

Vg, 0
h := Vg

h ∩ Vg, 0 (3.4)

and let ḡ be the solution to the following finite element problem: find ḡ ∈ Vg, 0
h

(∇ḡ, ∇vh) = 0 ∀vh ∈ V0, 0
h (3.5)

ḡ therefore has H1 regularity over �, satisfies the boundary condition on �D in the trace sense, and
vanishes on �A. We remark that this ensures also ḡ ∈ Kg. In the following sections as an abuse of
notation, we will identify g with ḡ to simplify the exposition.

We are now ready to state the finite element approximation to this problem. We seek uh ∈ Kg
h

such that
(−q(uh), ∇(vh + g − uh)) � (f , vh + g − uh) ∀vh ∈ K0

h. (3.6)

4. Automated error control

In this section, we describe the derivation of an error indicator for the problem (2.6)–(2.9). In doing
so, we make use of a dual problem that is related to the linearised adjoint problem commonly used
for nonlinear problems, but we keep only the zeroth order component of the linearisation. We then
proceed in a similar manner to (10), where the authors consider a linear problem, to obtain a bound
for the error in the quantity of interest.

4.1 Definition of dual problem

The definition of the dual problem is interwoven with the primal solution u as well as the finite
element approximation uh. To begin, we define the discrete contact set as:

Bh := {x ∈ �A | uh(x) = 0}. (4.1)

We let

G = {v ∈ V | v � 0 on Bh and
∫
�A

−q(u)(v + uh) · n dS � 0}, (4.2)
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and suppose J is a linear form whose precise structure will be discussed later, and let z ∈ G be the
solution to the following variational inequality:

(k(u)∇(ϕ − z), ∇z) � J(ϕ − z) ∀ϕ ∈ G. (4.3)

Application of duality arguments to derive error bounds in non-energy norms require assumptions
of well-posedness on the dual problem which may not hold. Sharp regularity bounds on the dual
problem with k(u) ≡ 1 were only recently proven in (21) by a non-standard choice of dual problem.
Indeed, the authors prove bounds on the finite element error in the L4 norm of optimal order, that is,
order h2−ε for any ε ∈ (0, 1/2), where h is the mesh size. This motivates us to make the following
assumption which we will use in the a posteriori analysis, the proof of which is currently the topic
of ongoing research.

Assumption 4.1 (Convergence in L2
) With u solving (2.6)–(2.9) and uh as defined in (3.6), there

are constants C > 0 and s > 1 such that

‖u − uh‖L2(�) � Chs. (4.4)

Definition 4.2 (Unrestricted solution) We define a function U to be the solution of the elliptic
problem analogous to problem (2.6)–(2.8) but without the inequality constraint (2.9). That is, U ∈ Vg

satisfies

(−q(U), ∇w) = (f , w) ∀w ∈ V0. (4.5)

The omission of a boundary term in the weak form indicates that U satisfies q(U) · n = 0 on �A.

4.2 Error bound

Observe that by construction the function z + u − uh is a member of the set G. Indeed, by (2.9), we
have u � 0 on Bh, by definition of Bh and G, respectively we have uh = 0 and z � 0 on Bh. We may
therefore take ϕ = z + u − uh in (4.3) to obtain

J(u − uh) � (k(u)∇(u − uh), ∇z). (4.6)

Writing

(k(u)∇(u − uh), ∇z) = (q(uh) − q(u), ∇z) − ((k(u) − k(uh))∇(uh + hz), ∇z), (4.7)

and expanding

k(u) − k(uh) =
∫ 1

0
k′(uh + s(u − uh))(u − uh) ds, (4.8)

we note that with the a priori assumption 4.1, we can assume that the second term on the right-hand
side of (4.7) is higher order in the error u − uh than the first term, and can therefore be neglected
when the computation error becomes small. We will therefore focus on the first term in the following
analysis.

In the following lemma, we prove bounds on differences between the functions u, uh and U.
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Lemma 4.3 (Properties of the unrestricted solution) With u the primal solution defined through
(2.15), uh the finite element approximation to u given by (3.6), and U the unrestricted solution defined
in (4.5), we have, for any v ∈ K0 and vh ∈ K0

h,

(q(u) − q(U), ∇(v + g − u)) � 0 ∀v ∈ K0 (4.9)

and
(q(uh) − q(U), ∇(vh + g − uh)) � 0 ∀vh ∈ K0

h. (4.10)

Proof. We choose test functions w = v + g − u and w = vh + g − uh respectively in (4.5) where
v ∈ K0 and vh ∈ K0

h are arbitrary to see that

(−q(U), ∇(v + g − u)) = (f , v + g − u) ∀v ∈ K0 (4.11)

and

(−q(U), ∇(vh + g − uh)) = (f , vh + g − uh) ∀vh ∈ K0
h. (4.12)

Subtracting (2.17) from (4.11) and (3.6) from (4.12), we arrive at the desired result. �
Definition 4.4 (Restricted solution set) We define the set

Wg
h = {v ∈ Vg

h | v � 0 on Bh}. (4.13)

Note that Wg
h is a slightly smaller set than Kg

h, but that uh ∈ Wg
h . This means that uh in fact satisfies

(q(uh) − q(U), ∇(vh + g − uh)) � 0 ∀vh ∈ W0
h . (4.14)

Lemma 4.5 (Galerkin orthogonality) With u the primal solution defined through (2.15) and uh
the finite element approximation to u given by (3.6), we have

(q(uh) − q(u), ∇zh) � (q(U) − q(u), ∇(zh + uh − u)) ∀zh ∈ W0
h , (4.15)

in analogy to the usual Galerkin orthogonality result.

Proof. We can write

(q(uh) − q(u), ∇zh) = (q(U) − q(u), ∇(zh + uh − u))

+ (q(uh) − q(U), ∇zh)

+ (q(U) − q(u), ∇(u − uh)).

(4.16)

Now suppose zh ∈ W0
h . By setting vh = uh + zh − g in (4.10), the second term on the right hand side

of (4.16) is negative. Similarly, choosing v = uh − g in (4.9), the final term is also negative, and the
result follows. �
Lemma 4.6 (Property of the dual solution) Let u be the primal solution defined through (2.15),
z be the dual solution from (4.3) and uh the finite element approximation to u given by (3.6). Then,
we have

(q(U) − q(u), ∇(z + uh − u)) � 0. (4.17)
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Proof. By the definition of U we have

(−q(U), ∇(z + uh − u)) = (f , z + uh − u) (4.18)

and by (2.14),

(−q(u), ∇(z + uh − u)) = (f , z + uh − u) − (q(u), n(z + uh − u))�A , (4.19)

and therefore, noting that u(k(u)∇u) = 0 on �A,

(q(U) − q(u), ∇(z + uh − u)) =
∫
�A

−q(u) · n(z + uh − u) dS

=
∫
�A

−q(u) · n(z + uh) dS � 0,

(4.20)

by the definition of the space G. �
We now state the main result of this section.

Theorem 4.7 (Error bound) Let u be the solution of (2.17) and uh the finite element approximation
to u. Let U be the solution of the unrestricted problem (4.5), z the dual solution of (4.3) and zh ∈ Wh
an arbitrary function. Then to leading order, we have

J(u − uh) � (q(uh) − q(U), ∇(z − zh)). (4.21)

Proof. Starting from (4.6) and neglecting the higher order term, justified by Assumption 4.1,

J(u − uh) � (q(uh) − q(u), ∇z)

= (q(uh) − q(u), ∇(z − zh)) + (q(uh) − q(u), ∇zh).
(4.22)

Combining with Lemma (4.5) gives

(q(uh)−q(u), ∇(z − zh)) + (q(uh) − q(u), ∇zh)

� (q(uh) − q(u), ∇(z − zh)) + (q(U) − q(u), ∇(zh + uh − u))

= (q(uh) − q(u), ∇(z − zh)) + (q(U) − q(u), ∇(z + uh − u))

+ (q(U) − q(u), ∇(zh − z))

=(q(uh) − q(U), ∇(z − zh)) + (q(U) − q(u), ∇(z + uh − u)),

(4.23)

upon rearranging. The second term is negative by Lemma 4.6, completing the proof. �
To illustrate the usefulness of this result, we state the following corollary to theorem 4.7.
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Corollary 4.8 (A posteriori error indicator) With the notation of theorem 4.7, we have the local
error estimate

J(u − uh) �
∑
K∈T

(f − ∇ · q(uh), z − zh)K + 1

2
(� q(uh) �, z − zh)∂K . (4.24)

Proof. Since U solves (4.5), we can replace it in the right hand side of (4.21) and introduce the
problem data:

(q(uh) − q(U), ∇(z − zh)) = (f , z − zh) + (q(uh), ∇(z − zh)). (4.25)

After integrating by parts over each element we obtain the stated result. �
Equation (4.24) gives a local quantity that we can approximately evaluate to give an estimate of

the local numerical error. Given a suitable approximation of the dual error z − zh, this quantity can
be computed and used to inform adaptive mesh refinement. The approximate computation of the
error estimate will be addressed in section 5.3.

Remark 4.9. The analysis above allows the choice of J to be made by the user depending on the
problem at hand. The resulting estimate used in an adaptive algorithm will prioritise the accurate
computation of J . For example,

1. Fix x0 ∈ � and set J1(ϕ) = ϕ(x0) for all ϕ lying in a suitable test space. An adaptive routine
based upon the resulting estimate would prioritise accurate computation of the point value of the
solution at x0.

2. Setting J2(ϕ) = (u − uh, ϕ) for all ϕ lying in a suitable test space would give an estimate of
the error in the global error in L2. Using suitable approximations, such an approach can be used in
practice, see section 4 of (22).

3. In seepage problems, a common quantity of interest is the volumetric flow rate of water through
the seepage face. Since by definition the soil is saturated along the seepage face, the hydraulic
conductivity takes the constant value Ks (see section 5). The fluid velocity is given by (2.1) and
therefore the volumetric flow rate is given by

J(u) := −
∫
�A

Ks

φ
∇(u + hz) · n dS =

∫
�A

q(u)

φ
· n dS, (4.26)

where we recall that φ is the porosity of the soil.

5. Implementation details

In this section, we discuss various aspects of the practical solution of problem (2.6)–(2.9). We first
discuss the choice of parametrisation of k in (2.6), then present the iterative numerical algorithm
used to solve the nonlinear problem. Finally, we discuss aspects of the adaptive routine and the tools
required to approximately evaluate the error estimate.

5.1 Hydrogeological properties of the medium

We make use of the popular model of (23) and (14) to parametrise the unsaturated hydraulic properties
of the soil. Consider a volume V of a porous medium of total volume Vtotal. V is made up of the
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solid matrix and air- or fluid-filled pores. If Vwater is the total volume of water contained in V , the
volumetric water content θ is Vwater/Vtotal, and therefore takes values between 0 and the porosity of
the soil. Point values of water content can be defined in the usual way of taking the water content
over a representative elementary volume around the point (we refer to section 1.3 of (16) for details).
Water content is related to the pressure head in the soil and can be modelled as a nonlinear function
θ (u). The dimensionless water content 	 was defined by van Genuchten as

	(u) = θ (u) − θR

θS − θR
, (5.1)

where θR and θS are respectively the minimum and maximum volumetric water contents supported
by a soil. Then the normalised water content 	 takes values between 0 and 1 with 1 corresponding to
saturation. Hydraulic conductivity, that is the nonlinear coefficient k in (2.6) is modelled similarly, and
takes strictly positive values reaching its maximum value at saturation. The shapes of the functions k
and 	 are dictated by choice of dimensional parameters KS and α, and non-dimensional parameter n.
The units are [KS] = ms−1 and [α] = m−1. The soil parameters are often fitted following laboratory
experiments for a given soil. The saturated hydraulic conductivity KS is the maximum value that k
can take. Finally, α and n are shape parameters whose physical meaning is less clear. The parameter
m, introduced for ease of presentation, is defined by m = (n − 1)/n. This model has been shown to
give good predictions in most soils near saturation by (24).

	(u) =
{

1
[1+(−αu)n]m u < 0

1 u � 0
(5.2)

KR(	(u)) =
⎧⎨
⎩	(u)

1
2

[
1 −

(
1 − 	(u)

1
m

)m]2
u < 0

1 u � 0
(5.3)

from which k is then obtained by scaling by the saturated hydraulic conductivity:

k(u) = KS KR(	(u)). (5.4)

Examples of hydraulic behaviour of different soils are shown in Fig. 2. The smoothness of the
function KR as it approaches saturation is largely determined by the parameter n, with larger n
resulting in a smoother transition from unsaturated to saturated soil.

5.2 Solution methods

To solve the nonlinear problem, we use a Picard iterative technique, common in the literature for
computations in variably saturated flow (25). As described in (26), we choose to implement the
seepage face boundary condition using a type of active set strategy in a way that allows it to be
updated within the Picard iteration during the solution process of the PDE. This has clear benefits for
the accurate resolution of the seepage face, and it is especially important in the adaptive framework
that the exit point be allowed to move to take advantage of increasing resolution during the adaptive
process. A practical way of achieving this within the nonlinear iteration was first presented in (27),
but its focus on representing a single seepage face in an a priori assumed part of the boundary limits
the range of applicability. The procedure was generalised in (28) to allow any number of seepage
faces by checking for unphysical behaviour at boundary nodes. This is essentially the method used
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here, but assignment is element wise. Pressure and flux is checked along boundary faces which are
then assigned as being on the seepage face or not, determining the boundary condition to be enforced
at the next iteration. It was observed that this approach resulted in less oscillation of the exit point
through the iterative process. This process can be thought of as a physically motivated version of a
projection method for solving variational inequalities, as described in section 2 of (4). The algorithm
is illustrated below (see Algorithm 1).

The nonlinear iteration is controlled by monitoring the difference in L2-norm between successive
iterates normalised by the norm of the newest iterate. Since we are concerned with the error in the
finite element approximation, a very small iteration tolerance is set to ensure that the nonlinear error
is small compared to discretisation error. The iteration registers a failure if this tolerance is not met
within a 30 steps, but in practice no convergence failures occurred.

5.3 Adaptive algorithm

In this section, we describe the structure of the algorithm used to optimise the mesh,
SOLVE→ESTIMATE→MARK→REFINE.

1. SOLVE the discretisation on the current mesh;

2. Calculate the local error ESTIMATE ηk ;

3. Use ηk to MARK a subset of cells that we wish to refine or coarsen based on the size of the local
indicator;

4. REFINE the mesh.
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5.3.1 Marking. Cells are marked for refinement using Dörfler marking, which was used in (29) to
guarantee error reduction in adaptive approximation of the solution to the Poisson problem. Choose
θ ∈ (0, 1). The estimate for the error is given by η = ∑

K∈T ηK . We mark for refinement all elements
K ∈ M, where M is a minimal collection of elements such that

∑
K∈M

ηK � θη. (5.5)

5.3.2 Refining and coarsening. An initial mesh T 0 is generated over the computational domain.
In what follows, we use a quadrilateral mesh since it allows for efficient refinement as detailed below.
During the solution process, T l+1 is obtained from T l by adapting the mesh so that the local mesh
size is smaller around cells marked for refinement and larger around cells marked for coarsening. If
an element is marked for refinement it is quadrisected. Thus, existing degrees of freedom do not need
to be moved meaning that the change of mesh is rather efficient. Moreover, we have a guarantee that
the shape of the elements will not degenerate as the mesh is refined. Hanging nodes are permitted, but
constrained so that the resulting discrete solution remains continuous. It is therefore advantageous
to allow a small amount of mesh smoothing such as setting a maximum difference of grid levels
between adjacent cells. In the implementation of this algorithm, the actual refinement and coarsening
algorithm enforces additional constraints to preserve the regularity of the mesh. For example, the
difference in refinement level across a cell boundary is allowed to be at most one. In practice, this
is achieved by refining some extra cells that were not marked to ‘smooth’ the mesh. The motivation
behind this is that many results on the approximation properties of finite element methods require a
degree of mesh regularity. For a more detailed explanation of the implementation of mesh refinement,
we refer the reader to the extensive deal.ii documentation available online (30). With regards to
coarsening, due to the hierarchical structure of the meshes that result from this process, cells that
have been refined ‘parent’, that is, a quadrilateral in T i for some i � l in which it is fully contained. If
all four ‘children’ elements are marked for coarsening, the vertex at the middle of the four elements
is removed and the parent cell is restored resulting in a locally coarser mesh.

5.3.3 Evaluating the estimate. Recall the error estimate of proposition 4.7:

η =
∑
K∈T

ηK , (5.6)

where

ηK = (f − ∇ · q(uh), z − zh)K + 1

2
(� q(uh) �, z − zh)∂K . (5.7)

Note that ηK can only be approximately calculated since the exact dual solution z is not available.
There are several strategies for doing this which produce similar results (31). For computational
efficiency, we choose a cheap averaging interpolation to obtain a higher order approximation of the
dual solution as follows.

The dual problem is solved on the same finite element space as the primal problem to obtain an
approximation zh. A function z̄h is then constructed from zh in the following manner. Consider the
mesh T̄ l such that refining every element of T̄ l produces T l. The nodal values of zh are used to
produce a piecewise quadratic function on T̄ l. This technique is sometimes used as a post-processor
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to improve the quality of finite element approximation itself (32). We make the approximation

ηK ≈ (f − ∇ · q(uh), z̄h − zh)K + 1

2
(� q(uh) �, z̄h − zh)∂K . (5.8)

Remark 5.1 (Approximation of the space G) We finally remark that in the practical implementa-
tion, we must solve the dual problem in the set Wg

h which may or may not be a subset of G. This is
due to the fact that the exact contact set is not available, and so we do not have access to G. In fact,
the authors of (10) further suggest approximating G by G0 := {v ∈ V0 | v = 0 on Bh}, and we also
take this approach. This reduces the dual problem to a linear elliptic PDE, thereby simplifying the
adaptive process.

6. Numerical benchmarking

In this section, we present numerical results to demonstrate the effectiveness of the error estimate
and adaptive routine in a range of realistic situations of interest in the analysis of subsurface flow.
In this sense, we aim to benchmark our work to justify its use in the next section where we tackle
specific case studies.

All simulations presented here are conducted using deal.II, an open source C++ software
library providing tools for adaptive finite element computations (30). These were run on a Viglen
Genie desktop computer with an Intel i7 processor and 16 Gb RAM. All simulations were completed
within an hour on this hardware. A fifth-order quadrature formula is used in the assembly of the finite
element system for each linear solve to attempt to capture some of the variation in the coefficients.
To avoid any possible issues with convergence of linear algebra routines, an exact solver, provided
by UMFPACK, is used to invert the system matrix.

In all simulations, we take as our quantity of interest the volumetric flow rate of water through the
seepage face given in equation (4.26).

6.1 Example 1: aquifer feeding a well

As a first two-dimensional example, let � = [0, 1]2 represent a vertical section of a subsurface
region. Spatial dimensions are given in metres. We refer to Fig. 1 for a visual representation of
this problem, and give the specifics here. The upper surface {(x, z) | z = 1} represents the land
surface while {(x, z) | z = 0} is impermeable bedrock. In both cases, no-flux boundary conditions
are enforced. We remark that in certain cases the land surface could exhibit seepage faces, as we will
see in Example 2, but we assume that this will not be the case here. On {(x, z) | x = 1}, a hydrostatic
Dirichlet condition is enforced for the pressure with the water table height set at 0.8m, that is, we
set u = 0.8 − z along this portion of the boundary. This corresponds to setting the groundwater
table far from the well. Finally, {(x, z) | x = 0} is the inner wall of the well. The well is filled with
water up to a fixed level Hw, and a hydrostatic Dirichlet condition for the pressure is applied along
the portion of the boundary that is in contact with the body of water. Above Hw, the seepage face
boundary conditions apply. For the simulations presented here, we choose Hw = 0.25 m. We remark
that this simple setup and variations of it are common benchmarks for works on seepage problems
(4, 28, 33, 34).

For the soil parametrisation, we make the choices n = 2.06, α = 1 m−1, KS = 1 ms−1. This
results in a soil that has the characteristics of silt whose hydraulic conductivity has been scaled to
have magnitude 1. Since we have taken the data f to be zero in this example, scaling the diffusion
coefficient by a constant has no effect on the pressure head.
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Fig. 3 Example 1, flow through a single layered, silty soil. We show the pressure, adjoint solution and a sample
of adaptively generated meshes showing refinement upstream of the seepage face. The primal variable uh and
the adjoint variable zh are both represented on T 11 which has approximately 66000 degrees of freedom.

Figure 3a shows an approximation to the solution of the problem in this case, with the associated
adjoint solution in Fig. 3b. Notice the adjoint solution takes its largest values along the seepage
face along which the quantity of interest is evaluated, with values increasing along streamlines that
terminate there. This is to be expected as it demonstrates that the flow upstream of the seepage face
has the greatest influence upon the quantity of interest.

The simulation is initialised on a coarse mesh of 256 elements and uses the goal-based estimate as
refinement criterion. A selection of meshes generated by the adaptive algorithm is given in Fig. 3c–f.

6.2 Example 2: sloping unconfined aquifer with impeding layer

The second test case is taken from (26). Its relevance was shown in (6) where the location of impeding
layers was shown to have large effects on the saturation conditions of the soil. The domain setup
is illustrated in Fig. 4. This configuration leads to water flowing down the slope due to gravity and
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Fig. 4 The domain models a slope lying on a layer of bedrock with a downstream external boundary. The
domain is a parallelogram with corners (0, 1), (0, 2), (10, 1) and (10, 0) where all dimensions are in metres.
The lower extent of the domain represents an impermeable boundary, as does a layer of rock parallel to the land
surface towards the right hand side of the domain. This layer is 0.1m thick with corners (5, 0.95), (5, 1.05),
(10, 0.45) and (10, 0.55). The water table is fixed with a Dirichlet boundary condition on the left hand boundary
of the domain.

allows multiple seepage faces to form. We introduce a forcing term, representing an underground
spring, above the layer to force extra seepage faces. It is defined by:

f (x) =
{

10 if dist(x, (9, 1.15)) < 0.2

0 otherwise.
(6.1)

We make the same choice of soil parameters as in example 1, that is n = 2.06, α = 1 m−1,
KS = 1 ms−1.

The results of this are given in Fig. 5. As can be seen in Fig. 5a, three disjoint seepage faces arise
from this simulation, two on the right hand face, one above and one below the impermeable barrier
and another at the land surface. It should be noted that the seepage face at the land surface would
generate surface run-off. This process is not taken into account by the model we use.

The simulation is initialised on a coarse mesh of 4036 elements. An adaptive simulation using
the dual-weighted estimate produced the meshes in Fig. 5. The algorithm refines heavily around the
source and all seepage faces, as well as resolving the corners around the impeding layer.

6.3 Estimator effectivity summary

In Examples 1 and 2, above we compute a reference value for J(u) obtained from a simulation on a
very fine grid. This was taken as the ‘true’ value to perform analysis of the behaviour of the estimate.
In Fig. 6a and b, we see that as the simulation progresses the effectivity of the estimate, defined as
the ratio of the error to the estimate, becomes very close to 1.

6.4 Adaptive versus uniform comparison

To illustrate the gains obtained through adaptive refinement, we make a comparison between the
uniformly refined simulation and the adaptive one. In each case uniform meshes perform extremely
poorly with small and unpredictable reductions in error where the adaptive scheme produces fast
and monotonic error reduction on all but the coarsest meshes. For comparison, two lines illustrating
different rates are included in Fig. 7a illustrating that convergence of J(uh) is suboptimal for uniform
meshes, and that in terms of degrees of freedom, this optimality can be restored using the goal-based
estimate.
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Fig. 5 Example 2, flow through a sloped aquifer with impeding layer. We show the pressure, adjoint solution
and a sample of adaptively refined meshes that capture multiple seepage faces as well as potential singularities
in the pressure at the corner in the domain. The primal and adjoint variable are both represented on T 17 which
has approximately 7 × 105 degrees of freedom.

7. Case studies with layered inhomogeneities

We present results making use of borehole data provided by CPRM (Brazilian Geological Survey)
by the Siagas system1. The wells are used to supply water to two different cities in São Paulo
State, Brazil, one in Ibirá and the other in Porto Ferrreira. Both cities are located over the Paraná

1 http://siagasweb.cprm.gov.br/layout/
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Fig. 6 Sharpness of error estimates during adaptive mesh refinement. Notice that the dual-weighted estimate
significantly under-estimates the error for the first few refinement cycles but as the simulation progresses the
effectivity moves closer to one. This is a well known feature of this class of algorithm further described in (35).

Fig. 7 Comparison of orders of convergence in terms of number of degrees of freedom (NDOFS) on uniform
and adaptive grids. Notice the rate of error reduction is considerably slower for uniform simulations in all cases.

Sedimentary Basin, but in places with different shallow geology. There are two different problem
setups that we consider. In both cases the domain is a vertical section illustrated in Fig. 8. We
assumed the soil is in homogeneous layers, where there is no variation in the physical properties
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(a) (b)

Fig. 8 Geometric setup of the industrial case study problems. Black shading represents an impermeable
boundary. In case study two, the gaps between impermeable regions on the inner wall of the well are the filter
locations. The far field boundary conditions are analogous to those given in Fig. 1 and water is continually
pumped out to maintain constant water height.

in the horizontal direction. The soil parameters used for the simulation are given in Table 1. The
water table height far from the well is known and applied as a Dirichlet boundary condition for the
pressure on the right hand lateral boundary. In both cases, the height of the water in the well gives
the left lateral boundary condition, and water is continually pumped out of the well in such a way
that the water height remains constant.

We work in cylindrical coordinates with the (r, φ, z) with the z-axis aligned with the centre of the
well. The aim is to calculate the total flux into the well. We therefore use the functional J2 to account
for flux of water over the inner boundary below the water level, defined as follows.

J2(u) := 2πr0

∫
r=r0

q(u) · n dz, (7.1)

where r0 denotes the radius of the well, that is, we integrate over the entire inner wall of the well,
above and below the water.

7.1 Case Study 1—2 layered well in Ibirá (CPRM reference 3500023601)

For these case studies, all lengths are given in metres. In the first case, we set � = {(r, φ, z) | 0.0762 �
r � 50, 0 � z � 60}. The medium consists of sandy loam for 38 � z � 60 and fine sandstone for
0 � z � 38. We refer to Table 1 for details of the parametrisations of these soils. Again, the base
of the well is assumed to consist of impervious rock, and a no-flow boundary condition is enforced.
There is assumed to be no water flow at the land surface. The water table has been measured in the
vicinity of the well to be 49.8 m, so we set a hydrostatic boundary condition at r = 50 to represent
the far field conditions around the well. The height of water in the well is 42.7 m. The initial mesh
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Table 1 Case study soil parameters. Parameters used in the van Genuchten–Mualem model for
hydraulic conductivity in each of the several types of soil and rock. Note the differences of several

orders of magnitude in the parameters Ki
S , causing strong discontinuities in the coefficient k.

Layer KS (ms−1) n α (m−1)

Sandy loam 5E−6 1.65 0.66
Med. sandstone 9E−6 1.36 0.012

Slate 5.0E−9 6.75 0.98
Fine sandstone 1.15E−6 1.361 0.012

Diabase 2E−5 1.523 1.066

Fig. 9 Case study 1, flow through a two layered soil. We show the pressure, the adjoint solution and a sample of
adaptively generated meshes. The boundary between the soil layers is marked with a white line. Both solutions
are represented on T 35 which has approximately 1.5 million degrees of freedom.
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Fig. 10 Case study 2, flow through a 5 layer soil. Level set u = 0 marked with red line. The boundaries
between the soil layers are marked with white lines. See Table 1 for a detailed description of the properties of
each layer. Both solutions are represented on T 45 which has approximately 500000 degrees of freedom. Note
that in this case the dual problem is much more interesting due to the structure of the inner wall of the well. The
meshes appear to show that the soil layers have very different influences on solution accuracy. In particular, the
slate layer shows little mesh refinement due to its low permeability relative to the other layers.

is aligned with the layers in the soil. The solution, together with a selection of adaptive meshes are
given in Fig. 9. The computed flux as a function of degrees of freedom is given in Fig. 11a showing
that the mathematical model is in good agreement with the experimental data.

7.2 Case study 2—5 layered well in Porto Ferreira (CPRM reference 3500009747)

The second case study is a challenging setup with five layers of highly varying hydraulic properties,
as well as complex boundary conditions due to the fact that in this case the inner wall of the well
is impermeable apart from two filters to allow water to flow into the well. One is below and one
above the water, meaning that the former allows flow into the subsurface and the other allows flow
out. Along the inner wall, filters cover the part of the wall with 5 � z � 17 and 19 � z � 23. The
water level in the well is set at 17.44, with the other boundary conditions as in case study 1, with the
water table at the far boundary set at 33.9. Once again we assume a radially symmetric solution. The
domain is given by � = {(r, φ, z) | 0.1585 � r � 50, 0 � z � 46}. The medium consists of five
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Fig. 11 Plots displaying the computed value of the water flux into the well under successive refinement cycles
of the adaptive finite element method. This allows to infer the maximal amount of water pumped from the well
whilst leaving the surrounding water table unchanged.

layers. In order, with the top layer first, the layers consist of sandy loam, medium sandstone, slate,
coarse sandstone and diabase. The boundaries between the layers are at z = 34, z = 18, z = 16 and
z = 8. We refer to Fig. 8 for a visual description. The slate layer in particular causes this to be a
difficult problem to simulate numerically due to its hydraulic conductivity being several of orders of
magnitude smaller than those of the other soils and rocks. The initial mesh is aligned with the layers
as well as the filter locations and the water level in the well. The solution, together with a selection
of adaptive meshes are given in Fig. 10. The computed flux as a function of degrees of freedom is
given in Fig. 11b showing a comparison between the mathematical model and the experimental data.

8. Conclusions and discussion

In this article, we applied techniques from goal-oriented a posteriori error estimation to a challenging
nonlinear problem involving a groundwater flow. For this class of problem, fine uniform meshes do
not perform well. Indeed, in Fig. 7, we see that convergence can be extremely slow on uniform
meshes. By comparison, the dual-weighted error estimate was shown to perform well under a
variety of conditions. It has been observed in previous studies (see for example (35)) that due
to the approximations that must be made to evaluate the error representation numerically, the error
estimate can perform poorly if the initial mesh in simulations is too coarse. In this particular case, we
expect that the problem originates in the approximation of the dual problem. Since the dual solution
must satisfy homogeneous Dirichlet boundary conditions on the seepage face defined by the primal
solution, and since the forcing from the quantity of interest is largest here, there is a sharp boundary
layer at the seepage face which is inevitably poorly resolved by a coarse mesh. Notwithstanding,
the algorithm produces rapid error reduction with effectivity close to 1 once the mesh is sufficiently
locally refined. This means that numerical error can be quantified with a high degree of confidence,
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and that the dual-weighted error estimate can be used as a termination criterion for an adaptive
routine.

The case studies most clearly demonstrate the need for adaptive techniques in solving problems
such as this. The multi-scale nature of inhomogeneous soil results in a problem which is extremely
challenging to solve by conventional numerical methods. Indeed, the error remains large on uniform
meshes even as the mesh approaches 105 degrees of freedom where in the adaptive case a steep
and consistent reduction in error can be observed with successively refined meshes, see Fig. 7.
Applying these robust, computationally efficient methods to the case studies allows the accurate
quantification of solutions to the variational inequality. Note, however, that these case studies are still
extremely challenging. The assumption of layered soil, for example, may not always be physically
meaningful. Indeed, we believe it is this assumption that affects the performance of case study 2. For
highly variable soils we must use further information, for example those provided through resistivity
methods. This is the subject of ongoing research.
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