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Spatiotemporal climate and vegetation 
greenness changes and their nexus for 
Dhidhessa River Basin, Ethiopia
Gizachew Kabite Wedajo1,2*, Misgana K. Muleta3, Berhan Gessesse2,4 and Sifan A. Koriche5,6

Abstract 

Background:  Understanding spatiotemporal climate and vegetation changes and their nexus is key for designing 
climate change adaptation strategies at a local scale. However, such a study is lacking in many basins of Ethiopia. The 
objectives of this study were (i) to analyze temperature, rainfall and vegetation greenness trends and (ii) determine the 
spatial relationship of climate variables and vegetation greenness, characterized using Normalized Difference in Vegeta-
tion Index (NDVI), for the Dhidhessa River Basin (DRB). Quality checked high spatial resolution satellite datasets were 
used for the study. Mann–Kendall test and Sen’s slope method were used for the trend analysis. The spatial relationship 
between climate change and NDVI was analyzed using geographically weighted regression (GWR) technique.

Results:  According to the study, past and future climate trend analysis generally showed wetting and warming for 
the DRB where the degree of trends varies for the different time and spatial scales. A seasonal shift in rainfall was 
also observed for the basin. These findings informed that there will be a negative impact on rain-fed agriculture and 
water availability in the basin. Besides, NDVI trends analysis generally showed greening for most climatic zones for 
the annual and main rainy season timescales. However, no NDVI trends were observed in all timescales for cool sub-
humid, tepid humid and warm humid climatic zones. The increasing NDVI trends could be attributed to agroforestry 
practices but do not necessarily indicate improved forest coverage for the basin. The change in NDVI was positively 
correlated to rainfall (r2 = 0.62) and negatively correlated to the minimum (r2 = 0.58) and maximum (r2 = 0.45) temper-
ature. The study revealed a strong interaction between the climate variables and vegetation greenness for the basin 
that further influences the biophysical processes of the land surface like the hydrologic responses of a basin.

Conclusion:  The study concluded that the trend in climate and vegetation greenness varies spatiotemporally for the DRB. 
Besides, the climate change and its strong relationship with vegetation greenness observed in this study will further affect 
the biophysical and environmental processes in the study area; mostly negatively on agricultural and water resource sec-
tors. Thus, this study provides helpful information to device climate change adaptation strategies at a local scale.

Keywords:  Spatiotemporal changes, Vegetation greenness, Mann–Kendall test, Sen’s slope method, Dhidhessa River 
Basin
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Introduction
Rainfall and temperature are key climate variables that 
vary in time and space. Their variation from the long-
term mean is used as a proxy for climate change stud-
ies. Most climate change studies, therefore, focus on 

temperature and rainfall trend analysis. Studies indicated 
increasing temperature in Ethiopia (Conway et  al. 2004; 
Conway and Schipper 2011; Mengistu et al. 2014; Addisu 
et al. 2015) and in most parts of the world (IPCC 2007, 
2013). However, rainfall trend studies show inconsistent 
results (Conway 2000; Seleshi and Zanke 2004; Jury and 
Funk 2012). Likewise, increasing temperature (Meng-
istu et al. 2014; Addisu et al. 2015) but inconsistent rain-
fall trends (Conway 2000; Elshamy et al. 2009; Tesemma 
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et al. 2010; Gebremicael et al. 2013; Mellander et al. 2013) 
are reported in the upper Blue Nile basin. The discrep-
ancies could be attributed to the difference in the spatial 
and temporal scales of the studies and the local factors 
like topography and geographic locations (Mengistu et al. 
2014).

For example, annual rainfall in Ethiopia is spatiotem-
porally variable with a 20% to 80% coefficient of vari-
ation (Addisu et  al. 2015). The southwestern highland 
region of the country receives > 2000  mm mean annual 
rainfall mainly from June to September while the east-
ern and southeastern lowland regions receive < 250  mm 
from March to May (Segele and Lamb 2005; Abtew et al. 
2009; Addisu et  al. 2015). In the case of the upper Blue 
Nile basin, annual rainfall declines from > 2000  mm in 
the southwestern to < 1000 mm in the northeastern part 
of the basin (Conway 2000), which implies the existence 
of climatic zones even within a basin. Furthermore, about 
80% of the annual rainfall for the basin occurs during 
the main rainy season from June to September (Conway 
2005). As such, reliable information on climate trends at 
a local scale is important for understanding the local and 
regional climate impacts.

In line with the past climate trends, model projec-
tion results show increasing temperature (Elshamy et al. 
2009; Beyene et  al. 2010; IPCC 2013) and inconsistent 
rainfall trends (Beyene et  al. 2010; Setegn et  al. 2011; 
IPCC 2013; Mekonnen and Disse 2018) for Ethiopia in 
general and for the upper Blue Nile basin in particular. 
The discrepancies among rainfall projection results are 
attributed to uncertainties of the models and differ-
ences in local factors such as topography and vegetation 
cover. For an instant, the new state-of-the-art climate 
models, coupled model intercomparison project phase 
5 (CMIP5) GCMs, predict climate variables better than 
the previous Coupled Model Intercomparison Project 
(CMIP3) GCMs (Knutti and Sedlacek 2012). This is 
attributed to the use of a new set of radiative forcing sce-
narios (i.e., representative concentration pathway, RCP), 
the inclusion of land cover change impacts and incor-
poration of important biogeochemical processes in the 
CMIP5 GCMs (IPCC 2013). These changes have had a 
positive impact over the upper Blue Nile basin, where 
temperature and rainfall over the region were more 
accurately predicted by canESM2 from CMIP5 than 
HadCM3 from CMIP3 (Mekonnen and Disse 2018). This 
does not mean, however, that the CMIP5 GCMs are per-
fect in predicting climate variables for the basin. There 
exists variation in the performance among the CMIP5 
GCMs models (Bhattacharjee and Zaitchik 2015). A 
model that captures regional rainfall may not capture 
temperature variability, or a model that performs well 
for one region may not be reliable in another region. 

Consequently, GCMs should be carefully selected before 
projecting climate variables and because the spatial reso-
lution of GCMs outputs is generally too coarse for local 
and regional climate studies, their simulation results 
should be downscaled. Downscaling the GCMs model 
outputs could increase the accuracy of analyzing the 
impacts of climate change on hydrological responses at 
a local scale.

Besides, as both climate and land cover changes 
affect hydrological responses of a basin, their interac-
tion should be known. For an instant, Mekonnen et  al. 
(2018) reported declining river flow of the upper Blue 
Nile attributed to the combined effects of land cover and 
climate changes. The land cover change affects river flow 
positively or negatively depending on the type and inten-
sity of the changes. For example, increasing wet season 
streamflow was reported in the upper Blue Nile due to 
deforestation and increasing rainfall (Mekonnen et  al. 
2018) whereas afforestation and warming conditions may 
reduce streamflow by increasing infiltration and tran-
spiration loss. These imply that the land cover change 
either exacerbate or improve the effects of climate change 
on river flow. Also, land cover and climate changes are 
strongly linked (Dale 1997). For example, deforestation 
exacerbates climate change while dry and warm climatic 
condition leads to reduced vegetation growth. There-
fore, understanding the nexus between climate variables 
(e.g., temperature and rainfall) and vegetation greenness 
is important for managing natural resources, design-
ing climate change adaptation strategies and forecasting 
extreme weather events such as drought and flooding 
(Conway 2005; Samy et al. 2015).

A common approach used to examine the nexus 
between climate and vegetation greenness (condition) is 
regressing climate variables (e.g., temperature and rain-
fall) against the Normalized Difference Vegetation Index 
(NDVI), a remote sensing-based index commonly used 
in measuring vegetation greenness (Jiang et  al. 2006). 
However, the relationships between NDVI and climate 
variables are affected by the auto-correlated biophysi-
cal factors such as vegetation, soil and land use type (Ji 
and Peters 2004). The non-stationarity, non-linearity 
and scale dependency of NDVI-climate variables rela-
tionship can be effectively modeled using geographically 
weighted regression (GWR) (Foody 2003, 2004; Propas-
tin et  al. 2008). The GWR calculates spatially varying 
regression model parameters (Fotheringham et al. 2002) 
and reduces errors that emanate from the spatially auto-
correlations between the variables (Usman et  al. 2013). 
Studies have reported the superiority of GWR over ordi-
nary least squared (OLS) in its descriptive and predictive 
power (Propastin et  al. 2008; Zhao et  al. 2010; Usman 
et al. 2013; Tian et al. 2015).
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Therefore, studying the spatiotemporal changes of 
climate and vegetation greenness, and their interac-
tion at a basin-scale is important for understanding cli-
mate change impacts locally. The Dhidhessa River basin 
is one of the upper Blue Nile sub-basins that receive 
higher average annual rainfall (> 1600  mm), contribute 
more than 25% annual flow to the Blue Nile basin, cov-
ered with dense vegetation and with less steep topogra-
phy compared to the northeastern sub-basins (Conway 
2000). These imply studying climate trends at a sub-basin 
scales could improve the accuracy of predicting local and 
regional climate change impacts on water resource avail-
ability (Kim and Kaluarachchi 2009; Viviroli et al. 2011), 
agriculture (Deressa and Hassan 2009; Schlenker and 
Lobell 2010; Philip et al. 2014; Regan et al. 2018), human 
health (McMichael et  al. 2006) and biodiversity (Cha-
pungu and Nhamo 2016; Perović et al. 2019).

However, the extent of climate change and its impacts 
are not well known for the DRB as the basin is with 
scarce data and generally less studied. Moreover, like for 
the other basins in Ethiopia, up-to-date and reliable cli-
mate trends and their relation with vegetation greenness 
is lacking in the DRB. A comprehensive study encom-
passing climate and NDVI trend analysis and their rela-
tionship at a local scale is beneficial for effective land 
resource management and implementing climate change 
adaptation strategies. Such a study is particularly impor-
tant for the DRB where rain-fed agriculture is the major 
occupation and water resource development projects in 
the basin are sensitivity to climate change (Schlenker and 
Lobell 2010; Mekonnen et al. 2018).

Consequently, this study analyzed (i) past and future 
temperature and rainfall trends, (ii) past NDVI trend and 
(iii) determined spatial relationship of climate variables 
with the NDVI for the DRB. To the best of our knowl-
edge, such a comprehensive study was not done previ-
ously. The study will provide baseline information for 
designing climate adaptation strategies that minimize the 
effects of climate change on water resources and agricul-
ture, specific to this region. Such information is essential 
to examine water resources availability and sustain agri-
cultural production in the DRB.

Methods and materials
Description of the study area
The DRB is located in the southwestern part of the upper 
Blue Nile basin (Fig.  1). Dhidhessa River is one of the 
largest tributaries of the Blue Nile River and is regarded 
as the most important tributary in terms of its flow con-
tribution (Yohannes 2008). Located between 7°42′43″ to 
10°2′55″ latitudes and 35°31′23″ to 37°7′60″ longitudes, 
the river basin exhibits highly variable topography that 
ranges from 619 to 3213 m above mean sea level (a.m.s.l). 

The river starts from Sigmo mountain ranges (i.e., Mt. 
Vennio and Mt. Wache) and travels 494 km before it joins 
the upper Blue Nile River around Wanbara and Yaso 
districts. The confluence of the Dhidhessa River and the 
upper Blue Nile River was used as the outlet of this study 
basin resulting in a total drainage area of 28,175 km2. The 
River basin has many perennial tributaries (Fig. 1).

According to the Ethiopian agro-ecological zone (AEZ) 
classification (MoA 1998), the DRB is classified into 
seven climatic zones (Fig. 1). AEZ is a homogeneous unit 
in terms of its climate, terrain, soil, vegetation and fauna. 
Descriptions of the AEZ are presented in Appendix 
Table  10. The dominant AEZ includes tepid sub-humid 
(42%), warm sub-humid (32%) and warm moist (23%) 
while the remaining climatic zones cover only 3% of the 
basin.

Temperature and rainfall in the DRB exhibit spatial and 
seasonal variability. The mean daily maximum and mini-
mum air temperature of the basin is 26.5  °C and 13  °C, 
respectively. Besides, the mean annual rainfall of the 
basin is 1675 mm where about 70% of the rainfall occurs 
from June to September. The lowlands, primarily located 
in the northwest part of the river basin, are relatively 
warmer and receive less rainfall whereas the highlands 
are cooler and receive higher rainfall totals.

Data sources and description
Ground-based measured climate data are either scarce or 
low quality in Ethiopia, particularly in the DRB (Conway 
2000; Tena et al. 2016). As a result of this, we used qual-
ity-controlled satellite-derived datasets for this study. The 
4-km gridded monthly minimum and maximum tem-
perature dataset, which was constructed by the Enhanced 
National Climate Time-series Service (ENACTS) ini-
tiative was obtained from the National Meteorological 
Agency (NMA) of Ethiopia for the 1983 to 2015 period. 
The ENACTS derived temperature dataset was produced 
by merging the Moderate Resolution Imaging Spectro-
radiometer (MODIS) satellite land surface temperature 
(LST) with over 300 temperature stations data over Ethi-
opia (Tufa et al. 2018). Similarly, Climate Hazards Group 
InfraRed Precipitations with Stations (CHIRPS) version 
2 derived rainfall product (http://dx.doi.org/10.15780​/
G2RP4​Q) was used for the rainfall trend analysis.

Ground-based climate datasets were used to evaluate 
the accuracy of the ENACTS and CHIRPS-v2 datasets and 
to validate the climate models used in this study. As such, 
ground-based daily minimum and maximum tempera-
ture and rainfall measurements for eight stations within 
the river basin and additional six nearby stations were 
obtained from NMA of Ethiopia from 1983 to 2015 (Fig. 1). 
The missing ground-based climate data were filled using 
daily long-term averages. The study period from 1983 to 

http://dx.doi.org/10.15780/G2RP4Q
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2015 was chosen based on the availability of the ENACTS 
and CHIRPS datasets. Moreover, ENACTS and CHIRPS 
are the only long-term records of temperature and rainfall 
dataset available at a high spatial resolution for the study 
area. Therefore, these datasets were preferred in this study 
for climate trend analysis owing to its good agreement with 
ground-based measured data and their long-term records.

On the other hand, the normalized difference vegeta-
tion index—3rd generation (NDVI3g) data developed by 
the global inventory, monitoring and modelling stud-
ies (GIMMS) program was used for this study (https​://
ecoca​st.arc.nasa.gov/data/pub/gimms​3g.v1) to analyze 
vegetation trends for the DRB. The data were captured 
using the United States National Oceanic and Atmos-
pheric Agency’s (NOAA) advanced very high-resolution 
radiometer (AVHRR2/3) sensors. The GIMMS NDVI3g 
dataset spans from July 1981 to December 2015 and is 
available at 8-km spatial resolution and 15-day interval. 
It is the longest global dataset available on vegetation 
conditions and is suitable for trend analysis and climate 
change impact studies (Tian et al. 2015; He et al. 2017). 

For comparison purposes, the NDVI3g dataset from 1983 
to 2015 was used for the trend and regression analysis. 
The spatial relationships between vegetation greenness 
and the climate variables were examined by regressing 
the long-term NDVI and climate variables (i.e., tempera-
ture and rainfall) for the 1983 to 2015 period.

Moreover, the dynamically downscaled GCMs climate 
variables generated by the coordinated regional climate 
downscaling experiment for Africa (CORDEX-Africa) 
initiative were also used for future climate trend analysis.

Methodology
Rainfall and temperature are the two major climatic vari-
ables that control the atmosphere and the hydrological 
processes at the global, regional and basin scales (Tan-
zeeba and Gan 2012). Minimum and maximum tem-
perature from ENACTS and rainfall from CHIRPS-v2 
were used for the historic climate trend analysis. The 
reliability of the datasets was examined using the ground 
station datasets as previously described. Fourteen gaug-
ing station datasets were used to evaluate the reliability 

Fig. 1  Location map of the Dhidhessa River basin with ground stations

https://ecocast.arc.nasa.gov/data/pub/gimms3g.v1
https://ecocast.arc.nasa.gov/data/pub/gimms3g.v1
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of ENACTS and CHIRPS-v2 datasets using Pearson lin-
ear correlation techniques. Likewise, the reliability of the 
dynamically downscaled global climate model (GCM-
RCM) outputs (e.g., CORDEX-Africa) were also exam-
ined using the ground station datasets. Statistical indices 
such as percent bias, Root Mean Square Error (RMSE) 
and Pearson correlation coefficient (corr.) were used to 
evaluate the GCM–RCM performance.

The quality checked ENACTS derived temperature, 
CHIRPS-v2 derived rainfall, GCM–RCM derived pro-
jected climate datasets and GIMMS NDVI3g dataset 
was used for the climate and vegetation greenness trend 
analysis for the DRB. The datasets were aggregated at 
monthly, annual and seasonal timescales. Three seasons 
namely dry season (October to February), short rainy 
season (March to May) and a main rainy season (June 
to September) were considered as suggested by Rosell 
(2011). Spatially, the datasets were aggregated based on 
AEZ. As such, the trend analysis was performed for each 
AEZ at annual, seasonal and monthly timescales for the 
1983 to 2015 period. The Mann–Kendall test and Sen’s 
slope method were used for the trend analysis. The rela-
tionships between climate variables and NDVI were ana-
lyzed using the GWR approach. The descriptions of these 
methods are in the next few sections.

Climate projection
The dynamically downscaled CMIP5 GCMs such as MPI-
ESM-LR, HadGEM2-ES, MIROC5, GFDL-ESM2M and 
EC-EARTH with RCP4.5 and 8.5 emission scenario were 
used in this study. The CMIP5 GCMs were downscaled 
using RCA4, a regional climate models (RCMs) recom-
mended for African basins. The projection and down-
scaling of the datasets were done by CORDEX-Africa 
initiatives at Rossy Center. The datasets are available at 
50-km spatial resolution from WCRP (https​://esgf-node.
llnl.gov) and were used for future temperature and rainfall 
trend analysis for the 2050 periods.

Mann–Kendall test
Mann–Kendall test is a non-parametric method widely 
used for monotonic trend analysis. It is less sensitive to out-
liers and is a robust technique to detect trends in climatic 
variables (Keredin et al. 2013). The method is appropriate 
for data that exhibit constant variance over time. It tests the 
null hypothesis of no trend against the alternative hypoth-
esis where there is an increasing or decreasing monotonic 
trend. The statistics of the test is given as follows (Burn 
1994):

(1)Z =







(S − 1)/
√
Var(S) S > 0

0 S = 0
(S + 1)/

√
Var(S) S < 0

where Z is the normalized test statistic

xk and xi are the annual values in years k and i, respec-
tively; n is the length of a dataset,

Var (S) represent the variance in the data and is deter-
mined using Eq. (4) based on ties (i.e., equal values).

where q is the number of tied groups and tp is the number 
of data values in the pth group.

Positive Z value indicates increasing while a negative 
value represents decreasing. The hypothesis (i.e., no trend) 
is rejected if the absolute value of Z is greater than Z1−α/2 
(i.e., |Z0.05| > 1.96) where α = is the significant level (0.05 is 
used for this study).

Sen’s slope method
The true slope of a linear trend (i.e., change per year) was 
estimated from the Sen’s nonparametric method as follows 
(Sen 1968):

where Q is slope of the trend line and B is a constant.
The slope, Q, is calculated as,

If n is the number of data values (i.e., xi) in the time series, 
then the number of slope estimates that can be calculated 
using Eq. 6 will be N = n (n − 1)/2; where N is the number 
of slopes. Sen’s slope is the median of these N slope values. 
The Qi values are ranked from the smallest to the largest 
and the slope was calculated as:

Geographically weighted regression
As previously described, trends in vegetation greenness 
of the DRB was analyzed using the NDVI3g data derived 
from NOAA/AVHRR for the 1983 to 2015 period. The 

(2)S =
n−1
∑

i=1

n
∑

k=i+1

sgn(xk − xi)

(3)sgn(xk − xi) =







1 if xk − xi > 0
0 if xk − xi = 0
−1 if xk − xi < 0

(4)

VAR(S) =
1

18



n(n− 1)(2n+ 5)−
q

�

p=1

tp
�

tp − 1
��

2tp + 5
�





(5)f (t) = Qt + B

(6)Qi =
xi − xk

i − k
, where i > k .

(7)

Q = Q[

N+1
2

]

,
if N is odd or

Q =
1

2

(

Q[

N
2

]

+ Q[

N+2
2

]

)

, if N is even.

https://esgf-node.llnl.gov
https://esgf-node.llnl.gov
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maximum value composite (MVC) method, which reduces 
the impacts of atmospheric effect, was used to derive 
monthly NDVI values from the 15-day interval values. 
Mann–Kendell test and Sen’s slope method were used for 
analyzing NDVI trends at annual, seasonal and monthly 
timescales. Spatial relationships between NDVI and cli-
mate (i.e., temperature and rainfall) were examined for the 
DRB using the GWR techniques. GWR is a local regression 
method that calculates the spatial relationship between 
NDVI and temperature or rainfall at multiple locations 
builds a local regression equation for each feature in the 
dataset (Foody 2003). The GWR model can be described 
as:

where y(ui ,vi) is the dependent variable (in this case 
NDVI) at point (i); x(ui ,vi) is the independent variable 
(in this case temperature or rainfall) at point (i); (ui, vi) 
is geographic coordinates of point (i), β0(ui, vi) is the 
spatially varying intercept and β(ui, vi) is spatially vary-
ing weight coefficient; ε(ui ,vi) is spatially varying random 
error at point (i).

The fixed Gaussian kernel function was used for this 
study to compute weighted coefficients, which was pre-
ferred as the data is regularly distributed in space. Band-
width for the function was determined using the Akaike 
Information Criterion (AIC). As such, GWR uses loca-
tion-specific weight coefficients to account for the spatial 
non-stationarity, which makes the method robust com-
pared to OLS that uniformly apply coefficients across 
the study area (Foody 2003; Propastin et  al. 2008; Zhao 
et al. 2010; Usman et al. 2013; Tian et al. 2015; Zhao et al. 
2015).

(8)y(ui ,vi) = β0(ui, vi)+ β(ui, vi)x(ui ,vi) + ε(ui ,vi)

Results
Performance evaluation of climate datasets
The Pearson linear correlation analysis showed that the 
monthly minimum and maximum temperature val-
ues from ENACTS products were strongly correlated 
(r2 = 0.71 and 0.89, respectively) to the temperature 
values obtained from the ground stations. Likewise, 
monthly CHIRPS-v2 rainfall showed a strong correlation 
(r2 = 0.92) with that of the ground station rainfall data. 
The results suggest that the ENACTS and CHIRPS-v2 
datasets are viable for climate trend analysis. Likewise, 
the performance evaluation results of the GCM–RCM 
from CORDEX-Africa are described in Table 1.

The result showed that all the models used for this 
study underestimated rainfall and overestimated tem-
perature except the EC-EARTH model. The EC-EARTH 
and MIROC5 models performed well in simulating rain-
fall with the lowest bias and RMSE while EC-EARTH and 
GFDL-EMS2M models performed better in simulating 
temperature. However, the HadGEM2 model poorly per-
formed, with the highest bias and RMSE, in simulating 
rainfall and temperature (Table 1). The correlation coef-
ficients were generally low for all models implying the 
models do not match well with the observed dataset at 
annual timescale, which indicates the GCM–RCM used 
in this study do not capture annual climate variability. 
In contrast, the ensemble mean model performed well 
compared to most of the individual models. Overall, the 
EC-EARTH, GFDEL-EMS2M, MIROC5 and the ensem-
ble mean models captured the patterns of the observed 
climate data for the DRB. Therefore, the future climate 
trend analysis was performed using the simulation out-
puts of those models.

Table 1  Performance of the GCM–RCM models for DRB (2006–2015)

Observed EC-EARTH GFDL-EMS2M HadGEM2 MIROC5 MPI-ESM Ensemble mean

Mean annual rainfall (mm) 1691 1723.74 1370.06 1275.18 1465.38 1379.93 1442.86

Mean annual Tmax (°C) 25 24.20 25.47 26.39 26.07 25.81 25.59

Mean annual Tmin (°C) 13 13.23 14.25 14.85 14.97 14.24 14.31

Rainfall

 Bias (%) – 1.93 − 18.98 − 24.59 − 13.34 − 18.40 − 14.68

 RMSE (mm/year) – 169.93 328.72 440.74 248.74 343.82 262.29

 Corr. – − 0.28 0.59 − 0.16 0.06 − 0.63 − 0.37

Maximum temperature

 Bias (%) – − 1.47 3.70 7.47 6.14 5.08 4.18

 RMSE (mm/year) – 0.53 1.01 1.87 1.63 1.3 1.07

 Corr. – − 0.16 0.15 − 0.17 0.18 − 0.10 0.05

Minimum temperature

 Bias (%) – 3.43 11.40 16.11 17.00 11.36 11.86

 RMSE (mm/year) – 0.57 1.50 2.10 2.20 1.50 1.53

 Corr. – 0.12 0.06 − 0.08 0.56 0.14 0.45
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Historic rainfall trend analysis
Figure  2 shows rainfall trend results for the annual and 
seasonal timescales. While the annual rainfall generally 
increased for all climatic zones, statistically significant 
trends at 0.05 level were observed for only warm sub-
humid and warm moist climate zones. The slope of the 
trend was 4.55 mm/year for the warm sub-humid while 
it was 3.36  mm/year for the warm moist. However, no 
trends were observed at all seasons for all climatic zones. 
Besides, compared to the seasonal timescale, the mag-
nitudes of the changes were highest during the annual 
timescale for all climatic zones except for the cool sub-
humid zone (Fig. 2). However, the slope of the dry season 
rainfall trend was lowest for all climatic zones except for 
the cool sub-humid zone. For the cool sub-humid zone, 
a higher rainfall increase during the short rainy season 
and declining rainfall during the main rainy season were 
observed. On the other hand, for the warm sub-humid 

and tepid moist climatic zones, a higher rainfall increases 
during the short rainy season while a higher rainfall 
increase during the main rainy season was observed for 
the tepid humid zones.

Monthly rainfall trend results are showed in Table  2. 
The result showed increasing rainfall trends in all cli-
matic zones for May except for the tepid humid and 
warm humid. Besides, significant increasing rainfall 
trends were observed during June and September for 
warm humid and tepid moist zones, respectively.

Nevertheless, rainfall from December to March showed 
decreasing with no trend for all climatic zones except 
for the warm moist zone. The highest increasing rainfall 
trend was observed for the cool sub-humid zone for May 
(i.e., 3.66  mm/year). The study generally revealed inter-
monthly and spatially variable rainfall trends (Table 2).

Overall, rainfall trends were observed only for the 
annual timescale but no trends were observed for the 

Fig. 2  Z-test (top) and Sen’s slope (bottom) of rainfall trend analysis
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seasonal timescales. Also, the magnitude of the trend was 
higher for annual timescale compared to that of the sea-
son where the highest slope trend was observed for the 
tepid humid zone (i.e., 4.65  mm/year). For the monthly 
timescale, rainfall in May was significantly increased for 
most climatic zones where the highest rate was observed 
for the cool sub-humid climatic zone (i.e., 3.66  mm/
year). Another important finding of the trend analysis is 
that there appears a seasonal shift in rainfall for the DRB. 
According to the study, rain begins early in May, declines 
in June (e.g., in tepid sub-humid and cool sub-humid 
zones) and extends longer than usual to the end of Octo-
ber in all climatic zones.

Historic temperature trend analysis
Figure 3 shows the maximum temperature trend results 
for the seasonal and annual timescales. The seasonal 
and mean annual maximum temperature was gener-
ally showed increasing for the DRB during the last three 
decades. However, only the main and short rainy seasons 
showed increasing trends. Accordingly, increasing maxi-
mum temperature trends were observed for warm sub-
humid, tepid moist and warm moist zones during the 
main rainy season. Nevertheless, increasing trends were 
observed during the short rainy season for the warm sub-
humid and warm moist zones. The slope of the trends 
was higher during the short rainy season for all climatic 
zones except for the tepid moist zone. Spatially, the cool 
sub-humid zone is relatively warmer during the seasonal 
and annual timescales. Overall, the increasing maximum 
temperature was observed for the DRB where the magni-
tude and trends vary spatiotemporally (Fig. 3).

The results of the monthly maximum temperature 
trend results are presented in Table  3. The result gen-
erally showed increasing maximum temperature of all 
months for all climatic zones. Significantly increasing 
trends were observed for June, July and August for all 
climatic zones except for the warm humid, tepid humid 
and cool sub-humid, respectively. Overall, February 
and March warm at a higher rate for all zones where 
the cool sub-humid zones warm at a higher rate com-
pared to the other zones (Table 3).

The seasonal and annual trend results for the mini-
mum temperature are shown in Table  4. The result 
showed increasing seasonal and mean annual mini-
mum temperature for the DRB. For the annual time 
scale, significantly increasing trends were observed 
for all zones except for the tepid sub-humid, warm 
humid and warm moist. Likewise, increasing trends 
were observed for tepid moist and warm moist zones 
during the dry season and for the cool sub-humid and 
tepid humid zones during the short rainy season. For 
the main rainy season, significantly increasing trends 

were observed for tepid sub-humid, tepid moist and 
warm moist zones. Overall, the magnitude of the trends 
for all zones was highest during the main rainy season 
while the cool sub-humid experienced relatively more 
warming (Fig. 4).

Table  4 shows the monthly minimum temperature 
trend results. Accordingly, the increasing minimum 
temperature was observed for all months and climatic 
zones except for tepid moist (for May and March) and 
warm moist (for December). Minimum temperature of 
July, August, September and October showed increas-
ing trends for the tepid sub-humid, warm sub-humid, 
tepid moist and warm moist zones. Spatially, a higher 
slope trend was observed for the cool sub-humid zones 
for all months except for January, February, April and 
August where the warm humid and tepid humid experi-
enced more warming (Table 4).

Generally, the result showed a higher slope trend of 
the minimum temperature for all AEZs compared to 
that of the maximum temperature. Agro-ecologically, 
the highest increasing rate was observed for the cool 
sub-humid compared to the other climatic zones while 
the warm moist zone experienced the lowest increas-
ing rate. In summary, the cool sub-humid climatic zone 
experienced more warming compared to the other cli-
matic zones whereas the warm moist zone was rela-
tively stable in terms of temperature trend. Temporally, 
the highest increasing rate was observed during the 
main rainy season for minimum temperature and dur-
ing the short rainy season for maximum temperature 
(Figs. 3 and 4, and Tables 3 and 4). The higher increas-
ing rate of the minimum temperature during the main 
rainy season affirms warming of the DRB during the 
past three decades.

Future rainfall trend analysis
Future rainfall trend analysis for the annual, seasonal and 
monthly timescales are shown in Table 5. As the GCM–
RCM model performance varies from model to model, 
the rainfall trend analysis was based on the better per-
forming models such as EC-EARTH, MIROC and ensem-
ble mean models (Table 1). Accordingly, the MIROC and 
EC-EARTH models showed increasing annual rainfall 
trends while the ensemble mean model showed decreas-
ing trend. Likewise, all the models detected decreasing 
rainfall trends for the dry and short rainy seasons while 
MIROC model detected increasing rainfall trend for the 
main rainy season. Significantly increasing rainfall trend 
was captured for the main rainy season by the MIROC 
model. For the monthly timescale, the three models 
showed decreasing rainfall trends for February, April and 
October while increasing trends for June, July and Decem-
ber. Statistically significant decreasing rainfall trend was 
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detected by the ensemble mean model for April while the 
MIROC and ensemble models detected a significantly 
increasing trend for July. Rainfall trends in the other 
months were not consistent among the models (Table 5).

The better performing EC-EARTH model did not cap-
ture rainfall trends for all timescales for the DRB. Over-
all, the GCM-RCMs considered in this study did not 
show clear rainfall trends for the coming 30 years. Rain-
fall for the DRB, generally, will decreases for the dry sea-
son, short rainy season and annual timescales while will 
increases for the main rainy season in the future.

Future temperature trend analysis
The results of the future maximum and minimum tem-
perature trends for monthly, seasonal and annual time-
scales are presented in Tables  6 and 7, respectively. All 
the models considered in this study showed increas-
ing temperature for all timescales. Statistically signifi-
cant increasing trends were observed for all seasons and 
annual timescales except for the main rainy season by 

the MIROC model. For monthly timescale, significantly 
increasing trends for January, February, March, Novem-
ber and December were captured by EC-EARTH, GFDL-
ESM2M and ensemble mean models (Table 6).

All the models considered in this study showed sig-
nificantly increasing minimum temperature trends for 
all seasons and annual timescales. For the monthly time-
scale, EC-EARTH and ensemble mean models showed 
significantly increasing trends for all months. Besides, the 
GFDL-ESM2M model showed a significantly increasing 
trend for all months except for January, April, Novem-
ber and December (Table 7). Overall, the result showed 
minimum temperature will increase more than that of 
the maximum temperature for the DRB in the coming 
three decades. This is similar to past trends. Therefore, 
the warming of the DRB will continues in the future.

NDVI trend analysis
Figure  5 shows the annual and seasonal NDVI trend 
results for the various AEZs of the DRB. The result 

Fig. 3  Z-test (top) and Son’s slope (bottom) of maximum temperature
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showed increasing NDVI trends for tepid sub-humid, 
warm sub-humid, tepid moist and warm moist climatic 
zones at the annual timescale. For the main rainy sea-
son, increasing trends were observed for tepid sub-
humid, warm sub-humid, tepid moist and warm moist 
zones. Similarly, the NDVI showed increasing trends 
during the short rainy season for the warm sub-humid 
and warm moist climatic zones. However, no trends 
were observed for the cool sub-humid, tepid humid and 
warm humid climatic zones for the annual and seasonal 
timescales. The slope of the trends was ≤ 0.002  year−1 
for the annual and seasonal timescales. This implies 
that vegetation greenness change in the DRB was grad-
ual and not substantial. Besides, the mean value of the 
NDVI for most parts of the study area was > 0.5 show-
ing that the DRB was covered with green vegetation.

The monthly NDVI trend analysis results are 
presented in Table  8. The results of the trend 

analysis showed increasing trends for some months 
and decreasing for the other months. For example, 
NDVI of January and February showed increasing 
trends for tepid sub-humid and warm moist climatic 
zones. Also, the NDVI showed an increasing trend dur-
ing August for all climatic zones except for the tepid 
humid and warm humid zones. However, no NDVI 
trends were observed for the tepid humid and warm 
humid climatic zones during all the months. However, 
decreasing NDVI trends of March, April and Decem-
ber were observed during for the tepid sub-humid 
climatic zone. Similar to the annual and seasonal time-
scales, the slopes of the trends were ≤ 0.002 year−1 for 
all the months.

Besides, basinwide NDVI analysis showed an 
increasing trend for the dry season and annual time-
scales. Moreover, a statistically significant increasing 
trend was observed only for the warm moist climatic 

Fig. 4  Z-test (top) and Son’s slope (bottom) of minimum temperature
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zones. These imply spatial scale influences the results 
of NDVI trend analysis. The next section describes the 
spatiotemporal dynamics of climate and NDVI and 
how they are related.

The spatial relationship between NDVI and climate 
variables
The spatial relationships between average climate vari-
ables (i.e., rainfall, minimum and maximum temperature) 

Table 5  Mann–Kendall and Sen’s slope results for projected rainfall trends

* Statistically significant at 0.05% level

MPI-ESM-LR MIROC5 HadGEM2-ES GFDL-ESM2M EC-EARTH Ensemble mean

Z-test Sen’s slope 
(mm/year)

Z-test Sen’s slope 
(mm/year)

Z-test Sen’s slope 
(mm/year)

Z-test Sen’s slope 
(mm/year)

Z-test Sen’s 
slope (°C/
year)

Z-test Sen’s 
slope (°C/
year)

January 0.02 0.00 − 1.07 − 0.04 0.02 0.00 − 0.70 − 0.01 0.85 0.03 − 0.64 − 0.02

February − 0.45 − 0.03 − 0.95 − 0.12 − 0.98 0.00 1.30 0.04 − 1.38 − 0.18 − 1.29 − 0.06

March − 0.95 − 0.18 0.11 0.04 0.87 0.02 − 0.98 − 0.07 − 0.73 − 0.17 − 0.95 − 0.08

April − 1.50 − 0.64 − 1.44 − 1.26 − 0.45 − 0.13 1.47 0.49 − 1.19 − 1.06 − 2.43* − 0.47

May − 2.31* − 1.40 0.51 0.44 − 0.42 − 0.32 1.47 0.49 0.14 0.17 − 0.05 − 0.03

June − 2.03* − 1.34 1.56 1.25 − 1.97 − 1.39 1.32 1.28 0.70 0.48 0.17 0.05

July − 0.14 − 0.17 2.62* 2.69 1.22 1.04 2.06* 0.96 0.82 1.10 2.03* 0.86

August 0.60 0.60 0.51 0.42 0.14 0.21 1.26 0.87 − 0.33 − 0.20 0.76 0.25

September − 0.98 − 0.70 − 0.17 − 0.19 − 1.63 − 1.33 0.54 0.23 0.08 0.10 − 1.56 − 0.59

October 0.79 0.50 − 0.98 − 0.47 1.41 0.31 − 0.39 − 0.26 − 0.11 − 0.04 − 0.64 − 0.16

November − 0.42 − 0.04 0.05 0.00 0.15 0.00 0.11 0.07 − 0.14 − 0.02 0.14 0.02

December 1.04 0.01 1.94 0.06 − 0.16 0.00 − 0.14 − 0.02 0.73 0.04 0.11 0.01

Dry season 0.73 0.44 − 1.41 − 0.56 1.07 0.25 − 0.45 − 0.59 − 0.36 − 0.45 − 0.95 − 0.19

Short rainy season − 2.87* − 2.20 − 0.70 − 0.96 − 0.73 − 0.38 1.13 0.88 − 0.73 − 0.71 − 1.63 − 0.69

Main rainy season − 0.91 − 1.87 2.09* 3.26 − 1.22 − 2.00 2.40* 2.95 0.60 0.92 0.82 0.71

Annual − 2.46* − 3.31 0.45 0.90 − 1.56 − 2.64 1.69 3.54 − 0.23 − 0.48 − 0.64 − 0.48

Table 6  Mann–Kendall and Sen’s slope results for projected maximum temperature trends

* Statistically significant at 0.05% level

MPI-ESM-LR MIROC5 HadGEM2-ES GFDL-ESM2M EC-EARTH Ensemble mean

Z-test Sen’s 
slope (°C/
year)

Z-test Sen’s 
slope (°C/
year)

Z-test Sen’s 
slope (°C/
year)

Z-test Sen’s 
slope (°C/
year)

Z-test Sen’s 
slope (°C/
year)

Z-test Sen’s slope 
(°C/year)

January 3.55* 0.03 2.77* 0.05 5.38* 0.04 2.09* 0.03 5.22* 0.04 5.56* 0.04

February 3.46* 0.03 2.06* 0.04 4.88* 0.04 2.06* 0.02 4.38* 0.04 5.07* 0.04

March 3.36* 0.04 2.34* 0.04 3.92* 0.05 2.49* 0.02 3.61* 0.05 5.28* 0.04

April 3.92* 0.05 2.09* 0.06 3.42* 0.04 0.51 0.00 2.68* 0.06 5.19* 0.05

May 4.26* 0.08 0.79 0.02 2.22* 0.05 1.84 0.03 1.47 0.03 4.08* 0.04

June 2.71* 0.06 − 0.45 − 0.01 4.38* 0.08 0.05 0.00 1.84 0.04 3.30* 0.04

July 0.91 0.02 0.00 0.00 2.90* 0.04 1.53 0.02 1.29 0.02 2.62* 0.02

August 2.34* 0.03 2.00* 0.04 2.46* 0.03 3.27* 0.04 0.48 0.00 4.26* 0.03

September 1.81 0.03 2.37* 0.04 2.65* 0.04 0.82 0.02 2.53* 0.04 4.17* 0.04

October 1.81 0.03 2.49* 0.05 3.33* 0.04 2.00 0.04 1.72 0.03 4.73* 0.03

November 3.15* 0.04 2.49* 0.03 4.20* 0.05 2.49* 0.04 2.09* 0.03 4.73* 0.04

December 3.67* 0.03 3.24* 0.03 4.54* 0.04 2.77* 0.04 3.67* 0.03 5.22* 0.03

Dry season 3.92* 0.03 3.36* 0.04 5.41* 0.04 2.93* 0.03 3.77* 0.03 5.78* 0.04

Short rainy season 5.00* 0.05 2.28* 0.04 4.29* 0.05 2.25* 0.02 3.73* 0.05 5.78* 0.05

Main rainy season 2.49* 0.04 0.76 0.01 4.48* 0.05 2.31* 0.02 2.71* 0.03 3.89* 0.03

Annual 4.14* 0.04 3.02* 0.02 5.59* 0.05 3.36* 0.03 3.95* 0.03 5.90* 0.04
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and NDVI are shown in Table  9. Model parameters 
described in the table are the mean values of the GWR 
parameters computed at a local scale. The residuals indi-
cate uncertainty in the model predictions. The lower the 
residuals the better the predictive power of the model. 
Moreover, Moran’s index close to zero represents that 
model residuals are independent, which shows no spatial 
autocorrelation (Propastin et al. 2008).

The result showed that the NDVI was positively related 
to rainfall with a mean coefficient of 0.0002 while it is 
negatively related to minimum and maximum tempera-
tures with mean coefficients of − 0.015 and − 0.007, 
respectively. However, the r2 between rainfall and NDVI 
was 0.62 while it was 0.45 and 0.58 for maximum and 
minimum temperature, respectively. The results showed 
that climate variables are good in explaining the tempo-
ral and spatial variations of NDVI for the DRB. However, 
the strength of the relationship varies spatially and from 
variable to variable (Fig. 6). As r2 values greater than 0.5 
indicate a satisfactory predictive capability of the GWR 
model (Propastin et  al. 2008), the results imply that 
NDVI was more strongly related to rainfall than with 
temperature for the DRB. On the other hand, minimum 
temperature more explains the dynamics of NDVI than 
the maximum temperature. Spatially, the NDVI-climate 
variables relationships were stronger in the highland (i.e., 
southern) parts of the study area than in the lowland 
(i.e., northern) parts (Fig.  6). This implies the underly-
ing biophysical conditions that influence the relationship 

between NDVI and climate variables are different within 
the DRB; the highland and lowland parts of the basin 
have different biophysical conditions. Moreover, the 
result shows spatial heterogeneity of the relationship 
between NDVI and climate variables. As such, the GWR 
model parameters such as coefficients and residuals were 
spatially different for the DRB.

Accordingly, the spatially distributed coefficients and 
model residuals for the NDVI-minimum temperature 
relationships are shown in Fig.  7. The result showed a 
strong negative relationship for the southern part and a 
weak relationship for the central parts of the DRB. Like-
wise, residuals of the GWR model are spatially different 
revealing that the model overestimated in some parts and 
underestimated in other parts of the study area.

Likewise, the relationship between maximum tempera-
ture and NDVI is spatially variable. The negative relation-
ship is stronger in the southern and central parts of the 
study area, which is consistent with the pattern observed 
between the NDVI-minimum temperature. Similarly, the 
residual of the model is spatially heterogeneous where 
the GWR model overestimates in the southern and west-
ern parts and underestimates in the central part of the 
study area (Fig. 8).

The strength of the NDVI-rainfall relationship 
increased from the northern part to the southern part 
of the study area like in the NDVI-temperature relation-
ship (Fig. 9). The spatially variable residuals revealed that 
the predictive power and factors affecting vegetation 

Table 7  Mann–Kendall and Sen’s slope results for projected minimum temperature trends

* Statistically significant at 0.05% level

MPI-ESM-LR MIROC5 HadGEM2-ES GFDL-ESM2M EC-EARTH Ensemble mean

Z-test Sen’s 
slope (°C/
year)

Z-test Sen’s 
slope (°C/
year)

Z-test Sen’s 
slope (°C/
year)

Z-test Sen’s 
slope (°C/
year)

Z-test Sen’s 
slope (°C/
year)

Z-test Sen’s slope 
(°C/year)

January 2.96* 0.06 3.08* 0.08 2.15* 0.04 1.04 0.03 2.46* 0.06 4.29* 0.05

February 1.69 0.04 1.75 0.04 1.56 0.05 3.52* 0.07 3.15* 0.07 4.08* 0.05

March 3.30* 0.05 2.09* 0.04 2.43* 0.07 3.15* 0.06 3.61* 0.07 5.16* 0.06

April 2.62* 0.04 3.08* 0.05 2.37* 0.05 1.78 0.02 3.92* 0.05 4.82* 0.04

May 3.80* 0.05 3.36* 0.06 4.14* 0.06 2.74* 0.05 3.42* 0.04 5.75* 0.05

June 3.92* 0.04 2.49* 0.03 5.97* 0.05 3.24* 0.03 4.91* 0.04 5.62* 0.04

July 3.52* 0.03 2.62* 0.03 5.22* 0.04 3.70* 0.03 3.58* 0.03 5.35* 0.03

August 4.20* 0.04 3.52* 0.03 5.97* 0.04 5.16* 0.04 3.77* 0.03 6.06* 0.03

September 4.08* 0.04 3.21* 0.03 5.87* 0.04 5.28* 0.03 4.38* 0.03 5.75* 0.03

October 2.65* 0.04 3.11* 0.05 3.92* 0.05 2.74* 0.03 2.43* 0.03 4.94* 0.04

November 2.53* 0.05 1.22 0.02 1.35 0.02 1.84 0.03 1.91 0.02 4.08* 0.03

December 2.90* 0.06 3.46* 0.07 1.66 0.04 0.82 0.02 3.15* 0.06 5.16* 0.05

Dry season 3.70* 0.04 3.64* 0.05 3.58* 0.04 3.15* 0.03 4.85* 0.05 5.93* 0.04

Short rainy season 4.32* 0.05 4.42* 0.05 4.17* 0.06 3.89* 0.04 4.57* 0.05 6.21* 0.05

Main rainy season 4.29* 0.04 3.33* 0.03 6.21* 0.04 4.69* 0.03 4.82* 0.03 6.00* 0.03

Annual 4.69* 0.04 4.32* 0.04 5.00* 0.04 4.45* 0.04 5.81* 0.05 6.46* 0.04
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conditions are different for the different parts of the 
study area. Overall, the results of local r2 and coefficients 
revealed the strong relationship of the NDVI-climate var-
iables at the highland (southern) parts than in the low-
land (northern) for the DRB.

Discussion
Spatiotemporal climate trends
This study showed that the rainfall trend results vary 
spatially within AEZs and from month to month. Rela-
tively, the seasonal and annual rainfall showed more 
consistent trend results. The annual and seasonal 
rainfall for the DRB generally showed increasing for 
all climatic zones except for the cool sub-humid zone 

that showed declining for the main rainy season. The 
increasing rainfall for all AEZs during the dry season 
indicated declining rainfall in January, February and 
December where more than balanced by increases in 
October and November. Likewise, rainfall increased in 
May but declined in March and April for the short rainy 
season. These mean that dry season rainfall mainly 
occurred during October whereas the short rainy sea-
son mainly receives rainfall during May. The results 
imply that the DRB is generally becoming more wet, 
which has positive impacts on agricultural production 
and water resources availability. The finding is consist-
ent with previous studies that reported the southwest-
ern part of the upper Blue Nile basin, where the DRB 

Fig. 5  Z-test (top) and Son’s slope (bottom) of NDVI
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is located, is becoming more wetting (e.g., Mellander 
et al. 2013; Brown et al. 2017; Weldegerima et al. 2018; 
Worku et al. 2018).

Moreover, the seasonal shift in rainfall reported in this 
study is consistent with previous studies for the upper 
Blue Nile basin (Berhane et al. 2014; Vincent et al. 2018). 
According to this study, rainfall begins early in May, 
declines in June (e.g., in tepid sub-humid and cool sub-
humid zones) and extending longer than usual to the end 
of October. This has significant negative impacts primar-
ily on rain-fed agriculture as agricultural practices in the 
study area are highly dependent on the rainy season’s 
rainfall. The starting and ending of the rainy season in 
Ethiopia affects planning, performance and manage-
ment of agricultural operations and usually, leads to a 
poor harvest and/or complete crop failure (Gebre et  al. 
2013). For example, in the DRB, common crops such as 
Teff (Eragrostis), Maize, Sorghum and Millet are mainly 
planted during late June and harvested during the end of 
October. These imply that the seasonal shift affects crop 

yields by delaying plantation and extending harvesting 
time. Early plantation in May might result in crop failure 
resulted from declining rainfall in June while plantation 
in June might result in yield reduction due to the reduced 
rainfall in June and/or extended rainfall until the end of 
October, which is the harvesting time in the study area. 
As such, farmers should be advised to plant a short grow-
ing period crops in May and/or shift plantation time for 
long growing period crops to early July.

On the other hand, the DRB is warming with an average 
temperature increasing rate of about 0.45 °C per decades, 
which is comparable with the global warming rate (i.e., 
0.6 °C for the past century) and East African mean annual 
temperature increasing rate (i.e., 0.35  °C per decades) 
(Musau et al. 2018). Also, the findings of the study were 
consistent with a study reported for the upper Blue Nile 
(Tekleab et al. 2013; Worku et al. 2018; Asfaw et al. 2018). 
Overall, the DRB experienced wetting and warming in the 
past 30 years. This has a positive impact on crop produc-
tion, if the plantation season is carefully selected, while it 

Table 9  Geographically weighted regression model results

Explanatory variables β0 (intercept) β (coefficient) Adj R2 Moran’s index RMSE Residual ( ε)

Min Max Mean Min. Max. Mean Min. Max Mean

Rainfall 0.26 0.42 0.35 10−4 0.0002 0.0002 0.62 0.19 0.03 − 0.09 0.05 − 0.001

Maximum temperature 0.71 0.91 0.80 − 0.01 − 0.004 − 0.007 0.45 0.41 0.05 − 0.08 0.07 0.002

Minimum temperature 0.73 0.94 0.83 − 0.02 − 0.01 − 0.015 0.58 0.22 0.03 − 0.07 0.06 0.0001

Fig. 6  Spatial variation of local r2 for rainfall (a), maximum temperature (b) and minimum temperature (c)



Page 19 of 24Wedajo et al. Environ Syst Res            (2019) 8:31 

has a negative consequence for water resource availabil-
ity (e.g., reservoirs) by increasing evapotranspiration loss. 
Moreover, the observed warming and declining rainfall 
trends during the main rainy season for the cool sub-
humid climatic zones implying negative consequences for 
rain-fed agriculture and water resource availability.

On the other hand, the future rainfall and temperature 
for the DRB were better simulated by GCM-RCMs such 
as EC-EARTH, GFDEL-EMS2M and MIROC5 mod-
els. This is consistent with the study for the upper Blue 
Nile basin where the DRB is located (Haile and Rientjes 
2015). The performance of the models considered in this 
study is inconsistent for rainfall while consistent for tem-
perature, which is in line with several studies (Mengistu 
et al. 2014; Mekonnen and Disse 2018; Bhattacharjee and 
Zaitchik 2015). Rainfall decreased for the annual, dry 
and short rainy seasons timescales and increased for the 
main rainy season while temperature increased for all 
timescales for the coming 30  years for the DRB. These 
changes imply negative consequences for agriculture and 
water resource availability. The findings are inconsist-
ent with previous studies where warming and wetting 
were reported for the upper Blue Nile basin (Mekonnen 
and Disse 2018; Worqlul et al. 2018). The discrepancies, 

particularly in rainfall simulation results, are due to the 
differences in the spatial and timescales of the studies, 
types of the model used and climate scenario considered.

Vegetation greenness‑climate variables nexus
The increasing NDVI trends reported in this study for 
most parts of the DRB seem counter-intuitive given, for 
example, the deforestation activities that have been tak-
ing place in the basin (Mekonnen et al. 2018). Thus, the 
trend result may not necessarily represent increasing 
vegetation cover for the study area, which implies that 
the GIMMS NDVI datasets does not capture forest cover 
change due to the saturation problem of the sensor (Yin 
et  al. 2012; Loranty et  al. 2018). Moreover, the NDVI 
trend results show that the GIMMS NDVI dataset do not 
capture local vegetation trends caused by anthropogenic 
effects. This implies that the GIMMS NDVI-based trend 
analysis can effectively describe climate-induced vegeta-
tion changes at a regional scale but not at a local scale.

Therefore, the increasing NDVI trends that were 
observed in the study area could be in response to (i) 
increase in dry season rainfall as previously described; (ii) 
the presence of trees and shrubs left within agricultural 
lands despite deforestation activities in the study area 

Fig. 7  GWR model residuals (right) and coefficients (left) for NDVI-minimum temperature
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and (iii) the perennial crops (e.g., Mango, Avocado and 
Coffee with shed trees) in the basin. Besides, the find-
ing of this study is in line with the GIMMS-based NDVI 
trend analysis that reported greening of south and south-
western parts of the upper Blue Nile, where this study 
area is located, from 1982 to 2005. On the contrary, the 
same study using MODIS data from 2006 to 2011 showed 
a browning vegetation cover in the basin (Teferi et  al. 
2015). The inconsistency of the results could be due to 
the difference in the types of data sources.

The strength and sign of the NDVI-climate relation-
ships are spatially variable for the DRB. Such non-sta-
tionarity relationships, which may be controlled by the 
underlying environmental factors such as vegetation, 
soil and land cover types, are effectively analyzed using 
the GWR techniques. The relatively lower r2 values show 
that other factors are also responsible for the vegetation 
dynamics observed in the study area. The result indicates 
that besides rainfall and temperature, anthropogenic and 
other physical factors (e.g., soil and topography) could 
be responsible for the vegetation dynamics observed for 
the basin. Moreover, the positive correlation between 
NDVI and rainfall indicated that vegetation greenness is 
dependent on water availability while the negative corre-
lation with temperature could be due to increased evapo-
transpiration resulting from a higher temperature (Ji and 

Peters 2004). The relationship between the NDVI-climate 
observed in this study is consistent with previous studies 
(Zhao et al. 2015; Getahun and Shefine 2015).

Conclusions
A comprehensive study that includes spatiotemporal 
dynamics of climate variables and vegetation greenness, 
and their spatial relationship provides important infor-
mation for designing climate change adaptation strate-
gies. Rainfall of the DRB generally showed increasing for 
the seasonal and annual timescales. However, statistically 
significant trends were observed only for the warm sub-
humid and warm moist zones for annual timescale. Nev-
ertheless, rainfall trends for the monthly timescale showed 
inconsistent trends. On the other hand, significantly 
increasing trend of minimum and maximum temperature 
was observed for the DRB during all the timescales. The 
highest increasing rate was observed during the main rainy 
season for minimum temperature and during the short 
rainy season for maximum temperature. Spatially, the 
cool sub-humid climatic zone experienced more warming 
while warm moist is relatively stable in terms of tempera-
ture trends. This finding implies the need to analyze cli-
mate trends at a different time and spatial scales to capture 
reliable local trends. Overall, past climate trends showed 
wetting and warming for the DRB during the last 30 years.

Fig. 8  GWR model residuals (right) and coefficients (left) for NDVI-maximum temperature
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However, rainfall trends did not show clear trends 
in the future. It generally declined for the dry season, 
short rainy season and annual timescales while showed 
an increasing trend for the main rainy season. On the 
contrary, temperature showed increasing trends during 
all the timescales for the DRB in the coming 30 years. 
The minimum temperature will be increased at a higher 
rate compared to the maximum temperature implying 
warming of the study area which is the sign of climate 
change. Overall, the increasing temperature and vari-
able rainfall noted in this study will have both positive 
and negative consequences for agricultural produc-
tion and water resource availability. The warming and 
wetting scenario will boost agricultural production if 
appropriate plantation and harvesting time are selected 
otherwise it will result in complete crop failure and/
or yield reduction. However, the warming and declin-
ing rainfall during the dry season, short rainy sea-
son and annual timescales will result in deteriorated 
water resource availability while the increasing rainfall 
trend during the main rainy season will increase water 
resource availability, which may result in flooding.

On the other hand, NDVI trends for the DRB are spa-
tiotemporally variable and generally showed greening 
for most timescales and AEZs. For example, no trends 
were observed for the cool sub-humid, tepid humid 

and warm humid climatic zones for all timescales. 
The increasing NDVI trends for the other climatic 
zones seem counter-intuitive given the deforestation 
activities that have been taking place in the basin. This 
implies that the GIMMS NDVI may not capture forest 
cover changes for the study area. Thus, the increasing 
trend could be in response to the increasing dry sea-
son rainfall, presence of trees and shrubs within agri-
cultural lands and the presence of perennial crops (e.g., 
Mango, Avocado and Coffee with shed trees) in the 
basin. Moreover, since most of the deforested land was 
replaced by crops, vegetation changes may not be cap-
tured particularly during the main rainy season. These 
imply that the GIMMS NDVI-based trend analysis can 
effectively describe climate-induced vegetation changes 
at a regional scale. However, a local scale vegetation 
change induced by anthropogenic activities may not be 
captured by the dataset. The spatiotemporal dynamics 
of the NDVI for the DRB is positively related to rain-
fall while negatively related to the temperature where 
the strength of the relationship is higher with rainfall 
(i.e., r2 = 0.62). The study also showed that the increas-
ing temperature for the DRB will negatively affect the 
vegetation condition of the study area.

Generally, the study showed that climate and vegeta-
tion greenness changes vary spatially from one climatic 

Fig. 9  GWR model residuals (right) and coefficients (left) for NDVI-rainfall
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zone to the other. Moreover, the spatial relationship 
between NDVI and climate variables also spatially vari-
able. Thus, this study provides important information for 
planning and managing natural resources and designing 
climate change adaption strategies at a local scale. The 
comprehensive study that integrates multiple methods 
and datasets, illustrated in this paper, is vital for the agri-
cultural and water resource sectors.
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