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Abstract

An important question in cancer evolution concerns which traits make a cell likely to successfully
metastasise. Cell motility phenotypes, mediated by cell shape change, are strong candidates. We
experimentally evolved breast cancer cells in vitro for metastatic capability, using selective regimes
designed to simulate stages of metastasis, then quantified their motility behaviours using computer
vision. All evolved lines showed changes to motility phenotypes, and we have identified a previously
unknown density-dependent motility phenotype only seen in cells selected for colonisation of
decellularized lung tissue. These cells increase their rate of morphological change with an increase in
migration speed when local cell density is high. However, when the local cell density is low, we find the
opposite relationship: the rate of morphological change decreases with an increase in migration speed.
Neither the ancestral population, nor cells selected for their ability to escape or invade extracellular
matrix-like environments, display this dynamic behavioural switch. Our results suggest that cells
capable of distant site colonisation may be characterised by dynamic morphological phenotypes and
the capacity to respond to the local social environment.
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Main Text
Introduction

Metastasis is a form of long-range dispersal (1,2) and central to understanding how cancers
metastasise is understanding how cells migrate (3,4). During migration, as cancer cells become
more invasive and begin to migrate independently, they adopt an altered morphology, typically
taking on elongated shapes characteristic of epithelial-mesenchymal transition (EMT) (5,6). This
change in cellular morphology is an important marker of migratory state (7,8). Quantitative
measures of cell morphology taken from static images have been shown to effectively
differentiate between cancer cell lines with high and low metastatic potential (9,10). However,
there are important aspects of migratory behaviour linked to metastasis that cannot be measured
from static images.

Successful metastasis requires a cell to navigate through a series of sequential steps known as
the metastatic cascade. The cascade begins with a cell escaping from the primary tumour before
migrating through the extracellular matrix (ECM) towards a nearby blood vessel. The cell must
then intravasate into the blood before it is carried around the body. After reaching a distant site
the cell then needs to extravasate from the blood and invade the foreign tissue. Finally, the cell
must reinitiate aggressive proliferation enabling a secondary tumour to form (11).

In addition to the cellular changes needed for metastatic success, environmental changes are
also necessary for a cell to metastasise (12). This is evident at the onset of cellular dispersal
where nearby collagen fibres are straightened perpendicular to the tumour boundary (13). The
straightened fibres then act as a pathway for future migrants in turn improving their migratory
success (14). This dynamic cell-environment interplay continues throughout the metastatic
cascade.

To identify the precise changes in cell phenotype that are associated with metastatic success, it is
preferable to compare cell lines that differ only in their ability to metastasise. Experimental
evolution (15), a powerful approach that has led to major advances in evolutionary biology, is how
being applied to cancer evolution and provides the means to generate such cell lines (16,17).
Initially identical populations of cancer cells can be selected in replicate for specific capabilities
(18). We experimentally evolved populations of cancer cells using selective regimes
corresponding to three separate stages of metastasis (19,20): escape from the primary tumour,
invasion of foreign tissue, and distant site colonisation.

Distant site colonisation, the rate-limiting step of metastasis (21), requires a cell to migrate
through the unpredictable microenvironment of the primary tumour (22) and into the novel
environment of the distant metastatic site (11). Success in both stages is achieved, in part, by the
cell’'s capacity to detect and respond to changes in the environment (23-26). Cells selected for
distant site colonisation might therefore be expected to be more reactive to environmental
changes, and as such display a greater degree of morphological change in response. We would
also expect morphological change to be positively correlated with migration speed in successfully
metastasizing cells, because a faster-moving cell will experience a greater degree of
environmental variation over a given time period, and therefore change its morphology more
rapidly in response.

To test these hypotheses, we have combined an experimental evolution framework with video
microscopy and novel statistical analysis that quantifies morphological change in individual cells
over time. This approach has identified unique cell behavioural phenotypes that may be
advantageous for successful metastasis.

Materials and Methods
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Evolved population summary

We used experimental evolution methods (15) on an initial population of MDA-MB-231 breast
cancer cells (Figure. 1), subjecting them to three separate selective regimes. The experimental
selective regimes were designed to be similar to those experienced whilst traversing the
metastatic cascade (11). We also froze two biological replicate ancestor populations (Figure. 1) at
the start of the experiment to act as a control for comparison with our evolved lines.

We selected escape populations (Figure. 1) by tightly packing cells into a high density core of
collagen and then allowing them to escape outwards into a low density collagen outer ring (27).
After 10-14 days the cells that had escaped into the outer collagen ring were recovered from the
matrix, expanded and then seeded back into a new collagen escape assay, completing one round
of selection. In total, 7 rounds of selection were applied to each of four biological replicate escape
populations. The high density collagen core and the low density outer collagen ring were both
three-dimensional (3D) culture environments designed to be similar to those experienced during
tumour dissemination.

We selected invasion populations (Figure. 1) following a similar protocol to the escape
populations whereby repeated consecutive rounds of selection were applied. In contrast to the
escape assay, however, cells moved from a 2D to 3D environment, similar to the change in
environment experienced during the arrest of a cell at a distant site. The cells were seeded
around the outside of a Matrigel island - a synthetic basement membrane matrix widely used in
cell culture - and left to invade. After 7 days the cells were collected from the Matrigel, expanded
and seeded around the outside of another Matrigel island. This process was repeated 15 times
for each of the four biological replicate populations over the course of the 6 month experiment.

We selected colonisation populations (Figure. 1) by culturing cells on a piece of decellularized rat
lung, which acted as a scaffold for growth similar to that experienced by cells colonizing a distant
site (27). The protocol involved cells being seeded onto a decellularized scaffold and left to
colonize over a 6 month period. Decellularized tissue is generated by removing all cells from a
piece of tissue such that only the extracellular matrix is left. At the end of the experiment cells
were released from the scaffold, ensuring that the population represented cells from within the
tissue core as well as the edges. Again, this selection was applied to-four biological replicate
populations.

Finally, all twelve experimentally evolved cell populations were frozen and then thawed alongside
the ancestor populations prior to experimental analysis. This step ensured that any selective
pressure from the freezing-thawing process was constant across all treatments and replicate
populations.

Experimental assays
Escape Assay

Initially, MDA-MB-231 cells (LGC) were encapsulated in a 2mg/ml collagen gel (rat-tail collagen
type 1, First Link) and set into a 24-well plate which was used as a mould (750,000 cells per gel,
Greiner Bio-One). The collagen gels were compressed for 2 minutes as described in (27), then
set into a 1mg/ml low density collagen gel (rat tail collagen type 1, First Link). Once set, cell
culture medium (Dulbeco’s Modified Eagles Medium (DMEM) supplemented with 10% Fetal
Bovine Serum (FBS), and Penicillin 100 pg/ml, Streptomycin 100 U/ml (Gibco, Fisher Scientific))
was added over the top. Medium was replaced every 3-4 days. After 10-14 days, the
compressed collagen disc was separated from the low density collagen and collagenase type 1
diluted in phospho-buffered saline solution (Gibco, Fisher Scientific) used to retrieve the cells
from the collagen matrix, 200 U/ml for compressed collagen and 100 U/ml for low density
collagen. Cells in collagenase/PBS were incubated at 37°C in a stirred water-bath at 45 rpm for
30-60 minutes, then washed in Phospo-buffered saline solution (PBS, Gibco Fisher Scientific).
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Cells extracted from the compressed collagen were placed in liquid nitrogen storage and those
collected from the low density collagen were seeded into 2mg/ml collagen gel with medium over
for population expansion. Once expanded, cells were retrieved from collagen using collagenase
in PBS then seeded into 2mg/ml collagen for compression or frozen at -80°C and transferred to
liquid nitrogen for storage.

Invasion Assay

MDA-MB-231 cells (LGC) were re-suspended in PBS, and seeded around the outside of a
5mg/ml set Matrigel island in a 6-well plate Matrigel (#35623, Corning), was diluted using DMEM
without supplements. Cells were seeded in excess at the island margins, with around 40,000 cells
seeded in 200pl per experiment for the initial set-up. Cells were left to settle and adhere to the 2D
surface for 60 minutes then cell culture medium added over the top (DMEM supplemented with
10% FBS, and penicillin 100 pg/ml, streptomycin 100 U/ml). Medium was changed every 3-4
days and cells were harvested after 7 days. Cells were retrieved from Matrigel using Cell
Recovery solution (#354253, Corning) on ice for 45-60 minutes, washed with ice cold PBS then
reseeded into Matrigel at 5mg/ml to expand cell numbers. After 7 days the cells were released
from Matrigel using cell recovery solution as described above (typically 400,000 — 500,000 per
gel), re-suspended in PBS and seeded in excess around the outside of a new Matrigel island
(5mg/ml) for the next round of the 2D/3D invasion assay or cells were frozen at -80°C and
transferred to liquid nitrogen for storage.

Colonisation Assay

Rat lung was retrieved from 9 week old Wistar rats (Envigo) and flash frozen. It was then thawed
and decellularized using repeated rounds of treatment following an adapted version of the
protocol published in (28). Briefly: frozen lung was thawed and cut into small pieces of around
100mg, which were then placed into deionized water (ddH20), stirred at 60 rpm for 16 hours at
4°C. Lung tissue was treated with 0.02% trypsin/0.05% EDTA for 60 minutes at 37°C at 60 rpm,
3% Triton-X 100/PBS for 70 minutes, 1M sucrose/PBS for 30 minutes, 4% deoxycholate/ddH20
for 60 minutes, 0.1% peracetic acid in 4% ethanol for 120 minutes, PBS for 5 minutes, and finally
twice in ddH20 for 15 minutes. The tissue was washed thoroughly between each treatment with
ddH:0. De-cellularization was checked between rounds using epifluorescence microscopy and
staining with DAPI H1200 Vectashield (Vectorlabs) to identify whether cell nuclei remained within
the matrix structure. Decellularized lung tissue was freeze-dried and stored in an airtight
container.

Using decellularized lung as a culture matrix: tissue was soaked in 70% ethanol, washed with
PBS and then rehydrated in PBS pH 7.2 (Gibco) in a tissue culture incubator for 5 days, then
soaked in cell culture medium (DMEM supplemented with 10% FBS and penicillin/streptomycin
as described above) for 48 hours. Cells grown in 2D tissue culture flasks were trypsinized, re-
suspended in medium then 750,000 cells added in low volume of medium (100-150 pl) over the
decellularized lung tissue in a 6-well plate and left to adhere for 2 hours. Medium was then
added over the top so that the decellularized lung rafts floated. Rafts were transferred to new
wells when the bottom of the well was confluent with shed and adhered cells. To feed the cells
growing in/on the raft, % of the medium (2ml of 4ml) was aspirated and replaced every 2-4 days.
After 140 and 189 days, rafts were retrieved from medium, washed with PBS and cells harvested
by incubating in: collagenase | (170 U/ml, Gibco 17018-029), collagenase IV (170 U/ml, Gibco
17104-019), elastase (0.075 U/ml, Sigma E7885) (based on the protocol described in (29))
incubated at 37°C 45rpm in a stirred water-bath, then washed twice with PBS before seeding in
2D tissue culture plates for expansion. Expanded cells were then frozen at -80°C and transferred
to liquid nitrogen for storage.

Time-lapse microscopy
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Cells were retrieved from liquid nitrogen, cultured in 2D tissue culture flasks (25cm? or 75¢cm?
Greiner bio-one), trypsinized and seeded into 6-well plates (Greiner bio-one) at 10-15% cell
confluence. Time-lapse movies were made for 12 hour periods with images taken at 2 minute
intervals, using a Nikon TiE phase contrast microscope with an environmental chamber (37°C)
and moveable platform stage. x10 Plan Apo DIC L Lens was used in conjunction with an
intermediate magnification changer set to x1.5 to give x15 magnification. NIS Elements software
was used for image capture.

Cell Tracking

All cells that were present in each time-lapse video were tracked using the Usiigaci pipeline (30).
The neural network was trained on 300 randomly selected images that were manually annotated
using ImageJ (31). The manually annotated images were than randomly split so that 80% were
used for training and a further 20% were used for testing, 240 images in the training set and 60 in
the test set. The 240 training images were then further split for training and validation 90:10 so
that 216 images were used for training and 24 for validation. We trained 3 neural networks using
the same 240 images however different images were used for the training and validation stage
each time. All hyperparameter settings were the same as Usiigaci protocol except the gradient
clip norm was increased to 10. We trained the network on all layers over 300 epochs with the
learning rate starting at 0.01 and decreasing by an order of magnitude every 100 epochs.

Once the morphologies had been segmented we tracked them through time using the inbuilt
semi-automated Usiigaci tracker. After tracking we manually checked the segmented
morphologies and corrected any errors. We checked for cases whereby a cell had divided, been
mis-identified or incorrectly segmented. Finally we excluded the 30 minutes prior to and after a
cell division to remove the rounded morphologies typical of cell division from our analysis.

Quantifying values

All values were quantified using a custom-built pipeline in Python (32) that can be found on
GitHub, https://github.com/george-butler/2d_microscopy, any reference to distance refers to the
Euclidean distance. The morphology was quantified using the first 20 Zernike moments. Zernike
moments capture the information that is encoded in a shape and translate it into a high
dimensional vector, in a similar fashion to spatial location being represented by Cartesian
coordinates. When taken to a high enough degree, Zernike moments are capable of representing
every shape uniquely and are invariant to rotation, scale and translation (33). We followed the
methods of (10) to pre-process the morphologies and make them invariant to scale and
translation. We determined that 20 Zernike moments were adequate to quantify the morphology
of each cell by plotting the mean squared error against the number of moments (34) and finding
where the gradient approached 0.

Statistical analysis

All statistical analysis was performed in R (35) and Figures 3-5 were made using GGPlot (36). All
code and corresponding data can be found on GitHub, https://github.com/george-
butler/2d_microscopy/tree/master/statistical_analysis . A cell needed to appear in at least 30
frames to be included in our analysis and be present for at least 75% of the track. Some cells
were not detected in a given frame or had to be removed due to being incorrectly segmented.
Throughout our analysis we used linear mixed models to account for the differences between
replicate populations within the four treatments (37). The mean rate of morphological change and
the mean speed of migration were calculated through the use of an intercept only linear mixed
population with independent intercepts for each treatment. The rate of morphological change
model is defined below:
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Rate of morphological change = a + B1 (speed of migration) + 32 (distance to nearest
neighbour) + Bz (speed of migration) * (distance to nearest neighbour) + (1|well id)

The model was selected through forward selection whereby parameters were only included if they
were significant at the 5% level. The marginal R2 values were calculated using the method
detailed by (38).

Results

Quantifying dispersal in evolved populations

To analyse their dispersal behaviour cells were placed onto 2D tissue-culture plates and their
migration was recorded over a 12-hour period , with images taken at two-minute intervals. The 2D
plastic environment was intentionally chosen as a neutral testing environment and to ensure that
the morphology could be clearly seen without the use of fluorescent tags, a factor that might have
applied an additional selective pressure (39). The cells were tracked through the use of a semi-
automated pipeline, Usiigaci (30), that combined a convolutional neural network with our own
manually annotated images to trace the morphology of each cell at every time point (Figure. 2A).

We extracted three guantitative measures per cell per frame of time-lapse video: morphology,
speed and the distance to the closest neighbouring cell. Morphology was quantified using Zernike
moments. Zernike moments (33) have been used previously to quantify cancer cell morphology in
fixed populations (10) and are a method that captures all of the morphological information
available rather than needing to make a prior decision about which morphological features might
be important i.e. the length of a cell. The rate of morphological change is then measured as the
distance between the vector of moments in frame t and t+1 relative to the time between frames
(Figure. 2B). Speed of migration was calculated from the change in spatial location between
consecutive frames (Figure. 2C). The distance to the closest neighbour cell was calculated as the
shortest distance from the edge of the cell contour to another neighbouring cell contour without
crossing the body of the cell (Figure. 2D). Finally the average was calculated for each metric over
the entire trajectory of the cell, providing a summary of the dispersal phenotype of each cell.

After extracting these three metrics we sought to evaluate whether the rate of morphological
change or the speed of migration was significantly different among the four treatments. We used
an analysis of variance (ANOVA) to compare the mean rate of morphological change and the
mean speed of migration across all populations; differences in wells were accounted for as a
random effect. We found that there was significant variation among population in their mean rate
of morphological change (p = 0.0296, N = 813). We then conducted a post-hoc Bonferroni
multiple comparison test to identify which populations were different, controlling for any possible
between-replicate variation through the use of a random effect. Escape populations had a
significantly higher rate of morphological change compared with the invasion populations, (p =
0.0152, N = 813; Figure. 3). There was no significant difference in the mean speed of migration
among the four treatments.

Speed of migration predicts rate of cell-morphological change in evolved populations

Next we investigated how the morphological behaviour of a cell related to its speed and its social
environment. We fitted a linear mixed model across our data whereby the rate of morphological
change is dependent on the speed of migration, the distance to the nearest neighbouring cell and
the interaction of the two, as detailed in our Methods. We set treatment as a fixed effect and
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allowed intercepts and slopes to vary between treatments. The significant parameters were then
used to fit a reduced model to the ancestor, escape and invasion populations (Figure. 4).

In the ancestor populations neither the speed of migration nor the distance to neighbouring cells
significantly affected the rate of morphological change. We proceeded by fitting an intercept only
model to our data (Figure. 4). However, the intercept model explained only a small proportion of
the variance, (marginal R2 = 0). This might suggest that the rate of morphological change is highly
stochastic, or that it depends on factors not included in our model.

In contrast, in both escape and invasion populations, the rate of morphological change is
significantly positively correlated with the speed of migration, (B = 0.680 and 0.319 respectively:
Figure. 4). Furthermore, the escape and invasion models both explain a significant proportion of
the variation (marginal R? = 0.347 and 0.099 respectively). To ensure that our results were not
affected by a small cluster of potential outliers we repeated the same analysis after having
removed influential data points, defined by a Cook's distance > (4 / N) where N is the sample
size (40).

The slope of the relationship is steeper for escape than for invasion populations suggesting that
selection for escape may favour cells that can change their morphology rapidly when migrating at
a high speed. This might be a result of the collagen escape assay being a 3D to 3D environment
compared with the 2D to 3D environment of the Matrigel invasion assay. However, this also could
be due to the different number of rounds of selection between the two assays, or difference in the
strength of selection within each.

Spatial density affects morphological dynamics

The colonisation populations displayed a complex morphological behaviour dependent on the
speed of migration, the distance to the nearest neighbouring cell and the interaction of the two: as
the distance between neighbouring cells increases, the relationship between the rate of
morphological change and the speed of migration becomes negative (Figure. 5A). When close to
a neighbouring cell, the rate of morphological change is positively correlated with the speed of
migration: a faster speed of migration results in a higher rate of morphological change. However,
when the distance between neighbouring cells is large and a cell is isolated, the rate of
morphological change is negatively correlated with the speed of migration: a faster speed of
migration has a lower rate of morphological change. We repeated the same analysis after the
removal of any influential data points and found that the interaction term was still significant in
these colonisation populations (Fig. S1). We also found that the colonisation model explained a
significant proportion of the variation in the rate of morphological change (marginal R? = 0.236).

Next we sought to determine whether the switch in morphological behaviour with distance was
gradual or sudden. To investigate this hypothesis, we centred the nearest neighbour data at a
distance x and then refitted the same morphological change model. After fitting the model, we
evaluated whether the speed of migration was significant in the model. If the speed of migration is
not significant then we know that at a distance x there is not a significant difference in the rate of
morphological change for cells migrating at different speeds. We can then repeat the same
method for different values of x to find a range of distances over which the speed of migration is
not significant. The smaller the range the more sudden the switch.

We found that for nearest neighbour distances between 57.9um and 147.2um the speed of
migration is not significant in our model, as seen by the shaded region in Figure. 5B. Therefore, at
distances < 57.9um or > 147.2um the speed of migration is significantly related to the rate of
morphological change. The small range of distance values suggests that the cells have a high
degree of sensitivity to the location of neighbouring cells. Interestingly, the range of distance
values coincides with values from the literature whereby cells within a tumour core have been
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seen to display a correlated mode of migration at spatial distances < 50um compared with
distances greater than 250pum (41).

Discussion

We have conducted novel phenotypic analysis across experimentally evolved populations of
MDA-MB-231 breast cancer cells to investigate their behaviour during dispersal. Combining
experimental evolution with computer vision we have generated a multidimensional data set that
quantifies single cell dispersal dynamics within each population. In turn we have built a
continuous data driven morphological model that has uncovered fundamental dispersal behaviour
at a cellular level and is capable of distinguishing cells selected for colonisation.

The flow of migratory cells through the microenvironment creates a landscape that is
heterogeneous both spatially and temporally (42). This landscape variability might in turn explain
the correlation between the rate of morphological change and the speed of migration for both the
escape and invasion populations (Figure 4). The collagen escape and Matrigel invasion assays
used to select the escape and invasion populations are porous and complex (43) but yet they are
also malleable. The malleability of these two environments means that large structural changes
can occur and thus migration routes that were previously accessible may become blocked.
Therefore, a cell may need to respond to its environment by changing its morphology to ensure
that it can continue to migrate and does not become trapped. Likewise, as the speed of migration
increases, an increase in the rate of morphological change might be necessary to ensure that the
cells aren't temporarily stuck by any potential obstacles. This would also explain why there is ho
correlation in the ancestor populations where the environment remains constant and there would
therefore be no selective advantage to this behaviour.

Distant-site colonisation requires a cell to switch from a mode of long-range dispersal and focus
on re-initiating aggressive proliferation; the subsequent increase in local cell density may reduce
available space and thus intensify competition. A similar selective pressure can be seen in our
experimental assays. In contrast to the ancestor, escape and invasion populations, where cells
are periodically moved to a new expansive environment, the colonisation population remain fixed.
As such in addition to the structural changes that occurred in the microenvironment there was a
high density of cells migrating locally so cells themselves could block potential migration routes,
and therefore might explain the significance of the neighbour location in our model. This
hypothesis would also explain the interaction that is observed between neighbouring cells. If a
cell is migrating at a high speed and is close to other neighbouring cells, then changing its
morphology rapidly might be necessary to avoid other cells that are changing location
dynamically. However, when isolated the location of neighbouring cells is no longer of concern
and thus a reduction in the rate of morphological change might allow a cell to conserve
resources.

The significance of the neighbour sensitivity may also suggest that the ability of a cell to sense
contact has been re-acquired within the colonisation population. A loss of contact inhibition is
seen as one of the earliest developments in cancer progression as it allows aggressive
proliferation to ensue, which in turn gives rise to the formation of a primary tumour (44). However,
the high degree of neighbour sensitivity seen in Figure. 5 questions whether contact sensing is in
fact lost, or instead down-regulated earlier in the metastatic cascade. If true, this could suggest
that cells selected for distant-site colonisation are able to vary their own contact sensing ability
dependent on the exogenous environmental stresses they encounter.

In summary, we have shown that evaluating cell morphology as a dynamic process provides
novel insight into the behaviour of breast cancer cells, and furthers our understanding of the
phenotypic route to metastasis. A pivotal next step will be evaluating morphological dynamics
within a native 3D environment (45) and in the vicinity of stromal cells such as a fibroblasts which

9
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are known to have a critical role in metastasis (46). The presence of stromal cells might also
change the relationship seen within our escape and invasion populations, as cells would then be
able to interact via matrix metalloproteinases. Thus, rather than needing to change their
morphology quickly to prevent being trapped, they could exploit the matrix metalloproteinases to
cut them free, as seen previously during metastatic dispersal (47). It would also be of value to
subject multiple starting cell lines to a similar selective regimes, in case the MDA-MB-231 line
used here behaves atypically. However, we believe that this work highlights the power of
phenotypic analysis in discovering the complex emergent behaviours that would not have been
apparent from genetic data .
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Figure 1. Experimental evolution of cancer cell populations. Ancestor populations were kept
frozen throughout. Escape populations were placed in a high density collagen matrix the
surrounded by a low density outer collagen ring: after 10-14 days cells that had escaped into the
outer ring (shown in blue) were released, expanded and reseeded back into a new high density
collagen core; this process was repeated 7 times over the course of 6 months. Invasion
populations were seeded around a Matrigel island; after 7 days cells that had invaded the
Matrigel (shown in blue) were released, expanded and reseeded around a new Matrigel island
this was repeated 15 times over the course of 6 months. Colonisation populations were seeded
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onto a piece of decellularized rat lung which acted as a novel scaffold for colonisation and left to

establish for 6 months. Four replicate lines were maintained for each treatment.
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Figure 2. Quantifying dispersal from time-lapse videos. (A) Cells were tracked over a 12 hour
period with images taken at two minute intervals using phase contrast time-lapse microscopy to
generate movies from which morphology could be segmented through the use of a convolutional
neural network. (B) The rate of morphological change was recorded as the distance between
Zernike moments in consecutive frames. (C) The speed of migration is calculated as the distance
between the spatial location of cells in consecutive frames. (D) The distance between
neighbouring cells is quantified as the shortest distance between the contour of one cell and the
contour of another. The direction of the arrow points from a given cell to the point on the contour
of the closest neighbouring cell.
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Figure 3. Comparing the mean rate of morphological change among the four treatments. A
plot of the natural log-transformed rate of morphological change for each of the four treatments.
The centre dot signifies the mean rate of morphological change with errors bars signifying 95%
confidence intervals. The escape populations had a significantly faster rate of morphological
change compared with the invasion populations, p = 0.0152 (N = 813). The mean, standard error
and number of observations for each population can be found in Table S1.
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Figure 4. The rate of morphological change against the speed of migration. The natural log-
transformed rate of morphological change plotted against the natural log-transformed speed of
migration. The straight lines represent the reduced model for each treatment using only
parameters that are significant at the 5% level. The ancestor populations have an intercept-only
model fitted (N = 88). The speed of migration is the only significant variable in the escape (N =
230, p = 1.765 x10-3) and invasion (N = 283, p = 0.018) populations. For both escape and
invasion populations the rate of morphological change is positively correlated with the speed of
migration, the faster the speed of migration the higher the rate of morphological change.
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Figure 5. A dynamic switch in the morphological behaviour within cells selected for
colonisation. Data points have been removed to highlight the behaviour of the model, the same
model with data points can be seen in Fig. S2. The speed of migration (p = 5.418 x10-14), the
distance to the nearest neighbouring cell (p = 2.207 x10-19) and the interaction of the two (p =
2.219 x10-11) was significant in the colonisation population (N = 212). (A) The predicted natural
log-transformed rate of morphological change against the natural log-transformed speed of
migration. The shaded lines indicate the natural log transformed nearest neighbour percentile.
The lighter the line, the further away from a neighbouring cell with distance values ranging from
2um - 477um. (B) The predicted natural log-transformed rate of morphological change against the
natural log-transformed nearest neighbour distance. The shaded lines indicate the speed of
migration percentile. The lighter the line the faster the speed of migration. The shaded region
indicates the range of distances over which there is no significant relationship in the rate of
morphological change and the speed of migration when the data is centred at these distances,
between 57.9um and 147.2um.

16



