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Abstract

CMO functions multiplicative functions f for which
∑∞

n=1 f (n) = 0. Such functions were
first defined and studied by Kahane and Saïas [14]. We generalised these to Beurling
prime systems with the aim to investigate the theory of the extended functions and we
shall call them CMOP functions. We give some properties and find examples of CMOP
functions. In particular, we explore how quickly the partial sum of these classes of
functions tends to zero with different generalised prime systems. The findings of this
paper may suggest that for all CMOP functions f overN with abscissa 1, we have

∑

n ≤ x
n ∈ N

f (n) = �
( 1√

x

)
.

Keywords: Beurling’s generalized primes, Multiplicative functions

Mathematics Subject Classification: 11N80, 11N56

1 Introduction
1.1 Completely multiplicative function with sum zero

A function f : N −→ C is called a completely CMO function if it satisfies the two following
conditions:

f is a completely multiplicative function and
∞∑

n=1
f (n) = 0.

Such functions were first introduced by Kahane and Saïas [14]. Onemotivation for them
is to gain further insight into the zeros of Dirichlet series with completely multiplicative
coefficients. Namely, the Generalised Riemann Hypothesis as discussed below. They also
gave some properties and examples of such functions. For instance, they discussed various
examples of CMO functions including f (n) = λ(n)

n , where λ(n) is the Liouville function
and f (n) = χ (n)

nα , where χ is a non-principal Dirichlet character and α is a zero of Lχ with
�α > 0.
This study led them to consider the question of how quickly

∑
n≤x f (n) can tend to

zero. They suggested that it is always �
(

1√
x

)
and the Generalised Riemann Hypothesis–

Riemann Hypothesis (GRH–RH) would follow if their statement is true. This suggestion
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is incredibly difficult to prove, but it might be easier to disprove; i.e., to find examples such
that

∑

n≤x
f (n) = O

( 1
xc

)
for some c >

1
2
.

To date no such counter examples have been found. One approach to consider this
counter example question is to consider examples of generalisedCMO functions onBeurl-
ing prime systems.

1.2 Beurling generalised prime systems

The concept of generalised primes and generalised integers was introduced by Beurling
[3] in the 1930s and has been studied by many researchers since then (see for instance
[2,4,11,15,18]). The structure of this system is defined to be a sequence of real positive
numbersP = {p1, p2, p3, . . .}which need not be actual primes (or even integers) satisfying

1 < p1 ≤ p2 ≤ · · · ≤ pi ≤ · · ·
and for which pi −→ ∞ as i −→ ∞. With this sequence we can form a new increasing
sequence

1 < n1 ≤ n2 ≤ · · · ≤ ni ≤ · · ·
of real numbers which represent all possible products

∏k
i=1 p

ai
i , where k ∈ N and

a1, a2, . . . , ak ∈ N0.1 These new elements are called generalised integers associated to P
and denoted byN ; (i.e. N = {ni}i≥1). Attached to these systems we have the usual count-
ing functions πP (x) andNP (x) which are the sum over all the g-primes and g-integers not
exceeding the positive real number x, counting multiplicities, respectively; that is

πP (x) =
∑

p ≤ x
p ∈ P

1 and NP (x) =
∑

n ≤ x
n ∈ N

1.

These type of systems are discrete systems, where π andN are step functions with integer
jumps. There is also a concept of continuous g-prime systems [8,12], but they shall not
concern us here. The generalised zeta function, the associated zeta function, is formally
defined by

ζP (s) =
∏

p∈P

1
1 − p−s =

∑

n∈N

1
ns

. (1)

We say that a g-prime system P has an abscissa of convergence σc if and only if the sum
of (1) converges for �s > σc and diverges for �s < σc. The product is called the Euler
product of the Beurling zeta function. The sum of (1) represents the generalised Dirichlet
series which will be generated by multiplying out this product in the same way as the
standard Euler product, defined in many books and papers.
In this paper, we outline some relevant ideas and results about g-primes and

g-integers, in order to prove the main results in this paper, where we are interested

1Here and henceforth, N = {1, 2, 3, . . .}, N0 = N ∪ {0}, and P = {2, 3, 5, . . .}—the set of primes.
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in g-prime systems for which both NP (x) and ψP (x) are simultaneously “well-behaved”.
These systems were investigated by Hilberdink [11] and have the following properties:

NP (x) = ρx + O(xβ+ε) for some ρ > 0 (2)

and

ψP (x) = x + O(xα+ε) (3)

hold for all ε > 0, but for no ε < 0 and 0 ≤ α,β < 1. For the usual primes, (2) holds with
β = 0 and if the RH is true, then (3) would hold for α = 1

2 . Such systems exist as was
shown by Zhang [17]. Indeed, PZ (his system) satisfies these with α = β = 1

2 . We also
study such systems where either of (2) or (3) holds with α,β < 1

2 .

1.3 Completely multiplicative function onN
An arithmetical function with domain N is a function f : N −→ C which is defined on
the multi-set of Beurling integersN .
Note that we are abusing the notion of function in case of multiplicities. This is done for

clarity of notation. In much of our work, we are not interested in the arithmetic function
f : N −→ C itself, but in the partial sum of the function f (n) up to and including x; i.e.

∑

n ≤ x
n ∈ N

f (n),

which is a function because it counts all the possible elements of N up to x. A function
f : N −→ C is said to be multiplicative on N if f (1) = 1 and f (mn) = f (m)f (n)
whenever (m, n) = 1. Such an f is said to be completely multiplicative [5,16] if we also
have f (mn) = f (m)f (n) for all values ofm, n ∈ N , where (m, n) is defined as the largest g-
integer that divides bothm and n. We define the generalised Liouville function onN , is an
example of completelymultiplicative function, to be λP (1) = 1 and λP (n) = (−1)a1+···+ak

for n = pa11 · · · pakk ∈ N , where k ∈ N and a1, . . . , ak ∈ N0. As for classical multiplicative
functions, if f and g are multiplicative functions and f (pk ) = g(pk ) for all g-primes p ∈ P
and k ∈ N0, then f = g .
We also define the generalised Chebyshev function overN with the sum extending over

all g-prime numbers p ∈ P that are less than or equal to x as follows:
ψP (x) =

∑

pk ≤ x
p ∈ P
k ∈ N

log p.

As in classical prime number theory, we introduce the g-prime counting function


P (x) =
∞∑

n=1

πP
(
x

1
n
)

n
.

It is related to ψP (x) via

ψP (x) =
∫ x

p1
log t d 
P (t).

We can also define the functions lP andmP which represent the following partial sums:

lP (x) :=
∑

n ≤ x
n ∈ N

λP (n)
n

and mP (x) :=
∑

n ≤ x
n ∈ N

μP (n)
n

.
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1.4 Relationship between λP andμP
In this section, we derive results which establish relationships between the λP and μP
functions as in the classical case. Of course, we shall always be aware that these are not
necessarily functions if they are made from different g-primes. We first introduce two
useful propositions and described as follows, which their proofs are standard.

Proposition 1 For every n ∈ N , we have

λP (n) =
∑

d2 |n
d ∈ N

μP
( n
d2

)
.

Proposition 2 For every n ∈ N , we have

μP (n) =
∑

d2 |n
d ∈ N

λP
( n
d2

)
μP (d).

As consequences of propositions 1 and 2 we have

lP (x) =
∑

n ≤ x
n ∈ N

∑

d2 |n
d ∈ N

μP
(

n
d2

)

n
=

∑

d2 ≤ x
d ∈ N

∑

n ≤ x s.t. d2 |n
n ∈ N

μP
(

n
d2

)

n

=
∑

d2 ≤ x
d ∈ N

∑

m ≤ x
d2

m ∈ N

μP (m)
md2

=
∑

d2 ≤ x
d ∈ N

mP
(

x
d2

)

d2
(4)

and

mP (x) =
∑

n ≤ x
n ∈ N

∑

d2 |n
d ∈ N

λP
(

n
d2

)

n
μP (d) =

∑

d2 ≤ x
d ∈ N

∑

n ≤ x s.t. d2 |n
n ∈ N

λP
(

n
d2

)

n
μP (d)

=
∑

d2 ≤ x
d ∈ N

∑

m ≤ x
d2

m ∈ N

λP (m)
md2

μP (d) =
∑

d2 ≤ x
d ∈ N

lP
(

x
d2

)

d2
μP (d). (5)

Lemma 3 Let P be a g-prime system for which
∑

n∈N 1
n2 converges. Then NP (x) =

o(x2).

Proof Since
∑

n∈N 1
n2 converges and put

A(x) :=
∑

n ≤ x
n ∈ N

1
n2

= C + o(1),

then, by Abel summation,

NP (x) =
∑

n ≤ x
n ∈ N

1 = A(x) · x2 − 2
∫ x

1
A(t)tdt

= (C + o(1))x2 − 2
∫ x

1
(C + o(1))tdt = o(x2).


�
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We now establish a relationship between lP (x) and mP (x) in terms of these sum func-
tions tending to zero with increasing terms.

Theorem 4 Let P be a g-prime system for which
∑

n∈N 1
n2 converges. Then lP (x) = o(1)

if and only if mP (x) = o(1).

Proof Suppose mP (x) = o(1). Let ε > 0. Then |mP (x)| < ε for x ≥ x0, some x0. Thus∣
∣
∣mP

(
x
d2

)∣
∣
∣ < ε if x

d2 ≥ x0. Hence (4) gives

|lP (x)| =
∑

d2 ≤ x
d ∈ N

∣
∣
∣mP

(
x
d2

)∣
∣
∣

d2
≤ ε

∑

d2 ≤ x
x0

d ∈ N

1
d2

+
∑

x
x0 < d2 ≤ x
d ∈ N

∣
∣
∣mP

(
x
d2

)∣
∣
∣

d2

≤ ε
∑

d2 ≤ x
x0

d ∈ N

1
d2

+ A
x0
x

∑

x
x0 < d2 ≤ x
d ∈ N

1 (since
∣
∣
∣mP

( x
d2

)∣
∣
∣ ≤ A)

≤ ε ζP (2) + Ax0
NP (

√
x)

x
.

Letting x −→ ∞ and using NP (
√
x) = o(x) (by Lemma 3), we find

lim sup
x−→∞

|lP (x)| ≤ ε ζP (2).

This is true for all ε > 0. Since ε is arbitrary, then lP (x) → 0.
Now suppose lP (x) = o(1). Let ε > 0. Then |lP (x)| < ε for x ≥ x0, some x0. Thus∣

∣
∣lP

(
x
d2

)∣
∣
∣ < ε if x

d2 ≥ x0. Hence (5) gives

|mP (x)| =
∑

d2 ≤ x
d ∈ N

∣
∣
∣lP

(
x
d2

)
· μP (d)

∣
∣
∣

d2
≤ ε

∑

d2 ≤ x
x0

d ∈ N

1
d2

+
∑

x
x0 < d2 ≤ x
d ∈ N

∣
∣
∣lP

(
x
d2

)∣
∣
∣

d2
(since |μP (d)| ≤ 1)

≤ ε
∑

d2 ≤ x
x0

d ∈ N

1
d2

+ A
x0
x

∑

x
x0 < d2 ≤ x
d ∈ N

1 (since
∣
∣
∣lP

( x
d2

)∣
∣
∣ ≤ A)

≤ ε ζP (2) + Ax0
NP (

√
x)

x
.

Letting x −→ ∞ and using NP (
√
x) = o(x) (by Lemma 3), we find

lim sup
x−→∞

|mP (x)| ≤ ε ζP (2).

This is true for all ε > 0. Since ε is arbitrary, thenmP (x) → 0. 
�

Remark 5 In particular, if the abscissa of the g-prime systemP is 1, thenmP (x) and lP (x)
tend to zero together.

The following theorem establishes a useful correspondence between

MP (x) =
∑

n ≤ x
n ∈ N

μP (n) and LP (x) =
∑

n ≤ x
n ∈ N

λP (n).
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Theorem 6 Let P be a g-prime system with abscissa 1 and let 1
2 < a ≤ 1. Then LP (x) =

O(xa) if and only if MP (x) = O(xa).

Proof AssumeMP (x) = O(xa). Then, in the same way that we obtained (4), we have

LP (x) =
∑

d2 ≤ x
d ∈ N

MP
( x
d2

)
�

∑

d ≤ √
x

d ∈ N

xa

d2a
≤ xaζP (2a)

since 2a > 1, so ζP (2a) exists.
For the converse, assume LP (x) = O(xa). Since |μP (d)| ≤ 1, in the same way that we

obtained (5), we have

MP (x) =
∑

d2 ≤ x
d ∈ N

LP
( x
d2

)
μP (d) � xa

∑

d ≤ √
x

d ∈ N

1
d2a

= xaζP (2a).


�

2 Completely multiplicative function with sum zero onN
LetP be a g-prime system.We say that f : N −→ C is a CMOP function if it satisfies the
following conditions:

(i) f is a completely multiplicative function (ii)
∑

n∈N
f (n) = 0.

This is a generalisation of a CMO function. We investigate some properties of CMOP
functions. The same questions that were asked by Kahane and Saïas [14] about CMO
functions can be discussed for CMOP functions. For example, how quickly

∑
n≤x f (n)

can tend to zero. In particular, we would like to investigate how quickly the partial sum
of λP (n) over n up to and including x tends to zero with different type of systems where
λP (n) is Liouville’s function over N . Specially, we discuss O-Results of

∑
n≤x

λP (n)
n over

N with a system which satisfies

NP (x) = ρx + O(xβ+ε) (for some ρ > 0) and ψP (x) = x + O(xα+ε) (6)

for all ε > 0, but for no ε < 0 and0 ≤ α,β < 1.As special casewe treatZhang’s system (see

Theorem 1 of [17]) with error termO
(

x
1
2 e(c log x)

2
3
)

for the counting functionNP (x) and

O(x
1
2 ) forψP (x).We show that

∑
n≤x

λP (n)
n for the systemwhich satisfies (6) isO

( 1
x1−�−ε

)
,

where � is the maximum value between α and β , whereas Zhang’s system gives

LP (x) = O
(

x
1
2 e(c log x)

2
3
)

, (7)

where LP (x) is the partial sum of the Liouville function onN as defined previously. This
can be compared to the conditional result of Balazard and de Roton [1] concerning the
Möbius function of the standard integers. They showed that assuming RH,

M(x) = O
(
x

1
2 e(log x)

1
2 (log log x)

5
2+ε

)
for all ε > 0,
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whereM(x) is the partial sum of the Möbius function. Following the above result, Theo-
rem 6 can be used to show that

L(x) = O
(
x

1
2 ec(log x)

1
2 (log log x)

5
2+ε

)
for all ε > 0.

We notice that the right hand side of (7) can be automatically improved if one would be
able to improve the error term in Zhang’s system.
We also explore�Results for the behaviour of

∑
n≤x

λP (n)
n for a systemP which satisfies

either the assumption

NP (x) = ρx + O(xβ ) for some ρ > 0 or ψP (x) = x + O(xα),

for some α,β < 1
2 . The aim is to find a completely multiplicative function f overN with

abscissa 1 such that
∑

n ≤ x
n ∈ N

f (n) = O
( 1
xc

)
for some c >

1
2
.

3 Some properties of CMOP functions
In this section, we derive some preliminary properties of CMOP functions.

Proposition 7 Let f be a completely multiplicative function over N . Then
∑

n∈N |f (n)|
converges if and only if

∑
p∈P |f (p)| converges and supp∈P |f (p)| < 1 for all p ∈ P .

Proof It straightforward that the series
∑

p∈P |f (p)| converges and supp∈P |f (p)| < 1 for
all p ∈ P if

∑
n∈N |f (n)| converges.

Now suppose
∑

p∈P |f (p)| converges and |f (p)| < 1 for all p ∈ P . We want to prove
∑

n∈N |f (n)| converges.
From above, c = supp∈P |f (p)| < 1. Therefore

∏
p∈P 1

1−|f (p)| converges since

1 ≤
∏

p∈P

1
1 − |f (p)| =

∏

p∈P

(
1 + |f (p)|

1 − |f (p)|
)

≤
∏

p∈P

(
1 + 1

1 − c
|f (p)|

)
.

Now
∏

p≤x

1
1 − |f (p)| =

∑

n ∈ N
p|n & p ≤ x

|f (n)| converges

≥
∑

n≤x
|f (n)|.

Hence
∑

n∈N |f (n)| converges. 
�

Proposition 8 Let f be aCMOP function. Then
∑

n∈N |f (n)|diverges. Indeed∑
p∈P |f (p)|

diverges.

Proof Let us assume the contrary, so that
∑

n∈N
|f (n)| converges.

Then, by completely multiplicativity,

∑

n∈N
|f (n)| =

∏

p∈P

1
1 − |f (p)| and

∑

n∈N
f (n) =

∏

p∈P

1
1 − f (p)


= 0.
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This contradiction implies

∑

n∈N
|f (n)| diverges.

Furthermore, Proposition 7 gives
∑

p∈P |f (p)| diverges, as required. 
�

3.1 Partial sums of CMOP functions

We know that the partial sum of an CMOP function not exceeding x tends to zero when
x tends to infinity. A question raised by Kahane and Saïas [14] regarding CMO functions
is: can one show, given g(x), that there exists a CMO function f with

∑

n≤x
f (n) = �(g(x))?

We are not considering this question, but we are interested in a related question which
is: how small can we make g(x), so that the above is true for all CMOP functions f ? To
answer this we need some assumptions on g-prime systems.

Proposition 9 Let P be a g-prime system such that all g-primes are distinct for which
∑

p∈P 1
p log p converges. If f is a CMOP function, then

∑

n ≤ x
n ∈ N

f (n) = �
( 1
x log x

)
.

Proof Let us assume that the statement is false, so that
∑

n ≤ x
n ∈ N

f (n) = O
( 1
x log x

)
.

We know that for every p ∈ P , we have

f (p) =
∑

m≤p
f (m) −

∑

m<p
f (m) = O

( 1
p log p

)
. (8)

Now it follows that
∑

p∈P |f (p)| converges and |f (p)| < 1 for all p ∈ P by the
assumptions. Hence, by Proposition 7, we have

∑
n∈N |f (n)| converges. However by

Proposition 8 we have a contradiction, and so it follows that
∑

n ≤ x
n ∈ N

f (n) = �
( 1
x log x

)
.


�

Remark 10 (i) Similarly, we can get different results by having different assumptions
on the g-prime systems such that all g-primes are distinct.2 For Example, if f is a

2If all g-primes are not distinct, it can be more complicated. For instance, if P is {2, 2, 3, 3, . . .} (every prime appears
twice), then (8) does not work.
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CMOP function andP is a g-prime systemwith such that all g-primes are distinct
for which

∑
p∈P 1

p(log log p)2 converges, then

∑

n ≤ x
n ∈ N

f (n) = �
( 1
x(log log x)2

)
. (9)

(ii) Kahane and Saïas [14] have shown that if f is a CMO function, then
∑

n≤x
f (n) = �

(1
x
)
.

Now if we assume
∑

p∈P 1
p converges, then the sum on the left of (9) is �( 1x );

although the latter condition appears to be a bit unnatural in a number-theoretic
context.

3.2 Closeness relation between two completely multiplicative functions which are defined

overN
Let CMP := {f : N −→ C completely multiplicative}, and let us define an (extended)
metric on CMP to be the distance function

D(f, g) :=
∑

p∈P
|g(p) − f (p)|.

Then CMP is an extended metric space since D(f, g) can attain the value ∞. We aim to
generalise Theorem 3 of Kahane and Saïas [14] over Beurling prime systems.
The following theorem shows that if f is a CMOP function and g is a nearby completely

multiplicative function onN , then g is also aCMOP function. In other words, under extra
conditions on the values of g-primes for two completely multiplicative functions if one is
a CMOP , then so is the other.

Theorem 11 Let P be a g-prime system with abscissa 1, f a CMOP function and g a
completely multiplicative function on P such that

|g(p)| < 1 for all p ∈ P (10)

and

D(f, g) < ∞. (11)

Then g is a CMOP function.

Proof Let F (s) := ∑
n∈N

f (n)
ns andG(s) := ∑

n∈N
g(n)
ns . Then the series forF (s) is absolutely

convergent for �s > 1 and it is convergent for �s > 0 and s = 0 since
∑

n∈N f (n) = 0.
Assumption (10) and that g is completely multiplicative function imply |g(n)| ≤ 1. Thus
the series for G(s) also converges for �s > 1 since g is bounded and the abscissa of P is 1.
Therefore F (s) and G(s) can be written as follows:

F (s) =
∏

p∈P

1
1 − f (p)

ps
and G(s) =

∏

p∈P

1
1 − g(p)

ps
�s > 1.
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Now

H (s) :=
∏

p∈P

(
1 − f (p)

ps

1 − g(p)
ps

)

=
∏

p

(

1 +
g(p)−f (p)

ps

1 − g(p)
ps

)

converges absolutely for �s ≥ 0 if and only if

∑

p∈P

∣
∣ g(p)−f (p)

ps
∣
∣

∣
∣1 − g(p)

ps
∣
∣

(12)

converges for �s ≥ 0. But
∣
∣ g(p)−f (p)

ps
∣
∣

∣
∣1 − g(p)

ps
∣
∣

≤ 2
|g(p) − f (p)|

p�s

since
∣
∣
∣1 − g(p)

ps
∣
∣
∣ ≥ 1

2 for p sufficiently large and �s > 0. Thus H (s) converges absolutely
to a holomorphic function for �s > 0. However, H (s) = (G/F )(s) for �s > 1 then
G(s) = F (s)H (s), where the series for F (s) converges for �s > 0 and s = 0 since f is a
CMOP function, and H (s) converges absolutely for �s ≥ 0. Therefore G(s) converges for
�s > 0 and s = 0. Thus we have G(0) = F (0)H (0) = 0. Hence g is a CMOP function. 
�
The proof of Theorem 11 implies the following result.

Corollary 12 Let P be a g-prime system with abscissa 1, f and g both be completely
multiplicative functions on P such that D(f, g) is finite and satisfying

|f (p)|, |g(p)| < 1 for all p ∈ P .

Then the following two assertions are equivalent:
∑

n∈N
f (n) = 0 and

∑

n∈N
g(n) = 0.

4 The function λP (n)
n over different systemsP

In this section, we provide some examples ofCMOP functions. In particular, we introduce
some examples of the function λP (n)

n with different g-prime systems where λP (n) is the
Liouville function over the g-prime system P . We emphasize that we are only interested
in those systems for which the abscissa of convergence of the Dirichlet series for ζP is 1.

Example 13 As shown in [6,7,9,10], if P satisfies one of the following assumptions:

ψP (x) =
∫ x

1

d(ψP (t))
t

= log x + c + o(1) for some constant c, (13)

or

MP (x) = o(x) and NP (x) − ρx = O
( x
logγ x

)
holds for some ρ > 0 and γ > 1,

(14)

or

MP (x) = o(x) and
∫ ∞

1

∣
∣
∣
NP (x) − ax

x2
∣
∣
∣dx < ∞ for some a > 0, (15)



A. A. Neamah Res. Number Theory            (2020) 6:45 Page 11 of 21    45 

or

NP (x) ∼ ρx and log ζP (s) − log
( 1
s − 1

)
has a continuous extension to �s = 1,

(16)

or

∫ ∞

2

∣
∣
P (x) − x

log x
∣
∣ dx
x2

< ∞, where 
P (x) =
∞∑

k=1

1
k
πP

(
x

1
k
)
, (17)

then
∑

n∈N
μP (n)

n = 0. Therefore, by using Theorem 4,
∑

n∈N
λP (n)

n = 0. Hence λP (n)
n is

a CMOP function since it is completely multiplicative with sum zero.
In fact, we do not even need πP (x) ∼ x

log x for
∑

n∈N
λP (n)

n = 0 to be true since it is
shown in [7] that the following condition

∫ ∞

2

∣
∣
P (x) − x

log x

(
1 +

k∑

j=0
bj cos(tj log x + yj)

)∣
∣ dx
x2

< ∞ (18)

with distinct tj > 0 and (1+t2j )
1/2 |bj cos(yj+arctan tj)| < 2, j = 1, . . . , k, is also sufficient

to have
∑

n∈N
μP (n)

n = 0.

From Example 13, we see that
∑

n∈N
λP (n)

n = 0, but how quickly does it converge?

4.1 O-results for Euler’s example overN
In this section, we shall be interested in the behaviour of

∑
n≤x

λP (n)
n over a g-prime

system P which satisfies

NP (x) = ρx + O(xβ+ε) (for some ρ > 0) (19)

and

ψP (x) = x + O(xα+ε) (20)

as x −→ ∞ for all ε > 0, but for no ε < 0 and 0 ≤ α,β < 1.

Theorem 14 Given a g-prime systemP satisfying (19) and (20) for some β ,α < 1, and let
λP as defined before, we have

∑

n ≤ x
n ∈ N

λP (n)
n

= O
( 1
x1−�−ε

)
for all ε > 0,

where � = max{α,β}.

Proof We letP denote a g-prime system satisfying (19) and (20). Then, for all�s > 1, we
have

ZP (s) =
∑

n∈N

λP (n)
ns

= ζP (2s)
ζP (s)

.
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We need a bound for ZP (s) on vertical line s = σ + it with |t| large and σ > �. To find
such bound of ZP (s), we start with

|ζP (2s)| =
∣
∣
∣
∣

∑

n∈N

1
n2σ+2it

∣
∣
∣
∣ ≤

∑

n∈N

1
n2σ

= O(1)

for σ > 1
2 .

From the proof of Theorem 2.3 of [13], for σ > �, we have

log |ζP (σ + it)| = O
(
(log |t|) 1−σ

1−�
+ε

)
.

In particular, for σ > �,

1
|ζP (σ + it)| = O(|t|ε) for all ε > 0.

Hence, for σ > �,

|ZP (s)| =
∣
∣
∣
∣
ζP (2σ + 2it)
ζP (σ + it)

∣
∣
∣
∣ = O(|t|ε) for all ε > 0 and for |t| ≥ 1. (21)

Using the inverse Mellin transform we have for x > 0, x /∈ N

LP (x) = 1
2π i

∫ c+i∞

c−i∞
ZP (s)
s

xsds (c > 1).

Now split the range into (c− i∞, c− iT ], [c− iT, c+ iT ] and [c+ iT, c+ i∞), where T > 0
is a suitable function of x which will be chosen later, we obtain

LP (x) = 1
2π i

∫ c+iT

c−iT

ZP (s)
s

xsds + 1
2π i

( ∫ c+i∞

c+iT
+

∫ c−iT

c−i∞

)
ZP (s)
s

xsds. (22)

Denote the left integral by I1. We note that assumption (19) implies ζP (s) has an ana-
lytic continuation to {s ∈ C : �s > β} except for a simple pole at s = 1. This implies
(UP (s) =) 1

ζP (s) is holomorphic for �s > β . However, assumption (20) implies that ζP (s)
is holomorphic for �s > α except for a simple pole at s = 1 and ζP (s) 
= 0 in this region
(see Theorem 2.1 of [13]). Thus (19) and (20) together show ζP (s) is holomorphic and
has no zeros for �s > � except for a simple pole at s = 1. Hence UP (s) has a simple
zero at s = 1 and an analytic continuation to {s ∈ C : �s > �}. Thus (ZP (s) =) ζP (2s)

ζP (s) has
an analytic continuation to {s ∈ C : �s > �} with a simple zero at s = 1. Hence ZP (s) is
holomorphic for σ > � since ζP (2s) is holomorphic for σ > � because � ≥ 1

2 (see [13]).
Nowmove the contour past the line s = 1 to the line �s = σ for any σ > � since ZP (s)

is holomorphic in this region. Hence

I1 = 1
2π i

( ∫ σ−iT

c−iT
+

∫ σ+iT

σ−iT
+

∫ c+iT

σ+iT

)
ZP (s)
s

xsds.

These integrals will be estimated by using the bound |ZP (s)| = O(tε) for all ε > 0. The
integral over the horizontal path [σ + iT, c + iT ] is
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∣
∣
∣
∣
1

2π i

∫ c+iT

σ+iT

ZP (s)
s

xsds
∣
∣
∣
∣ ≤ xc

2πT

∫ c

σ

|ZP (y + iT )|dy = O
( xc

T 1−ε

)
for all ε > 0,

by (21). Similarly for the integral over [c − iT, σ − iT ]. On the line �s = σ , we will have

∣
∣
∣
∣
1

2π i

∫ σ+iT

σ−iT

ZP (s)
s

xsds
∣
∣
∣
∣ ≤ xσ

2π

∫ T

−T

|ZP (σ + it)|
|σ + it| dt = O(xσT ε) for all ε > 0,

by (21). Hence

I1 = O
( xc

T 1−ε

)
+ O(xσT ε).

Now the right integral of (22) will be estimated as follows:

|I2| ≤
∑

n∈N
|λP (n)| ·

∣
∣
∣
∣
1

2π i

( ∫ c+i∞

c+iT
+

∫ c−iT

c−i∞

)
(x
n

)s ds
s

∣
∣
∣
∣ = O

(
xc

T
∑

n∈N

1
nc

∣
∣log x

n
∣
∣

)

.

The range is split into
(
n ≥ 2x and n ≤ x

2
)
and

( x
2 < n < 2x

)
in order to use the bound

∣
∣log x

n
∣
∣ ≥ log 2 for the first range. This gives

I2 = O
(
xc

T
∑

n ≥ 2x& n ≤ x
2

n ∈ N

1
nc

∣
∣log x

n
∣
∣

)

+ O
(
xc

T
∑

x
2 < n < 2x
n ∈ N

1
nc

∣
∣log x

n
∣
∣

)

.

Using
∣
∣ log x

n
∣
∣ = ∣

∣ log
(
1 + n−x

x
)∣
∣ � |n−x|

x for the second range, we obtain

I2 = O
(
xc

T
∑

n ≥ 2x& n ≤ x
2

n ∈ N

1
nc

)

+ O
(
x
T

∑

x
2 < n < 2x
n ∈ N

1
|n − x|

)

= O
(xc

T
· ζP (c)

)
+ O

(
x
T

∑

x
2 < n < 2x
n ∈ N

1
|n − x|

)

.

Therefore

LP (x) = I1 + I2 = O
( xc

T 1−ε

)
+ O(xσT ε) + O

(xc

T
· ζP (c)

)
+ O

(
x
T

∑

x
2 < n < 2x
n ∈ N

1
|n − x|

)

.

Taking c = 1 + 1
log x and using ζP (1 + δ) = O( 1

δ
), gives

LP (x) = O
( x
T 1−ε

)
+ O(xσT ε) + O

(x log x
T

)
+ O

(
x
T

∑

x
2 < n < 2x
n ∈ N

1
|n − x|

)

for x /∈ N and for all ε > 0. We need to bound the term on the right hand side, which
is difficult for general x when n is an integer close to x, as then |n − x|−1 could be very
large. To take into account this eventuality we choose x here such that |n− x| < 1

x2 . This
ensures that it stays away from these integer n; i.e.

(
x − 1

x2
, x + 1

x2
)

∩ N = φ.
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Then, for such x,
∑

x
2 < n < 2x
n ∈ N

1
|n − x| ≤ x2 ·

∑

x
2 < n < 2x
n ∈ N

1 < x2 · N (2x) = O(x3).

Hence, for such x,

LP (x) = O
( x
T 1−ε

)
+ O(xσT ε) + O

(x log x
T

)
+ O

(x4

T

)
.

Taking T = x4, then
∑

n ≤ x
n ∈ N

λP (n) = O(xσ+4ε) for all ε > 0.

Taking σ = � + ε for any ε > 0, then
∑

n ≤ x
n ∈ N

λP (n) = O(x�+5ε)

whenever x is such that
(
x− 1

x2 , x+ 1
x2

) ∩N = φ. Now we follow the method used in the
proof of Theorem 2.1, originally given in (see [13, p. 30]). Exactly as in [13], one shows
that

(
x1 − 1

x21
, x1 + 1

x21

)
∩ N = φ and

(
x2 − 1

x22
, x2 + 1

x22

)
∩ N = φ.

Then the result will follow since
∑

n ≤ x1
n ∈ N

λP (n) = O
(
x�+5ε
1

)
= O

(
x�+5ε

)
for all ε > 0.

Hence
∑

n ≤ x
n ∈ N

λP (n) =
∑

n ≤ x1
n ∈ N

λP (n)

+
∑

x1 < n ≤ x
n ∈ N

λP (n) = O(x�+5ε) + O(xβ+ε) = O(x�+5ε) for all ε > 0

since
∣
∣
∣
∣

∑

x1 < n ≤ x
n ∈ N

λP (n)
∣
∣
∣
∣ ≤

∑

x1 < n ≤ x
n ∈ N

1 =NP (x) − NP (x1) ≤ NP (x) − NP (x − 2) = O(xβ+ε) for all ε > 0,

by (19). Thus

LP (x) =
∑

n ≤ x
n ∈ N

λP (n) = O(x�+5ε) for all ε > 0.

Now, by Abel Summation, this gives the result. 
�

Remark 15 (i) It was shown in Theorem 1 of [11] that � ≥ 1
2 . Thus, 1 − � ≤ 1

2 and
in Theorem 14, we can therefore only have an example with exponent ≤ 1

2 for
such systems.
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(ii) If � = 1
2 in Theorem 14, then we have lP (x) = O

( eε log x

x
1
2

)
for all ε > 0. We can

do slightly better than this bound if we take P = PZ (Zhang’s system) which is a
special case of a well-behaved system. In this case

NP (x) = ρx + O
(

x
1
2 ec(log x)

2
3
)

for some ρ, c > 0 (23)

and

πP (x) = li(x) + O
(
x

1
2
)

(24)

hold. The existence of PZ was shown by Zhang [17]. The proof of the follow-
ing theorem is roughly identical with the previous theorem except that we need
a strictly stronger bound on ZP (s) than (21).

Theorem 16 For Zhang’s system PZ, we have

∑

n ≤ x
n ∈ N

λP (n)
n

= O
(eC(log x)

2
3

x
1
2

)
for some constant C.

Remark 17 As in the proof of Theorem 14 the idea is to find a bound for
∑

n≤x λP (n).
As mentioned above, we need a stronger bound for ZP (s). This can be found by using
Theorem 7.11 of Zhang [10].

Proof of Theorem 16 We know from the proof of Theorem 7.11 of Zhang that there is a
sequence of real numbers which represents a set of g-primes, (i.e. P = {pj}), j = 1, 2, . . .,
such that

∑

pj≤x
p−it
j −

∫ x

1
v−it f (v)dv � √

x
(

1 +
√
log(t + 1)
1 + log x

)

(25)

for 1 ≤ x < ∞ and t ≥ 0, where

f (v) := 1 − v−1

log v
for v ≥ 1.

In particular, when t = 0,

∑

pj≤x
1 −

∫ x

1
f (v)dv = O

(
x

1
2
)
, (26)

and hence

πP (x) :=
∑

pj≤x
1 = li(x) + O

(
x

1
2
)
. (27)

Further Zhang showed that ζP (s) can be written as

ζP (s) = s
s − 1

exp{F2(s) − F1(s)},
where

F1(s) =
∫ ∞

1
(v−s + log(1 − v−s))dπP (v)
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and

F2(s) =
∫ ∞

1
v−s(dπP (v) − f (v)dv).

Since

log(1 − v−s) = −v−s + O(v−2σ ) (28)

for v > 1. Therefore

F1(s) =
∫ ∞

1
(v−s + log(1 − v−s))dπP (v) = O

(∫ ∞

1

dπP (v)
v2σ

)

.

The right integral converges uniformly for σ > 1
2 . Thus F1(s) is holomorphic for σ > 1

2 .
By (26) and (27) that F2(s) is also holomorphic for σ > 1

2 . Hence ζP (s) has an analytic
continuation in the half plane σ > 1

2 except for a simple pole at s = 1 with residue
k = exp{F2(1) − F1(1)} > 0. From (25), we have

∑

pj≤x
p−it
j −

∫ x

1
v−it f (v)dv =

∫ x

1
v−itdπP (v) −

∫ x

1
v−it f (v)dv

=
∫ x

1
v−it (dπP (v) − f (v)dv) � √

x
(

1 +
√
log(t + 1)
1 + log x

)

.

Now, by Lemma 17.13 of [10], we have for t ∈ R

F2(σ + it) � 1
σ − 1

2
+

√
log |t|
σ − 1

2

uniformly for 1
2 < σ ≤ 2. Furthermore, (28) imply that

F1(σ + it) �
∫ ∞

1
v−2σdπP (v) = 2σ

∫ ∞

1
v−2σ−1πP (v)dv

�
∫ ∞

1
v−2σdv � 1

σ − 1
2

uniformly for 1
2 < σ ≤ 2. Hence ζP is holomorphic for 1

2 < σ ≤ 2 except for a pole at
s = 1, and for these values satisfies uniformly

F2(s) − F1(s) �
(

1
σ − 1

2
+

√
log |t|
σ − 1

2

)

.

Then, for 1
2 < σ ≤ 2 and |t| ≥ 1, we have

log |ζP (σ + it)| � 1
σ − 1

2
+

√
log |t|
σ − 1

2
.

Hence

|ZP (s)| =
∣
∣
∣
∣
ζP (2σ + 2it)
ζP (σ + it)

∣
∣
∣
∣ � exp

{

C
(

1
σ − 1

2

)

+ C
√
log |t|
σ − 1

2

}

. (29)

We know from Theorem 17.11 of Zhang in [10] that the function ζP (s) has an ana-
lytic continuation to {s ∈ C : �s > 1

2 } except for a simple pole at s = 1. Also, ζP (s) has
no zeros for σ > 1

2 but 1
ζP (s) has a simple zero at s = 1 and analytic continuation to
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{
s ∈ C : �s > 1

2
}
. Thus ZP (s) has an analytic continuation to

{
s ∈ C : �s > 1

2
}
with a

simple zero at s = 1. Thus ZP (s) is holomorphic for σ > 1
2 since ζP (2s) is holomorphic

for σ > 1
2 . Now move the contour past the line s = 1 to the line �s = σ for any σ > 1

2
since ZP (s) is holomorphic in this region, we obtain

I1 = 1
2π i

( ∫ σ−iT

c−iT
+

∫ σ+iT

σ−iT
+

∫ c+iT

σ+iT

)
ZP (s)
s

xsds.

These integrals will be estimated by using the bound (29). The integral over the horizontal
path [σ + iT, c + iT ] is

∣
∣
∣
∣
1

2π i

∫ c+iT

σ+iT

ZP (s)
s

xsds
∣
∣
∣
∣ � xc

T
exp

{

C
(

1
σ − 1

2

)

+ C
√
log |T |
σ − 1

2

}

by (29). Similarly for the integral over [c − iT, σ − iT ]. On the line �s = σ , we will have
∣
∣
∣
∣
1

2π i

∫ σ+iT

σ−iT

ZP (s)
s

xsds
∣
∣
∣
∣ � xσ exp

{

C
(

1
σ − 1

2

)

+ C
√
log |T |
σ − 1

2

}

.

by (29). Hence

I1 � xc

T
exp

{

C
(

1
σ − 1

2

)

+ C
√
log |T |
σ − 1

2

}

+ xσ exp
{

C
(

1
σ − 1

2

)

+ C
√
log |T |
σ − 1

2

}

,

and I2 is exactly the same as in the proof of Theorem 14. Therefore

LP (x) = I1 + I2 � xc

T
exp

⎧
⎨

⎩
C

(
1

σ − 1
2

)

+ C
√
log |T |
σ − 1

2

⎫
⎬

⎭
+ xσ exp

⎧
⎨

⎩
C

(
1

σ − 1
2

)

+ C
√
log |T |
σ − 1

2

⎫
⎬

⎭

+ O
(
xc

T
· ζP (c)

)

+ O

⎛

⎝ x
T

∑

x
2 < n < 2x
n ∈ N

1
|n − x|

⎞

⎠.

Taking c = 1 + 1
log x and using ζP (1 + δ) = O

( 1
δ

)
gives

LP (x) � x
T

exp
{

C
(

1
σ − 1

2

)

+ C
√
log |T |
σ − 1

2

}

+ xσ exp
{

C
(

1
σ − 1

2

)

+ C
√
log |T |
σ − 1

2

}

+ O
(x log x

T

)
+ O

(
x
T

∑

x
2 < n < 2x
n ∈ N

1
|n − x|

)

.

By following the same argument shown in the proof of Theorem 14, we have

LP (x) � x
T

exp
{

C
(

1
σ − 1

2

)

+ C
√
log |T |
σ − 1

2

}

+ xσ exp
{

C
(

1
σ − 1

2

)

+ C
√
log |T |
σ − 1

2

}

+ O
(x log x

T

)
+ O

(x4

T

)
.

Taking T = x4, then
∑

n ≤ x
n ∈ N

λP (n) � xσ exp
{

C
(

1
σ − 1

2

)

+ C
√
4 log x
σ − 1

2

}

since the O(1) are smaller than the main term. This means
∑

n ≤ x
n ∈ N

λP (n) � x
1
2 exp

{(

σ − 1
2

)

log x + C
(

1
σ − 1

2

)

+ C
√
4 log x
σ − 1

2

}

.
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Now we want to minimise this quantity over 1
2 < σ < 2; i.e. minimise

(

σ − 1
2

)

log x + C
(

1
σ − 1

2

)

+ C
(
σ − 1

2
)− 1

2 (4 log x)
1
2 .

Put σ = 1
2 + 1

(log x)α for some α > 0. This gives

(log x)1−α + C(log x)α + C(log x)
1
2+ α

2 .

This is optimal when α = 1
3 . For σ = 1

2 + 1
(log x)

1
3
, we have

∑

n ≤ x
n ∈ N

λP (n) = O
(
x

1
2 eC(log x)

1
3 +(1+√

4C)(log x)
2
3 )

= O
(
x

1
2 eC

′′ (log x)
2
3 )
.

Hence, by Abel Summation again, this gives the result. 
�

4.2 � Results for Euler’s example overN
We now consider � Results of

∑
n≤x

λP (n)
n for a system P which satisfies either

NP (x) = ρx + O(xβ ) for some ρ > 0 (30)

or

ψP (x) = x + O(xα) (31)

for some α,β < 1
2 . Both of which give the lower bound �

( 1√
x
)
for the sum.

Proposition 18 Let P be a g-prime system satisfying (30) for some β < 1
2 . Then

∑

n ≤ x
n ∈ N

λP (n)
n

= �
( 1√

x

)
. (32)

Proof We wish to show that (32) is true. It is enough to show that

LP (x) =
∑

n ≤ x
n ∈ N

λP (n) = �(
√
x).

Let us assume the contrary, so that LP (x) = o(
√
x). We know that for all �s > 1

2 ,

ZP (s) = s
∫ ∞

1

LP (x)
xs+1 dx (33)

is holomorphic. But for �s > 1, (ZP (s) =) ζP (2s)
ζP (s) and ζP (2s) is holomorphic for �s > 1

2
with no zeros for �s > 1

2 since ζP (s) is holomorphic for �s > 1 and has no zeros here.
For �s > 1, we have ζP (s) = ζP (2s)

ZP (s) which has a meromorphic continuation for �s > 1
2

except for a pole at s = 1 and no zeros. Therefore ζP (2s) has a meromorphic continuation
for �s > 1

4 and pole at s = 1
2 . Now we know from the assumption (30) that ζP (s) has

an analytic continuation for σ > β except for a simple pole at s = 1. Thus ZP (s) is
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holomorphic for σ = �s > 1
2 with pole at s = 1

2 . On the one hand, we know that ZP (s)
has a pole at 1

2 since ζP (2s) has a simple pole at 1
2 . Thus

ZP

(
1
2

+ ε

)

∼ C
εk

for some k ≥ 1 and C 
= 0. (34)

On the other hand, from the right integral of (33) with s = 1
2 + ε, we have

|ZP

(
1
2

+ ε

)

| =
∣
∣
∣
∣

(
1
2

+ ε

)∫ ∞

1

LP (x)
x

3
2+ε

dx
∣
∣
∣
∣ ≤ ∣

∣1
2

+ ε
∣
∣
∫ ∞

1

|LP (x)|
x

3
2+ε

dx

|LP (x)| can be written as g(x)
√
x, where g(x) ≥ 0 and g(x) −→ 0 as x −→ ∞. Hence we

have
∣
∣
∣
∣ZP

(
1
2

+ ε

)∣
∣
∣
∣ ≤ B

∫ ∞

1

g(x)
√
x

x
3
2+ε

dx = B
∫ ∞

1

g(x)
x1+ε

dx, where B is constant.

Clearly
∫ ∞

1

g(x)
x1+ε

dx = o
(1

ε

)
.

This also implies that
∫ ∞

1

LP (x)
x

3
2+ε

dx = o
(1

ε

)
,

so that ZP ( 12 + ε) = o( 1
ε
). Therefore this gives a contradiction with (34) and hence

∑

n ≤ x
n ∈ N

λP (n)
n

= �
( 1√

x

)
.


�
In order to show (31) implies (32), we first need to prove a more general result.

Proposition 19 If P is a g-prime system for which

NP (x) ∼ ρx for some ρ > 0,

and ζP (s) has an analytic continuation past�s = 1 to a region containing a neighborhood
of s = 1

2 , then (32) holds.

Proof To show (32) is true, it is enough to show that

LP (x) =
∑

n ≤ x
n ∈ N

λP (n) = �(
√
x).

Let us again assume that LP (x) = o(
√
x). We know that

ZP (s) = s
∫ ∞

1

LP (x)
xs+1 dx

is holomorphic for all �s > 1
2 . But for �s > 1, (ZP (s) =) ζP (2s)

ζP (s) and ζP (2s) is holomorphic
for �s > 1

2 with no zeros for �s > 1
2 since ζP (s) is holomorphic for �s > 1 and has no

zeros here. For �s > 1, we have ζP (s) = ζP (2s)
ZP (s) which has a meromorphic continuation

for �s > 1
2 except for a pole at s = 1 and no zeros. Thus ζP (2s) has a meromorphic

continuation for �s > 1
4 and pole at s = 1

2 . Thus ZP (s) is holomorphic for σ = �s > 1
2

with pole at s = 1
2 because ζP (s) is holomorphic at 1

2 .
Hence, by following the same argument shown in the proof of Proposition 18, we obtain

the required result. 
�
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Remark 20 With Zhang’s system which was previously detailed in the paper, then (32) is
also true if we assume ζP (s) has an analytic continuation to a neighborhood of s = 1

2 .

In the following corollary we consider the effect of the assumption (31) for some α < 1
2 .

Corollary 21 Let P be a g-prime system satisfying (31) for some α < 1
2 . Then (32) holds.

Proof By Theorems 2.1 and 2.2 of [13], the assumption (31) for some α < 1
2 implies ζP (s)

is holomorphic for �s > α except for a simple pole at s = 1 and that it has no zeros in
this region, and

NP (x) = ρx + O(x−c
√

log x log log x)

for some ρ > 0 (see [13]). Hence, by Proposition 19, (32) holds. 
�

Remark 22 Let P be a g-prime system satisfying (19) and (20) for some α, β , < 1 respec-
tively and define ξ via

LP (x) =
∑

n ≤ x
n ∈ N

λP (n) = O(xξ+ε)
(35)

holds for all ε > 0, but for no ε < 0 and for some ξ < 1. Then Proposition 18 and
Corollary 21 imply that max{β , ξ} ≥ 1

2 and max{α, ξ} ≥ 1
2 .

5 Open problem
As mentioned in earlier, Kahane and Saïas proposed that for all CMO functions, one
has

∑
n≤x f (n) = �

( 1√
x
)
. They also showed that GRH–RH (Generalised Riemann

Hypothesis–Riemann Hypothesis) would follow from this result. In our findings, we did
not find anyCMOP functions f such that

∑
n≤x f (n) = O

( 1
xc

)
for c > 1

2 . This may suggest
the following conjecture.

Conjecture 23 Let P be a g-prime system with abscissa 1. Then, for all completely mul-
tiplicative functions onN , we have

∑

n ≤ x
n ∈ N

f (n) = �
( 1√

x

)
.
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