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1 Department of Mathematics g CMO functions multiplicative functions f for which 372, f(n) = 0. Such functions were

University of Reading, first defined and studied by Kahane and Saias [14]. We generalised these to Beurling

Whiteknights, Reading, UK prime systems with the aim to investigate the theory of the extended functions and we
Faculty of Computer Science . - .

and Mathematics, University of shall call them CMOp functions. We give some properties and find examples of CMOp

Kufa, Najaf, Iraq functions. In particular, we explore how quickly the partial sum of these classes of

functions tends to zero with different generalised prime systems. The findings of this

paper may suggest that for all CMOp functions f over A/ with abscissa 1, we have
1
neN
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1 Introduction
1.1 Completely multiplicative function with sum zero
Afunctionf : N — Cis called a completely CMO function ifit satisfies the two following

conditions:
o0
f is a completely multiplicative function and Z f(n)=0.
n=1

Such functions were first introduced by Kahane and Saias [14]. One motivation for them
is to gain further insight into the zeros of Dirichlet series with completely multiplicative
coefficients. Namely, the Generalised Riemann Hypothesis as discussed below. They also

gave some properties and examples of such functions. For instance, they discussed various

examples of CMO functions including f(n) = @, where A(n) is the Liouville function
and f(n) = n(,f’ ), where x is a non-principal Dirichlet character and « is a zero of L, with

Ra > 0.

This study led them to consider the question of how quickly )" _ f(#n) can tend to

n<x
zero. They suggested that it is always €2 (‘/%) and the Generalised Riemann Hypothesis—
Riemann Hypothesis (GRH-RH) would follow if their statement is true. This suggestion
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is incredibly difficult to prove, but it might be easier to disprove; i.e., to find examples such
that

Zf(n) = O(%) for somec > %

n<x

To date no such counter examples have been found. One approach to consider this
counter example question is to consider examples of generalised CMO functions on Beurl-

ing prime systems.

1.2 Beurling generalised prime systems

The concept of generalised primes and generalised integers was introduced by Beurling
[3] in the 1930s and has been studied by many researchers since then (see for instance
[2,4,11,15,18]). The structure of this system is defined to be a sequence of real positive
numbers P = {p1, p2, p3, . . .} which need not be actual primes (or even integers) satisfying

l<pi<py<--<pi<--

and for which p; — oo as i —> oo. With this sequence we can form a new increasing

sequence
l<m=m=---=n=--

of real numbers which represent all possible products ]_[f=1 pf, where k € N and
ai, as, ..., a; € No.' These new elements are called generalised integers associated to P
and denoted by NV; (i.e. N' = {n;};>1). Attached to these systems we have the usual count-
ing functions 7p (x) and Np(x) which are the sum over all the g-primes and g-integers not
exceeding the positive real number x, counting multiplicities, respectively; that is

Tp(x) = Z 1 and Npx) = Z 1.
nnesjf/

p=x
peP

These type of systems are discrete systems, where = and N are step functions with integer
jumps. There is also a concept of continuous g-prime systems [8,12], but they shall not
concern us here. The generalised zeta function, the associated zeta function, is formally
defined by

6 =[] == 2 o M

— —S
pEP 1-p neN

We say that a g-prime system P has an abscissa of convergence o, if and only if the sum
of (1) converges for fs > o, and diverges for is < o.. The product is called the Euler
product of the Beurling zeta function. The sum of (1) represents the generalised Dirichlet
series which will be generated by multiplying out this product in the same way as the
standard Euler product, defined in many books and papers.

In this paper, we outline some relevant ideas and results about g-primes and
g-integers, in order to prove the main results in this paper, where we are interested

'Here and henceforth, N = {1,2,3,...}, No = NU {0}, and P = {2, 3, 5, .. .}—the set of primes.
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in g-prime systems for which both Np(x) and ¥p(x) are simultaneously “well-behaved”.
These systems were investigated by Hilberdink [11] and have the following properties:

Np(x) = px + OxP¢)  forsomep > 0 (2)
and
Yp(x) = x + O(x**°) 3)

hold for all¢ > 0, but forno e < 0and 0 < «, B < 1. For the usual primes, (2) holds with
B = 0 and if the RH is true, then (3) would hold for « = % Such systems exist as was
shown by Zhang [17]. Indeed, Pz (his system) satisfies these with « = g = % We also
study such systems where either of (2) or (3) holds with «, 8 < %

1.3 Completely multiplicative function on A/
An arithmetical function with domain  is a function f : N' —> C which is defined on
the multi-set of Beurling integers \.

Note that we are abusing the notion of function in case of multiplicities. This is done for
clarity of notation. In much of our work, we are not interested in the arithmetic function
f + N'—> Citself, but in the partial sum of the function f(#) up to and including x; i.e.

Y fow,

n<x

ne N
which is a function because it counts all the possible elements of A" up to x. A function
f : N —> C is said to be multiplicative on N if f(1) = 1 and f(mn) = f(m)f(n)
whenever (m, n) = 1. Such an f is said to be completely multiplicative [5,16] if we also
have f (mn) = f (m)f (n) for all values of m, n € N, where (m, ) is defined as the largest g-
integer that divides both 7 and 1. We define the generalised Liouville function on N, is an
example of completely multiplicative function, tobe Ap(1) = 1and Ap(n) = (—1)1+ %
forn =p{* - p* € N, where k € Nand ay, ..., ax € No. As for classical multiplicative
functions, if f and g are multiplicative functions and f (pX) = g(p¥) for all g-primes p € P
and k € No, thenf = g.

We also define the generalised Chebyshev function over N with the sum extending over
all g-prime numbers p € P that are less than or equal to x as follows:

Yp) =Y log p.

As in classical prime number theory, we introduce the g-prime counting function
1
X wp |xn

n

Hp (x
n=1
It is related to ¥p(x) via

ve) = [ logedtipo)
p

1
We can also define the functions /» and mp which represent the following partial sums:

o= 3 27 and )= YO 42

n n

n<x n<x

ne N ne N
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1.4 Relationship between Ap and up

In this section, we derive results which establish relationships between the Ap and up
functions as in the classical case. Of course, we shall always be aware that these are not
necessarily functions if they are made from different g-primes. We first introduce two
useful propositions and described as follows, which their proofs are standard.

Proposition 1 For every n € N, we have

Ap(n) = Z up (%)

d*\n
de N

Proposition 2 For every n € N, we have

uptn) = Y i (25 )ur(@).

d*\n
de N

As consequences of propositions 1 and 2 we have

/—\
&.|:

o=y ¥ ) gy o)

n<x d*n > <x n<xstdn

neN deN de N ne N
m i
-y Yoy @
B md? d?
P <x m< % da* <x
deN meN de N

and

mp() =3 ) <>M7>(d) > 2 (‘7> ur(d)

n<x d*n d><x n<xstd*n
neN deN de N ne N
boim) b ()
p(m d
=> > up(d) =Y D wp(d). (5)
QN mekr v

Lemma 3 Let P be a g-prime system for which ), n% converges. Then Np(x) =
o(x?).

Proof Since ), .\ niz converges and put

Al) =Y % = C+o(1),

ne N

then, by Abel summation,

Np@) =) 1=A()- & —Z/IxA(t)tdt

n<x

ne N

= (C +o(1))x* — 2 /x(C + o(1))tdt = o(x?).
1
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We now establish a relationship between /p(x) and mp(x) in terms of these sum func-
tions tending to zero with increasing terms.

Theorem 4 Let P be a g-prime system for which ), % converges. Then Ip(x) = o(1)
ifand only if mp(x) = o(1).

Proof Suppose mp(x) = o(1). Let ¢ > 0. Then |mp(x)| < & for x > xy, some xg. Thus
mp (%)‘ < ¢gif ;—2 > x9. Hence (4) gives

p@l =" W < Z 3 "”7’ (d)

d* <x 42<§ £ ocd?<x
de N de/\fu 0de/\/
1 X0 . X
< ¢ ZZ: ﬁ—i-A; Z: 1 (since ‘rnp(ﬁ)‘gfl)
d* < & o <d=x
de N de N
Np(V/x)
< e¢{p(2) + Axo x['

Letting x —> oo and using Np(4/x) = o(x) (by Lemma 3), we find

limsup |Ip(x)| < & ¢p(2).

X—> 00

This is true for all ¢ > 0. Since ¢ is arbitrary, then /p(x) — 0.
Now suppose [p(x) = o(1). Let ¢ > 0. Then |lp(x)] < & for x > xp, some x9. Thus
‘lp <d2>‘ <¢gif % 25 = xo. Hence (5) gives

lmp(x)] = Z Mié‘z %

42
d* <x d* < =
de N de /\/'
()
+ ) g (ince lup@l =)
—d<€dN<x
. x
<e¢ Z d2 +A — Z 1 (since ’l’p <d_2>‘ < A)
da’;/\? T‘a’<ed./\/<x

< & ¢p(2) + Axo

Np(Vx)
p

Letting x —> oo and using Np(4/x) = o(x) (by Lemma 3), we find

limsup |[mp(x)| < & ¢p(2).
X—> 00

This is true for all ¢ > 0. Since ¢ is arbitrary, then mp(x) — 0. O

Remark 5 In particular, if the abscissa of the g-prime system P is 1, then mp(x) and Ip (x)
tend to zero together.

The following theorem establishes a useful correspondence between

Mp(x) = Z up(n) and Lp(x) = Z Ap(n).

n=x n=x

ne N ne N

45
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Theorem 6 Let P be a g-prime system with abscissa 1 and let % <a <1l ThenLp(x) =
O?) if and only if Mp(x) = O(x?).

Proof Assume Mp(x) = O(x%). Then, in the same way that we obtained (4), we have

=) Mp(5) < Z e < x'0p(2a)

d> <x

de N deN

since 2a > 1, so {p(2a) exists.
For the converse, assume Lp(x) = O(x%). Since |up(d)| < 1, in the same way that we
obtained (5), we have

Mpe) = Y Lp(Z5) wpld) < 2 Y oo =atp(2a)

d* <x d<.x
de N de N

2 Completely multiplicative function with sum zero on A/
Let P be a g-prime system. We say that f : N —> C is a CMOp function if it satisfies the
following conditions:

(i) f is a completely multiplicative function (if) Z f(n)=0.
neN
This is a generalisation of a CMO function. We investigate some properties of CMOp
functions. The same questions that were asked by Kahane and Saias [14] about CMO
functions can be discussed for CMOp functions. For example, how quickly > _ f(n)
can tend to zero. In particular, we would like to investigate how quickly the parti;l sum
of Ap(n) over n up to and including x tends to zero with different type of systems where

Ap(n) is Liouville’s function over N. Specially, we discuss O-Results of >, . —7# over
N with a system which satisfies
Np(x) = px + O(xPT)  (forsome p > 0) and Yp(x) = x + O(x*T9) (6)

foralle > 0,butfornoe < 0and0 < «, B < 1. Asspecial case we treat Zhang’s system (see
1

2
Theorem 1 of [17]) with error term O <x2 elclogx)3 > for the counting function Np(x) and

O(x%) for Yrp(x). We show that ) l’# for the system which satisfies (6) is O(ﬁ),
where © is the maximum value between « and 8, whereas Zhang’s system gives

n<x

Lpx)=0 <x2e(Cl°gx)3> (7)

where Lp(x) is the partial sum of the Liouville function on A as defined previously. This
can be compared to the conditional result of Balazard and de Roton [1] concerning the
Mobius function of the standard integers. They showed that assuming RH,

1 5.,
M(x) = O(ac%e(logx)z(1"g1°g’“)2+ ) foralle > 0,
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where M(x) is the partial sum of the Mobius function. Following the above result, Theo-
rem 6 can be used to show that

1 5
L(x) = O(x%ec(l"g")j(1°gl°g")7+a) foralle > 0.

We notice that the right hand side of (7) can be automatically improved if one would be
able to improve the error term in Zhang’s system.
We also explore Q Results for the behaviourof ), _, }iﬂ# for a system P which satisfies

either the assumption
Np(x) = px + O(xP) forsomep >0 or Yplx)=x—+ O0x%),

for some o, B < % The aim is to find a completely multiplicative function f over A with
abscissa 1 such that

Zf(n) = O(%) for somec > %

n<x

ne N

3 Some properties of CMOp functions
In this section, we derive some preliminary properties of CMOp functions.

Proposition 7 Let f be a completely multiplicative function over N. Then Y,/ |f (n)]
converges if and only ifzpep [f (p)| converges and sup,p |f (p)| < 1forallp € P.

Proof 1t straightforward that the series ZpE'P [f (p)| converges and sup,.p |f ()| < 1 for

allp e Pif ), |f(n)] converges.
Now suppose Zpe?? |f(p)| converges and |f(p)| < 1 for all p € P. We want to prove

Y nen f (n)] converges.
From above, ¢ = sup,cp If(p)] < 1. Therefore l_[pep % converges since

)
15n—1_[1f(p)|=H<1+—1l_f(§(l])|)5H(H%_clf(p)')‘

PEP PEP PEP

Now

nl—;lf(l'm = Z |f(n)| converges

pP=x neN
pn&p<x
> Y )l
n=<x
Hence ), .\, |f (n)| converges. ]

Proposition 8 Letf bea CMOp function. Then) .\ |f (n)| diverges. Indeed Zpep 14621
diverges.

Proof Let us assume the contrary, so that

Z |f(n)] converges.

neN

Then, by completely multiplicativity,

1 1
2 Vo= = ad 2 S =11=F5 #°

neN peP neN PEP
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This contradiction implies

Z |f(n)| diverges.

neN

Furthermore, Proposition 7 gives Zpe’P |f (»)| diverges, as required. O

3.1 Partial sums of CMOp functions

We know that the partial sum of an CMOp function not exceeding x tends to zero when
x tends to infinity. A question raised by Kahane and Saias [14] regarding CMO functions
is: can one show, given g(x), that there exists a CMO function f with

Y fn) = Qg))?

n=<x

We are not considering this question, but we are interested in a related question which
is: how small can we make g(x), so that the above is true for all CMOp functions f? To

answer this we need some assumptions on g-prime systems.

Proposition 9 Let P be a g-prime system such that all g-primes are distinct for which
ZpE’P l#gp converges. If f is a CMOp function, then

Z ) = <xlogx>

Proof Let us assume that the statement is false, so that

Z ) = <xlogx)

ne/\f

We know that for every p € P, we have

) =3 fom =Y fom =0~ ®)

m=p m<p

Now it follows that ZpeP If(p)| converges and |f(p)] < 1 for all p € P by the
assumptions. Hence, by Proposition 7, we have ) .- |f(n)| converges. However by
Proposition 8 we have a contradiction, and so it follows that

Zf(n <xlogx)

n<x

neN

O

Remark 10 (i) Similarly, we can get different results by having different assumptions
on the g-prime systems such that all g-primes are distinct.” For Example, if f is a

2If all g-primes are not distinct, it can be more complicated. For instance, if P is {2,2,3,3, ...} (every prime appears
twice), then (8) does not work.
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CMOp functionand P is a g-prime system with such that all g-primes are distinct
: 1
for which Zpe’P Hlloglogp)? Converges, then

1
;f(n) - Q<x(log log x)? ) ©)
neN

(ii) Kahane and Saias [14] have shown that if f is a CMO function, then

1
>0 - a(l)
x
n=<x
Now if we assume Zpep}? converges, then the sum on the left of (9) is Q(}C);
although the latter condition appears to be a bit unnatural in a number-theoretic
context.

3.2 Closeness relation between two completely multiplicative functions which are defined
over N/

Let CMp = {f : N —> C completely multiplicative}, and let us define an (extended)
metric on CMp to be the distance function

D(fg) = lglp) —f D)l
PpPEP

Then CMp is an extended metric space since D(f, g) can attain the value co. We aim to
generalise Theorem 3 of Kahane and Saias [14] over Beurling prime systems.

The following theorem shows that if f is a CMOp function and g is a nearby completely
multiplicative function on NV, then g is also a CMOp function. In other words, under extra
conditions on the values of g-primes for two completely multiplicative functions if one is
a CMOp, then so is the other.

Theorem 11 Let P be a g-prime system with abscissa 1, f a CMOp function and g a

completely multiplicative function on P such that

lgw)| <1 forallp e P (10)

and
D(f, g) < oo. (11)

Then g is a CMOp function.

Proof LetF(s) =) ,cn f}g’f) and G(s) := ), g}g?) . Then the series for F(s) is absolutely
convergent for fis > 1 and it is convergent for s > 0 and s = 0 since ), .\ f(n) = 0.
Assumption (10) and that g is completely multiplicative function imply |g(n)| < 1. Thus
the series for G(s) also converges for its > 1 since g is bounded and the abscissa of P is 1.
Therefore F(s) and G(s) can be written as follows:

1 1
F(s) = l—[ W and G(s) = 1_[ e Ns > 1.

PEP -7 ps PEP -7 ps
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Now
1-1® w
— r —
1) = (1_g@>) _1‘[<1+ 1_M>
pEP 7 P 7
converges absolutely for fis > 0 if and only if
|g(p)—f (p)|
L 12)
2 £ (
pEP |1 - p_3|

converges for fs > 0. But

g)—fp)
L lge) sl
W) = s
- 45 P
since ‘1 — gp—(‘f) > % for p sufficiently large and Jis > 0. Thus H(s) converges absolutely

to a holomorphic function for s > 0. However, H(s) = (G/F)(s) for s > 1 then
G(s) = F(s)H(s), where the series for F(s) converges for %is > 0 and s = 0 since f is a
CMOp function, and H (s) converges absolutely for fis > 0. Therefore G(s) converges for
Ms > 0 and s = 0. Thus we have G(0) = F(0)H(0) = 0. Hence g is a CMOp function. O

The proof of Theorem 11 implies the following result.

Corollary 12 Let P be a g-prime system with abscissa 1, f and g both be completely
multiplicative functions on P such that D(f, g) is finite and satisfying

f@)l gl <1 forallpeP.

Then the following two assertions are equivalent:

Zf(n) =0 and Z g(n) =0.

neN neN

4 The function 5@ over different systems P

In this section, we provide some examples of CMOp functions. In particular, we introduce
some examples of the function L# with different g-prime systems where Ap(n) is the

Liouville function over the g-prime system P. We emphasize that we are only interested
in those systems for which the abscissa of convergence of the Dirichlet series for ¢p is 1.

Example 13 As shown in [6,7,9,10], if P satisfies one of the following assumptions:

Ypx) = /;x w = logx + ¢ + o(1) for some constant ¢, (13)

or
Mp(x) =o(x) and Np(x)— px = O(logiyx) holds forsome p >0 and y > 1,
(14)

or
Mp(x) = o(x) and /;00 ‘W‘dx < oo forsome a > 0, (15)
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or
1 . .
Np(x) ~ px and log¢p(s) — log (—1) has a continuous extension to fs = 1,
s —

(16)

or

*° x | dx =1 1

f2 [Mp@) — ool 2 <00 where Tp(@) = k; £7P (+F), (17)

then ), . ’”’T(") = 0. Therefore, by using Theorem 4, )\ L# = 0. Hence l# is
a CMOp function since it is completely multiplicative with sum zero.

In fact, we do not even need mp(x) ~ @ for Y, }i# = 0 to be true since it is
shown in [7] that the following condition

/2 |1'I7>(x) - é(l + ij cos(tj log x +yj))| x—f <0 (18)
j=0

withdistinct; > 0 and (1+t142)1/2 |bj cos(yj+arctan tj)| < 2, j =1,..., k isalsosufficient
to have Y, L2 — o,

n

From Example 13, we see that ),/ 22 — 0, but how quickly does it converge?

n

4.1 O-results for Euler’s example over A/

In this section, we shall be interested in the behaviour of )", _. i# over a g-prime

system P which satisfies

Np(x) = px + OxPT®)  (for some p > 0) (19)
and

Yp(x) = x + O(") (20)

asx —> oo foralle > 0,butfornoe <0and0 <o, 8 < 1.

Theorem 14 Given a g-prime system P satisfying (19) and (20) for some B, @ < 1, and let
Ap as defined before, we have

Z )Lpn(n) _ O(xl—l(“)‘s) forall e >0,

n<x

neN

where ® = max{«, B}.

Proof We let P denote a g-prime system satisfying (19) and (20). Then, for all is > 1, we
have

Apln) _ £p(29)
V4 = = .
P VN
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We need a bound for Zp(s) on vertical line s = o + it with || large and o > ©. To find
such bound of Zp(s), we start with

1 1
> mrm| = 2 e =0

neN neN

[Ep(2s)] =

1
foro > 3

From the proof of Theorem 2.3 of [13], for 0 > ©, we have
log |¢p(0 +it)] = O ((1og |t|)ﬁ+£),

In particular, foro > 9,
————— =0(|t|®) forall e > 0.
[¢p(o + it)]

Hence, foro > ©,

¢p(20 + 2it)

1Zp(s)| = oo T )

= O(|t|®) forall e >0 andfor |f| > 1 (21)

Using the inverse Mellin transform we have forx > 0, x ¢ A/

1 c+ioo 7
Lp(x) = —/ 2P sas (> 1),
270 Je—ioo s
Now split the range into (¢ — ioco, ¢ —iT], [c —iT, c+iT] and [¢c+iT, c+ioo), where T > 0
is a suitable function of x which will be chosen later, we obtain

1 c+iT ZP(S c+ioco c—iT ZP(S)
Lp@) = — wds+ o f (22)
2mi Jo_iT s c+iT c

Denote the left integral by I;. We note that assumption (19) implies ¢p(s) has an ana-
lytic Continuation to {s € C: Ns > B} except for a simple pole at s = 1. This implies
(Up(s) =)=~ s (s) is holomorphic for fis > B. However, assumption (20) implies that {p(s)
is holomorphic for fs > o except for a simple pole at s = 1 and p(s) # 0 in this region
(see Theorem 2.1 of [13]). Thus (19) and (20) together show ¢p(s) is holomorphic and
has no zeros for Ns > O except for a simple pole at s = 1. Hence Up(s) has a simple
zero at s = 1 and an analytic continuation to {s € C : is > O}. Thus (Zp(s) —)i]; ((2;) has
an analytic continuation to {s € C : s > ©O} with a simple zero at s = 1. Hence Zp(s)is
holomorphic for o > © since {p(2s) is holomorphic for o > ® because ® > (see [13]).

Now move the contour past the line s = 1 to the line iis = o for any ¢ > © since Zp(s)

is holomorphic in this region. Hence

1 o—iT o+iT c+iT z
T
2i\ Je—iT o—iT o+iT s

These integrals will be estimated by using the bound |Zp(s)| = O(¢?) for all ¢ > 0. The
integral over the horizontal path [0 + iT,c + iT] is
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C

1 c+iT Zp ¢ ¢
2_/ Zp(s) < ds ‘ x / \Zp(y + iT)|dy = o(%) forall & > 0,
Tl Jo+iT S 22T Jo e

by (21). Similarly for the integral over [c — iT, 0 — iT]. On the line its = o, we will have

1 o+iT 7z
1 / 79(5) dt = O0x°T?) forall e >0,

e /T |Zp(o + it)]
2wi

x'ds| < ,
271 _r o+ it

o—iT N

by (21). Hence

C

I = o(T’f ) + 0GR T?).

Now the right integral of (22) will be estimated as follows:

c+ico s
AEDMOE ‘—(/” +[ ) o

neN

x¢ 1
= 0| = — ]
(T%nﬂlogﬁ‘)

The range is split into (n >2xandn < ’%) and (’7“ <n< Zx) in order to use the bound

|log 2| > log2 for the first range. This gives

x¢ 1 x¢ 1
12:0(? Z nC|log§|)+O<7 Z n“|log§{)'

n=2u&n<j 3 <n<2x
neN ne
Using | log 2| = |log (1 + %) | < \nx;xl for the second range, we obtain

x¢ 1 x 1
L=0% —|+ol=
’ (T n>2§n:<— nc) (T f; |Vl_x|>
ne./\f72 ZHEN

C

X X 1
— o(7 .gp(c)) + O(T x Z% " _x|>,

5 <n<

ne

Therefore

C

o= 1 n=o(F) 0w o ) vo(; X )

$<n<o I — x|

ne N

Takingc =1+ Ioéx and using ¢p(1+6) = O(%); gives
_ x . xlogx 1
1ot = 0() +ow T 0B ol 2 ¥ o)
TN

for x ¢ N and for all ¢ > 0. We need to bound the term on the right hand side, which
is difficult for general x when # is an integer close to x, as then |# — x|~ could be very
large. To take into account this eventuality we choose x here such that [z — x| < é This

ensures that it stays away from these integer #; i.e.

(x 12,x+ )ﬂ/\/’ o.

45
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Then, for such x,

1
> <
. ln — x|
fan<2
ne N

Fon<2x

ne N

Z 1 <% N(2x) = O(x>).

Hence, for such x,

Lp(x) = O( = ) + 067 T%) + o(xlogx) + o(x;),
Taking T = x*, then

n<x

ne N

> apln) = OH*) forall & > 0.

Taking o = ® + ¢ for any ¢ > 0, then

Y dpln) = 0G)

ne N

whenever x is such that (x — é, x+ é) NN = ¢. Now we follow the method used in the
proof of Theorem 2.1, originally given in (see [13, p. 30]). Exactly as in [13], one shows
that
1 1
(x1 - =X+ —2) NN =¢ and (xz
X1 X1

- xi%) NN =¢.
Then the result will follow since
Z Ap(n) =0 (x?%s) =0 (x(")+5"3) forall ¢ > 0.
ne N
Hence

Y =) e

ne N

n=x

neN

X <n=x

ne N

+ Z }\,’P(Vl) — O(x@+5£) + O(xﬂ-HS)

=0x®1%) forall e > 0
since

‘ Y. )

X <H=X

ne N

by (19). Thus

>

Xl <n=x

1 =Np(x) — Np(x1) < Np(x) — Np(x — 2) = O(xP*®) forall ¢ > 0,
neN

Lp(x) =

n<x

Z Ap(n) = O(x®T>%) forall & > 0.

neN

Now, by Abel Summation, this gives the result.
Remark 15

O
(i) It was shown in Theorem 1 of [11] that ® > % Thus,1 — 0 < % and
in Theorem 14, we can therefore only have an example with exponent < %
such systems.

for
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(i) If ® = % in Theorem 14, then we have Ip(x) = O(eglolgx) for all ¢ > 0. We can
x2

do slightly better than this bound if we take P = Pz (Zhang’s system) which is a
special case of a well-behaved system. In this case

2
Np(x) = px+ O (xéec(l‘)gx”) for some p,c > 0 (23)

and
(%) = lix) + O (x%) (24)

hold. The existence of Pz was shown by Zhang [17]. The proof of the follow-
ing theorem is roughly identical with the previous theorem except that we need
a strictly stronger bound on Zp(s) than (21).

Theorem 16 For Zhang's system Pz, we have

2
3

Ao (1 eC(logx)
Z P _ O( - )for some constant C.
n=x n xi

ne N

Remark 17 As in the proof of Theorem 14 the idea is to find a bound for anx Ap(n).
As mentioned above, we need a stronger bound for Zp(s). This can be found by using
Theorem 7.11 of Zhang [10].

Proof of Theorem 16 We know from the proof of Theorem 7.11 of Zhang that there is a
sequence of real numbers which represents a set of g-primes, (i.e. P = {p;}),j =12,..,,
such that

—it Yot ,log(t +1)
g[)j — /1‘ v f(V)dV < ﬁ(l + W) (25)

forl <x < ooandt > 0, where

1—v!

forv>1.

fv) =

logv

In particular, when ¢ = 0,
x 1
31 —/ f)dv=0(x), (26)
— 1
pji=x

and hence

mpe) = 37 1=1itw) + 0 (x1). (27)
pj=x

Further Zhang showed that ¢p(s) can be written as

s exp{Fa(s) — F1(s)},
s—1

¢p(s) =
where

Fi(s) = /1 (v + log(1 — v=*))drp(¥)
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and
o0
R = [ v - 0,
1
Since
log(1 —v™=5) = —v 4+ O(v2) (28)
for v > 1. Therefore

Fi(s) :/IOO(V‘S +log(1 —v™*))drp(v) = O(/loo djza(‘/))
1

The right integral converges uniformly for o > % Thus F(s) is holomorphic for o > 3.

By (26) and (27) that F(s) is also holomorphic for o > % Hence ¢p(s) has an analytic

continuation in the half plane o > % except for a simple pole at s = 1 with residue

k = exp{F2(1) — F1(1)} > 0. From (25), we have

ij’it - /:C vt (w)dv = /;x v it dap(v) — /x v (v)dy

pj=x !

[T _ loglt 1)
_/1 v drp () —f(W)dv) < ﬁ(”@)'

Now, by Lemma 17.13 of [10], we have for ¢t € R

1 log |¢
n g It

1

Fyo +it) € 1
U_§ J_i

uniformly for % < 0 < 2. Furthermore, (28) imply that

o o0
Fi(o +it) € / v 2 dap(v) =20 / v s (v)dy
1 1

(o]
< / v dy < ——
1 —3

uniformly for % < 0 < 2. Hence ¢p is holomorphic for % < 0 < 2 except for a pole at
s = 1, and for these values satisfies uniformly

Fz(s)—Pl(s)<<( L [lelt )

O’—i 0'—2

Then, for % < o0 < 2and |f| > 1, we have

) 1 log |t]
0—3 2
Hence
20 + 2it 1 log |t
|[Zp(s)] = M < exp C( 1) +C ill . (29)
¢plo +it) o—3 o—3

We know from Theorem 17.11 of Zhang in [10] that the function ¢{p(s) has an ana-
Iytic continuation to {s € C: fs > %} except for a simple pole at s = 1. Also, ¢p(s) has

L but L~ has a simple zero at s = 1 and analytic continuation to

no zeros for o >
2 ip(s)
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{s e C:MNs > %} Thus Zp(s) has an analytic continuation to {s eC:Ms > %} with a
simple zero at s = 1. Thus Zp(s) is holomorphic for o > % since ¢p(2s) is holomorphic
foro > % Now move the contour past the line s = 1 to the line s = o for any o > %

since Zp(s) is holomorphic in this region, we obtain

1 o—iT o+iT c+iT Zo(s
nL=— / —|—/ —|—f ﬂxsds,
2wi\ Je—iT o—iT o+T s

These integrals will be estimated by using the bound (29). The integral over the horizontal
path[oc +iT,c+iT]is

1 c+iT V4 c 1 1 T
—/ —P(S)xsds‘ <<x?exp C( ) +C og T
o

] : 1 1
2 Jopir S o—3 3

by (29). Similarly for the integral over [c — iT, 0 — iT]. On the line its = o, we will have

1 [oHT 7 1 log |T
_/ 2 s 45| < x7exp C( 1)+C o8 |7

28 Jo_iT s -3

2

by (29). Hence

¢ 1 log |T 1 log |T
L K x—exp C( 1)4—C o8| 1' + x% exp C< 1>+C o8 | 1' ,
T o—3 o—3 o—3 o—3

and [ is exactly the same as in the proof of Theorem 14. Therefore

¢ 1 1 T 1 1 T
Lp(x):11+12<<’;e)<p[c( 1>+C °g|1|]+x°expic( 1)+C og|1|=

U*f O'*i 075

x€ x 1

$on<n
ne N

Takingc =1+ @ and using {p(1+8) = O (%) gives

x 1 log |T 1 log | T
Lp(x) < = exp C( 1>+C glll + x% exp C( 1)+C g|1|
r -3 o—3 o—3 o—3

xlogx x 1
+O( T >+O<7 sz |n—x|)'

x
3 <n<
ne

By following the same argument shown in the proof of Theorem 14, we have

1 log |T 1 log |T

Lp(x) <€ ﬁexp C( 1)+C 08| 1| + x%exp C( 1>+C o8| 1'
T o—3 o—3 o—3 o—3
xlogx x
+o(=57) +o(%)

Taking T = x*, then

1 41
Y apn) < x”eXP[C( >+C ogf}
o

1
2 0—3

n=<x

ne N

since the O(1) are smaller than the main term. This means

1 1 41
E Ap(n) <<x5exp{(o——> logx+C( >+C ng},
2 o 1 1

2 0—3

n<x

ne N
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Now we want to minimise this quantity over % < 0 < 2;i.e. minimise

(a—%)logx—i—C( ! 1)+C(o—%)é(4logx) .

o—3

(eI

Puto = % + m for some o > 0. This gives

(logx)1~® + C(log x)* + C(logx)2+5.

1 1

This is optimal when o = 3. Foro = 5 + L wehave

(logx)3
D el = O(x%ec“"g")%HHﬂ C)aogx)%)
nns.:f
g Z
= O(x%ec (logx)3 )
Hence, by Abel Summation again, this gives the result. .

4.2 Q Results for Euler's example over N
We now consider 2 Results of Y L# for a system P which satisfies either

n<x
Np(x) = px + O(xP) forsome p > 0 (30)

or

Yp(x) = x + O(x%) (31)
for some ¢, B < % Both of which give the lower bound Q(%C) for the sum.

Proposition 18 Let P be a g-prime system satisfying (30) for some g < % Then

(n)
> Apnn =Q(%) (32)

n=x

ne N

Proof We wish to show that (32) is true. It is enough to show that

Lp@)= ) dp(n) = /).

n<x

ne N

Let us assume the contrary, so that Lp(x) = o(y/x). We know that for all %is > %,

zr6)=s | P (33)

is holomorphic. But for fs > 1, (Zp(s) :)% and ¢p(2s) is holomorphic for fs > %

with no zeros for fis > % since ¢{p(s) is holomorphic for fis > 1 and has no zeros here.

For fs > 1, we have ¢p(s) = % which has a meromorphic continuation for %is > %

except for a pole at s = 1 and no zeros. Therefore ¢p(2s) has a meromorphic continuation
for Rs > % and pole at s = % Now we know from the assumption (30) that ¢p(s) has

an analytic continuation for o > B except for a simple pole at s = 1. Thus Zp(s) is
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holomorphic for o = s > % with pole at s = % On the one hand, we know that Zp(s)
has a pole at % since {p(2s) has a simple pole at % Thus

1 C
ZP<§+E>N_/< forsome k>1 and C #0. (34)
€

On the other hand, from the right integral of (33) with s = % + €, we have

oL L
e (are)i=| (o) [ e = e [T e

|Lp(x)| can be written as g(x)./x, where g(x) > 0 and g(x) —> 0 asx —> 0o. Hence we

1
Zp (5 4 e)‘ / g)vx dx = B/ g( ) dx, where B is constant.
1 1

x2+e

have

Clearly

[ Eamaf?)

This also implies that

© Lp(
[l

so that Zp(% +¢€) = o(%). Therefore this gives a contradiction with (34) and hence

> el

In order to show (31) implies (32), we first need to prove a more general result.
Proposition 19 If'P is a g-prime system for which
Np(x) ~ px forsome p > 0,

and ¢p(s) has an analytic continuation past Rs = 1 to a region containing a neighborhood
of s = %, then (32) holds.

Proof To show (32) is true, it is enough to show that

x)= ) i) = QAVa).

ne N

Let us again assume that Lp(x) = o(y/x). We know that
o0
L
Zp(s) = s/ fff) dx
1

is holomorphlc for all s > 5 1 But for NRs > 1, (Zp(s) —)

¢ 7> (2S)

and ¢p(2s) is holomorphic

for Ns > w1th no zeros for Ns > 2 smce Cp(s) is holomorphlc for Ns > 1 and has no

Zeros here. For %is > 1, we have {p(s) = 3 (%S which has a meromorphic continuation

for Ns > % except for a pole at s = 1 and no zeros. Thus ¢p(2s) has a meromorphic

continuation for Ns > % and pole at s = % Thus Zp(s) is holomorphic for o = Rs > %
with pole at s = % because ¢p(s) is holomorphic at %
Hence, by following the same argument shown in the proof of Proposition 18, we obtain

the required result. O

45
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Remark 20 With Zhang’s system which was previously detailed in the paper, then (32) is
also true if we assume ¢p(s) has an analytic continuation to a neighborhood of s = %

In the following corollary we consider the effect of the assumption (31) for some o < %

Corollary 21 Let P be a g-prime system satisfying (31) for some o < % Then (32) holds.

Proof By Theorems 2.1 and 2.2 of [13], the assumption (31) for some a < % implies {p(s)
is holomorphic for fs > « except for a simple pole at s = 1 and that it has no zeros in
this region, and

Np(x) = px + O(x—cm)
for some p > 0 (see [13]). Hence, by Proposition 19, (32) holds. o

Remark 22 Let P be a g-prime system satisfying (19) and (20) for some «, 8, < 1 respec-
tively and define & via

Lp(x) = Z Ap(n) = O Te)

n<x

neN

(35)

holds for all ¢ > 0, but for no ¢ < 0 and for some & < 1. Then Proposition 18 and
Corollary 21 imply that max{g, £} > % and max{o, £} > %

5 Open problem

As mentioned in earlier, Kahane and Saias proposed that for all CMO functions, one
has ), _ f(n) = Q(\/%E) They also showed that GRH-RH (Generalised Riemann
Hypothesis—Riemann Hypothesis) would follow from this result. In our findings, we did
not find any CMO»p functions f suchthat ) _ f(n) = O(%) forc > % This may suggest
the following conjecture.

Conjecture 23 Let P be a g-prime system with abscissa 1. Then, for all completely mul-
tiplicative functions on A/, we have

3 fm) = Q(%)

n<x

ne N
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