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Abstract

A two-stage method by Seber and Wild (2003) used to fit nonlinear regression models with
correlated errors by using residuals obtained from the ordinary least square estimation has been
shown by Pukdee et al. (2018) to underestimate the standard errors of parameter estimates in
sinusoidal models, leading to poor coverage probabilities. In order to improve inferential statistics, a
modified two-stage method is developed using residuals from the one-way ANOVA model to
estimate variance components in the iterative estimation procedure and compared with the two-stage,
conditional least squares and generalized least squares methods. A simulation study shows that the
proposed method has similar successful convergence rates as the two-stage and conditional least
squares methods but produces more reliable point and interval estimates. Although very little
difference is seen between estimates produced by generalized least squares and the proposed method,
the latter has a consistently higher successful convergence rate, and consequently is more likely to
produce a result than the former, and this difference in rates becomes substantial when the model
complexity increases.

Keywords: Non-linear regression, correlated responses, two-stage method, generalized least squares.

1. Introduction

Sinusoidal functions are used in modelling data displaying a cyclic pattern over time, such as
obtained in studies on circadian rhythms of biological organisms, where reliable estimates of model
parameters, such as the frequency, are required. Circadian rhythms are regulators of many biological
processes and are studied within pharmaceutics as they can be useful predictors of drug metabolism,
dosage and efficacy. Gene expression, the process by which information from a gene is used in the
synthesis of a functional product, is measured using bioluminescence technology. The responses
arising from the study of circadian gene expression are measurements of light intensity over time.
Typically data is collected on the same experimental unit at selected time points over a period of time.
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While de-trending (Kyriacou and Hall 1980; Izumo et al. 2003; Izumo et al. 2006; Maier et al.
2009; Yang and Su 2010) is a widely used technique to fit sinusoidal correlated data models to
correlated gene expression data, recent work (Pukdee et al. 2018) has shown that de-trending leads
to biased parameter estimates compared to conditional least squares (Bates and Watts 1988) and a
two-stage estimation approach (Seber and Wild 2003). However, Pukdee et al. (2018) has also shown
that both the two-stage (TS) and conditional least squares (CLS) methods tend to underestimate the
standard errors of parameter estimators as model complexity increases and when the correlation
between adjacent responses is high. An alternative to TS and CLS is generalized least squares (GLS)
estimation (Davidian and Giltinan 1995). The above three estimation methods utilize the least squares
procedure and so can potentially benefit from the standard distributional properties of least squares
estimators but GLS is well known to face convergence problems when fitting complicated regression
models of correlated data. In this paper, the issues of a more accurate variance estimator and
successful convergence of the nonlinear iterative procedure is addressed by proposing a modified
two-stage (MTS) estimation method that uses the residuals from the one-way ANOVA model of
replicate observations at each time point. The proposed method is developed and compared to GLS,
CLS and TS methods in this paper.

2. Methods
The nonlinear regression model of the relationship between an independent variable ¢, here time,

and a dependent response variable y measured at n time points for each of » experimental units is

y, =f(t;0)+¢; i=1,...,r, (1)
where y, = (y,,,...,¥,,)" denotes the observed response vector of the i unit, t, = (¢, ,...,%, )" is the
vector of time points, f(t;6) = (f(z,;0)....,f(t,,;6))" is some nonlinear function f of ¢ and an

unknown parameter vector @, and g, = (¢, ,,...,¢,,)"is a vector of correlated errors. Assuming the

[AERE
repeated measures on each experimental unit follows a stationary autoregressive process of order 1,
AR(1), the error components can be described as a linear relationship between terms at time points
Jj and j—1 by

&, = pE +5;j; j=1...,n, 2)

ij-1 i

where pe[-L1] is the correlation coefficient for ¢, and &, and ¢, are independent and

-1

identically distributed (i.i.d.) variables with zero mean and constant variance ;. Under this model,
o;

1-p*°

In this paper, four sinusoidal nonlinear functions found in the literature (Kyriacou and Hall 1980;

Izumo et al. 2003; Izumo et al. 2006; Maier et al. 2009) and relevant for modelling circadian data are
evaluated. The first is the one-sine function

f(t;0) = a+ Pt +aexp(—dt)sin (@ + @j,
T

& have mean 0 and variance o =

where 7 is the period, a is the amplitude, @ represents the phase of the sine wave, d is a damping
parameter, ¢ is an intercept and £ is a slope of the linear trend. Secondly, the song- sine function

is

f(t:0)=a+ ft+(a, +aexp(—dt))sin (E+ q)] ,
T
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where a_ is a linear constant displacement in the amplitude. The third is the two-sine with damping

function to deal with the potential of more than one sinusoidal pattern,

ft;:0)=a+ pt +aexp(—dt)sin(%+ ®j+bsin(ﬁ+ @J,
T v
where b and v are the amplitude and the period respectively of the second sine term, and is proposed
as anovel function. Fourthly is the two-sine without damping function, also used to describe circadian
patterns with two different periods,

f(t;e)=a+ﬂt+asin(@+cbj+bsin(@+q)]_

T 1%

The two-sine function comprises two amplitudes which are assumed to be significantly different from
zero and are extensions of the one-sine function provided above.

The above nonlinear regression models with correlated errors are fitted in this paper using
conditional least squares, a two-stage estimation approach, generalized least squares and a new
modified two- stage approach. As explained below, all four methods are taking account of the
correlation structure in the data in different ways.

2.1. The generalized least squares method
In the situation where the error term g, = (¢,,,...,&,,)" for subject i is serially correlated and

assumed to be a stationary AR(1) process, €, ~ N(0,5°V,) where

1 p PP

Yej 1 Lo ..o p
V, =| p? Yo 1 e P
_pnfl pn72 pn73 1 |

The GLS estimator is obtained by minimizing the error sum of squares

{Y[ _f(t[;g)} V;1 {yi _f(ti;e)}'
In cases where the GLS method fails to converge when using iteratively reweighted least squares
for parameter estimation (Seber and Wild 2003), a transformation can be considered. Since V, isa

positive definite matrix, then there exists an upper triangular matrix U, such that V, =U/U, and

V' = R/R,, as defined by

Ji=p 0 0 0 0]
—p 1 0 .. 0 0

R = 0 -1 ... 0 0},
0o 0 0 .. —p 1

where R, = (Ul.’)f1 . Note that Cholesky factorization aims to calculate the matrix U,. Applying the

Cholesky decomposition transforms the model to an ordinary nonlinear least squares model. The
GLS method is implemented by using iterative maximum likelihood estimation for the mean € and
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variance components in ¥, (Pinheiro and Bates 2000). An empirical autocorrelation function is used

as starting value for p in the iterative procedure.

2.2. The two-stage method
The two-stage (TS) approach, proposed by Gallant and Goebel (1976), is a version of the GLS
method for estimating the variance components in V. The TS method under the same assumption as

the above GLS approach for estimating parameters of a nonlinear time-series regression with AR(1)
errors, consists of two ordinary least squares (OLS) procedures. In the first stage, the correlation

structure is ignored and the model (1) is fitted by OLS to produce estimates éOLS and fitted values
S ;s éom)- The residual vector for the i™ unit

é[ =Y. - f(ti;éOLS)’

is then calculated and used to produce an estimate of the within subject correlation p, (Park and

Mitchell 1980) given by

p=tg— (3)
=2

In the second stage, using the mean of the » estimates obtained pg,,..., p,, denoted p, to estimate
the (assumed) common correlation p , a transformed model is expressed in matrix form with i.i.d.

errors &, ~ (0,0;1,) as

z,=g(t;0)+o,;i=1...,r,

where z, = Ry,, g(t;;0)=Rf(t;;6), 5, = Rs,, where R, is the estimate of R, formed by
replacing p with p. As the matrix Ii’[ is constructed and fitted using OLS, the TS procedure is very
simple to code and implement. Gallant and Goebel (1976) improved the estimator of the two-stage
method by repeating the above procedure. In this repeat, the residuals g, =y, — f(t,; éTS), where éTS

is the two-stage estimator obtained in the first implementation, are used to obtain a new estimate of
the correlation in the weight matrix. Additionally, the TS procedure produces estimators with

asymptotic properties similar to OLS estimators (Gallant and Goebel 1976).

2.3. The modified two-stage method

Asikgil and Erar (2009) estimated the correlation coefficient in the above weight matrix R, by
using different procedures. Following this idea, the first step in the modified two-stage method
estimates the errors ¢, by again ignoring the correlation structure but now fitting a one-way ANOVA

model of the replicate observations at each time point. The one-way ANOV A model with i.i.d. errors
fitted is

V=M, i=Lkorj=2,,n,

where g, is the mean response at the j ™ time point (group).
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The residuals,
& =Yy~ Vi

where ., is the sample mean for the j™ time point, is next used to estimate the correlation

Joi

coefficient for the i" experimental unit P, used in (3). The second stage of the analysis proceeds by

using p =

O +...+p, . . . . .
AT FP gy the matrix R, in the above two-stage process. This pure error estimate of
B

&; 1s model independent and therefore likely to be an improvement over any model dependent

estimate.

2.4. The conditional least squares method
The conditional least squares (CLS) model is constructed by assuming that the correlated errors
g, are a stationary AR(1) process, as provided by (2), and subtracting p times the model for y, . |

from the model for y, ;. This is given by Bates and Watts (1988) as
Vi = PVija = f(t[,j;e)_pf(ti,jfl;e)-f_é‘i,j; J=2,..,n, “4)

where @ is a parameter vector and p is the parameter of the AR(1) model, which are estimated by

least squares. The CLS approach is implemented by minimizing

r n 2

0.0 =22 (v, =Py~ 120+ pf (1, 1:0)) .

i=l j=2
with respect to @ and p, jointly. A benefit of this approach is that the estimates obtained are
consistent and asymptotically normal (Klimko and Nelson 1978). In addition, Pukdee et al. (2018)
shows that CLS produces less biased estimates and more reliable confidence intervals than the TS
method when used to analyze circadian rhythms in gene expression profiles. However, the CLS
method can increase the risk of lack of convergence in the iterative fitting process due to the fact that
the number of parameters in the model (4) increases and the degrees of freedom is reduced by the
first order of the autoregressive process. A starting value for o inthe CLS iterative routine can be
obtained by fitting the nonlinear model assuming uncorrelated errors and calculating the residual
autocorrelation function (Bates and Watts 1988). Note that it is very important that the starting values
should be close to the final parameter estimates to increase the chance of convergence.

3. Simulation Study
To evaluate the performance of the above methods datasets are first generated for different levels
of the correlation o in an AR(1) process under the conditional least squares model,

f(t,:0)+9,; s =1
Yij = .
Pt [0 - (L, 30)+6,, 5 j=2.m,

where &, are independent and identically distributed N(0,0°) and f(z,;;0) is a sinusoidal

nonlinear function. For each level of the correlation p (0, 0.1, 0.25, 0.5, 0.75, 0.9) with ;= 25 a
total of 10,000 replicate studies each are generated under the one-sine, song-sine and two-sine models
with parameter values @ as provided in Table 1. For each simulation study, repeated measures are
simulated for » =4 independent subjects at times ¢, . =0,1.5,...,78 and n =53.
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Table 1 The four sets of parameter values used in the simulations

[
Model r v a a b D d a f
one-sine 24 - - 180 - 031 0.07 330 -3
song-sine 24 - 05 180 - 031 0.07 330 -3
two-sine with damping 24 35 - 180 0.5 031 0.07 330 -3
two-sine without damping 24 35 - 180 0.5 0.31 - 330 -3

Each simulated dataset is analysed by fitting the sinusoidal regression models in Table 1 using
the GLS, TS, MTS and CLS methods described above. The R software (R Core Team 2013) with the
nls function and the nlme library, see Pinheiro and Bates (2000), Ritz and Streibig (2008), and
Crawley (2013), is used to fit the models. Estimates of bias, mean square error and coverage
probability are next obtained and used to compare accuracy and efficiency of the period estimator, as
well as accuracy of the period variance estimator for the four methods. The percentage bias of the

estimator is
%Bias = 100 [Bla—smj
T

where Bias(7) =7 -7 ; ¢ is the mean of 7, and 7, is the period estimate obtained from the m"

simulation run (m =1,2...,M). In order to assess the precision of the estimated standard error for

parameter estimates, the percentage relative difference between the standard deviation and the
standard error for the estimate is given by

%Diff =100 (wj
SD(7)

M M
where SD(7) = \/#Z(fm —7)> and SE(?)= ﬁZSE(TA ), with SE(7,) the estimated
— Lm=1

m=1

standard error of the period estimate from the m"™ simulated dataset while the root mean square error
is estimated by

RMSE = /(SD(#))’ +(Bias(#)) .
The estimated coverage probability is provided by the proportion of times that the 100(1-a)%
confidence interval (CI) covers the true value of 7, which is given by

2, +1, SE(Z,),

[SYEN

where ¢, is the critical value of student ¢ distribution with the significance level & and v degrees

2
of freedom.

Convergence of the iterative algorithms was not achieved in all instances for all the methods and
for all the fitted models. Many failures would lead to less precise simulation results (Burton et al.
2006) and mitigates against utility of the method in practice. Provided in Table 2 is the achieved
percentage of successful convergences from 10,000 replications for each method when the one- sine,
song-sine, two-sine with and without damping models are fitted.

It can clearly be seen that the convergence rates of the four methods vary considerably and seem
to decrease with increasing model complexity. Under the simplest one-sine model, simulation results
with TS and MTS methods show 100% successful fits for all p and CLS and also gives full
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successful convergences for moderate and high p. Under the two-sine with damping model, the three
methods, CLS, TS and MTS have similar failure to convergence rates of less than 8%, while the GLS
method failed in approximately 10%-18% of the time. For the two-sine without damping model, MTS
has the best successful convergence rate, while GLS failure to converge rate for moderate (p = 0.5)

and high (p =0.75,0.90) correlations is around 24%-30%. The lowest convergence rates of around

45%-65% are observed for the song-sine model fitted by GLS.
Provided in Table 3 are estimates of the bias in estimation of the period 7 (%Bias), bias in

estimation of the standard error for 7 (%Diff) and root mean square error (RMSE) when the CLS,
TS, GLS and MTS methods are used to fit the one-sine, song-sine, two-sine with and without damping
models; provided in Figure 1 are estimates of the corresponding 95% coverage probabilities. It can
be seen from Table 3 that while %Bias for all four methods are comparable under all scenarios, the
same cannot be said for the bias in estimating the standard error (%Diff). When the one-sine model
is fitted, the MTS and GLS methods provide comparatively unbiased variance estimates relative to
the CLS and TS methods. Notwithstanding the poor convergence rate for GLS seen earlier in Table
2, this is also largely true when the song-sine model is fitted and is reflected in the coverage
probabilities from the MTS and GLS methods being close to the nominal rate of 95%, as depicted in
Figure 1(a) and Figure 1(b). When the fitted model is two-sine with damping, %Diff of MTS and
GLS are again similar and also their coverage probability are close to 95% at p =0.00 and p =0.10,

but GLS produces slightly better coverage probabilities than those MTS for p =0.25, 0.50, 0.75 and
0.90, as shown in Figure 1(c), albeit with a much higher failure to converge rate of approximately
15% at p=0.75 and 18% at p =0.90 (see Table 2). When the two-sine without damping model is
fitted, the standard error of 7 are underestimated by CLS, TS and MTS methods when p =0.75

with values of %Diff around -63%, -47%, -42%, respectively, while the one by GLS method is
overestimated with %Diff of approximately 11. In addition, coverage probabilities of GLS are over
95% for high p, but GLS and MTS produce coverage probabilities close to 95% for small and
moderate p in Figure 1(d). Moreover, in terms of RMSE, the three efficient methods are GLS, MTS

and TS for fitting all three models, one-sine, song-sine and two-sine with damping, while CLS is
considerably less efficient. For fitting the last two-sine without damping, GLS is the best choice, but
TS and MTS can be comparable for p =0.25 and 0.75.
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Table 2 Achieved percentage of successful convergences of the CLS, TS, GLS and MTS iterative
methods when fitting sinusoidal regression models
Fitted model P CLS TS GLS MTS

0.00 9897 100.00 99.62 100.00
0.10  99.46 100.00 99.33 100.00
0.25 100.00 100.00 98.45 100.00

ONESINC (50 100.00 100.00 91.96 100.00

075 100.00 100.00 75.64 100.00

090 100.00 100.00 74.58 100.00

000 98.63 97.93 4459 99.06

0.10 9821 9893 45.76 98.98

. 025 9851 9870 4696  99.02
Song—sme

0.50 9836 98.78 5198  99.09
0.75 9885 9776 6131 98.89
090 9764 98.85 66.14 98.77
0.00 9721 97.06 9140 98.11
0.10 9722 96.72 91.56 97.67
025 9755 9573 90.25 97.44
0.50 9720 94.35 88.07 96.80
0.75 96.67 93.11 85.66 96.39
090 9621 9230 82.87 95.90
0.00 9092 90.67 87.69 92.73
0.10 90.18 8942 86.02 91.39
025 8890 85.88 8322 89.14
0.50 85.00 79.64 76.86 86.07
0.75 83.61 74.04 7027 83.55
090 8253 71.77 67.71  82.86

two-sine with damping

two-sine without damping

4. Example Study

The methods described and evaluated in the previous section can be applied to many research
studies in the biological, chemical and physical sciences. An example provided here is a study of a
preclinical investigation in drug development in a pharmaceutical company. The responses arise from
the study of circadian gene expression as part of the results of an experiment run over 78 hours. The
same treatment was applied to four different sets of cells. Each cell is measured every 1.5 hours. The
responses oscillate in a similar manner. The repeated responses are measured on the condition that
no effects at 0 h are removed. The observations on different cells are assumed independent.

The four models described in Section (2), with an AR (1) covariance structure were fitted to the
data using the methods described. As mentioned before, nonlinear regression estimation is based on
an iterative algorithm with initial values setting for @ in Table 1 and p by using the mean of p, in

(3) in which the residuals come from the nonlinear model fitted by OLS, but for MTS the residuals
are obtained from fitting the one-way ANOVA model. Table 4 summaries the analyses in terms of

r n

A 2
223 ~1:6))
the 95% confidence interval (CI) for 7 and the standard error estimate, & = ||-—— ,
v

obtained using CLS, TS, GLS and MTS approaches.
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Table 3 Estimates of bias of the period parameter r (%Bias), bias of the standard error for 7
(%Diff) and root mean square error (RMSE) obtained when the CLS, TS, GLS and MTS iterative
methods are used for fitting sinusoidal regression models

Fitted model P CLS TS GLS MTS
%Bias
0.00 0.0069 0.0070  0.0073 0.0070
one-sine 0.25  -0.0017 0.0003  0.0007 0.0002
0.75 0.0245 0.0213  0.0163 0.0175
0.00 0.0052 0.0063  -0.0061 0.0064
song-sine 0.25  -0.0042  -0.0006 -0.0261  -0.0005
0.75 0.0318 0.0238  -0.0300 0.0219
0.00 -0.0189  -0.0371 -0.0444  -0.0350
two-sine with damping 0.25  -0.0023  -0.0432 -0.0509  -0.0405
0.75 0.1182 0.0288  0.0182 0.0275
0.00 0.0020 0.0019  0.0023 0.0014
two-sine without damping  0.25 0.0049 0.0046  0.0053 0.0040
0.75 0.0076 0.0023  0.0056 0.0045
%Diff
0.00 -1.8268 -3.0557 0.1191 0.1104
one-sine 0.25 -2.5229  -5.4038 -0.5034 -1.0383
0.75 -4.0626  -7.0672  0.3510  -0.5537
0.00 -2.7240 -3.7396 -2.7810  -0.2430
song-sine  0.25  -3.7935  -6.2894 -3.8361 -1.5411
0.75 -8.2721  -9.0344 -3.2148 -2.0350
0.00 -3.4097 -5.0050 -0.6981 -0.7687
two-sine with damping 0.25  -5.0557  -8.5044 -2.5417 -3.0373
0.75  -8.6243 -13.3056 -5.2215 -6.2059
0.00 5.0997 23367  4.0230 3.3825
two-sine without damping 0.25  -7.7560  -1.2290  4.9365 -12.2145
0.75 -63.7119 -47.8749 11.1269 -42.6787
RMSE
0.00 0.1360 0.1111  0.1109 0.1111
one-sine  0.25 0.1864 0.1371  0.1368 0.1370
0.75 0.3994 0.2274  0.2308 0.2276
0.00 0.1340 0.1096  0.1117 0.1095
song-sine  0.25 0.1836 0.1351  0.1382 0.1351
0.75 0.4022 0.2259  0.2315 0.2259
0.00 0.1427 0.1197  0.1187 0.1193
two-sine with damping 0.25 0.1980 0.1503  0.1491 0.1502
0.75 0.4594 0.2643  0.2644 0.2655
0.00 0.0204 0.0144  0.0136 0.0147
two-sine without damping  0.25 0.0226 0.0183  0.0168 0.0187
0.75 0.0947 0.0687  0.0268 0.0728
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Figure 1 Plots of coverage probability of 95% confidence interval for the period 7z using CLS
(solid line), TS (dashed line), MTS (dotted line) and GLS (dotdash line) when the fitted models are
(a) one-sine, (b) song-sine, (c¢) two-sine with and (d) without damping, respectively

Table 4 Standard error estimates and CI’s of the circadian period in a real gene expression dataset

Cis TS GLS MTS
Fitted model - = < -
tHec mode 95% CI & 95% CI & 95% CI & 95% CI &
onc-sine 2415+ 1.89 3508 2650+ 1.63 2988 2623232 3051 2655+ 182 2997
song-sine 2397+ 145 3746 2689+ 173 2992 2701189 2999  27.05+1.93  30.02
twosine with 4 0oL 248 3605 26454146 2924 26424221 2974 2652+ 166 2932
damping
twossine Without ) 0 1 g4 3830 24244155 3473 2425+ 161 3475 24204 145 3470

damping

The analysis results indicate that for all the fitted models, the CLS estimates of the circadian
periods are approximately 24 h with residual standard errors that are larger than those obtained using
TS, MTS and GLS. This is substantiated by the plots of the fitted models showing that CLS produces
a slightly poorer fit, as shown in Figure 2. Except for the two-sine without damping model, the other
three estimation methods produces circadian period estimates that are larger than 24 h. For choosing
the best model and method, Akaike Information Criterion (AIC) is one of the most widely used

v 2
ZZ(J}U _f(t[/;e ))

methods. This is defined as AIC = 2k + (rn) In| =

where k& is the number of
m

parameters in each model fitted by each method. AIC for the four models and methods are shown in
Table 5. The CLS method has largest AIC for all models while there are only small differences
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between AIC values for TS, GLS and MTS methods. The best fit to the data, clearly supported by the

TS, GLS and MTS methods, is the two-sine with damping model.

Table 5 AIC values for each model of the gene expression dataset

Fitted model CLS TS GLS MTS

one-sine 1,487.92 1,419.35 1,427.88 1,420.49

song-sine 1,516.17 1,42091 1,421.74 1,422.06

two-sine with damping 1,495.92 1,412.35 1,419.12 1,413.32
two-sine without damping  1,520.17 1,482.87 1,482.92 1,482.34

500
L

500

= -—
= .
s | [ 3=]
= ¥ =3
(] @
= S
g T g |
& ‘@
=
Q o =)
EX =817
8 g 4
. T T T T .3 T T T
20 40 60 80 20 40 80 80
hours hours
(a) (b)
=3 (=3
2 - P= |
'z] w
= i
L =] e
28 23 |
=g iR
2 2
z 5o
Og O%—
2 iy
72} w
3 5
= o
8 =8

100

100
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hours

(e)

40

hours

()

80

Figure 2 Gene expression observations are fitted by (a) one-sine, (b) song-sine, (c) two-sine with
and (d) without damping using CLS (solid line), TS (dashed line), MTS (dotted line) and GLS
(dotdash line) procedures

5. Conclusions

In this paper, the modified two- stage method ( MTS) is developed to improve coverage
probabilities by using pure errors to compute the correlation coefficient in the weight matrix. The
modified method is compared to conditional least squares (CLS), two-stage (TS) and generalized
least squares (GLS) estimation methods for analyzing circadian rhythm in gene expression data.
Simulation results suggest that these methods produce unbiased estimators of the circadian period.
The TS method produces poorer confidence intervals than that of CLS. Although GLS is slightly
preferred to MTS, in terms of both good variance estimates and confidence intervals, GLS has a
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higher failure to converge rate in the iterative fitting process, particularly for the song-sine model. It
is not obvious why this is the case and is worth exploring. Failure will lead to unbiased but imprecise
results and can also occur in practice. In addition, almost all results of the residual standard errors
and Akaike Information Criterion (AIC) show that MTS, TS and GLS models provide a slightly
better fit than CLS. Hence, the work here suggests that use of the MTS method can produce reliable
estimates and confidence intervals comparable with GLS and, importantly, is more likely to produce
a result.
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