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Efficient quantification of the impact of demand and
weather uncertainty in power system models

Adriaan P. Hilbers , Student Member, IEEE, David J. Brayshaw , Axel Gandy

Abstract—This paper introduces a new approach to quantify
the impact of forward propagated demand and weather uncer-
tainty on power system planning and operation models. Recent
studies indicate that such sampling uncertainty, originating from
demand and weather time series inputs, should not be ignored.
However, established uncertainty quantification approaches fail
in this context due to the data and computing resources required
for standard Monte Carlo analysis with disjoint samples. The
method introduced here uses an m out of n bootstrap with shorter
time series than the original, enhancing computational efficiency
and avoiding the need for any additional data. It both quantifies
output uncertainty and determines the sample length required
for desired confidence levels. Simulations and validation exercises
are performed on two capacity expansion planning models and
one unit commitment and economic dispatch model. A diagnostic
for the validity of estimated uncertainty bounds is discussed. The
models, data and code are made available.

Index Terms—Power system modeling, uncertainty, time series
analysis, bootstrap, weather, climate, variability

I. INTRODUCTION

A. Demand and weather uncertainty in power system models

This paper considers capacity expansion planning (CEP)
and unit commitment economic dispatch (UCED) models.
Such power system models (PSMs) typically use optimisation
to determine e.g. the minimum system cost, optimal generation
capacities, generation scheduling or carbon emissions.

Recent studies indicate that the effect of forward propagated
demand and weather uncertainty on the outputs of such
models should not be ignored, especially in systems involving
variable renewable generation such as solar and wind [1], [2].
This uncertainty emerges from the use of time series data (e.g.
demand levels, wind speeds or solar irradiances) which may be
viewed as samples from some underlying demand and weather
distribution. This sampling uncertainty may be significant; for
example, model outputs may differ highly depending on which
year of data is used [3]–[8], with some outputs varying as
much as 80% [9], [10].

B. Uncertainty quantification in power system models

The power system modeling community employs a num-
ber of established techniques to quantify output (also called
forward propagated) uncertainty, as summarised in [11] and
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[12]. Scenario analysis is convenient for factors that cannot
be reliably described by probability distributions (e.g. future
policy or the uptake speed of new technologies), while interval
analysis performs well when input parameters lie between cer-
tain values and interact weakly. Monte Carlo methods estimate
the probability distribution of outputs by running a model
multiple times with uncertain inputs sampled according to their
respective probability distributions; see [13]–[16] for some
applications to power systems. More sophisticated approaches
include creating a statistical emulator for the model [17].

C. The m out of n and the time series bootstrap

Since their introduction by Efron [18], bootstrap methods
have become popular throughout statistics and its applications.
In its most basic form, the procedure emulates an output’s
sampling distribution by its distribution under resampling from
the available data. Its popularity is attributed to its simplicity
and the fact that it “works” (referred to as consistency) in a
wide variety of settings [19]–[21]. The m out of n bootstrap,
which uses samples of a different length (usually shorter), may
be used to reduce computational cost. Theoretical properties,
including its consistency in settings where the traditional (n
out of n) bootstrap is consistent, are discussed in [22].

Bootstrap methods applied to time series data require addi-
tional refinements when values are not independent and iden-
tically distributed (IID), as summarised by [23]. Two common
modifications are the sampling of blocks of timesteps to pre-
serve short-term dependence structures (the block bootstrap)
and detrending of longer-term dependencies and subsequent
resampling of residuals (the model-based bootstrap).

Bootstrap methods have been applied in a number of energy
applications. Some examples include probabilistic forecasts for
electricity demand [24], price [25], and variable renewable
generation levels [26], [27]. They have also been used in
assessments of system adequacy margins [28] and, in more
physics-oriented studies, electromechanical modes [29].

D. This paper’s contribution

This paper provides two contributions. The first is a new
scheme to efficiently quantify the impact of demand and
weather uncertainty in power systems models (PSMs), de-
termining how much an output varies if other, but equally
plausible, demand and weather samples are considered. It
is an m out of n bootstrap that uses shorter resamples of
the available data. The second is a method to determine the
required simulation length for desired uncertainty bounds. The
methods are applicable to capacity expansion planning and
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unit commitment economic dispatch models with simulation
horizons of at least one year. Both methods are validated
experimentally on a wide range of model outputs and a
diagnostic for the consistency of estimated uncertainty bounds
is found to work well. The models, data and sample code are
available at [30].

Improvements on currently employed approaches (Section
I-B) are illustrated by an example. Consider uncertainty
quantification on PSM outputs obtained using five years of
demand and weather data. Scenario and interval analysis fail
since the uncertainty originates from high-dimensional time
series. Standard Monte Carlo methods require simulations
with disjoint five-year samples of demand and weather data
— inefficient, both in data (multiple five-year samples) and
computation (multiple five-year runs). The method introduced
here uses simulations across shorter time series (requiring
reduced computational resources) resampled from the avail-
able data (hence requiring no additional samples). In this
way, it reduces the inefficiency of standard Monte Carlo
analysis, while maintaining its advantages. For example, the
method makes no assumptions on the model formulation and
is identical irrespective of the time series inputs, regional
topology, or constraints. To the best knowledge of the authors,
this paper is the first in the power and energy community
that (1) uses shorter samples, reducing the computational
requirements of standard bootstrap/Monte Carlo methods, (2)
relates sample size to uncertainty levels, allowing an informed
choice of simulation length, and (3) quantifies the impact of
forward propagated demand and weather uncertainty on a large
range of PSM outputs; hitherto, studies focused instead on
producing improved point estimates under this uncertainty via
e.g. stochastic or robust optimisation or concentrated on only
one specific output.

This paper is structured as follows. Section II introduces
the general form of the method. Section III analyses its
performance on three test power system models: two capacity
expansion planning models and one operation (unit commit-
ment economic dispatch) model. Section IV discusses the
results and conclusions. A full description of the time series
and models can be found in the appendix (Section V).

II. METHODS

A. Overview

Consider a power system model (PSM) output Ô determined
using TÔ, a demand and weather time series of length nÔ. The
PSM is viewed as a mapping from TÔ to Ô:

Ô = PSM(TÔ). (1)

Uncertainty in the value of Ô is induced from the time series
used to calculate it. In particular, a different sample of demand
and weather data, drawn from the same underlying distribution
as TÔ is drawn from, leads to a different but equally valid
output. This uncertainty on Ô, forward propagated from TÔ,
is referred to as demand and weather uncertainty in this paper.

A concrete example of demand and weather uncertainty is
as follows. Consider the cost-optimal level of additional wind
capacity to build in order to meet environmental constraints.

This depends on the distribution of demand and weather events
expected to occur. The optimum additional wind capacity over
the last nÔ=1 year of demand and weather data provides a
point estimate Ô of this optimum. However, a different year-
long sample (e.g. the year before) provides a different value.
This variation across samples drawn from the same underlying
distribution drives demand and weather uncertainty on Ô.

A convenient quantification of this uncertainty is provided
by Ô’s sampling standard deviation σÔ across different de-
mand and weather samples, of length nÔ, drawn from the
same underlying distribution (e.g. 1 year samples in the above
example). σÔ can be used to construct confidence or prediction
intervals. For example, [Ô − 2σÔ, Ô + 2σÔ] has a coverage
probability of at least 75% (and usually higher, e.g. 95% for
a normal distribution). As discussed in Section I-D, σÔ often
cannot be estimated by Monte Carlo methods with disjoint
samples due to limitations in data and computational resources.
It may be estimated instead using the m out of n bootstrap as
follows:

1) Construct K subsamples S1, . . . ,SK ⊂ TÔ, each of
length nS ≤ nÔ, using a suitable bootstrapping pro-
cedure.

2) For each sample, calculate output Ok = PSM(Sk).
Normalise if necessary (see discussion below).

3) Estimate variance σ̂S
2 across subsamples:

σ̂S
2
=

1

K − 1

K∑
k=1

(Ok −OS)
2 (2)

where OS = 1
K

∑K
k=1Ok is the sample mean.

4) Estimate σÔ by σ̂Ô, defined by

σ̂Ô
2
=
nS
nÔ

σ̂S
2
. (3)

The procedure in step 1 works by subsampling, with re-
placement, blocks of time steps correctly distributed through-
out the year. An example is the sampling of weeks from each
season. Precise details (e.g. the block length) may be tailored
to the specific application as in Section III-B.

The sample length adjustment necessitates the normalisation
of Ok in step 2 to lie on the same temporal scale as Ô.
In this investigation, extensive outputs (e.g. generation levels,
emissions and costs) are annualised and expressed as values
per year. Extensive quantities can be restored by multiplying Ô
and σ̂Ô by the sample length nÔ at the end. Furthermore, time
series should be detrended; for example, long-term demand
trends should be removed before resampling.

The method also allows the estimation of the required
sample length nÔ to attain desired levels of certainty. Given a
required standard deviation σÔ, (3) may be rearranged to give

nÔ = nS
σ̂S

2

σ̂Ô
2 . (4)

This motivates the following approach: (1) Use steps 1-3 to
obtain σ̂S

2. (2) Estimate nÔ, the minimum sample length
required to ensure model output Ô has standard deviation at
most σ̂Ô, using equation (4).
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Fig. 1. 6-bus model configuration. Demand must be met at buses 2, 5 and 6.
CCGT, OCGT and nuclear generation is distributed at buses 1, 3 and 6. Wind
generation is available at buses 2, 5 and 6. Buses 2, 4, 5 and 6 use (demand or
wind) time series data from Germany (DE), France (FR), the United Kingdom
(UK) and Spain (ES) respectively.

B. Justification and a diagnostic for validity

The standard deviation estimate σ̂Ô is calculated using an
m out of n time series bootstrap with n = nÔ,m = nS . From
bootstrap theory (Section I-C), σ̂Ô is known to approximate
σÔ in many settings provided that nS and nÔ are large enough
and the sampled blocks are long enough to capture the auto-
correlation in the time series. The nS

nÔ
scaling appears because

the variance of many statistical estimators (including functions
of the sample mean and median under weak conditions) are
inversely proportional to sample size [22], [31].

Bootstrap theory implies two important cases in which this
method is not expected to provide consistent estimates. The
first is when a PSM output depends on a sample minimum or
maximum, e.g. peak net demand or peaking capacity if 100%
of demand must be met. This can be alleviated by allowing
unmet demand at high cost, which changes the dependence to a
high quantile, e.g. 99.9%. The second is when the PSM output
is an integer variable with jumps too large to be approximated
well by a continuous one.

Given a PSM output, a diagnostic gives users an approxi-
mate indication whether the method is consistent. It works as
follows: use varying subsample length nS and check whether
the estimate σ̂Ô

2 in Equation (4) is roughly unchanged.
The diagnostic is necessary but not sufficient; the standard
deviation estimates are inconsistent if they clearly differ across
sample lengths, but constant standard deviation estimates do
not prove the consistency of the bootstrap. In practice, the
diagnostic is found to work well, succesfully identifying the
settings where the standard deviation estimates are consistent
across the case studies in this paper.

III. SIMULATION RESULTS

A. Overview

In this section the proposed methods are applied to three
sample PSMs. Each model’s topology is based on the IEEE
6-bus system (see e.g. [32]–[34]). The available technologies at
each bus are based on a renewables-ready version introduced
in [35] and [36]. Fig. 1 provides a diagram of the model topol-
ogy and locations of different demand and generation sources.
Available generation technologies are nuclear, combined cycle

gas turbine (CCGT), open cycle gas turbine (OCGT) and
wind. Unmet demand (load shedding) is permitted at high cost.
The models’ time series inputs are demand levels and wind
capacity factors in European countries. The individual models
are discussed below, and their technical details can be found
in the appendix (Section V). They are modified versions of a
larger class of open-source models and data, available at [37].

1) LP planning model: a capacity expansion planning
model that determines the least cost “build from scratch”
system design (capacities of generation and transmission tech-
nologies) by minimising the sum of install and generation
costs. Each generation and transmission capacity may take any
nonnegative value. For this reason, the associated optimisation
problem is a continuous linear program (LP). Model outputs
consist of the cost-optimal generation and transmission capac-
ities as well as the (annualised) minimum system cost.

2) MILP planning model: identical to the LP planning
model, but with nuclear generation capacity restricted to
blocks of 3GW. The optimisation problem is hence a mixed
integer linear program (MILP).

3) Operation model: a unit commitment and economic
dispatch model that optimises the operation of a system
with fixed generation and transmission capacities. Operational
constraints are more sophisticated than in the planning models;
nuclear power has a ramp rate of 20%/hr and a minimum
operating rate (when switched on) of 50%. Model outputs
consist of generation and transmission levels, generation costs
and carbon emissions, all of which are annualised.

The remainder of this section is structured as follows.
Section III-B introduces the subsampling schemes. Section
III-C discusses the quantification of output uncertainty and
Section III-D illustrates how to estimate the required sample
length for desired confidence levels. The method’s validity is
examined in Section III-E.

B. Subsampling schemes

This section describes how the K bootstrap samples (step 1,
Section II-A) are created. Subsampling schemes should avoid
distorting power system operation (and hence PSM outputs)
when compared to the original time series. For example, for
ramping constraints or storage, the chronology of time steps
should be altered as little as possible, and when seasonal
demand or wind patterns exist, the distribution of time steps
throughout the year should be preserved. For this reason, two
stratified block subsampling schemes are proposed:
• Months: sample individual months, correctly distributed

throughout the year. For example, a two-year sample is:

[Jan][Feb] · · · [Nov][Dec][Jan][Feb] · · · [Nov][Dec] (5)

where e.g. [Jan] is a contiguous January block sampled
from the original time series TÔ.

• Weeks: sample individual weeks, correctly distributed
throughout the year. For example, a 56-day sample is:

[7d]DJF [7d]MAM [7d]JJA [7d]SON [7d]DJF [7d]MAM [7d]JJA [7d]SON (6)

where e.g. [7d]DJF is a contiguous week block from one
of the meteorological winters (Dec-Jan-Feb) in TÔ.
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TABLE I
DETAILS ON THE SIMULATIONS IN SECTION III-C. THE MEAN VALUES

PER SIMULATION ARE SHOWN.

(a) (b) (c)
Model LP planning MILP planning operation

Sample for point estimate Ô 2008-2017 2017 2017
Sample length nÔ 10yr 1yr 1yr

Standard deviation estimate via m out of n bootstrap
Subsample scheme months weeks months
Sample length nS 1yr 12wk 1yr

Mean solution time (minutes) 6 14 5
Mean solution memory (MB) 1633 457 332

Standard deviation estimate via Monte Carlo with disjoint samples
Sample length 10yr 1yr 1yr

Mean solution time (minutes) 262 765 5
Mean solution memory (MB) 13813 1713 332

C. Quantifying output uncertainty

In this section, the demand and weather uncertainty on
model outputs from each of the three sample PSMs is quanti-
fied. Let each (point estimate) model output be Ô, determined
using a single long simulation. Estimates for Ô’s sampling
standard deviation σÔ are generated using the m out of n
bootstrap (Section II-A) with K=1,000 bootstrap samples. The
time series that is sampled from is the period 2008-2017.

Table I details the simulations employed. It also provides,
for comparison, the simulations required for standard Monte
Carlo methods using disjoint samples of the same length
as the point estimate (the current approach). Optimisation
problems are created using the energy modeling framework
Calliope [38] and solved using the CBC optimiser [39] on
a 2.7GHz Intel Core i5-5257U processor with 8GB of RAM
(with additional “swap” memory).

One test case is run for each PSM. In test case (a), the
LP planning model is considered. The point estimate Ô
is calculated across 2008-2017 and the standard deviation
estimate σ̂Ô uses the m out of n bootstrap with subsample
length nS=1 year, generated by resampling months as per the
months scheme (Section III-B). In test case (b), the MILP
planning model is run across 2017 for the point estimate
and standard deviation estimates use subsample length nS=12
weeks, generated by resampling weeks from seasons as per the
weeks scheme (Section III-B). In test case (c), which considers
the operation model, the sample lengths for the point estimate
and bootstrap simulations are equal. This corresponds to a
“regular” (n out of n) time series bootstrap.

Fig. 2 shows, for a subselection of model outputs, the point
estimates Ô with error bars of length 2σ̂Ô above and below.
The same plots for the full range of model outputs are available
in the supplementary material. This range typically covers at
least 75% of a distribution, and typically more (95% for a
normal distribution). In Fig. 2(a), the use of a 10-year sample
for the point estimate means uncertainty levels are relatively
small. Cost-optimal wind capacity at bus 2 has a Ô±2σ̂Ô range
of 25-45GW, but other outputs are comparatively certain. For
Fig. 2(b), the use of a shorter (1-year) point estimate means
uncertainty bounds are much larger. For example, Ô ± 2σ̂Ô
extends from 2-62GW for optimal wind capacity at bus 2.

(a) LP planning model, point estimate 2008-2017
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(b) MILP planning model, point estimate 2017
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(c) Operation model, point estimate 2017
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Fig. 2. Point estimates of selected model outputs, with error bars equal to 2
standard deviations. The standard deviation is estimated using the m out of n
bootstrap with K=1,000 bootstrap samples. In the x-axis labels, “bX” means
bus number X. See Table I for details on the simulations.

Furthermore, in this case, a user could not say with any
certainty whether, for example, cost-optimal system design has
more CCGT capacity at bus 1 or 3, as the uncertainty regions
overlap considerably. In test case (a), in contrast, there is a
high confidence that more CCGT capacity should be installed
at bus 3. In both settings (a) and (b), optimal transmission
capacities and minimum system cost are comparatively certain.
In Fig. 2(c), the uncertainty is large for energy unserved but
much smaller for the generation levels. The total generation
cost is also relatively uncertain, ranging roughly 40% above
and below. This is driven almost totally by the uncertainty in
unserved energy, which is assigned a high value of lost load
and hence a high contribution to total costs.

The m out of n bootstrap estimates the standad deviation
significantly more efficiently (both in data and computation)
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than standard Monte Carlo methods with disjoint samples and
without a reduction in sample length. For example, in test
case (a), the method represents a 44-fold reduction in com-
puting time (6 vs. 262 minutes) and an eight-fold reduction
in memory (1633 vs. 13813 MB). Since the estimates are
generated across K=1,000 samples, the total computing time
in this case is 6,000 minutes (100 hours), compared with
262,000 (≈182 days) using standard Monte Carlo methods.
Furthermore, the resampling means 1,000 bootstrap samples
can be created without any additional data. For the same
number of samples using standard Monte Carlo methods, one
requires 1,000 samples of ten years each: 10,000 years of
data in total. Similar advantages occur in test case (b). In
test case (c), the standard deviation estimates are calculated
without a reduction in sample length, so that nS = nÔ. In
this case, the advantages are only in data efficiency; instead
of requiring 1,000 years of data, bootstrap samples can be
created by resampling the original ten years.

D. Determining required sample length

The relationship between sample size and standard deviation
allows an informed choice of simulation length based on
desired certainty levels. For example, suppose a user wants
σ̂Ô on optimal nuclear capacity at bus 3 to be no more than
σÔ=5GW. In test case (a), the method indicates that σS , the
standard deviation across 1,000 nS=1-year bootstrap samples,
is about 11GW. Using equation (4) then indicates a required
sample length of nÔ = 1 × 112

52 ≈ 5 years for the point
estimate. Calculations for other outputs work in the same way.

E. Verifying the method’s consistency

In this section, the method’s consistency is considered. This
is done by using the m out of n bootstrap, with varying
subsample length nS , to estimate σY , the sampling standard
deviation of single-year model outputs. A 95% confidence in-
terval for σY is constructed by bootstrapping the 38 individual
(disjoint) years from 1980-2017, a well-established procedure
[31]. If the method is consistent, each standard deviation
estimate meets two conditions: (1) it lies within this confidence
interval with high probability, and (2) it is independent of the
sample length nS used to calculate it (indicating that the nS

nÔ

scaling factor used in step 4 of Section II-A is appropriate).
Fig. 3 shows, for a selection of model outputs, the estimates

σ̂Y along with a 95% confidence interval for the true value
σY . Plots for the full range of model outputs are available as
supplementary material. Estimates using subsamples shorter
than 1 year (nS=4, 12, 24, 36 and 48 weeks) are generated
using the weeks scheme, while subsamples at least one year
(ns=1, 2 and 3 years) are generated via the months scheme. For
the operation model with ns ∈ {2, 3}, the bootstrap samples
are longer than the sample used to calculate the point estimate
Ô in Section III-C. This is only to validate the method across a
large range of subsample sizes nS ; in any practical application,
bootstrap samples would be no longer than that for the point
estimate. For the MILP planning model, the longest sample
length is 1 year since the integer constraints, and associated
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Fig. 3. (All plots share the same x-axis, shown at the bottom.) Standard
deviation estimates σ̂Y as a function of subsample size nS . σ̂Y estimates
σY , the sampling standard deviation of single-year model outputs. σ̂Y is
calculated across K=1,000 bootstrap samples, generated by either the months
or weeks scheme. The dashed lines show a symmetric 95% confidence interval
for σY . The y-values are shown as a proportion of σ38, the standard deviation
across the 38 individual years from 1980-2017.
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scaling of computational cost with sample length, precludes
the use of longer samples.

Fig. 3 indicates that, with sufficient subsample size, the
standard deviation estimates for almost all model outputs
meet the two required conditions; they lie within the 95%
confidence interval and are roughly independent of sample
length (as seen by a constant y-value). The one output where
estimates are clearly not consistent is for peak energy unserved
in Fig. 3(c). The reason for this, as discussed in Section II-B,
is that this model output is a sample maximum, namely that
of demand minus available generation.

The approximate diagnostic introduced in Section II-B suc-
cesfully identifies for which outputs the m out of n bootstrap
does not provide consistent estimates. This diagnostic stipu-
lates that the estimate σ̂Y is roughly independent of subsample
size nS . All outputs in Fig. 3 except peak energy unserved
in Fig. 3(c) meet this requirement. These are precisely the
model outputs that consistently lie within (or very close to)
the confidence interval.

Two further observations warrant mention. The first is that
the method fails when subsample sizes are too small, as
for transmission capacity with nS=4 weeks in Figures 3(a)-
(b). The second is that the weeks scheme usually generates
slightly lower standard deviation estimates than the months
scheme and may underestimate the target σY , as in Fig.
3(c). This likely occurs because there is some dependence at
time scales longer than seven days which is treated as zero
when resampling, artificially reducing the standard deviation.
The error induced by this approach is not very large, rarely
exceeding 15%. Furthermore, the independent resampling of
blocks from different years does not seem to lead to major
underestimation of variance by “smoothing” over inter-year
variability as described in [40].

IV. DISCUSSION AND CONCLUSIONS

A. Discussion

The simulation study highlights a number of key messages.
The first is that the method usually “works”, providing uncer-
tainty estimates at a greatly reduced computational cost and
without requiring any additional data. The method fails when
the subsample size is too small (as is virtually always the
case in computational uncertainty quantification) or when the
model output depends strongly on a sample maximum (e.g.
maximum demand). Each of these failures are identified by the
diagnostic introduced at the end of Section II-B, giving users
an indication whether estimates are consistent. Furthermore,
the method provides consistent estimates for nuclear capacity
for the MILP planning model, even though this is a discrete
variable in blocks of 3GW. This is because the 3GW jumps are
small enough to make this discrete variable well approximated
by a continuous one.

This paper also illustrates, in accordance with previous
studies (Section I-A), the risk in informing energy strategy
on short demand and weather samples. For example, the cost
optimal system design for the LP planning model contains
15GW of wind capacity at bus 2 under 1982 data, but 92GW
under 1986 data, a more than sixfold difference. Hence, for

robust PSM outputs under demand and weather uncertainty,
longer samples, spanning multiple years, should be considered.

The discussion above leads to three recommendations. The
first is to make the subsamples used for the point estimate as
long as possible, as this reduces the uncertainty on their values.
The second is that, if both are computationally feasible, the
months scheme should be preferred over the weeks scheme,
as the former has less tendency to underestimate variability.
The third is to estimate the standard deviation with multiple
subsample lengths and check if uncertainty estimates are close,
since a failure for this diagnostic indicates that estimates are
inconsistent.

B. Conclusion

This paper introduces a new approach to efficiently quantify
the impact of forward propagated demand and weather uncer-
tainty in power system models. This provides an information
advantage over point estimates by indicating whether an output
is statistically robust or an artefact of the particular demand
and weather sample. The method is applicable to both planning
(capacity expansion) and operation (unit commitment and
economic dispatch) models with simulation lengths of at
least one year and without large seasonal storage capacities.
Furthermore, simulation lengths may be informed based on
desired uncertainty levels, avoiding needless computational
expense. The method can be expected to “work” (generate
consistent uncertainty estimates) for most PSM outputs, and
an approximate diagnostic can help determine (but not prove)
whether this is the case. The models, data and example code
are available at [30].

There are a number of possible extensions to this study.
One is to combine the proposed methods with uncertainty
analysis on other model outputs (e.g. technology or fuel costs)
by sampling both demand and weather data and other uncertain
input parameters simultaneously. Another possible extension is
the analysis of the covariance of model outputs instead of, as
in this investigation, viewing each as having an independent
distribution. A third extension involves modifying the method
for models with seasonal storage. Finally, the method could
leverage the use of subsampling for point estimates. Due to
computational limitations, even point estimate PSM outputs
are often determined using a subsampled time series such
as a smaller number of “representative days” [41], [42].
Such approaches can be straightforwardly combined with the
algorithm proposed in this paper by using subsampled data
for the point estimate. However, more sophisticated methods,
such as using subsampled data in the bootstrap samples, or
accounting for the uncertainty induced by subsampling for the
point estimate, require additional study.

V. APPENDIX

A. Mathematical formulation of power system models

1) LP planning model: Model outputs are determined by
solving (7)-(19) without necessarily satisfying (16).
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TABLE II
NOMENCLATURE.

Term Description
Indices / Sets

i Generation technology
r Region (bus)
t Time step
I Technologies: nuclear (n),

CCGT (c), OCGT (o), wind
(w), unmet demand (u)

R Regions (buses): 1-6
Parameters
C

gen
i Annualised install cost, tech-

nology i (£/MWyr)
C tr

r,r′ Annualised install cost, trans-
mission, bus r to r′ (£/MWyr)

F
gen
i Generation cost, technology i

(£/MWh)

Term Description
Time series

T Simulation length (hr)
dr,t Demand, region r, time t

(MWh)
wr,t Wind capacity factor, bus

r, time t (∈ [0, 1])
Variables

capgen
i,r Generation capacity, tech-

nology i, bus r (MW)
captr

r,r′ Transmission capacity,
bus r to r′ (MW)

geni,r,t Generation, technology i,
bus r, time t (MWh)

trr,r′,t Transmission, bus r to r′,
time t (MWh)

2) MILP planning model: This model determines its out-
puts by solving the following optimisation problem:

min
∑
r∈R

[
T

8760

(∑
i∈I

C
gen
i capgen

i,r︸ ︷︷ ︸
installation cost,

generation capacity

+
1

2

∑
r′∈R

C
tr
r,r′ captr

r,r′︸ ︷︷ ︸
installation cost,

transmission capacity

)
+
∑
i∈I

T∑
t=1

F
gen
i geni,r,t︸ ︷︷ ︸

generation cost

]

(7)
by optimising over decision variables

{capgen
i,r, captr

r,r′, geni,r,t, trr,r′,t : i∈I; r, r
′∈R; t∈{1 . . . T}} (8)

subject to

capgen
n,r

∣∣
r/∈{1}= capgen

c,r

∣∣
r/∈{1,3}= capgen

o,r

∣∣
r/∈{1,6}= capgen

w,r

∣∣
r/∈{2,5,6}= 0 (9)

captr
r,r′
∣∣
(r,r′)/∈{(1,2),(1,5),(1,6),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,1),(5,4),(5,6),(6,1),(6,5)} = 0 (10)∑

i∈I
geni,r,t +

∑
r′∈R

trr′,r,t = dr,t ∀ r, t (11)

trr,r′,t + trr,′r,t = 0 ∀ r, r′, t (12)

geni,r,t ≤ capgen
i,r ∀ i 6=w, ∀ r, t (13)

genw,r,t ≤ capgen
w,rwr,t ∀ r, t (14)

|genn,r,t − genn,r,t+1| ≤ 0.2capgen
n,r ∀ r, t (15)

capgen
n,r ∈ 3Z ∀ r (16)

captr
r,r′ = captr

r′,r ∀ r, r′ (17)

|trr,r′,t| ≤ captr
r,r′ ∀ r, r

′
, t (18)

capgen
i,r, captr

r,r′ , geni,r,t ≥ 0 ∀ i, r, t. (19)

(9)-(10) stipulate the model’s generation and transmission
topology. (11) and (12) are the demand and power flow
balance requirements. (13)-(14) ensure generation does not
exceed installed capacity (for thermal technologies) or in-
stalled capacity times the wind capacity factor (for wind).
(15) is the nuclear ramping constraint. (16) enforces that
nuclear is built in 3GW units. (17) and (18) stipulate that
transmission capacities are symmetric and limit transmitted
power to installed transmission capacity.

3) Operation: This model has fixed generation and trans-
mission capacities, equal to the cost-optimal system of the
MILP planning model across the year 2017. It determines its
model outputs by solving the following optimisation problem:

min
∑
r∈R

∑
i∈I

T∑
t=1

F
gen
i geni,r,t︸ ︷︷ ︸

generation cost

(20)

by optimising over decision variables

{geni,r,t, trr,r′,t : i∈I; r, r
′∈R; t∈{1 . . . T}} (21)

TABLE III
GENERATION AND TRANSMISSION TECHNOLOGIES. INSTALLATION COSTS

ARE ANNUALISED TO REFLECT COST PER YEAR OF LIFETIME.

Installation cost Generation cost Carbon emissions
Technology (£/KWyr) (£/KWh) (gCO2e/KWh)

Generation
Nuclear C

gen
b = 300 F

gen
b = 0.005 eb = 200

CCGT C
gen
p = 100 F

gen
p = 0.035 em = 400

OCGT C
gen
p = 50 F

gen
p = 0.100 em = 400

Wind C
gen
w = 100 F

gen
w = 0 ew = 0

Unmet demand C
gen
u = 0 F

gen
u = 6 eu = 0

Transmission
Bus 1 to 5 C tr

1,5 = 150 - -
Bus 1 to 6 C tr

1,5 = 130 - -
Other C tr

r,r′ = 100 - -

subject to ∑
i∈I

geni,r,t +
∑

r′∈R

trr′,r,t = dr,t ∀ r, t (22)

trr,r′,t + trr,′r,t = 0 ∀ r, r′, t (23)

geni,r,t ≤ capgen
i,r ∀ i 6=w, ∀ r, t (24)

genw,r,t ≤ capgen
w,rwr,t ∀ r, t (25)

|genn,r,t − genn,r,t+1| ≤ 0.2capgen
n,r ∀ r, t (26)

genn,r,t = 0 OR genn,r,t ≥ 0.5capgen
n,r ∀ r, t (27)

|trr,r′,t| ≤ captr
r,r′ ∀ r, r

′
, t (28)

geni,r,t ≥ 0 ∀ i, r, t. (29)

(22) and (23) are the demand and power flow balance require-
ments. (24)-(25) ensure generation does not exceed installed
capacity (for thermal technologies) or installed capacity times
the wind capacity factor (for wind). (26) is the nuclear ramping
constraint. (27) indicates that nuclear power must generate at
50% its rated capacity whenever it is turned on. (28) limits
transmitted power to installed transmission capacity.

B. Technologies and time series

Nuclear, CCGT, OCGT and wind are based on the baseload,
mid-merit, peaking and wind technologies in [10]. Carbon
emissions are based on [43]. Unmet demand is considered,
for modeling purposes, a fourth technology with no installation
cost but a generation cost equal to the value of lost load in
the UK [44].

The time series are country-aggregated hourly demand lev-
els (with long-term trends removed) and wind capacity factors
for different European countries over the period 1980-2017.
Details can be found in [45] and [46].
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