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ARTICLE OPEN

Predicting global patterns of long-term climate change from
short-term simulations using machine learning
L. A. Mansfield 1,2✉, P. J. Nowack 1,3,4,5, M. Kasoar 1,3,6, R. G. Everitt 7, W. J. Collins 8 and A. Voulgarakis 1,6,9

Understanding and estimating regional climate change under different anthropogenic emission scenarios is pivotal for informing
societal adaptation and mitigation measures. However, the high computational complexity of state-of-the-art climate models
remains a central bottleneck in this endeavour. Here we introduce a machine learning approach, which utilises a unique dataset of
existing climate model simulations to learn relationships between short-term and long-term temperature responses to different
climate forcing scenarios. This approach not only has the potential to accelerate climate change projections by reducing the costs
of scenario computations, but also helps uncover early indicators of modelled long-term climate responses, which is of relevance to
climate change detection, predictability, and attribution. Our results highlight challenges and opportunities for data-driven climate
modelling, especially concerning the incorporation of even larger model datasets in the future. We therefore encourage extensive
data sharing among research institutes to build ever more powerful climate response emulators, and thus to enable faster climate
change projections.

npj Climate and Atmospheric Science            (2020) 3:44 ; https://doi.org/10.1038/s41612-020-00148-5

INTRODUCTION
To achieve long-term climate change mitigation and adaptation
goals, such as limiting global warming to 1.5 or 2 °C, there must be
a global effort to decide and act upon effective but realistic
emission pathways1. This requires an understanding of the
consequences of such pathways, which are often diverse and
involve changes in multiple climate forcers1–3. In particular,
different emission scenarios of, for example, greenhouse gases
and aerosols are responsible for diverse changes in regional
climate, which are not always well captured by a metric such as
global temperature-change potential4–9. Exploring more detailed
relationships between emissions and multiregional climate
responses still requires the application of Global Climate Models
(GCMs) that allow the behaviour of the climate to be simulated
under various conditions (e.g. different atmospheric greenhouse
gas and aerosol concentrations or emissions fields)10–12 on
decadal to multi-centennial timescales (e.g. refs. 5,13–16). However,
modelling climate at increasingly high spatial resolutions has
significantly increased the computational complexity of GCMs2, a
tendency that has been accelerated by the incorporation and
enhancement of a number of new Earth system model
components and processes17–20. This high computational cost
has driven us to investigate how machine learning methods can
help accelerate estimates of global and regional climate change
under different climate forcing scenarios.
Our work is further motivated by studies that have suggested

links between characteristic short-term and long-term response
patterns to different climate forcing agents5,21,22. Here, we seek a
fast ‘surrogate model’23 to find a mapping from short-term to
long-term response patterns within a given GCM (Fig. 1). Once
learned, this surrogate model can be used to rapidly predict other

outputs (long-term responses) given new unseen inputs (short-
term responses i.e. the results of easier to perform short-term
simulations). While data science methods are increasingly used
within climate science (e.g. refs. 24–30), no study has attempted the
application we present here, i.e. to predict the magnitude and
patterns of long-term climate response to a wide range of global
and regional forcing scenarios.

Building surrogate climate models
To train our learning algorithms, we take advantage of a unique
set of GCM simulations performed in recent years using the
Hadley Centre Global Environment Model 3 (HadGEM3). In these,
step-wise perturbations were applied to various forcing agents to
explore characteristic short- and long-term climate responses to
them5,7,8,14,16,31–34. The set of simulations includes global pertur-
bations of long-lived greenhouse gases such as carbon dioxide
(CO2) and methane (CH4), as well as global and local perturbations
to key short-lived pollutants such as sulfate (SO4) and black carbon
(BC) particles, amongst others (Supplementary Table 1). A key
difference between these two types of perturbations is that long-
lived forcers are homogeneously distributed in the atmosphere so
that the region of emission is effectively inconsequential for the
global temperature response pattern. In contrast, the response
pattern does depend on the region of emission for short-lived
forcers.
The evolution of the GCM’s global mean temperature response

to some example forcing scenarios is highlighted in Fig. 1a. All
scenarios show an initial sudden response in the first few years,
which we label the ‘short-term response’. The global mean
temperature then converges towards a new (approximately)
equilibrated steady state, which we label the ‘long-term response’.
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We are interested in not just the global mean response but, more
importantly, in the global response patterns, such as the example
shown in Fig. 1b for the 2xCO2 scenario.
In essence, GCMs map the initial state of the climate system and

its boundary conditions, such as emission fields, to a state of the
climate at a later time, using complicated functions representing
the model physics, chemistry, and biology17. Our statistical model
approximates the behaviour of the full GCM for a specific target
climate variable of interest; here we choose surface temperature
at each GCM grid cell, a central variable of interest in climate
science and impact studies. This model is trained on simulations
from the full global climate model (supervised learning35), in order

to predict the long-term surface temperature response of the GCM
from the short-term temperature responses to perturbations
(Fig. 1c). Then we can make effectively instantaneous predictions
using results from new short-term simulations as input so that
repeated long GCM runs can be avoided. Based on the available
GCM data, we define the ‘long-term’ as the quasi-equilibrium
response after removing the initial transient response (first 70
years) and averaging over the remaining years of the simulations,
similarly to previous studies (see Methods)5,14,36. We define ‘short-
term’ as the response over the first 10 years of each simulation.
The task is to learn the function f ðxÞ that maps these short-term

responses (x) to the long-term responses (y) (‘TRAINING’ in Fig. 1c).

Fig. 1 Data-driven approach to learning relationships between short-term and long-term climate response patterns. a Global mean
surface temperature response of a GCM (HadGEM3) to selected global and regional sudden step perturbations, e.g. to changes in long-lived
greenhouse gases (CO2, CH4), the solar constant and short-lived aerosols (SO4, BC). b Example of the short-term and long-term surface
temperature response patterns for 2xCO2 scenario, defined as an average over the first 10 years and years 70–100, respectively. c Process
diagram highlighting the training and prediction stages. In the training stage, a regression function is learned for pairs of short-term and long-
term response maps, where the data are obtained from existing HadGEM3 simulations. In the prediction stage, the long-term response for a
new unseen scenario is predicted by applying the already learned function to the short-term response to this new scenario, which is cheaper
to obtain (here only 10 climate model years).
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We use an independent regression model of the long-term
response for each grid cell. Each one depends on the short-term
response at all grid cells, so that predictions are not only based on
local information but can also draw predictive capability from any
changes in surface temperature worldwide. We present Ridge
regression37 and Gaussian Process Regression (GPR)38 with a linear
kernel (see Methods) as approaches for constructing this mapping.
Then, the learned regression functions can be used to predict the
long-term response for new, unseen inputs (x�), (‘PREDICTION’ in
Fig. 1c). We choose Ridge regression and GPR, because these two
methods handle well the limited sample size (number of
simulations available) for training, which also limits how effectively
the number of free parameters for other approaches such as deep
learning, including convolutional neural networks, could be
constrained. Future data collaborations, discussed below, could
make the adaptation of our methodology to incorporate deep
leaning an option. For the learning process, we use all but one of
the available simulations at a time for training and cross-
validation. The trained model is then used to make a temperature
response prediction for the simulation that was left out each time.
Finally, we assess the prediction skill of our machine learning
models by comparing the predicted response maps f ðx�Þ to the
results of the complex GCM simulations. This is repeated so that
each simulation is predicted once based on the information
learned from all other independent simulations (Methods).

RESULTS AND DISCUSSION
Overall method performance
We evaluate the performance of the two different machine
learning methods (Ridge, GPR) by benchmarking them against a
traditional pattern scaling approach36,39, often used for estimating
future patterns of climate change40–42. The latter relies on
multiplying the long-term response pattern for the 2xCO2 scenario
by the relative magnitude of global mean response for each
individual climate forcer. This is approximated as the ratio of
global mean effective radiative forcing (ERF) between the forcer
and the 2xCO2 scenario (Methods)36. Alternative approaches are
discussed in Methods and Supplementary.
We compare the predictions of long-term regional surface

temperature changes with those produced by the complex GCM.
From analysis at a grid-cell level, both Ridge regression and GPR
capture some broad features that pattern scaling is also known to
predict effectively, such as enhanced warming over the Northern
Hemisphere, particularly over land, and Arctic amplification43

(Supplementary Figs. 1 and 2). However, the key advantage of
both machine learning methods is that they capture regional
patterns and diversity in the response not predicted by pattern
scaling. In particular, aerosol forcing scenarios show highly specific
regional imprints on surface temperature due to the spatial
heterogeneity of the emissions and their short lifetimes4,7,33. It
is the ability to learn these patterns that gives data-driven methods
the edge over any pattern scaling method for such predictions. The
example in Fig. 2 shows the distribution of predicted temperature
responses over all individual grid boxes for one short-lived and one
long-lived forcing scenario. For the long-lived forcings all three
types of model predictions produce a similar distribution of surface
temperature responses to the GCM. However, for short-lived
forcing scenarios, the range and variability of responses is highly
underestimated in the case of pattern scaling. This is consistent
across short-lived forcing scenario predictions (Supplementary Fig.
3) and exists because pattern scaling is constrained to the same
pattern, regardless of the scaling factor used to estimate the global
mean response (Methods, Supplementary Fig. 4).
In the following, we quantify how well the two machine

learning models and pattern scaling perform on different spatial
scales. At the grid-scale level, we calculate the Root Mean

Squared Error (RMSE) by comparing the prediction and GCM
response at every grid point (Methods). We highlight that grid-
scale error metrics need to be interpreted with care because they
can present misleading results, particularly for higher resolution
models. For example, they penalize patterns that—as broad
features—are predicted correctly but displaced marginally on the
spatial grid44. This issue is necessarily more prevalent for the machine
learning approaches where smaller scale patterns are more
frequently predicted, while pattern scaling predicts more consistently
smooth, cautious patterns with reduced spatial variability (Supple-
mentary Fig. 1). This consideration is a key reason why predictions for
larger scale domains are often selected in impact studies11,12. We
therefore also compare the absolute errors in global mean
temperature and in regional mean temperature over ten broad
regions (Fig. 3); four of which are the main emission regions (North
America, Europe, South Asia, and East Asia) and the remaining cover
primarily land areas where responses affect the majority of the
world’s population. The boxplots in Fig. 3 show how these errors are
distributed overall predicted scenarios for each regression method.
Both Ridge and GPR generally outperform the pattern scaling

approach, but we find that, in most cases, it is GPR errors that are
lowest. Note that scenario-specific pattern scaling errors are
necessarily dependent on the approach chosen to scale the global
CO2-response pattern (Methods, Supplementary Fig. 4), but all
pattern scaling approaches share their fundamental limitation in
predicting spatial variability (Fig. 2). The large spread in absolute
errors in Fig. 3 is due to the large spread in response magnitude for
the different scenarios. Specifically, the large errors (e.g. 1–2 °C for
the machine learning models and >3 °C for pattern scaling) come
mostly from regions/scenarios with a large magnitude of response,
which expectedly tend to be for strong forcings (e.g. strong solar or
greenhouse gas forcings), but these errors can be small relative to
the overall magnitude of scenario response. In contrast, small
absolute errors can be large relative to the magnitude of response
(Supplementary Fig. 5), making prediction more challenging for
weakly forced scenarios. This is also consistent with the finding that
regional aerosol perturbations, with typically weaker forcings, are
more difficult to predict compared to long-lived pollutant
perturbations (Fig. 2).

Learning early indicators
As well as advancing our predictability skills, the machine
learning methods inform us about regions that experience the
earliest indicators of long-term climate change in the GCM. By
assessing the structure of learned Ridge regression coefficients,

Fig. 2 Distribution of predicted grid-point scale surface tempera-
ture responses in °C for all methods for one short-lived forcing,
No_SO2_Europe, and one long-lived forcing, 3xCH4. The central
vertical boxes indicate the interquartile range shown on a standard
box plot, the horizontal line shows the median and the black point
shows the mean. The horizontal width shows the distribution of
temperature values overall grid points, i.e. the wider regions
highlight that more grid points have this value of predicted
temperature response. Note the different vertical scales.
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we find patterns in the short-term response that consistently
indicate the long-term temperature response (Supplementary
Fig. 6). In some regions (e.g. East Asia) the dominant coefficients
appear in regions close to the predicted grid cell, whereas in
other regions (e.g. Europe) predictions are strongly influenced
by the short-term responses over relatively remote areas, such
as sea-ice regions over the Arctic. This highlights the fact that
climate model response predictability varies strongly depending
on the region of interest, and often involves interactions with
regions very far from the region of interest as well as from the
emission region.
We also examine which areas are overall the most influential for

long-term predictability, by averaging magnitude of coefficients
across all grid cells to find a global mean coefficient map
(Supplementary Fig. 6c, f). This coefficient map mimics warming
patterns seen in previous studies (enhanced at high latitudes, over
land and over the subtropics)14 but also shows amplified
coefficient weights in sea-ice regions, high-altitude regions,
primary emission regions and mid-latitude jet stream regions.
Arctic and high-altitude regions are known to warm more rapidly
due to ice and snow albedo feedbacks45 and faster upper
tropospheric warming11,46 respectively. These regions exhibit
accelerated warming in the simulation compared to their
surroundings, making them robust harbingers of long-term
change within the model. We highlight the implications for future
studies that attempt to interpret already observed warming
patterns from a climate change perspective.

Data constraints and future directions
We identify more extensive training data (additional simulations
and forcing scenarios) as key to further improving the skill of our
machine learning methods. In Fig. 4 it is demonstrated that as the
number of data training samples increases, the mean prediction
accuracy significantly increases and becomes more consistent. We
therefore expect significant potential for further improvements in
predictions with even more training data. More simulations would
better constrain parameters of the statistical models and improve
the chances that a predicted scenario contains features previously
seen by the statistical model (e.g. refs. 38,47, Methods).
Since obtaining training data from the GCM is expensive,

sensible choices can also be made about how to increase the
dataset by choosing which new scenarios will benefit the accuracy
of the method the most, e.g. to address some complex regional
aspects of the responses to short-lived pollutants. We recommend
increasing the dataset to include more short-lived pollutant
scenarios, noting that those with large forcings may reduce the
noise in the training data so as to better constrain learned
relationships (e.g. Supplementary Fig. 5). Some regions stand out
as particularly challenging for our machine learning approaches,
with Europe being a prominent example (Supplementary Fig. 2).
This is partly due to large variations in the long-term response
across the training data over Europe relative to other regions,
which means predictions are less well constrained and would
benefit more from increased training data. Additionally, the
variability in the GCM-predicted temperature time series is
generally larger over Europe compared to other regions in both

Fig. 3 Prediction skill comparison for entire globe and ten major world regions. RMSE at grid-cell level and global/regional absolute errors
in °C for all scenarios, calculated by averaging the predicted response over each region and taking the difference between the GCM output
and the prediction using three methods: R= Ridge regression, G= Gaussian Process Regression, and P= Pattern scaling. Boxplots show the
distribution of errors across scenario predictions. Boxes show the interquartile range, whiskers show the extrema, lines show the medians and
black diamonds show the mean. The dots indicate the errors for each individual scenario. Note the different scale for the Arctic and that
points exceed the scale in Arctic (9.5), Northwest Asia (4.7), East Asia (3.7) and the Grid RMSE (3.8).
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the control and perturbation simulations (Supplementary Fig. 8).
This gives rise to a weaker signal-to-noise ratio for both short- and
long-term responses in this region, increasing the difficulty of
learning meaningful predictive relationships. It is also noteworthy
that Ridge regression predictions for Europe depend strongly on
remote parts of the Arctic where the short-term response is
stronger but also highly variable (Supplementary Figs. 5 and 6).
This points to the issue that internal variability can introduce noise
to the inputs and outputs of the regression. This is partially
addressed with multidecadal averages in the definitions of the
short- and long-term responses, under the limitation that we have
only a single realization of each simulation available. If, in future
work, we have available an ensemble of simulations for each
perturbation, an average over these would more effectively
separate the internal variability from the response. The use of
several diverse simulations in the training dataset also allows the
noise in the inputs and outputs to be treated as random noise in
the regression, which would be even better determined with
increased training data.
A key challenge of working with the climate model information

here is its high dimensionality (27,840 grid cells) given the small
scenario sample size of 21 simulations. We note that we tried
sensible approaches to dimension reduction for decreasing the
number of points in both inputs and outputs, including physical
dimension reduction by regional averaging, and statistical
dimension reduction with principal component analysis (PCA)47.
However, the resulting regressions generated larger prediction
errors (Supplementary Fig. 9). Furthermore, we explored the use of
different variables as the short-term predictors, such as air
temperature at 500 hPa, geopotential height at 500 hPa (as an
indicator of the large-scale dynamical responses), radiative forcing
or sea level pressure. Surface temperature consistently outper-
forms other predictors, although a similar degree of accuracy is
achieved with 500 hPa air temperature and geopotential height,
suggesting the information encoded by these is similar (Supple-
mentary Fig. 10). Throughout, we have selected the first 10 years
of the GCM simulations as the inputs to our regression, but we
find promising results for even shorter periods, e.g. the first 5 years

(Supplementary Fig. 11). Finally, we also tested other linear (e.g.
LASSO47) and nonlinear (e.g. Random Forest) methods for the
same learning task. However, these provided weaker results so
that we focused our discussion on Ridge and GPR here. We have
explored the use of these methods in the context of predicting
temperature responses; however, we leave open the topic of
predicting other variables such as precipitation, which we expect
to be more challenging due to its spatial and temporal
variability48,49, but for which pattern scaling approaches are
well-known to perform particularly poorly36,41,43,50.
We also wish to highlight another long-term perspective in

which the framework presented here could be useful. ‘Emulators’
that approximate model output given specific inputs, are a
popular tool of choice for prediction, sensitivity analysis,
uncertainty quantification and calibration and have great potential
for climate prediction and impact studies23,51–59. However, long-
term, spatially resolved climate prediction for diverse forcings has
not yet been addressed due to the cost of training such emulators.
A major implication of the approach presented here is that it can
catalyse designing long-term climate emulators, by using a
combination of the short-term/long-term relationships presented
here and trained emulators of the short-term climate response to
different forcings (i.e. multilevel emulation52,59). Training an
emulator that predicts the spatial patterns of long-term response
to a range of forcings would be an extremely challenging task, as
it would require tens of simulations, all of them multidecadal in
length, in order to train the emulator. Our method drastically
accelerates this process by reducing the length of such simula-
tions to be of the order of 5–10 years, with subsequent use of the
relationships presented here for translating short-term responses
to long-term responses.
Our study made use of existing simulations from a single global

climate model. However, it opens the door for similar approaches
to be taken with datasets from other individual climate models.
The same GCMs are typically run by several different research
centres across the world so that additional simulation data should
be an effort of (inter)national collaboration. We therefore
encourage widespread data sharing to test the limits of our
approach as an important part of future research efforts in this
direction. We hope that our work will catalyse developments for
coordinated efforts in which carefully selected perturbation
experiments will be performed in a multi-model framework.
Increased availability of training datasets through model inter-
comparison exercises, along with increasing access to powerful
computing hardware can only help with this endeavour, leading
to further advances in climate model emulation.

METHODS
Available simulations
To learn the regression models, we use data from long-term simulations
from the Hadley Centre Global Environment Model 3 (HadGEM3)
HadGEM3, a climate model developed by the UK Met Office17. HadGEM3
is a GCM for the atmosphere, land18, ocean19, and sea-ice20. In the
configuration used here, the horizontal resolution is 1.875° by 1.25°, giving
grid boxes ~140 km wide in the mid-latitudes17. The simulations were run
in previous academic studies and model intercomparison projects, namely
the Precipitation Driver and Response Model Intercomparison Project
(PDRMIP)16,31,32, Evaluating the Climate and Air Quality Impacts of Short-
lived pollutants (ECLIPSE)7,8,33 and Kasoar et al. (2018)5,14,34. There are
21 such simulations for a range of forcings, including long-lived green-
house gas perturbations (e.g. carbon dioxide (CO2), methane (CH4), CFC-
12), short-lived pollutant perturbations (e.g. sulfur dioxide emissions (SO2,
the precursor to sulfate aerosol (SO4)), black carbon (BC), organic carbon
(OC)) and a solar forcing perturbation. For the short-term pollutants,
regional perturbations exist, to account for the influence of emission
region to the response4,60.
The long-lived greenhouse gas (CO2, CH4, CFC-12) simulations were

performed by altering the atmospheric mixing ratios. The short-lived

Fig. 4 Prediction skill for Gaussian Process Regression trained on
an increasing number of simulations. Mean of absolute errors in °C
across all predicted scenarios against number of training simula-
tions, with each line representing a different region (Fig. 3). RMSE at
the grid-scale level is also shown in black with white dots. For a fixed
number of training data points, the process of training and
predicting is repeated several times over different combinations of
training data to obtain multiple prediction errors for each scenario.
Full boxplots showing the distribution of errors across scenario
predictions given these different combinations of training simula-
tions can be found in Supplementary Fig. 7.
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pollutant experiments were performed by abruptly scaling present-day
emission fields in simulations performed by ECLIPSE7,8,33 and Kasoar et al.
(2018)5,14,34 or by scaling multi-model mean concentration fields in
PDRMIP16,31,32. The solar forcing experiment was performed by changing
the solar irradiance constant31. The GCM is run until it converges towards a
new climate state, to reach an approximate equilibrium (70–100 years). The
response is calculated by differencing this with its corresponding control
simulation (independent control simulations were run for each pro-
ject5,7,8,14,16,31–34). For the long-term response, we discard the transient
response and average from year 70–100 for PDRMIP and Kasoar et al.
(2018) to smooth out internal variability over the 30-year period36. For the
5 ECLIPSE simulations, we average from year 70 to year 80, since this is the
full temporal extent of ECLIPSE simulations. For the short-term response,
we average over the first 10 years of the simulation to reduce the influence
of natural variability of the GCM36.
The experiments from PDRMIP consist of simulations with a doubling of

CO2 concentration, tripling of CH4 concentration, a 10× increase in CFC-12
concentration, a 2% increase in total solar irradiance, 5× increase in sulfate
concentrations (SO4), a 10× increase in black carbon (BC) concentrations, a
10× increase in SO4 concentrations over Europe only, a 10× increase in SO4

concentrations over Asia only, and a reduction to preindustrial SO4

concentrations16,31. From ECLIPSE project simulations, we use a 20%
reduction in CH4 emissions, a doubling in CO2 concentration, a 100%
reduction in BC emissions, 100% reduction in SO2 emissions, and a 100%
reduction in carbon monoxide (CO) emissions7,8,33. The simulations
performed by Kasoar et al. (2018) consist of a 100% reduction in SO2

over the Northern Hemisphere mid-latitudes (NHML), a 100% reduction in
BC over the NHML, a 100% reduction in SO2 over China only, a 100%
reduction in SO2 over East Asia, a 100% reduction in SO2 over Europe and a
100% reduction in SO2 over US

5,14,34. Additional simulations had also been
performed by the groups, but we only consider simulations where the
global mean response exceeds natural variability, calculated as the
standard deviation among the control simulations. This is because we
want to limit the noise in the small dataset we have. Scenarios that we did
not use for this reason were the global removals of organic carbon, volatile
organic compounds and nitrogen oxides (ECLIPSE7,8,33) and the removal of
SO2 over India (Kasoar et al. (2018)5,14,34).

Regression methods
We construct the mapping between short-term temperature response (x)
and long-term temperature response (y) described in Fig. 1b using Ridge
regression37 and Gaussian Process Regression (GPR)38. These were found
to be strongest from a range of machine learning methods tested,
including Random Forest and Lasso.

Ridge regression
Given output variable y and input variable x, linear regression uses the
mapping

y ¼ β0 þ
X

j

βjxj (1)

where there are p predictors, indexed by j ¼ 1; � � � ; p. The parameters to fit
are the intercept, β0, and the coefficients, βj , associated with each
predictor xj . The method of least squares is used to fit the parameters by
minimising the sum of the residual squared error for the training data pairs
ðxi ; yiÞ for grid points i ¼ 1; � � � ;N:
X

i

yi � β0 þ
X

j

βjxij

 !" #2
(2)

When the number of samples exactly equals the number of parameters,
N ¼ pþ 1, this can be minimised to give a unique solution. When N >pþ
1 the parameters are overdetermined and this is an optimisation problem
in βj . In contrast, when N <pþ 1, there are more free parameters, βj , than
there are observed data points to constrain them47. There are many
possible values of βj that satisfy (2) equal to zero, making this an under-
determined problem. Our problem falls under this regime since we have
many predictors (one for each grid point, i.e. p ¼ 27; 840) but few training
simulations ðN ¼ 20Þ. This is why we introduce a regularisation constraint
which penalises large values of βj . Thus, we minimise47,61:

X

i

yi � β0 þ
X

j

βjxij

 !" #2
þλ
X

j

βj
�� ��2

( )
(3)

The last term shrinks many of the βj coefficients close to zero, so that the
remaining large coefficients can be viewed as stronger predictors of y. This
introduces a bias but lowers the variance5. The regularisation parameter λ
controls the amount of shrinkage and is chosen through cross-validation,
described below. Once β0 and βj have been learned, we can use (1) to
make predictions. We carried out the regression with and without inputs x
normalised to zero mean and unit variance with very little difference in
results. We use Python package scikit-learn to implement Ridge regression
and cross-validation62.

Cross-validation
Cross-validation is used here to estimate the best value of λ for prediction
based on the available training data. First, we split the training dataset (of
size N) into a chosen number of subsets of size NCV . We use three subsets
so NCV is around 6–7. Then, we iterate through a list of possible values of λ,
and for each one, the following steps are taken.

(1) Set λ from list.

(a) Set aside one of the smaller datasets as the validation data (size
NCV ).

(b) Train the regression model with the remaining data ðN � NCV Þ by
minimising (3).

(c) Use the inputs of the validation dataset on the trained model to
make predictions on the outputs using (1) and call this y�.

(d) Compare these predictions with the true outputs of the
validation dataset using an error metric such as root-mean-
squared error (RMSE), accounting for all grid cells i ¼ 1; ¼ ; p
and weighting by the grid-cell area, wi ,

RMSEcv;λ ¼
Xp

i

wi y
�2
i � y2i
�� ��

 !1=2

(4)

(e) Repeat steps a-d for other subsets of validation data (we use 3 in
total).

(2) Calculate the cross-validation score as the mean RMSE for this value
of λ for all three subsets.

RMSEλ ¼
X3

cv

RMSEcv;λ (5)

This process is repeated for all values of λ in the list. The value of λ that
produces the lowest RMSEλ is selected as the parameter for use in the final
stage of training of the model, where all training data is used.

Gaussian Process Regression
Rather than learning the parameters β0 and βj , Gaussian Process
Regression is a non-parametric approach, where we seek a distribution
over possible functions that fit the data. This is done from a Bayesian
perspective, where we define a prior distribution over the possible
functions. Then after observing the data, we use Bayes’ theorem to obtain
a posterior distribution over possible functions. The prior distribution is a
Gaussian process,

y � GPðμ0ðxÞ;C0 x; x0ð ÞÞ (6)

where μ0 is the prior mean function, which we assume to be linear with
slope β, μ0 xð Þ ¼ βx, and C0 x; x0ð Þ is the prior covariance function, which
describes the covariance between two points, x and x038. We choose the
following squared exponential covariance function,

C x; x0ð Þ ¼ σ2exp � x � x0j j2
2l2

 !
(7)

where σ2 and l are the output variance and lengthscale, respectively,
which reflect the sensitivity of the outputs to changes in inputs38.
The prior Gaussian process is combined with the data using Bayes’

Theorem to obtain a posterior distribution over functions. This is another
Gaussian process, with an updated mean function, μ�ðxÞ, and covariance
function, C�ðx; x0Þ,
y � GPðμ�ðxÞ;C� x; x0ð ÞÞ (8)

The details can be found in relevant textbooks38. Predictions of the
output can then be made at unseen values of x, where the Gaussian process
provides both an expected value and the variance around this value. Since
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the prediction is effectively built on correlations between the new inputs
and the training data inputs, this variance will be lower for predictions at
values of x that are closer to values already seen in training data. We follow
these steps with the framework provided by GPy in Python. The values of β,
σ2, and l are learned through optimisation (the L-BGFS optimiser) in GPy63.

Pattern scaling
We benchmark our machine learning models against pattern scaling, a
traditional method for obtaining spatial response patterns to forcings
without running a full GCM36,39. It has been widely used for conducting
regional climate change projections40–42 in impact studies64 and to extend
simplified models to predict spatial outputs58,65. Pattern scaling requires
one previous GCM run to obtain the long-term response of the variable of
interest for a reference scenario. Typically, a strong greenhouse gas
perturbation, such as a doubling of CO2 is used as this reference response
pattern on the longitude-latitude grid, Vref lat; lonð Þ. We use the 2xCO2

scenario from PDRMIP (since more than half of the simulations are from
PDRMIP we expect this to be a more valid reference pattern than the
2xCO2 ECLIPSE scenario)16,31,32. Then, the variable of interest is estimated
at each grid point for a new scenario, V� lat; lonð Þ by multiplying the
reference pattern by scaler value s, i.e.

V� lat; lonð Þ ¼ s ´ Vref lat; lonð Þ (9)

The scaler value s is the ratio of long-term global mean temperature
response between the prediction and reference scenario. This can be
derived from either a simplified climate model, such as a global energy
balance model43,66; a statistical model58; or a mathematical relationship,
such as the assumed linear relationship between long-term temperature
response and effective radiative forcing (ERF)64,67. We take the latter
approach due to the availability of variables required to calculate ERF for
the relevant perturbations studied here.
ERF is defined as the energy imbalance between the surface and the top

of the atmosphere in a GCM run in which the atmosphere is allowed to
respond, while sea-surface temperatures are kept fixed (i.e. no ocean
coupling)1,5,8,33. These simulations were run for 5 years in previous
studies5,7,8,14,16,31–34 and therefore we average over the first 5 years of the
simulations to reduce noise in the estimate of global mean ERFs.
Pattern scaling is generally considered as a fair approximation36,43,66 but

it assumes that the magnitude of the response scales linearly with the
amount of radiative forcing, which is not necessarily true, particularly for
climate forcings of a different type to the reference scenario36.
Furthermore, it cannot necessarily predict the highly inhomogeneous
effects of certain types of climate forcings such as from aerosol emissions.
There are alternative approaches for obtaining a sensible scaler value s

such as using the ratio of short-term temperature response between the
predicted and reference scenarios (see Supplementary Fig. 4). We note that
such a method can sometimes achieve a higher performance in predicting
the mean response in some regions than our machine learning approach.
However, it suffers the same limitations as the method presented here, in
that the spatial variability in the response is not captured, particularly for
short-lived pollutants (Supplementary Fig. 3). This limitation will be true
regardless of the choice of scaler value, since the spatial variability is fixed
based on the reference pattern.

Prediction errors
We predict long-term climate response, y� for each scenario following the
three methods described above. We calculate the Root Mean Squared Error
(RMSE) at the grid-cell level with

RMSE ¼
Xp

i

wi y
�2
i � y2i
�� ��

 !1=2

(10)

where subscript i ¼ 1; ¼ ; p indexes the grid cell and wi is the normalised
weight of grid cell i. We note that measuring errors at these scales can
introduce unintended biases in the evaluation of our methods. For
example, even small spatial offsets in climate response patterns can lead to
large, nonphysical quantitative errors44. We also show the absolute error in
mean response over ten world regions that cover a broader spatial scale
(Fig. 3). These are the four main emission regions; North America, Europe,
South Asia and East Asia, as defined in the Hemispheric Transport of
Air Pollution experiments68; and six remaining regions; the Arctic,
Northwest Asia, Northern Africa, Southern Africa, South America and
Australia. These cover the land regions where climate responses are of

interest due to societal relevance. Here we defined the prediction error as
the absolute difference between the predicted response in each region, y�r ,
and the response from the complex GCM in the same region, yr :

Eabs ¼ y�r � yr
�� �� (11)

where subscript r indicates the mean response overall grid boxes in that
region, weighted by the grid box area. We also calculate the absolute error
for the global mean response in the same way. These RMSE, regional and
global error metrics are presented in Fig. 3 for all prediction methods.
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