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ABSTRACT 

 

The volume of trading activity relating to China's commodity futures has grown rapidly over the 

course of the last decade. To improve risk management in China's commodity futures markets, this 

paper employs a regular vine (R-vine) copula model to study the dependence structure of commodity 

futures and to enhance Value-at-Risk (VaR) forecast. In doing so, we find that China’s commodity 

futures market is not centered on one category of commodity futures and the tail dependence 

between different categories of commodity futures varies significantly. Based on the dependence 

structure analyzed using the R-vine copula model, we forecast the VaR of individual indices, which 

are formed of several commodity futures, as well as forecasting the VaR of an equally-weighted 

portfolio. Our method can outperform the standard GARCH-VaR method in terms of VaR 

backtesting. The tool developed within this study will enable those involved in commodity futures 

markets to fundamentally improve their risk management. 

 

Keywords: R-vine copula, Commodity futures, Dependence structure, Tail dependence, 

Value-at-Risk 
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1. INTRODUCTION 

The World Bank has suggested that risk management for highly volatile commodity futures is 

of vital importance to commodity-dependent economies (Dana, 2005). China, as the world’s largest 

developing economy, is a typical example of a commodity-dependent country with fast-developing 

markets of commodity futures (Shao et al., 2019). This study examines the underlying dependence 

structure between commodity futures in China and how it can be exploited to improve risk 

management. Specifically, the first research objective is to investigate the multivariate dependence 

structure of China’s commodity futures from the perspective of financial returns. To this end, a 

regular vine (R-vine) copula model is employed to study high dimensional dependence structures, 

due to its flexible tree-like structure. The second research objective is to demonstrate that the 

dependence structure, identified using the R-vine copula model, can be utilized to improve 

Value-at-Risk (VaR) forecasting for individual futures, as well as for portfolios. This tool would be 

of significant value to participants involved in commodity futures markets, as it would enable them 

to diversify and adjust investments according to dependence structures and risk measurement.  

In recent years, China's commodity futures market has been ranked first in terms of the trading 

volume of commodity futures and options.1 At the same time, there was a substantial increase in 

the number of futures contracts in China's commodity futures market. Only 18 commodity futures 

were listed on China's futures markets on 4th January 2010. By 29th March 2019, the number of 

listed commodity futures had reached 53.2 With the number of commodity futures in China 

increasing sharply, one of the issues faced by investors is the complex dependence structure 

between these futures. A substantial increase in the degree of financialization of the commodity 

futures market in China has also been witnessed. As a result of rapid financialization, a further issue 

is the exacerbated risk caused by highly volatile commodity futures, particularly during the 

financial crisis (Lien and Zhang, 2008). This high volatility, compounded by a complex dependence 

structure, causes considerable challenges in risk management. Thus, this study selects 31 out of all 

53 commodity futures with sufficient trading liquidity and investigates their dependence structure, 

in order to improve risk management for China’s commodity futures markets. The selected 

commodity futures can be classified under nine categories according to the WIND database, shown 

in Table 1. 

Studies show that a traditional correlation matrix cannot capture full dependence structure, 

leading to the omission of important factors in risk management, such as tail dependence (Boero et 

al., 2011; Wen et al., 2019). There are rank-based dependence coefficients, such as Kendall 𝜏 and 

Spearman 𝜌 coefficients, which reflect the bivariate nonlinear dependence structure to some extent. 

However, it is difficult for these coefficients to fully reflect the complex multivariate dependence 

structure in financial markets, such as asymmetric dependence and tail dependence. Copula models 

overcome these limitations and provide a variety of distributional shapes for measuring aggregating 

risk types (Junker and May, 2005; Rosenberg and Schuermann, 2006; Christoffersen et al., 2012). 

The copula model is first proposed by Sklar (1959), and it measures the dependence structure 

between variables by linking their marginal distributions (Hammoudeh et al., 2014). Copula has 

been widely used to describe the dependence structure in commodity futures markets, and many of 
 

1 Data is sourced from the Futures Industry Association 
(https://www.fia.org/articles/fia-releases-annual-trading-statistics-showing-record-etd-volume-2018 , accessed on 1st September 
2020). In 2018, the Soybean Meal futures of Dalian Commodity Exchange ranked first in the agricultural futures and options, with 
238.16 million contracts; the Steel Rebar futures of Shanghai Futures Exchange ranked first in the metals futures and options, with 
530.98 million contracts. 
2 It is worth mentioning that some of the tradable commodity futures suffer from a lack of liquidity. 

https://www.fia.org/articles/fia-releases-annual-trading-statistics-showing-record-etd-volume-2018
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them focus on the bivariate dependence structure between futures market and spots market (Zhao et 

al., 2019), or two different commodity futures (Li and Yang, 2013). However, multivariate 

dependence structures are more complicated (Patton, 2004). As a result, vine copula began to be 

employed in high-dimensional dependence structures, due to its diversity in pair-copula selection 

(Aloui and Aïssa, 2016; Apergis et al., 2020). Further, compared with other copulas, R-vine copula 

is more flexible, as it is not constrained by any kind of form to begin with. 

The contributions of our paper are twofold; first, we identify the dependence structure of 

China’s commodity futures using the R-vine copula model. We find that China’s commodity futures 

market is not centered on one category of commodity futures. Chemical Product and Coke and Steel 

are more closely related to other commodity futures. In addition to this, positive tail dependence 

exists between some categories of commodity futures, e.g. Chemical Product and Oil and Meal. 

Second, we show that the dependence structure revealed by using the R-vine copula model can be 

used to improve risk management in commodity futures markets. Based on the R-vine copula, we 

are able to forecast the VaR of individual futures indices, as well as that of an equally-weighted 

portfolio. Our method can outperform the standard GARCH-VaR method in terms of VaR 

backtesting. The tool developed within this study will enable those involved in commodity futures 

markets to improve their risk management process. 

The rest of the paper is organized as follows: Section 2 discusses the relevant existing 

literature. Section 3 introduces the vine copula and VaR forecasting application. Using the data 

described in Section 4, we employ R-vine copula to investigate the dependence structures of 

China’s commodity futures and subsequently forecast VaR in Section 5. We conclude the study in 

Section 6. 

2. LITERATURE REVIEW  

Commodity futures markets in different countries have seen rapid development since the early 

2000s. It has been observed that the volatility of commodity futures has increased significantly, and 

the financialization of commodities is the main reason for this increase (Silvennoinen and Thorp, 

2013; Hamilton and Wu, 2014). Following the financial crisis of 2008, both the financialization and 

risk spillover effect of the commodity futures market have notably intensified (Berger and Czudaj, 

2020). The risk premia of the commodity futures market consists of two key aspects: cross-sectional 

spot premia and term premia, which account for most of the expected future returns (Szymanowska 

et al., 2014). The fast-growing markets of commodity futures have provided investment 

opportunities and portfolio diversification benefits. Consequently, a number of trading strategies 

have been developed and studied, including both cross-sectional and time-series momentum 

strategies (Fuertes et al., 2010; Ham et al., 2019).  

Previous studies have confirmed the existence of a risk spillover effect between global 

commodity futures markets, particularly between the US markets (Du et al., 2011; Trujillo-Barrera 

et al., 2012). With increasing numbers of futures contracts available for trading, China's commodity 

futures market has played an important role in global finance in recent years, which has led to 

considerable levels of interest in the risk spillover effect of China's commodity futures market. Fung 

et al. (2013) find that the returns of most of China’s commodity futures are mainly driven by the 

domestic market, as opposed to foreign markets. Nguyen and Bhatti (2012) obtain similar results 

using copula models. Recently, Meng et al. (2020) uses copulas to prove the asymmetrical upside 

and downside spillover effects between China’s crude oil markets and crude oil markets globally. 

Since the proposal of the copula by Sklar (1959), bivariate copula has been widely used to 
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measure the correlation of financial assets. This is due to the advantages it provides by 

characterizing tail dependence, and it is suitable for risk management in financial markets, 

particularly asymmetric volatility risk (Patton, 2004; Jackwerth and Vilkov, 2019). With the 

development of copula models, many novel copula models have been proposed, such as the Frank 

copula, Gumbel copula, and Symmetrized Joe-Clayton (SJC) copula. Additional mixture copulas 

are also employed in futures markets (Chang, 2012; Mensi et al., 2017; Bedoui et al., 2019; Yahya 

et al., 2019). For example, Chang (2012) uses a mixture of Gumbel copula and Clayton copula to 

capture the time-varying and asymmetric dependence structure between crude oil spots and the 

futures market. Mensi et al. (2017) and Yahya et al. (2019) investigate the dependence structure 

between several commodities using a wavelet-based copula approach. 

The setting of copula models in high dimensions is more complicated. Joe (1997) proposes 

pair-copula construction to investigate multivariate distributions and multivariate dependence 

structures. Bedford and Cooke (2001) introduce a vine model to the multivariate distribution. Aas et 

al. (2009) use pair-copula to decompose multivariate distributions, in order to exhibit high 

dimensional dependence structures. Fischer et al. (2009) compare several elliptical copulas, such as 

Student’s t copula, to explore whether they can outperform benchmarks in the high dimensional 

cases. In recent years, vine copulas and dynamic vine copulas have been developed (Weiß and 

Supper, 2013; So and Yeung, 2014). Based on vine copulas, Weiß and Supper (2013) successfully 

forecast VaR by estimating the joint distribution of returns and bid-ask spreads. Using a dynamic 

vine-copula GARCH model, So and Yeung (2014) verify that the dependence between several 

blue-chip stocks in Hong Kong is time-varying. Nagler and Czado (2016) prove that the 

convergence speed is independent of the dimension in the vine copula model. That is, the vine 

copula model can effectively solve the "Curse of Dimensionality".  

Existing literature shows that copula is often used to study the dependency structure of financial 

markets, and vine copula is suitable for the high-dimensional dependency structure of three or more 

assets. At present, studies have mainly focused on the dependence between China's commodity 

futures market and the stock market or the global futures markets. However, few studies have 

examined the dependence structure between all tradable commodity futures in China's commodity 

futures market. Compared with other vine copulas, the R-vine copula can allow for the analysis of 

more flexible high-dimension structures. Therefore, we employ the R-vine copula to investigate the 

dependence structure of 31 commodity futures in China. 

3. METHODOLOGY 

3.1. Marginal model 

The financial time series is known to have some stylized facts, including weak autocorrelation 

and conditional heteroskedasticity (Mittnik et al., 2000). Consequently, the ARMA-GARCH model 

has been widely used in the modeling of univariate financial time series (Engle, 1982; Bollerslev, 

1986). For the returns on commodity futures, one of the simple marginal models is the 

AR(1)-GARCH(1,1) model, as follows3:  

𝑋𝑡 = 𝜙0 + 𝜙1𝑋𝑡−1 + 𝜀𝑡                           (1) 

                                  𝜀𝑡 = 𝜎𝑡 ⋅ 𝑍𝑡                                 (2) 

and  

 
3 Considering Nelson (1990), Lamoureux and Lastrapes (1990), and Hillebrand (2005), we choose AR(1)-GARCH(1,1) model as the 

marginal model of R-vine copula.  
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                             𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2                            (3) 

where 𝜀𝑡 is disturbance term, 𝑍𝑡 is the standardized residual which has independent and identical 

distribution with mean 0 and variance 1, 𝜔 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0, and 𝛼 + 𝛽 < 1. 

In addition to this, the asymmetric effect can be characterized by extended types of GARCH 

models, including the EGARCH model and the GJR-GARCH model. For example, the 

GJR-GARCH model adds an indicator function as a dummy variable into the GARCH (1,1) model, 

where the indicator function depends on the sign of the error term 𝜀𝑡−1. Thus, we will also consider 

the EGARCH (1,1) and GJR-GARCH (1,1) as other candidates for the marginal model. The 

distribution of financial time series has features of fat tail and non-zero skewness. Thus, the error 

term should follow non-Gaussian distributions, and we will consider Student’s t distribution, 

skewed Student’s t distribution, generalized error distribution (GED), and skewed generalized error 

distribution (SGED). Finally, we will use the Bayesian Information Criterion (BIC) to select the 

best marginal model from different types of GARCH models with various distributions of error 

terms. 

3.2. Vine Copula 

Pearson correlation coefficient is limited by the fact that it cannot measure nonlinear 

dependence. Sklar (1959) proposes the copula function, which is capable of capturing a nonlinear 

dependence structure. If we suppose that n-dimensional random vector (𝑋1, ⋯ , 𝑋𝑛) has the joint 

distribution function 𝐹(𝑋1, ⋯ , 𝑋𝑛) , the joint density function 𝑓(𝑋1, ⋯ , 𝑋𝑛) , the marginal 

distribution function 𝐹𝑖(𝑋𝑖), and the marginal density function 𝑓𝑖(𝑋𝑖), 𝑖 = 1,2, ⋯ 𝑛. Then there is 

a copula function 𝐶(∙) such that: 

𝐹(𝑋1, ⋯ , 𝑋𝑛) = 𝐶(𝐹1(𝑋1), ⋯ , 𝐹𝑛(𝑋𝑛)              (4)  

and 

𝑓(𝑋1, ⋯ , 𝑋𝑛) = 𝑐(𝐹1(𝑋1), ⋯ , 𝐹𝑛(𝑋𝑛); 𝜃) ∙ 𝑓1(𝑋1) ⋯ 𝑓𝑛(𝑋𝑛)                (5) 

where 𝜃 is the parameter vector and c(∙) is the copula density function. 

Conventional pairwise copulas, such as Gaussian copula, Student’s t copula, and Archimedean 

copula, can be extended for the multivariate setting. However, there are some shortcomings in such 

multivariate copula methods (Nelsen, 2007). The major issue is that the dependence structures 

formed by the multivariate copulas must have the same copula function for each pair, which largely 

restricts its applicability. For example, some multivariate copulas, such as multivariate Student’s t 

copula, can only be used for the symmetric tail dependence between all possible pairs. In contrast, 

vine copulas allow different pair-copula functions to describe any symmetric or asymmetric tail 

dependence. To better identify the dependence structure between commodity futures markets, a 

flexible method, which does not impose any restrictions on the dependence structure, should be 

employed (Delatte and Lopez, 2013). R-vine copula is driven by real data and does not need to be 

constructed by any uniform form in advance (Zhang et al., 2014). Therefore, it is superior to other 

copulas and can better capture financial risks in the commodity markets (Koliai, 2016; Yu et al., 

2018).  

Bedford and Cooke (2001) originally propose the method of the vine copula, which splits a 

high dimensional copula function into multiple pair-copula functions in the form of vines. A vine is 

a nested set of trees with nodes and edges. Each tree has several nodes and the connection between 

two nodes is called an edge. Each node corresponds to a variable or conditional variable; that is, 

nodes of the first tree are variables, and nodes of the second tree are edges of the first tree. Each 

edge corresponds to the dependence structure, which is expressed by a conditional probability 
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distribution function (that is a pair-copula function). In summary, vine copulas aim to express 

multivariate joint probability density function as the product of multiple pair-copula functions and 

the marginal probability density functions. 

A constraint set defines the dependence structure of a vine copula model and, according to 

different constraint sets, the vine copula has different copula functions. For example, the C-vine 

copula limits the dependence structure to a star structure; the D-vine copula limits the dependence 

structure to a path structure; the R-vine copula can be regarded as a general case, where the C-vine 

copula and D-vine copula are two special cases. We describe three forms of vine copulas below: 

C-vine copula: The C-vine copula model is suitable to use in cases where there is one central 

variable that strongly influences the other variables. The central variable and the edges associated 

with it are viewed as the root nodes. The C-vine copula exhibits a star structure starting from every 

root node. The n-dimensional joint probability density function in the C-vine copula model can be 

decomposed as the following equation: 

𝑓(𝑋1, ⋯ , 𝑋𝑛) = ∏ 𝑓𝑘(𝑋𝑘)𝑛
𝑘=1 ∏ ∏ 𝑐𝑗,𝑗+𝑖|1,⋯,𝑗−1 (F(𝑋𝑗|𝑋1, ⋯ , 𝑋𝑗−1)𝐹(𝑋𝑗+𝑖|𝑋1, ⋯ , 𝑋𝑗−1))

𝑛−𝑗
𝑖=1

𝑛
𝑗=1 . (6) 

D-vine copula: The D-vine copula model is suitable for cases where every variable has the 

same influence on the others. The D-vine copula exhibits a path structure. The n-dimensional joint 

probability density function in the D-vine copula model can be decomposed as the following 

equation: 

 𝑓(𝑋1, ⋯ , 𝑋𝑛)  =

 ∏ 𝑓𝑘(𝑋𝑘)𝑛
𝑘=1 ∏ ∏ 𝑐𝑖,𝑗+𝑖|𝑖+1,⋯,𝑖+𝑗−1 (F(𝑋𝑖|𝑋𝑖+1, ⋯ , 𝑋𝑖+𝑗−1)𝐹(𝑋𝑗+𝑖|𝑋𝑖+1, ⋯ , 𝑋𝑖+𝑗−1)) .

𝑛−𝑗
𝑖=1

𝑛
𝑗=1    (7)                                                        

R-vine copula: The R-vine copula model can be applied to more general cases. R-vine copula 

model does not impose any constraint on edges in advance, therefore it is more flexible and can 

reflect a more realistic dependence structure between multi-variables (Zhang et al., 2014). The 

n-dimensional joint probability density function in the R-vine copula model can be decomposed as 

the following equation: 

 𝑓(𝑋1, ⋯ , 𝑋𝑛) =

∏ 𝑓𝑘(𝑋𝑘)𝑛
𝑘=1 ∏ ∏ 𝑐𝑚𝑗,𝑗,𝑚𝑖,𝑗|𝑚𝑖+1,𝑗,⋯,𝑚𝑛,𝑗

(F (𝑋𝑚𝑗,𝑗
|𝑋𝑚𝑖+1,𝑗

, ⋯ , 𝑋𝑚𝑛,𝑗
) 𝐹 (𝑋𝑚𝑖,𝑗

|𝑋𝑚𝑖+1,𝑗
, ⋯ , 𝑋𝑚𝑛,𝑗

))
𝑗+1
𝑖=𝑛

1
𝑗=𝑛−1          

(8) 

where 𝑚𝑖,𝑗 is the R-vine matrix, and there are 2𝑛−1 matrices for the n-dimensional R-vine.  

Compared with the C-vine and D-vine copulas, the R-vine copula provides more flexible 

dependence structures, which is the incentive for using R-vine copula in this study. The flexibility 

of R-vine copula comes at the expense of an exponentially increasing algorithm complexity. To 

simplify the algorithm of selecting reasonable R-vine copula, a simple selection technique is 

introduced with the simplifying assumption that conditional copula functions in the second or 

higher trees do not depend on conditional variables (Acar et al., 2012; Dißmann et al., 2013; Kraus 

and Czado, 2017). Recently, Chang and Joe (2020) proposed a new selection technique without the 

simplifying assumption, which can give more realistic conditional distributions. However, Chang 

and Joe (2020) also point out that the previous technique can still depict flexible tail dependence 

and solve the "Curse of Dimensionality". Therefore, we choose to implement the R package 

“VineCopula” (Nagler et al., 2019) which is based on the simplifying assumption4. 

 
4 Dette et al. (2014) find that misspecification of parametric families will cause a severe error in copula-based regression. This 
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3.3. GARCH-Vine Copula-VaR method and backtesting 

To forecast VaR, we employ the GARCH-Vine Copula-VaR method by the expanding window 

scheme with re-estimation, and the steps are detailed as follows: 

(1) We select a window of data and estimate the marginal model of returns on each asset (Xi) in 

that window. 

(2) We obtain the standard residuals from the marginal model in Step (1) and implement R-vine 

copula upon them to analyze the dependence structure between all assets. 

(3) For each asset, we simulate 10,000 random numbers in the interval [0,1] by the R-vine 

copula approach in Step (2). 

(4) We make a one-step-ahead forecast based on the marginal model in Step (1). 

(5) Based on the distribution of returns in Step (4) and simulated values in Step (3), we 

construct 10,000 simulated returns (X̃i) for each asset on the next day. 

(6) According to simulated returns in Step (5), we can calculate VaRα (α = 90%, 95%, 99%) 

of each asset and portfolios on the next day, i.e. 

𝑉𝑎𝑅𝛼(𝑋̃𝑖) = 𝑖𝑛𝑓 {𝑥 ∈ ℝ: 𝐹𝑋̃𝑖
(𝑥) > 𝛼} for individual asset 

𝑉𝑎𝑅𝛼(∑ 𝑊𝑖 𝑋̃𝑖) = 𝑖𝑛𝑓 {𝑥 ∈ ℝ: 𝐹∑ 𝑊𝑖𝑋̃𝑖
(𝑥) > 𝛼} for portfolio 

where 𝐹𝑋̃𝑖
 denotes distribution of simulated returns 𝑋̃𝑖 on asset 𝑖, 𝑊𝑖  is the weight on 

asset 𝑖 where ∑ 𝑊𝑖 = 1, and 𝐹∑ 𝑊𝑖𝑋̃𝑖
 represents the joint distribution of simulated returns 

on the portfolio. The weight vector can be any weight determined by portfolio managers. 

Since this study does not focus on portfolio optimization, we use equal weight in this study 

for the purpose of demonstration. It should be highlighted that this framework can be 

utilized for portfolios of any weight.  

(7) We fix the start date of the window and move the end date of the window forward by one 

day. In the same way, we repeat Step (1) - Step (6) to obtain the VaR forecast for each date 

in the backtesting period. 

Because R-vine copula captures commodity futures’ dependence structure in the joint 

distribution 𝐹∑ 𝑊𝑖𝑋̃𝑖
, which refers to assets’ co-movements in a portfolio, then the GARCH-Vine 

Copula-VaR method can give a more conservative aggregated VaR for portfolios than that of 

traditional GARCH-VaR method (Embrechts et al., 2013; Kakouris and Rustem, 2014). An intuitive 

simulation is employed to demonstrate this point. We generate three random variables with a 

correlation of 0.2 as daily returns on three assets, then implement the GARCH-VaR method and 

GARCH-Vine Copula-VaR method respectively to forecast an equally-weighted portfolio VaR with 

an out-of-sample period of 200 days. The simulation result is shown in Figure A.1 of the Appendix. 

We can observe that the GARCH-Vine Copula-VaR method produces a more conservative VaR, as 

it considers the correlation between multiple assets. 

In terms of VaR backtesting, one of the most popular methods is the unconditional coverage 

(UC) test (Kupiec, 1995), which is based on the VaR violation: 

𝐼𝑡 = 𝕀(𝐿𝑡 > 𝑉𝑎𝑅𝑡
𝛼)                                 (9) 

 
limitation is mainly related to the copula regression. In our paper, the parametric models are selected by BIC, which is applicable 

according to Dißmann et al. (2013). 
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where 𝐿𝑡 represents the actual loss at time 𝑡, 𝑉𝑎𝑅𝑡
𝛼 denotes the theoretical loss at the riskiness 

level 𝛼 at time 𝑡, and 𝕀 is the indicator function which equals 1 if 𝐿𝑡 > 𝑉𝑎𝑅𝑡
𝛼 and equals 0 

otherwise. The riskiness level 𝛼 = 90%, 95%, 99%. Then the number of the observed VaR 

violation is 𝑆𝑛 = ∑ 𝐼𝑡
𝑛
𝑡=1 , and the observed VaR violation rate is 𝑆𝑛 𝑛⁄ . It is necessary to test 

whether the observed VaR violation rate differs significantly from the theoretical violation rate. 

Thus, the null hypothesis of the UC test is as follows: 

𝐻𝑈𝐶 : 𝐸𝑡−1[𝐼𝑡] = 1 − 𝛼               (10) 

However, the UC test is disadvantaged by the way that it ignores the clustering of violations 

(Nieto and Ruiz, 2016), and thus we also use the conditional coverage (CC) test developed by 

Christoffersen (1998). The null hypothesis of the CC test is as follows: 

𝐻𝐶𝐶 : 𝐸𝑡−1[𝐼𝑡|𝐼𝑡−1] = 1 − 𝛼            (11) 

Compared with UC test, CC test provides the conditional mean of the failure process. We will 

employ both UC and CC tests to backtest the VaR forecasting performance.  

4. DATA 

In China’s futures markets, an active contract is a contract with the largest open interest.5 This 

study uses the daily returns of active contracts in China's commodity futures market as samples. The 

data was downloaded from the WIND database. In March 2019, there were 53 listed commodity 

futures in China's futures markets, but not all commodity futures have enough liquidity to offer 

daily trading data. Therefore, we choose 31 commodity futures with high liquidity and divide them 

into nine categories6 (see Table 1) to generate nine commodity futures indices. On 4th December 

2012, Glass future was first launched in China’s futures markets and there were 19 of our selected 

31 commodity futures trading on that day, thus ensuring the construction of most indices. We 

therefore choose the sample period from 4th December 2012 to 29th March 2019. 

For each commodity futures index, the weighted average return is shown as follows: 

𝑅𝑖 = ∑ 𝑅𝑖𝑗 ∙
𝑂𝑝𝑒𝑛𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑗 

∑ 𝑂𝑝𝑒𝑛𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑗𝑗
𝑗                          (12) 

where 𝑅𝑖 is the weighted average return of the 𝑖th category, 𝑖 = 1,2, ⋯ 9. 𝑅𝑖𝑗 is the return of the 

𝑗th main future contract in the 𝑖th category. Similarly, 𝑂𝑝𝑒𝑛𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑗 is the open interest of the 

𝑗th main future contract in the 𝑖th category. 

[Table 1 about here] 

The descriptive statistics of returns of nine commodity futures indices are shown in Table 2. 

We can see that the average return on each index is close to zero, and Energy has a much larger 

average return than the other categories. All indices have non-zero skewness, among which 

Chemical Product, Nonferrous Metal, and Precious Metal are left-skewed, while Agricultural and 

Sideline Product, Oil and Meal, Coke and Steel, Energy, Soft Commodity, and Non-metallic 

Material are right-skewed. In addition to this, the kurtosis of every index is greater than 3, and all 

Jarque–Bera test (JB test) results reject the normality hypothesis. Therefore, the return of the 

commodity futures index does not follow a normal distribution. 

[Table 2 about here] 

 
5 In the international futures markets, an active contract refers to the futures contract with the largest trading volume for the 
commodity futures. 
6 We follow the classification in the WIND database. 
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Table 3 shows the Pearson coefficient (upper panel) and Kendall’s 𝜏 (lower panel) of the 

nine commodity futures indices. These two dependence coefficients give the different magnitude 

of the dependence. The Pearson coefficient is a linear measure on the dependence, while Kendall’s 

𝜏 can capture the nonlinear dependence. Taking the coefficients between Chemical Product and 

Nonferrous Metal as an example, the Pearson coefficient is 0.5715, which is much larger than 

Kendall’s 𝜏, 0.3899. Additionally, the Pearson coefficient indicates that the correlation between 

Agricultural and Sideline Product and Energy is smaller than it is between Agricultural and 

Sideline Product and Precious Metal. At the same time, Kendall’s 𝜏 reflects that the dependence 

coefficient between Agricultural and Sideline Product and Energy is larger than it is between 

Agricultural and Sideline Product and Precious Metal. To reflect the full picture of dependence 

structures of the commodity futures indices more accurately, we employ the R-vine copula model, 

which provides a more effective way of measuring multivariate dependence structures. 

[Table 3 about here] 

5. EMPIRICAL RESULTS 

5.1. Marginal distribution of the commodity futures index 

Regarding the choice of marginal model, the AR(1)-GARCH(1,1) model is popular in the field, 

due to its simplicity (Nelson, 1990; Lamoureux and Lastrapes, 1990; Hillebrand, 2005). We also 

investigate different forms of GARCH models and identify which is most appropriate. First, we 

compare the GARCH(1,1), E-GARCH(1,1), and GJR-GARCH(1,1) models based on the normal 

distribution (see Table 4). According to the BIC, we find that for most categories, the GARCH(1,1) 

model is superior to other models.7 We then consider different distributions for fitting the error 

terms in the GARCH(1,1) model (see Table 5). According to BIC, Table 5 shows that GED is 

optimal for most categories. Overall, we choose the AR(1)-GARCH(1,1)-GED model as the 

marginal model of the R-vine copula.8 

Table 6 shows the AR(1)-GARCH(1,1)-GED model results for the commodity futures indices. 

Before implementing the R-vine copula, it is necessary to test the autocorrelation and 

heteroscedasticity of the standardized residuals. Table 6 also shows P-values of the Ljung-Box tests 

and the LM tests with five order lag and ten order lag: we cannot reject the null hypotheses of “no 

autocorrelation” and “no ARCH effects” for all indices at the 0.05 level9, which indicates that the 

standardized residuals satisfy the prerequisite of vine copulas. We obtain the standardized residuals 

from the marginal models and use empirical probability integral transform (PIT) to convert the 

standardized residuals into pseudo-observations, which is uniformly distributed in [0,1]. Finally, we 

apply the pseudo-observations into vine copula analysis. 

[Table 4 about here] 

[Table 5 about here] 

[Table 6 about here] 

 
7 It is possible to select different marginal models for different categories. For the purposes of simplicity and consistency, we decide 

to use GARCH(1,1) for all nine future indices. Additionally, the final chosen marginal model, AR(1)-GARCH(1,1)-GED, can pass 
the Ljung-Box tests and the LM tests. 
8 The ARMA-GARCH models with other orders were also tried and the results are not very different. 
9 The Ljung-Box tests with lag ten on Coke and Steel cannot reject at the 0.01 level.   
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5.2. R-vine copula for the commodity futures index 

In this section, we employ the R-vine copula for the nine commodity futures indices, and the 

dependence structure is shown in Table 7. R-vine copula allows different copula functions for any 

pair of commodity futures indices and is not limited to a specific structure, such as a star structure 

(in C-vine) or path structure (in D-vine). For the purpose of comparison, we also apply the C-vine 

copula to the nine commodity futures indices (see Figure A2 in the Appendix), and the BIC 

demonstrates that R-vine copula is a more effective model for investigating dependence structures 

in China’s commodity futures market. 

In the first layer (Tree 1) of the R-vine copula, there are eight pair-copulas capturing 

dependence structures between commodity futures indices, and all of them have significant 

Kendall’s τ. Specifically, Kendall’s τ between Agricultural and Sideline Product and Oil and Meal 

is the strongest, reaching 0.48, followed by Chemical Product and Nonferrous Metal, reaching 0.38. 

In addition, Chemical Product has four direct dependence edges with other commodity futures 

indices, including Coke and Steel, Nonferrous Metal, Oil and Meal, and Soft Commodity. Moreover, 

Coke and Steel has three direct dependence edges with Chemical Product, Energy, and 

Non-metallic Material (see Figure 1). We can conclude that China’s commodity futures market is 

not centered on a single category of commodity futures. The second layer (Tree 2) and the third 

layer (Tree 3) display other conditional Kendall’s τ. There are some strong conditional dependence 

structures, such as the dependence between Nonferrous Metal and Coke and Steel conditional on 

Chemical Product, which is 0.19 at the 0.01 significant level. The fourth and higher layers (Tree 4 

to Tree 8) show there are negligible dependence structures between other commodity futures. 

The R-vine copula can reveal the “full” dependence structures of all commodity futures indices, 

including tail dependence, which is an important factor in VaR forecasting. Some pairwise copulas 

in the first layer exhibit significant tail dependence. Taking Chemical Product and Oil and Meal (in 

Tree 1) as an example, they have both upper-tail dependence (0.03) and lower-tail dependence 

(0.28), and the lower-tail dependence is much larger than the upper-tail dependence. Besides, Coke 

and Steel and Energy only have significant lower-tail dependence (0.17). Among the nine 

commodity futures indices, Agricultural and Sideline Product and Oil and Meal have the highest 

upper-tail dependence (0.46) and the highest lower-tail dependence (0.35). 

These results are useful for investors involved in China’s commodity futures markets. They 

confirm the connectedness of commodity futures (Hua and Chen, 2007; Luo and Ji, 2018), which 

can be explained by the substitutability and complementarity between commodities. Thus, 

commodity futures prices are no longer affected only by their own supply and demand, but also by 

the supply and demand of other commodities. It is necessary for investors to consider the linkage 

effect of other commodities, rather than only focusing on the return of a single commodity. For 

example, when analyzing the return of Agricultural and Sideline Product, investors need to consider 

the transmission of volatility and tail risk from commodities related to it, such as Oil and Meal. 

Additionally, it is essential to consider, not only the correlation in the traditional mean-variance 

portfolio framework, but also the dependence structure and tail risk revealed by the R-vine copula. 

For example, Chemical Product and Coke and Steel are in the center of the dependence structure 

and they can lead to a higher level of risk due to their connectedness. 

Moreover, our results are insightful for policy makers. We find that Chemical Product and 

Coke and Steel are closely related to other commodity futures in China’s commodity futures market. 

The price fluctuation of these two categories of commodity futures will strongly affect the futures 

prices of other commodities in the market. From the policymakers’ perspective, more attention 
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should be paid to the price fluctuations of Chemical Product and Coke and Steel, as they can have a 

significant impact on a wide range of commodity futures. By stabilizing the prices of these two 

categories of commodity futures, price fluctuation in other categories can be mitigated to a certain 

extent, so as to stabilize the entire commodity futures market. 

[Table 7 about here] 

[Figure 1 about here] 

5.3. Forecasting VaR based on R-vine copula 

A critical application of our R-vine copula model is in the forecasting of VaR. Specifically, we 

employ the R-vine copula model to forecast the one-day-ahead VaR for each commodity futures 

index, as well as an equally-weighted portfolio. We also implement the standard GARCH-VaR 

method as the benchmark. To evaluate the performance of VaR from the GARCH-Vine Copula-VaR 

method and the GARCH-VaR method, we implement two VaR backtesting methods: UC and CC. 

The backtesting period for VaR is from 5th June 2018 to 29th March 2019 (200 trading days in total).  

Figure 2 plots the daily returns, and forecasted 90%VaR, 95%VaR, 99%VaR of each commodity 

futures index and the equally-weighted portfolio.10 Table 8 compares the VaR backtesting results of 

the GARCH-Vine Copula-VaR method and the GARCH-VaR method. Regarding the VaR 

forecasting for the individual commodity futures index, the GARCH-Vine Copula-VaR method and 

GARCH-VaR method perform in a similar manner. That is to say, the UC and CC tests indicate the 

VaR violation rates do not vary significantly from the theoretical violation rates for both methods. 

In terms of the VaR forecasting for the equally-weighted portfolio, the GARCH-Vine Copula-VaR 

method is superior to the GARCH-VaR method. Specifically, for the GARCH-Vine Copula-VaR 

method, the UC and CC tests indicate the VaR violation rates are not significantly different from the 

theoretical violation rates; for the GARCH -VaR method, the UC and CC tests indicate the VaR 

violation rates are significantly different from the theoretical violation rates. This can be intuitively 

explained by the way that the GARCH-Vine Copula-VaR method has the advantage of taking into 

account the dependence structure and tail dependence identified by the R-vine copula.  

The empirical results show that R-vine copula is suitable for analyzing the dependence 

structure between multiple commodities. Consequently, we can provide more accurate portfolio 

VaR forecasts. It should be noted that our framework, based on the R-vine copula, can be used to 

forecast VaR for portfolios with any weights. As a demonstration, we show that the VaR forecasting 

of the equally-weighted portfolio is improved by using the identified dependence structure. 

Previous studies found the existence of co-movements between different commodity sectors in New 

York Mercantile Exchange, the Intercontinental Exchange, and Chicago Board of Trade 

(Trujillo-Barrera et al., 2012; Yahya et al., 2019). We show that co-movements in China’s 

commodity futures also lead to aggregate risk in the worst cases, due to tail dependence. Our 

findings contribute to the accurate prediction of portfolio VaR, which is co-dependent on all assets 

with correlations and tail dependences in a portfolio. 

Further to this, VaR can be linked with portfolio optimization. Al Janabi et al. (2017) propose a 

new portfolio optimization method by minimizing the risk exposure, which is measured by 

estimated VaR with DCC t-copula. Their method considers the multivariate dependence structure 

and tail risk between assets, as opposed to simple linear correlation. A similar framework based on 

the R-vine copula can be developed in order to gain diversification benefits, while controlling for 

 
10 Figure A3 in the Appendix shows the plot of the standard GARCH-VaR method.   
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the level of risk. Since this study is not focused on portfolio optimization, this is left out for further 

study. 

[Table 8 about here] 

[Figure 2 about here] 

6. CONCLUSIONS 

This study employs the R-vine copula to investigate high dimensional dependence structures in 

China's commodity futures markets and to improve VaR forecasting of commodity futures. First, 

according to the BIC, we select the AR(1)-GARCH(1,1)-GED model as the marginal model. Then, 

we employ the R-vine copula to analyze the dependence structure of commodity futures. Compared 

with the C-vine copula and D-vine copula, the advantage of the R-vine copula is in the fact that it 

has a flexible structure, which is not limited to the star structure or path structure. Based on the 

R-vine copula, we find that China’s commodity futures market is not centered on one category of 

commodity futures. Chemical Product and Coke and Steel are more closely related to other 

commodity futures. In addition, Agricultural and Sideline Product and Oil and Meal, Chemical 

Product and Coke and Steel have high lower-tail dependence; Agricultural and Sideline Product 

and Oil and Meal have high upper-tail dependence. Finally, we employ an R-vine copula approach 

to forecast VaR based on the dependence structure and conclude that the GARCH-Vine copula-VaR 

method outperforms GARCH-VaR method for an equally-weighted portfolio.  

Our results can benefit investors, policy makers, and other market participants in the futures 

markets. Using the R-vine copula, the dependence structures of nine indices reveals the 

connectedness in China’s commodity futures market. Thus, investors need to consider the linkage 

effect of other commodities, rather than focusing only on a single commodity. Additionally, it is 

essential to consider, not only the correlation within the traditional mean-variance portfolio 

framework, but also the dependence structure and tail risk revealed by the R-vine copula. From the 

perspective of policy makers, who aim to stabilize the commodity futures market, more attention 

should be paid to the central commodity futures, Chemical Product and Coke and Steel. Their price 

fluctuations have a significant linkage effect on a wide range of commodity futures. Lastly, the 

multivariate co-dependencies, depicted by R-vine copulas, indicate co-movements between 

commodity futures, which, in the worst cases, can lead to aggregate risks for portfolios. Thus, 

market participants can use our GARCH-Vine copula-VaR method to forecast the VaR of their 

portfolio. Future research can use dynamic programming, coupled with dependence structure 

identified by R-vine copula, to study the problem of portfolio construction, such as weight 

optimization and dynamic adjustment. 

 

Data Availability Statement 

The data that support the findings of this study are openly available in [WIND database] at 

[https://www.wind.com.cn/en/edb.html], reference number [Agricultural and Sideline Product 

(code: APFI.WI); Chemical Product (code: CIFI.WI); Nonferrous Metal (code: NFFI.WI); Oil and 

Meal (code: OOFI.WI); Coke and Steel (code: JJRI.WI); Energy (code: ENFI.WI); Precious Metal 

(code: NMFI.WI); Soft Commodity (code: SOFI.WI); Non-metallic Material (code: NMBM.WI)]. 

 

https://www.wind.com.cn/en/edb.html
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TABLE 1  Nine categories for commodity futures 

No. Category Commodity Futures 

1 Agricultural and Sideline Product Corn, Corn Starch, Fresh Eggs, Common Wheat 

2 Chemical Product Bitumen, Rubber, Polyethylene, Polypropylene, PVC, Methanol, PTA 

3 Nonferrous Metal Aluminum, Copper, Nickel, Zinc 

4 Oil and Meal No.1 Soybean, Soybean Meal, Palm Olein, Crude soybean oil, Rapeseed Oil 

5 Coke and Steel Hot-rolled Coil, Steel Rebar, Coking Coal, Iron, Metallurgical Coke 

6 Energy Thermal Coal 

7 Precious Metal Silver, Gold 

8 Soft Commodity Cotton No.1, White Sugar 

9 Non-metallic Material Glass 

Source. WIND database. 
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TABLE 2  Descriptive statistics of the commodity futures index 

 observation mean maximum minimum standard deviation skewness kurtosis JB test 

Agricultural and Sideline 
Product 1536 0.0203 3.7608 -3.4446 0.8244 0.1702 4.9983 263.0046*** 

Chemical Product 1536 -0.0033 5.3169 -5.8938 1.0783 -0.1338 4.7480 200.1478*** 

Nonferrous Metal 1536 0.0054 5.0731 -4.6248 1.0009 -0.0843 4.8398 218.4603*** 

Oil and Meal 1536 -0.0001 3.9581 -4.5143 0.9126 0.0616 4.9076 233.8698*** 

Coke and Steel 1536 0.0295 6.7845 -7.7050 1.6000 0.0756 5.7591 488.6697*** 

Energy 944 0.0792 4.5822 -5.5926 1.4181 0.0349 4.3748 74.5303*** 

Precious Metal 1536 -0.0384 6.2685 -8.5631 1.1353 -0.1996 9.2823 2536.1305*** 

Soft Commodity 1536 -0.0107 3.7336 -3.6703 0.7833 0.1326 5.2609 331.6453*** 

Non-metallic Material 1536 0.0355 5.8140 -5.0719 1.3034 0.1598 5.1745 309.1605*** 

Note. ***，**，* indicate that the coefficient is significant at the level of 1%, 5%, 10%, respectively. 
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TABLE 3  Dependence coefficient of the commodity futures index 

 
Agricultural and 
Sideline Product 

Chemical 
Product 

Nonferrous 
Metal 

Oil and 
Meal 

Coke and 
Steel 

Energy 
Precious 

Metal 
Soft Commodity 

Non-metallic 
Material 

Pearson linear correlation coefficient 

Agricultural and Sideline 
Product 1.0000***         

Chemical Product 0.3360*** 1.0000***        

Nonferrous Metal 0.2611*** 0.5715*** 1.0000***       

Oil and Meal 0.7087*** 0.4385*** 0.3511*** 1.0000***      

Coke and Steel 0.1865*** 0.5207*** 0.5229*** 0.2615*** 1.0000***     

Energy 0.1359*** 0.3400*** 0.3145*** 0.1608*** 0.4528*** 1.0000***    

Precious Metal 0.1531*** 0.3112*** 0.3469*** 0.2271*** 0.1764*** 0.1083*** 1.0000***   

Soft Commodity 0.3416*** 0.4024*** 0.3363*** 0.3671*** 0.2317*** 0.2032*** 0.2022*** 1.0000***  

Non-metallic Material 0.2117*** 0.4326*** 0.3681*** 0.2545*** 0.5356*** 0.3289*** 0.1656*** 0.2308*** 1.0000*** 

Kendall’s  𝝉 
Agricultural and Sideline 
Product 1.0000***         

Chemical Product 0.1975*** 1.0000***        

Nonferrous Metal 0.1551*** 0.3899*** 1.0000***       

Oil and Meal 0.4798*** 0.2874*** 0.2328*** 1.0000***      

Coke and Steel 0.1099*** 0.3556*** 0.3448*** 0.1679*** 1.0000***     

Energy 0.0725*** 0.2431*** 0.2132*** 0.0983*** 0.2760*** 1.0000***    

Precious Metal 0.0634*** 0.1792*** 0.2263*** 0.1303*** 0.1170*** 0.0725*** 1.0000***   

Soft Commodity 0.2008*** 0.2636*** 0.2260*** 0.2283*** 0.1617*** 0.1221*** 0.1175*** 1.0000***  

Non-metallic Material 0.1191*** 0.2936*** 0.2455*** 0.1581*** 0.3642*** 0.2265*** 0.0959*** 0.1470*** 1.0000*** 

Note. ***，**，* indicate that the coefficient is significant at the level of 1%, 5%, 10%, respectively. 
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TABLE 4  BIC of different GARCH models for the commodity futures index 

 
Agricultural and 
Sideline Product 

Chemical 
Product 

Non-ferrous 
Metal 

Oil and 
Meal 

Coke and 
Steel 

Energy 
Precious 

Metal 
Soft Commodity 

Non-metallic 
Material 

GARCH(1,1) 2.3565 2.9331 2.7815 2.6098 3.5388 3.4807 2.9066 2.3056 3.2970 

EGARCH(1,1) 2.3567 2.9383 2.7862 2.6142 3.5447 3.4881 2.9018 2.3053 3.3037 

GJR-GARCH(1,1) 2.3587 2.9375 2.7860 2.6085 3.5435 3.4861 2.9064 2.3101 3.3013 

 

 

 

 

 

TABLE 5  BIC of GARCH (1,1) models with different distributions for the commodity futures index 

 
Agricultural and 
Sideline Product 

Chemical 
Product 

Non-ferrous 
Metal 

Oil and 
Meal 

Coke and 
Steel 

Energy 
Precious 

Metal 
Soft Commodity 

Non-metallic 
Material 

Normal  2.3565 2.9331 2.7815 2.6098 3.5388 3.4807 2.9066 2.3056 3.2970 

Skewed normal  2.3609 2.9350 2.7826 2.6146 3.5428 3.4879 2.9077 2.3104 3.3018 

Student’s t  2.3265 2.9073 2.7447 2.5686 3.5170 3.4487 2.7069 2.2527 3.2315 

Skewed Student’s t  2.3312 2.9110 2.7457 2.5733 3.5214 3.4557 2.7116 2.2574 3.2362 

GED 2.3217 2.9042 2.7539 2.5695 3.5081 3.4278 2.7116 2.2500 3.2233 

SGED 2.3265 2.9080 2.7546 2.5742 3.5126 3.4350 2.7161 2.2546 3.2281 
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TABLE 6  The AR(1)-GARCH(1,1)-GED model for the commodity futures index 

 
Agricultural and 
Sideline Product 

Chemical 
Product 

Nonferrous 
Metal 

Oil and Meal 
Coke and 

Steel 
Energy 

Precious 
Metal 

Soft 
Commodity 

Non-metallic 
Material 

𝝓𝟎 
0.0220 -0.0014 0.0181 -0.0093 -0.0361 -0.0106 -0.0229*** -0.0212 0.0048 

(1.2301) (-0.0657) (0.9254) (-0.4725) (-1.3278) (-1.5282) (-4.0642) (-1.4993) (0.1719) 

𝝓𝟏 
-0.0198 -0.0077 -0.0879*** -0.0229 -0.0063 -0.0209* -0.0532*** -0.0370 -0.0600* 

(-0.7717) (-0.4135) (-3.5855) (-1.0960) (-0.3410) (-1.8724) (-6.6005) (-1.3987) (-1.9543) 

𝝎𝟎 
0.0046* 0.0084* 0.0118* 0.0263** 0.0120* 0.0152 0.0031 0.0120* 0.0072* 

(1.9597) (1.8643) (1.8832) (2.4227) (1.7069) (1.4205) (1.6257) (1.8741) (1.7165) 

𝜶 
0.0392*** 0.0431*** 0.0482*** 0.0493*** 0.0572*** 0.0447*** 0.0276*** 0.0491*** 0.0259*** 

(6.0754) (4.8822) (4.2747) (4.1039) (4.6723) (4.4324) (6.4953) (3.6532) (7.8290) 

𝜷 
0.9546*** 0.9507*** 0.9409*** 0.9182*** 0.9391*** 0.9496*** 0.9689*** 0.9320*** 0.9696*** 

(142.9868) (100.0429) (65.3883) (43.5095) (74.6707) (108.2068) (237.5776) (46.7927) (561.7815) 

BIC 2.3217 2.9042 2.7539 2.5695 3.5081 3.4278 2.7116 2.2500 3.2233 

autocorrelation and heteroscedasticity test for the standardized residuals 

LB (5) 0.9555 0.8281 0.1581 0.6821 0.1486 0.7469 0.2466 0.4718 0.9642 

LB (10) 0.7821 0.1309 0.0762 0.8647 0.0448 0.9431 0.1997 0.4279 0.9923 

LM (5) 0.8634 0.0776 0.1061 0.3996 0.9918 0.9475 0.0530 0.9770 0.5464 

LB (10) 0.9341 0.1132 0.3308 0.8211 0.8886 0.9142 0.2178 0.9992 0.7793 

Note. ***，**，* indicate that the coefficient is significant at the level of 1%, 5%, 10%, respectively, and the number in parenthesis is the t-statistic. 
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TABLE 7  Dependence structure of the commodity futures indices with R-vine copula 

Tree Edge Copula Parameter 1 Parameter 2 Kendall’s τ 
Upper-tail 

dependence 
Lower-tail 
dependence 

Tree1 5,9 t 0.53 12.26 0.36*** 0.07*** 0.07*** 

5,6 C 0.40 - 0.17*** - 0.17*** 

2,5 SBB1 0.24 1.37 0.35*** 0.12*** 0.34*** 

3,7 SBB1 0.18 1.18 0.22*** 0.04*** 0.20*** 

2,3 N 0.56 - 0.38*** - - 

4,1 BB1 0.42 1.60 0.48*** 0.46*** 0.35*** 

2,4 SBB1 0.15 1.28 0.27*** 0.03*** 0.28*** 

8,2 N 0.39 - 0.25*** - - 

Tree2 2,9;5 t 0.20 12.30 0.13*** 0.01*** 0.01*** 

2,6;5 F 0.73 - 0.08*** - - 

3,5;2 N 0.29 - 0.19*** - - 

2,7;3 F 0.60 - 0.07*** - - 

8,3;2 N 0.14 - 0.09*** - - 

2,1;4 I - - 0.00 - - 

8,4;2 N 0.22 - 0.14*** - - 

Tree3 6,9;2,5 I - - 0.00 - - 

3,6;2,5 I - - 0.00 - - 

7,5;3,2 I - - 0.00 - - 

8,7;2,3 I - - 0.00 - - 

4,3;8,2 F 0.61 - 0.07*** - - 

8,1;2,4 N 0.09 - 0.06*** - - 

Tree4 3,9;6,2,5 I - - 0.00 - - 

7,6;3,2,5 I - - 0.00 - - 

8,5;7,3,2 I - - 0.00 - - 

4,7;8,2,3 I - - 0.00 - - 

1,3;4,8,2 I - - 0.00 - - 

Tree5 7,9;3,6,2,5 I - - 0.00 - - 

8,6;7,3,2,5 I - - 0.00 - - 

4,5;8,7,3,2 I - - 0.00 - - 

1,7;4,8,2,3 I - - 0.00 - - 

Tree6 8,9;7,3,6,2,5 I - - 0.00 - - 

4,6;8,7,3,2,5 I - - 0.00 - - 

1,5;4,8,7,3,2 I - - 0.00 - - 

Tree7 4,9;8,7,3,6,2,5 I - - 0.00 - - 

1,6;4,8,7,3,2,5 I - - 0.00 - - 

Tree8 1,9;4,8,7,3,6,2,5 I - - 0.00 - - 

BIC -2278.21 

Note. ***，**，* indicate that the coefficient is significant at the level of 1%, 5%, 10%, respectively.  

1: Agricultural and Sideline Product, 2: Chemical Product, 3: Nonferrous Metal, 4: Oil and Meal, 5: Coke and Steel, 6: 

Energy, 7: Precious Metal, 8: Soft Commodity, 9: Non-metallic Material.  

t: Student’s t copula, C: Clayton copula, F: Frank copula, N: Gaussian copula, BB1: BB1 copula, SBB1: Rotated BB1 

copula 180 degrees, I: Independence copula. 
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TABLE 8  VaR backtesting for the commodity futures index 

 
 GARCH-Vine Copula-VaR GARCH -VaR 

 99% VaR 95% VaR 90% VaR 99% VaR 95% VaR 90% VaR 

Agricultural and Sideline Product 

violation rate 1.50% 

(0.5082) 

[0.7673] 

6.00% 

(0.5287) 

[0.7768] 

9.50% 

(0.8123) 

[0.7507] 

1.50% 

(0.5082) 

[0.7673] 

6.00% 

(0.5287) 

[0.7768] 

10.00% 

(1.0000) 

[1.0000] 
UC 

CC 

Chemical Product 

violation rate 1.00% 

(1.0000) 

[0.9799] 

4.00% 

(0.3512) 

[0.2608] 

10.50% 

(0.8150) 

[0.9599] 

1.00% 

(1.0000) 

[0.9799] 

6.00% 

(0.5287) 

[0.3795] 

10.00% 

(1.0000) 

[1.0000] 
UC 

CC 

Nonferrous Metal 

violation rate 1.00% 

(1.0000) 

[0.9799] 

3.67% 

(0.5020) 

[0.4750] 

8.50% 

(0.4691) 

[0.6874] 

1.00% 

(1.0000) 

[0.9799] 

4.00% 

(0.5020) 

[0.4750] 

8.50% 

(0.4691) 

[0.6874] 
UC 

CC 

Oil and Meal 

violation rate 1.00% 

(1.0000) 

[0.9799] 

4.50% 

(0.7416) 

[0.6183] 

8.00% 

(0.3303) 

[0.5980] 

1.00% 

(1.0000) 

[0.9799] 

4.50% 

(0.7416) 

[0.6183] 

8.50% 

(0.4691) 

[0.7013] 
UC 

CC 

Coke and Steel 

violation rate 1.00% 

(1.0000) 

[0.9799] 

3.50% 

(0.3047) 

[0.2827] 

10.00% 

(1.0000) 

[0.6902] 

1.00% 

(1.0000) 

[0.9798] 

3.50% 

(0.3047) 

[0.2827] 

10.00% 

(1.0000) 

[0.6092] 
UC 

CC 

Energy 

violation rate 0.00% 

(1.0000) 

[1.0000] 

2.00% 

(0.0275) 

[0.0812] 

8.00% 

(0.3303) 

[0.5069] 

0.00% 

(1.0000) 

[1.0000] 

2.00% 

(0.0275) 

[0.0812] 

8.00% 

(0.3303) 

[0.5069] 
UC 

CC 

Precious Metal 

violation rate 2.00% 

(0.2109) 

[0.4299] 

4.50% 

(0.7416) 

[0.6489] 

7.00% 

(0.1370) 

[0.1855] 

2.00% 

(0.2109) 

[0.4299] 

5.00% 

(1.0000) 

[0.6218] 

7.50% 

(0.2196) 

[0.3140] 
UC 

CC 

Soft Commodity 

violation rate 0.50% 

(0.4315) 

[0.7302] 

7.00% 

(0.2197) 

[0.1764] 

12.00% 

(0.3591) 

[0.4783] 

0.50% 

(0.4315) 

[0.7302] 

7.00% 

(0.2197) 

[0.1764] 

11.50% 

(0.4887) 

[0.4914] 
UC 

CC 

Non-metallic Material 

violation rate 1.00% 

(1.0000) 

[0.9799] 

3.50% 

(0.3047) 

[0.4574] 

11.50% 

(0.4887) 

[0.7037] 

1.00% 

(1.0000) 

[0.9799] 

3.50% 

(0.3047) 

[0.4574] 

11.50% 

(0.4887) 

[0.7037] 
UC 

CC 

Equally-weighted Portfolio 

violation rate 0.50% 

(0.4315) 

[0.7302] 

3.00% 

(0.1622) 

[0.1366] 

7.50% 

(0.2196) 

[0.3386] 

6.00% 

(0.0000) 

[0.0000] 

12.00% 

(0.0001) 

[0.0004] 

20.00% 

(0.0000) 

[0.0001] 
UC 

CC 

Note. The first row of each cell is the empirical VaR violation rate. Numbers in parentheses are P-values of the UC test, and 

numbers in square brackets are P-values of the CC test. P-values which are greater than 0.05 are in bold, meaning that no 

evidence against the null hypothesis at the 0.05 level.  
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FIGURE 1  The first three layers’ structure visualization of R-vine-copula for the commodity futures index 

(1: Agricultural and Sideline Product, 2: Chemical Product, 3: Nonferrous Metal, 4: Oil and Meal, 5: Coke 

and Steel, 6: Energy, 7: Precious Metal, 8: Soft Commodity, 9: Non-metallic Material.) 

 

 

 

FIGURE 2  GARCH-Vine Copula-VaR method for the commodity futures index 
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APPENDIX 

TABLE A.1  Dependence structure of the commodity futures indices with C-vine copula 

Tree Edge Copula 
Parameter 

1 

Parameter 

2 

Kendall’s 

τ 

Upper-tail 
dependence 

Lower-tail 
dependence 

Tree1 2,1 t 0.30 11.04 0.19*** 0.03*** 0.03*** 

2,3 N 0.56 - 0.38*** - - 

2,6 Tawn180 1.41 0.28 0.13*** - 0.17*** 

2,8 N 0.39 - 0.25*** - - 

2,7 BB7 1.11 0.28 0.17*** 0.14*** 0.08*** 

2,5 SBB1 0.24 1.37 0.35*** 0.12*** 0.34*** 

2,4 SBB1 0.15 1.28 0.27*** 0.03*** 0.28*** 

9,2 t 0.43 10.33 0.29*** 0.06*** 0.06*** 

Tree2 4,1;2 BB1 0.34 1.54 0.44*** 0.43*** 0.26*** 

4,3;2 F 0.76 - 0.08*** - - 

4,6;2 I - - 0.00 - - 

4,8;2 N 0.22 - 0.14*** - - 

4,7;2 SC 0.10 - 0.05*** 0.00 - 

4,5;2 I - - 0.00 - - 

9,4;2 I - - 0.00 - - 

Tree3 5,1;4,2 I - - 0.00 - - 

5,3;4,2 F 1.80 - 0.19*** - - 

5,6;4,2 C 0.23 - 0.10*** - 0.05*** 

5,8;4,2 I - - 0.00 - - 

5,7;4,2 I - - 0.00 - - 

9,5;4,2 N 0.39 - 0.26*** - - 

Tree4 3,1;5,4,2 I - - 0.00 - - 

3,6;5,4,2 I - - 0.00 - - 

3,7;5,4,2 N 0.23 - 0.15*** - - 

3,8;5,4,2 N 0.12 - 0.07*** - - 

9,3;5,4,2 I - - 0.00 - - 

Tree5 8,1;3,5,4,2 N 0.10 - 0.06*** - - 

8,6;3,5,4,2 I - - 0.00 - - 

8,7;3,5,4,2 I - - 0.00 - - 

9,8;3,5,4,2 I - - 0.00 - - 

Tree6 9,1;8,3,5,4,2 I - - 0.00 - - 

9,6;8,3,5,4,2 I - - 0.00 - - 

9,7;8,3,5,4,2 I - - 0.00 - - 

Tree7 7,1;9,8,3,5,4,2 I - - 0.00 - - 

7,6;9,8,3,5,4,2 I - - 0.00 - - 

Tree8 6,1;7,9,8,3,5,4,2 I - - 0.00 - - 

BIC -2262.32 

Note. ***，**，* indicate that the coefficient is significant at the level of 1%, 5%, 10%, respectively.  

1: Agricultural and Sideline Product, 2: Chemical Product, 3: Nonferrous Metal, 4: Oil and Meal, 5: Coke and 

Steel, 6: Energy, 7: Precious Metal, 8: Soft Commodity, 9: Non-metallic Material.  
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t: Student’s t copula, F: Frank copula, N: Gaussian copula, C: Clayton copula, SC: Rotated Clayton copula 180 

degrees, BB1: BB1 copula, BB7: BB7 copula, SBB1: Rotated BB1 copula 180 degrees, Tawn180: Rotated Tawn 

type 1 copula 180 degrees, I: Independence copula. 

 
FIGURE A.1  Simulation Results of GARCH-VaR method (left panel) and GARCH-Vine Copula 

VaR method (right panel) 

 

 

 

FIGURE A.2  The first three layers’ structure visualization of C-vine-copula for the commodity 

futures index (1: Agricultural and Sideline Product, 2: Chemical Product, 3: Nonferrous Metal, 4: 

Oil and Meal, 5: Coke and Steel, 6: Energy, 7: Precious Metal, 8: Soft Commodity, 9: Non-metallic 

Material.) 
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FIGURE A.3  GARCH-VaR method for the commodity futures index 

 


