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ABSTRACT

Global numerical weather prediction (NWP) models have begun to resolve
the mesoscale k3 range of the energy spectrum, which is known to impose an
inherently finite range of deterministic predictability per se as errors develop
more rapidly on these scales than on the larger scales. However, the dynam-
ics of these errors under the influence of the synoptic-scale k3 range is little
studied. Within a perfect-model context, the present work examines the error
growth behavior under such a hybrid spectrum in Lorenz’s original model of
1969, and in a series of identical-twin perturbation experiments using an ide-
alized two-dimensional barotropic turbulence model at a range of resolutions.
With the typical resolution of today’s global NWP ensembles, error growth
remains largely uniform across scales. The theoretically expected fast error
growth characteristic of a k3 spectrum is seen to be largely suppressed in the
first decade of the mesoscale range by the synoptic-scale k> range. However,
it emerges once models become fully able to resolve features on something
like a 20-kilometer scale, which corresponds to a grid resolution on the order

of a few kilometers.
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1. Introduction

The idea that the Earth’s atmosphere possesses an inherently finite limit to deterministic pre-
dictability has been a universally accepted fact in dynamical meteorology since Lorenz (1969)
demonstrated it using a simple turbulence model. He argued that the predictability of a flow
depends on the slope of the energy spectrum E(k) (the spectral slope), where k is the scalar
wavenumber: flows with spectra shallower than k3 have limited predictability as the scale of
the initial error decreases, whereas those with spectra steeper than k> are indefinitely predictable
(assuming a perfect model) as long as the initial error is small enough in scale. Arguing that the
atmospheric spectrum behaves as k_%, he concluded that atmospheric predictability is inherently
limited.

It was subsequently realized that the large-scale atmospheric flow follows a k> energy spectrum
(Boer and Shepherd 1983), consistent with the expectations of two-dimensional (2D) turbulence
forced at the large scales. With the aid of aircraft observations, Nastrom and Gage (1985) showed
that the k3 range transitions into a k3 range in the mesoscale, at a wavelength of about 400
kilometers. This does not change Lorenz’s conclusion of limited predictability, as the latter de-
pends on the spectral slope in the high-wavenumber limit. Recent studies with realistic numerical
weather prediction (NWP) models continue to find that deterministic predictability is limited to
about 2 to 3 weeks, as Lorenz suggested (Buizza and Leutbecher 2015; Judt 2018).

In recent years, thanks to ever-increasing computational power, atmospheric models have started
to resolve the k3 range, where the flow becomes increasing three-dimensional. Moist processes
such as convection and clouds that are thought to impose an intrinsic barrier to predictability (Sun
and Zhang 2016) are now partially or explicitly resolved. However, the interplay between the

. 5 . . . .
synoptic-scale k> and mesoscale k~3 ranges has been little studied. In particular, it was not
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so clear whether the error growth would resemble characteristics of the k> or 3 paradigm,
until Judt (2018) reported, using a full global NWP model, that error growth was fairly uniform
across scales — a feature of k> turbulence. Judt’s study suggests that error growth and hence
predictability properties under the hybrid spectrum are not as straightforward as might be thought.
It also provokes questions on the sensitivity of such properties to the resolution of the model.
Therefore, it is essential to assess the impact of the synoptic-scale k> range on error growth in the
mesoscale k3 range and to understand its sensitivity to the extent to which the mesoscale range
is resolved.

Such a study must be done at the expense of the complexity of model dynamics, as limited
computational resources make it infeasible to be done with a full NWP model. The much simpler
2D barotropic vorticity model has been used in a number of previous turbulence and predictability
studies (Maltrud and Vallis 1991; Rotunno and Snyder 2008; Durran and Gingrich 2014), among
which Rotunno and Snyder (2008) demonstrated that the model dynamics per se has limited impact
on the predictability properties of a turbulent flow; instead, the error growth and predictability
properties are largely determined by the shape of the energy spectrum. In light of this, it is justified
to perform predictability experiments under the hybrid k=3 and k3 spectrum with the barotropic
model and Lorenz’s original error growth model of 1969 (also based on the barotropic model),
which can be run at higher resolutions and thereby resolve a substantially more extensive part of

the mesoscale k~3 range. The choice of these simple models is in no way intended to downplay

the role of the three-dimensional mesoscale processes in limiting predictability; these effects are,

5

rather, collectively included in the k3 range. The use of these models is simply motivated by
their ability to facilitate predictability experiments at unprecedentedly high resolutions so as to

gain insights into the error growth and predictability properties associated to these fine scales.
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This article investigates the behavior of error growth under the canonical hybrid k=3 — k3 spec-
trum, and demonstrates that the synoptic-scale k> range exerts an influence on the first decade of
the mesoscale range by largely suppressing the fast upscale cascade of error energy characteristic
of ak=3 spectrum. It is structured as follows. Section 2 presents a systematic set of identical-twin
perturbation experiments with the 2D barotropic vorticity model at a range of resolutions. Section
3 introduces a scale-dependent parametric error growth model, one of whose parameters provides
information on the error growth rate, so that its dependence on the physical length scale can be
analyzed. Section 4 demonstrates that the error growth behavior in the 2D barotropic vorticity
model can be captured by the even simpler model of Lorenz (1969), which is then used to assess
how the results would change in the infinite-resolution limit. Section 5 examines the sensitivity of

the results to the initial error profile. Finally, Section 6 summarizes and concludes the paper.

2. Identical-twin perturbation experiments with a 2D barotropic vorticity model

a. The model and experimental design

Two sets of perturbation experiments are performed on a forced-dissipative version of the di-

mensionless 2D barotropic vorticity model

J0
SHIWe)=std.  6=Ay M

in a doubly periodic domain, where Y is the velocity streamfunction [related to the velocity u by
u=-Vx(yk),A=V.V,V= (%, a%) and J(A,B) = 2428 _ 9A9B The prognostic variable
of the model is the vorticity 8. The model is run pseudo-spectrally at various resolutions k; €
{256,512,1024,2048} (where k; is the truncation wavenumber), and the forcing f and dissipation

d are prescribed in spectral space.
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Before the perturbations are applied, the turbulence is spun up to a statistically stationary state
so that the energy spectra have the desired shapes which do not significantly change in time. To
generate a k> spectrum transitioning into k=3 at a smaller scale, forcing is applied at both large
and small scales. This allows both a direct enstrophy cascade and an inverse energy cascade.
Following Maltrud and Vallis (1991), the simulations are forced at wavevectors whose modulus
k falls within the ranges [10, 14] and [%kt, ;g%k,]. The former represents synoptic-scale baroclinic
forcing, and the latter mesoscale forcing, which is applied at a small undamped scale and hence
depends on k;. Independently for each 2D wavevector in these wavebands, f is controlled by the

complex-valued stochastic process

1 ~ 2 ~
df:——fdr+A,/—dW, (2)
Iy Iy

which is an Ornstein-Uhlenbeck process except that the noise W is a uniform random number on
the unit circle in the complex plane. The e-folding de-correlation time 7y is fixed at 0.5 across
experiments of different resolutions, whereas the standard deviation of the forcing amplitude A
depends on the forced waveband and the resolution (more on this later).

Dissipation is introduced to remove the energy and enstrophy cascaded into the largest and
smallest scales respectively. At the largest scales k € [1,3], the dissipation comes in the form of
a linear drag d = —0.0029 6. At the smallest scales k > %—gk,, d = —0.083A%0, which is a hyper-
viscosity. It is worth emphasizing that for most wavenumbers both the forcing and dissipation are
absent. This enables clean energy and enstrophy cascades along the inertial ranges.

To mimic real-world models which do not compromise the quality of large-scale predictions as
the model resolution progressively increases, the fully resolved part of the energy spectra must
agree among runs of different k,. This is achieved by controlling the forcing amplitude A. Unfor-

tunately, this has to be done ad experimentum, since, to our knowledge, no known formulae relate
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the forcing amplitude with the shape of the spectrum. The following choices of A are found to
be appropriate following a series of fine-tuning tests: A = 0.004 for the large-scale forcing for all
k;; and A = 0.005, 0.006, 0.007, 0.008 for the small-scale forcing for k; = 256, 512, 1024, 2048
respectively. As shown in Figure 1, these particular choices also make the transition between the
k=3 and k3 ranges happen on the order of k = 100, in agreement with the atmospheric energy
spectrum observed by Nastrom and Gage (1985) where the spectral break sits at a length scale of
about 400 kilometers. The spectra in Figure 1 are scaled by k3 so that a perfect 3 range would
appear as a horizontal line in the figure. It is apparent that the transition to a k3 spectrum is
gradual, and is not even achieved in the highest-resolution run (k; = 2048), although it is getting
very close.

The two sets of perturbation experiments come in the form of identical twins — pairs of runs that
differ only in the initial condition. The initial perturbations are introduced at a single wavenumber
k, at a relative magnitude of 1%, following the procedure of Leung et al. (2019). The first set
explores the dependence of error growth properties on the scale &, of the initial error. There the
model resolution is fixed to be the highest possible, i.e. k; = 2048, and perturbations are introduced
at k, = 128,256,512 and 1024. The second set explores the sensitivity of error growth to the
model resolution by making k; variable. Model resolutions of k; = 256,512,1024 and 2048 are
considered. k), is fixed relative to k; at % = 0.5 so that the initial error is confined to a small scale
yet unaffected by the forcing and dissipation. As such, the combination (k;,k,) = (2048,1024)
is included in both sets. For each combination of (k;, k), all results reported in this and the next

section are averages over 5 independent realizations.
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b. Results
1) ERROR GROWTH AND ITS DEPENDENCE ON PERTURBATION SCALE

Figure 2 shows the evolution of the error spectra for the different perturbation scales &, in the
highest-resolution (k; = 2048) model, where a substantial part of the unperturbed energy spectrum
follows the k3 power-law reasonably well (Figure 1). The error spectra grow up-magnitude
more or less uniformly across scales. As the mesoscale saturates, the error growth slows down,
as indicated by the more closely packed spectra at later times. These observations are broadly
consistent with the findings of Boffetta and Musacchio (2001), who simulated error growth in the
inverse-cascade regime of 2D turbulence (i.e. a k=3 control spectrum). They also agree with Judt
(2018)’s study using a global convection-permitting NWP model.

Figure 2 also suggests that the dependence of error growth behavior on the perturbation scale
k, is minimal, as manifested by the largely similar shape of the error spectra across the panels.
This is in good agreement with Durran and Gingrich (2014). Decreasing the perturbation scale
(increasing kj) introduces a time-lag in saturating a given synoptic scale, but this lag decreases

with the wavenumber and becomes negligible at the largest scales (not shown).

2) DEPENDENCE ON MODEL RESOLUTION

The results for the second set of experiments, in which the model resolution k; is variable, are
shown in Figure 3. There is a qualitative difference between the error spectra of the low-resolution
runs, where the K3 range is barely resolved (Figure 3(a,b)), and those of the high-resolution runs
where the k’% range is resolved well (Figure 3(c,d)). Without a resolved mesoscale range, the error
spectra peak at the synoptic scale (about k = 10) throughout the growth process, following a short
initial adjustment. This is consistent with previous studies (Rotunno and Snyder 2008; Durran and

Gingrich 2014). In the presence of a mesoscale range, however, the error initially peaks at nearly
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the smallest resolved scale, i.e. towards the end of the K3 range, again echoing earlier studies
(Lorenz 1969; Rotunno and Snyder 2008; Durran and Gingrich 2014). After the mesoscale error
saturates, a separate peak in the synoptic scale begins to emerge in the error spectra, resembling
the error growth paradigm under a k> range. The same has been reported by Judt (2018) in the
context of a high-resolution global NWP model.

Error spectra under a hybrid k=3 and K3 spectrum thus show a stage-dependent peak and an
up-magnitude growth at almost all stages. The analysis of the error growth behavior may be done
more quantitatively by fitting the error growth to a parametric model and extracting information

from the fitted parameters.

3. Assessing the error growth rate using the parametric model of Zagar et al. (2017)

a. Description of the Zagar model

The parametric model of Zagar et al. (2017) (‘the Zagar model’) approximates the evolution of

some measure of the error energy by a scaled and translated hyperbolic tangent function
E(t) = Atanh(at +b) + B, 3)

where ¢ is the time since the initial perturbation, and A > 0, B € R, a > 0 and b € R are parameters
to be fitted. The measure of the error energy can be that at a particular wavenumber or a range of
wavenumbers (which can be the total error energy), whether normalized by the saturation energy
level or not. In this section, we apply the Zagar model on the normalized energy at individual
wavenumbers, thus making equation (3) and its parameters functions of k as well.

The E given in equation (3) satisfies the autonomous differential equation

dE_a

d_t — Z(Emax - E) (E - Emin) (4)
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where Enax ;= A+ B and Ey;, := A — B are respectively the supremum and infimum attainable
values of E over all # € R. Equation (4) can be considered as an evolution equation for the error,
with an initial condition of E(t = 0) = Atanh(b) + B. From this equation, one can see that the

Zagar model is equivalent to the parametric error growth model of Dalcher and Kalnay (1987)

d—E:(a1E+az) (1—EE ) (5)

dr max

by noting that o) = %Emax and op = — %EmaXEmin (Zagar et al. 2017). We focus on Zagar and
her collaborators’ formulation of the model here, as it provides an explicit expression for the

parameterized error E (equation (3)). If the evolution equation (4) or (5) were used instead, the

dE

parameters would then have to be fitted to the instantaneous growth rate -,

whose computation

requires discretization and thus introduces inaccuracies.

b. The fitting

The fitting to equation (3) is carried out on Python’s scipy.optimize package. Starting with an
appropriate initial guess of the parameters A, B, a and b, a least-squares minimization is performed
by the Levenberg-Marquardt algorithm to compute the set of parameters that best approximates
the evolution of the error.

As an illustration of the appropriateness of the hyperbolic tangent function in describing error
growth, Figure 4 shows the evolution of the normalized error energy at a specific wavenumber and
its best fit according to equation (3). The fit typically smoothens the error’s fluctuations around
the saturation level. Away from the saturation level, the fitting function matches the error almost

perfectly.

10
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The contour plot in Figure 5(a) is obtained by repeating the fitting procedure independently for
all wavenumbers. The corresponding plot for the raw, unfitted error is shown in Figure 5(b). It is

evident that the fitting removes the noise and provides a cleaner signal to the error growth pattern.

c. Inferring predictability from the parameters

Parameter a of equation (3) carries a mathematical interpretation. It controls the width of the
hyperbolic tangent curve. By studying its dependence on k, k; and k,, the predictability of the

system can be inferred. To see this, let E1 and E, be two arbitrary error energy levels with £ < E»,

and #; and 7, be the times when these energy levels are attained. If we write F; = %, i=1,2,
then equation (3) implies at; + b = tanh ™! (F;), so that
1
h—1H =— (tanh’l(Fz) — tanh*I(Fl)) . (6)
a

Since the hyperbolic tangent function is monotonically increasing, tanh~!(F) — tanh~!(F}) is
always positive, meaning that a smaller a always gives a larger (longer) , —#;. As a becomes
larger, the curve narrows and thus suggests a more rapid error growth.

For the first set of experiments in which k; = 2048 and k,, is variable, Figure 6 shows that a
increases with k until the effects of the small-scale forcing become important. Hence, by the
above argument, the error grows faster as the spatial scale decreases. This is particularly apparent

in the k3 mesoscale range, where the slope d(l‘é—“) increases. This is a hallmark of inherently

gk
finite predictability, and reinforces the agreement with Judt (2018)’s earlier study using a more
sophisticated NWP model.

It is interesting to see that a increases more rapidly in the mesoscale when k), is smaller. In other

words, error growth in the mesoscale is faster when the perturbation is applied at a larger scale.

11
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This may be attributable to the fast transfer of larger-scale errors into the smaller scales (Durran
and Gingrich 2014).

Figure 7 shows a(k) for the second set of experiments, in which I,i—‘t’ is fixed at 0.5. It is quite
remarkable that the values of a for the different resolutions are broadly consistent (as long as they
lie outside the forcing ranges), meaning that the error growth at a given scale is not substantially
altered by pushing the model to a higher resolution. Having said that, the distinctively changing
slope % for the highest-resolution run k; = 2048 (the same magenta curve as in Figure 6) is
not seen when k; is smaller.

The heuristic dimensional argument for homogeneous and isotropic turbulence (Lilly 1990) im-
plies that the parameter a should scale as [K*E (k)]%, since it carries the physical dimension of
inverse time. Accordingly, a should be constant in k if the energy spectrum is k>, and should
scale as k3 if E (k) ~ 3 However, Figure 7 suggests that a scales with k logarithmically in the
large scales. Into the small scales of the highest-resolution runs, a polynomial scaling seems to
emerge, but in any case it falls well short of k3 which demands a more-than-fourfold increase in a

for every decade of wavenumbers. Hence, the observed behavior of a remains in an intermediate,

non-asymptotic regime, as might be expected under a hybrid k<~ and k3 energy spectrum.

4. Exploring the asymptotic behavior using Lorenz’s model

It is of interest to investigate the characteristics of error growth under the hybrid spectrum in the
infinite-resolution limit. To achieve this, a much higher-resolution model is needed to reasonably
serve as a proxy for the infinite-resolution case. The primitive model of Lorenz (1969) is a good
candidate for this purpose, as its computational inexpensiveness enables running of ultra-high-

resolution simulations.

12
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Lorenz’s model is based on the dimensionless 2D barotropic vorticity equation (1) but without
forcing and dissipation (f = d = 0). This is equivalent to the vorticity form of the incompressible
2D Euler equations. Forcing and dissipation are instead implicit in the nature of the assumed
background energy spectrum. Expanding its linearized error equation in a Fourier basis, making
certain simplifying assumptions (e.g. turbulence closure) and discretizing it, the model reduces to

a system of linear ordinary differential equations

d2

Z=CZ (7)

where Z is a vector of error energies at different scales (each scale K collectively represents
wavenumbers k = 2K-1 to k = 2K ), and C is a matrix of constant coefficients. Given the reso-
lution K« of the model, the entries of C only depend on the energy spectrum of the unperturbed
flow, which is specified a priori by the user. Further details on the derivation of the model, in-
cluding the computation of C, are available in Lorenz (1969), Rotunno and Snyder (2008), and
Leung et al. (2019). For a given initial condition of Z and its first time-derivative, the model is
solved analytically following the procedure of Leung et al. (2019). When the error at a particular
scale saturates, the error energy at that scale ceases to be a prognostic variable of equation (7), but
its effects on the remaining scales via the matrix C are retained in the form of an inhomogeneous

forcing while the time-integration continues.

a. Reproducing the DNS results

We first demonstrate that Lorenz’s model is able to capture the essential aspects of error growth
observed in the direct numerical simulations (DNS) of Sections 2 and 3. Specifically, we show
this for the set of experiments in which % is fixed (cf. Figure 3). To compute the matrix C and

hence run the model, the background energy spectra at the final time (¢t = 150) of the identical-

13
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twin simulations in Section 2 are recycled. For each (k;,k,) pair, a single background spectrum is
formed by averaging the 5 independent realizations. Next, the spikes induced by the forcing are
removed, with the energy spectral densities at the forced wavenumbers replaced by interpolation of
the densities at the neighbouring wavenumbers outside the forced range (the interpolation is linear
in log-log space in order to respect the power-law nature of the spectrum). The resulting spectrum
is then discretized into the scales K, with minimum Kp,;, = 1 and maximum Ky.x = log, k; =8, 9,
10 and 11 respectively.

The model (7), with C computed from the discretized spectrum, is solved for one-half of the
initial error drawn from the respective DNS. (The factor of one-half is due to the definition of the
error in Lorenz’s model based on turbulence closure concepts, which makes the re-defined error
saturate at the control energy spectrum rather than twice its level.) The initial condition for % is
set to be zero for all K, as it will be for the remainder of the article.

Figure 8 shows the parameter a of the Zagar model as a function of K. Compared to the growth
rates for the DNS (Figure 7), the single most distinctive feature — that a generally increases as
k or K increases, albeit much slower than the heuristic scaling would suggest — is captured in
Lorenz’s model. In other words, Lorenz’s model is able to reproduce the moderate quickening
of error growth in the mesoscale, though not to the same extent as in the DNS themselves (the
values of a in the mesoscale range in Figure 8 are generally smaller than in Figure 7 by a factor of
two). Lorenz’s model also captures the suppression of error growth at intermediate scales in the
higher-resolution simulations, as seen in Figure 7.

It should be noted that Lorenz’s model is, in some cases, known to produce unrealistically os-
cillatory error behavior at small times (Lorenz 1969). This includes the emergence of transient
negative error energy values, which is in no way excluded by the mathematical formulation of the

model. Indeed, it is a known shortcoming of the quasi-normal turbulence closure which Lorenz

14



288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

used in deriving his model (Orszag 1970). Nevertheless, qualitatively speaking, the erratic behav-
ior amounts to nothing more than a time-delay in error growth. Therefore, it does not affect our

concerned parameter a of the Zagar model, since the time-delay is represented in the parameter b.

b. Error growth in the infinite-resolution limit

Having demonstrated the ability of Lorenz’s model to reproduce the basic features of error
growth, we turn our focus to the ultra-high-resolution case, Kn,x = 21. Physically, it corresponds
to a minimum wavelength of about 19 metres on Earth, well beyond the resolution of today’s NWP
models.

The discretized background spectrum used for the Ky x = 11 simulation above is extended to
Kmax = 21, assuming a pure K3 range at these smaller scales. In other words, for all integers

K €[11,21),

X(K+1)
X(K)

WIN

=2" ®)

The scaling 273K — k=5 = k34 is the energy integrated over a unit logarithm of wavenumbers
when the energy spectral density scales as 3

Figure 9(a) illustrates the growth of a small-scale error under this hybrid background spectrum
extended to Kiax = 21. The error spectrum exhibits a fairly sharp peak at all lead times, in contrast
with the lower-resolution case (e.g. Figure 3(d)) where the peak is much broader. Figure 9(b)

shows the same but for a single K3 range, defined by
X(K)=2"3K 27K ©)

yet normalized to such a level that the magnitude of the mesoscale part of the spectrum agrees
. - . . _s
with that in Figure 9(a). The second term of equation (9) represents a correction to k=3 whose

effect is most significant in the large scales, where the shape of the spectrum departs from the

15
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power-law. The formulation of this spectrum is therefore identical to Lorenz (1969), save the
normalization, and enables a direct comparison with Figure 9(a) for examining the effects of an
additional k3 range in the synoptic scale (it should be noted that in this way the hybrid spectrum
is more energetic in absolute terms). There is a very close agreement between the nature of the
mesoscale error growth in Figure 9(a) and in Figure 9(b). It seems plausible, then, to suggest
that the error under the hybrid spectrum asymptotically behaves as the error under a single k3
range, and that the presence of the k> range does not affect the fast error growth at the smallest
scales. This comparison also suggests that Ki,ax = 21 is sufficient to be considered a proxy for the
infinite-resolution limit.

This can be expressed in more quantitative terms by considering the parameter a of the Zagar
model (Figure 10(a)). For Kyax = 21 (black solid curve), a grows exponentially beyond K = 11.
This growth is very similar in simulations at intermediate resolutions, confirming that our results
have converged in this respect. Indeed, the growth is even faster than the theoretically expected
scaling of k3 =23K forak3 spectrum. The implication here is that it is necessary to fully resolve
K =11 (19.5 to 39.1 kilometers on Earth) for the model to pick up the fast error growth pertaining
to the k3 range, despite it being more than a decade of wavenumbers beyond the spectral break
between the k3 and &3 ranges. Moreover, the results suggest that the synoptic-scale k> acts
to slow down error growth in the first decade of the mesoscale. This is also supported by a(K)’s
approximate proportionality to 23K for all K in the single-range k3 spectrum (not shown).

We can update Lorenz (1969)’s estimate of the predictability horizon using this hybrid spec-
trum. Table 1 lists the error saturation time for each K, dimensionalized using his estimate of
the root-mean-square wind speed in the upper troposphere (17.1824 meters per second). Gener-
ally speaking, a change in the magnitude of the initial error at the smallest scale would shift the

predictability horizons across the whole table by a near-constant amount (not shown), so that the
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ranges of predictability at the large scales are relatively more robust than at the small scales. The
predictability limit for the planetary scale is estimated to be about 15 to 20 days, in line with recent
estimates using more sophisticated models (Buizza and Leutbecher 2015; Judt 2018; Zhang et al.

2019).

5. Other initial error profiles

In Section 4, we focused on cases where the initial error is concentrated at the smallest avail-
able scale, thereby approximating an infinitesimally small-scale error. This is analogous to Lorenz
(1969)’s well-known Experiment A. Initial error spectra in realistic weather forecasts are, however,
very different. To explore the sensitivity of the error growth behavior to the initial error spectrum,
Lorenz performed the lesser-known Experiments B and C. In his Experiment B, the initial error
was confined to the largest-available scale, whereas Experiment C was initialized with a fixed frac-
tion of the control energy spectrum across all scales. He concluded that the predictability horizon
at the planetary scale is barely dependent on the initial error spectrum. Durran and Gingrich (2014)
expanded on Lorenz’s results to show that, despite the insensitivity of the predictability horizon,
the error spectra in Experiments B and C grow somewhat differently from Experiment A (their
Figures 2(a) and 3). They also demonstrated that additional small-scale ‘butterflies’ are practi-
cally irrelevant to the error growth pattern when the initial error spectrum has a non-negligible
contribution from the large scales.

Here, Durran and Gingrich (2014)’s experiments are repeated for the hybrid background spec-
trum with Ky« = 21. The growth of the error spectrum is shown in Figure 11. In Figure 11(a), the
initial error is confined to the largest scale, whereas in Figure 11(b) the initial error is distributed

across all scales in a uniform manner relative to the control spectrum. The error spectra have
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similar shapes beyond the initial time, and both figures conform nicely to Durran and Gingrich
(2014)’s result.

The Zagar error-growth parameter a(K) for both alternative initial conditions is seen to follow
the same general pattern as the case in which the initial error is at the smallest scale (Figure 10(b)).
In particular, the exponential growth of a from K = 11 and the sluggish variation at smaller K still
hold. Indeed, differences in a(K) across the three cases are practically invisible for all K < 14.
Beyond K = 14, the curves for the large-scale and proportional initial errors remain nearly identical
to each other but are distinct from the curve for the small-scale initial error by a small margin.
The overall excellent agreement across the three initial error profiles therefore extends Durran
and Gingrich (2014)’s conclusion — that “the loss of predictability generated by initial errors of
small but fixed absolute magnitude is essentially independent of their spatial scale” — to the hybrid
spectrum. Yet the comparison also shows that the inferences obtained from our version of Lorenz’s

Experiment A are robust to different initial error distributions.

6. Summary and conclusions

Building on Judt (2018)’s study which shows that model-world errors in a convection-permitting
global NWP model demonstrate mixed characteristics of error growth under a hybrid k=3 and
k3 spectrum, we examined in this paper the sensitivity of error growth properties to the model
resolution or, in other words, to the extent to which the k=3 mesoscale range is explicitly resolved.
This was done in a 2D barotropic vorticity model. The use of simple models for casting light on
error growth and predictability properties in the real world is justified as long as the Nastrom-Gage
hybrid k33 energy spectrum is well-modelled, since these properties are largely determined

by the shape of the spectrum (Rotunno and Snyder 2008).
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Results from identical-twin perturbation experiments with the 2D barotropic vorticity model at
a range of resolutions (Section 2) show that a stage-dependent peak in the error energy spectrum
begins to emerge as the model resolution increases from k; = 256 (where there is essentially no
room for the k3 range) to k; = 2048 (where the mesoscale range is substantially resolved). Under
the hybrid spectrum, the error spectrum initially peaks at the small scales until the 3 range
becomes saturated, then a synoptic-scale peak characteristic of error growth under a k> spectrum
starts to appear. These observations echo Judt (2018)’s findings, and confirm that the 2D barotropic
vorticity equation can mimic the essential aspects of this process.

The dependence of the error growth rate on spatial scale is used to quantitatively characterize
the predictability of the system. A measure of this rate is the parameter a of the parametric error
growth model of Zagar et al. (2017) (Section 3). By fitting the error energy data obtained from the
perturbation experiments to this parametric model, it is shown that the error indeed grows faster as
the spatial scale decreases, thereby providing a hint of limited predictability. This is particularly
evident in the k3 range. However, the increase in the growth rate as the spatial scale decreases
falls well short of the theoretical estimate, thus indicating that the error behavior has not reached
the asymptotic regime pertaining to this mesoscale range.

The model of Lorenz (1969), which is also based on the 2D barotropic vorticity equation, is
used to investigate the asymptotic behavior (Section 4). At a modest computational cost, Lorenz’s
model successfully captures the important characteristics of error growth, thus enabling ultra-
high-resolution simulations for estimating growth patterns in the continuum. It is found that under
the hybrid spectrum, the fast upscale cascade of error energy characteristic of limited predictabil-
ity becomes unambiguously visible only beyond k = 2048 = 2!! (19.5 kilometers), more than
a decade of wavenumbers beyond the spectral break between the synoptic-scale and mesoscale

ranges. Until then, the synoptic-scale range suppresses mesoscale error growth.
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Applying these results to NWP would mean that models have to fully resolve the dynamics at
the scale of the typical grid resolution of today’s global ensembles (~ 20 kilometers) in order for
the fast mesoscale uncertainty growth to be accurately captured within the model. Based on Ska-
marock (2004), this would suggest a grid resolution 7 times finer than typical of today, i.e. on the
order of a few kilometers, after accounting for the need for a dissipation range. Pushing NWP
models to such a resolution can be anticipated to provide a more realistic description of small-
scale error growth and thus of the uncertainty in the forecast, even when the initial errors are not
confined to the smallest scales (Section 5). Yet, we recognize that developing stochastic parame-
terizations for processes on the O(1)-kilometer scale (e.g. cloud processes) may also achieve the
same purpose. It should also be noted that realistic initial error profiles have typically far greater
amplitudes than those considered in the present study, whose focus is on predictability properties
in the limiting case.

Judt (2020) suggests that the canonical hybrid k=3 k3 spectrum, which has been assumed here
throughout, is restricted to the mid-latitude upper troposphere only. The applicability of these
results to other parts of the atmosphere, or indeed to the atmosphere as a whole, remains a topic

of further research.
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476 TABLE 1. Dimensionalized error saturation times (i.e. predictability horizons) for various length scales K,
sz computed using Lorenz (1969)’s model for 21 scales, and the same control energy spectrum and initial error as

«s Figure 9(a).

K Length scale Predictability horizon
1 20000 — 40000 km 20.1 days
2 | 10000 — 20000 km 15.8 days
3 5000 — 10000 km 12.6 days
4 2500 — 5000 km 10.3 days
5 1250 — 2500 km 8.74 days
6 625 — 1250 km 6.46 days
7 313 —625 km 5.31 days
8 156 —313 km 4.30 days
9 78.1 — 156 km 3.53 days
10 39.1—-78.1 km 2.52 days
11 19.5—-39.1 km 1.24 days
12 9.77 —19.5 km 20.4 hours
13 4.88—9.77 km 10.8 hours
14 2.44 —4.88 km 7.19 hours
15 1.22 —2.44 km 4.89 hours
16 610 m—1.22 km 2.62 hours
17 305—-610m 1.88 hours
18 153 —-305m 1.35 hours
19 76.2—153m 58.0 minutes
20 38.1-76.2m 47.0 minutes
21 19.1-38.1m 41.1 minutes
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independent realizations.
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over 5 independent realizations before the fitting is performed.

The growth of the (a) fitted and (b) raw errors as functions of the wavenumber, for the same
simulations as in Figure 4. The colors and contours indicate the normalized error energy
level. .

Parameter a of the Zagar model, fitted to the normalized error energy at individual wavenum-
bers according to equation (3), as a function of the wavenumber, for perturbation experi-
ments of various k), for the highest-resolution model k; = 2048. The data are averaged over
5 independent realizations before the fitting is performed. Note that the vertical axis is linear
and not logarithmic. .

As in Figure 6, but for combinations of (k;,k,) such that k, = tk;.
As in Figure 7, but for the Lorenz (1969) model.
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Lorenz (1969) model under the control energy spectrum (red) recovered from the (k;,k,) =
(2048, 1024) simulations in Section 2 (with modifications, details of which are given in the
text) and extended to Kpyax = 21 via equation (8), and an initial condition of Z(Kmax) =
5% 1077 x zfgalxx (L) and Z(K) = 0O for all other K. (b) As in (a), but for a single-range

k=3 control energy spectrum according to equation (9) yet normalized to such a level that
the magnitude of the mesoscale part of the spectrum coincides with (a). The error spectra are
plotted in blue at equal time-intervals of At = 3 up to r = 60, and in magenta at intervals of
At = 30 thereafter. The vertical axes show the equivalent energy spectral density 2-XZ(K),
a function that smoothly distributes Z(K) which would have been a density in k had K been
a continuous variable. .
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for all other K. (b) shows the same black curve for the K;,,x = 21 simulation as (a), and
additionally for cases where the initial condition of the same magnitude is moved to K =
1 (red) or redistributed as a uniform fraction of the background spectrum (blue, which is
essentially indistinguishable from the red). The vertical axes are logarithmic and the dashed

L . . 2 .
lines indicate an appropriately normalized 23X scaling.

As in Figure 9(a), but for the following initial conditions for Z: (a) Z(1) =5 x 1077 x
Zfial"X(L) and Z(K) = 0 for all other K; (b) Z(K) =5 x 1077 x X(K) for all K. .
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F1G. 10. (a) As in Figure 8, but for Kax = 11 (cyan), 13 (red), 15 (green), 17 (blue), 19 (magenta) and 21
(black), and an initial condition of Z(Kmax) = 5 x 1077 x YA X (L) and Z(K) = 0 for all other K. (b) shows the
same black curve for the Ki,x = 21 simulation as (a), and additionally for cases where the initial condition of
the same magnitude is moved to K = 1 (red) or redistributed as a uniform fraction of the background spectrum
(blue, which is essentially indistinguishable from the red). The vertical axes are logarithmic and the dashed lines

indicate an appropriately normalized 23K scaling.
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=  FIG. 11. As in Figure 9(a), but for the following initial conditions for Z: (a) Z(1) =5 x 1077 x Y.xm X (L)
s and Z(K) = 0 for all other K; (b) Z(K) =5 x 1077 x X(K) for all K.
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