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The sensitivity of the climate to CO, forcing depends on spatially-varying
radiative feedbacks which act both locally and nonlocally. We assess whether
a method employing multiple regression can be used to estimate local and
nonlocal radiative feedbacks from internal variability. We test this method on
millennial-length simulations performed with six coupled atmosphere-ocean
general circulation models (AOGCMs). Given the spatial pattern of warming,
the method does quite well at recreating the top-of-atmosphere flux response
for most regions of the Earth, except over the Southern Ocean where it consis-
tently overestimates the change, leading to an overestimate of the sensitivity.
For five of the six models, the method finds that local feedbacks are posi-
tive due to cloud processes, balanced by negative nonlocal shortwave cloud
feedbacks associated with regions of tropical convection. For four of these
models, the magnitude of both are comparable to the Planck feedback, so that
changes in the ratio between them could lead to large changes in climate sen-
sitivity. The positive local feedback explains why observational studies that
estimate spatial feedbacks using only local regressions predict an unstable cli-
mate. The method implies that sensitivity in these AOGCMs increases over
time due to a reduction in the share of warming occurring in tropical convect-
ing regions and the resulting weakening of associated shortwave cloud and
longwave clear-sky feedbacks. Our results provide a step towards an observa-
tional estimate of time-varying climate sensitivity by demonstrating that many
aspects of spatial feedbacks appear to be the same between internal variability

and the forced response.
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1. Introduction

Forecasting global warming is one of climate science’s key challenges. As the atmospheric car-
bon dioxide concentration increases, the planet’s radiation of energy to space becomes less than its
absorption of sunlight (Arrhenius 1896). This energy imbalance, the radiative forcing, warms the
surface, setting off processes (radiative feedbacks) that close the imbalance, restoring the system
to a new steady state. We call the global average of the radiative feedbacks the climate feedback
(also called the climate feedback parameter, Charney et al. (1979), or the thermal damping rate,
Dessler (2012)). The total warming in response to a given increase in CO; is thus determined by
the resulting radiative forcing and the climate feedback (Charney et al. 1979). The rate of warming
also involves the thermal inertia of the surface, mostly due to oceanic heat uptake (Gregory et al.
2002). Uncertainty in the climate feedback contributes the most to uncertainty in future warming
(Otto et al. 2013; Lewis and Curry 2015; Lutsko and Popp 2019), in part because of the inverse
relationship between feedback and sensitivity (Roe and Baker 2007).

Directly simulating radiative feedbacks is difficult primarily because cloud feedbacks depend
on small-scale processes (Wetherald and Manabe 1988). Alternatively, the climate feedback can
be inferred from observations, either by solving for it using the observed warming, observed deep
ocean heat uptake, and simulated radiative forcing (Gregory et al. 2002; Otto et al. 2013), or by
analyzing how the planet’s energy imbalance changes as the surface temperatures varies month-
to-month or year-to-year (Forster and Gregory 2006; Murphy et al. 2009; Dessler 2010; Cox et al.
2018; Lutsko and Takahashi 2018; Jiménez-de-la Cuesta and Mauritsen 2019; Libardoni et al.
2019). These observational methods often assume that the climate feedback is constant, but many
studies have shown that it typically changes with time in simulations (e.g., Murphy 1995; Wat-

terson 2000; Senior and Mitchell 2000; Armour et al. 2012; Jonko et al. 2012; Andrews et al.
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2015). While the temperature dependence of feedbacks can cause this to occur under sufficient
(and likely strong) warming (Meraner et al. 2013; Bloch-Johnson et al. 2015), the change occurs
even after relatively small amounts of warming (e.g., Armour et al. 2012; Andrews et al. 2015;
Rugenstein et al. 2016). Since warming in different regions sets off radiative feedbacks of differ-
ent strengths, the inconstancy of the climate feedback is likely caused by the change in the spatial
pattern of warming with time (Winton et al. 2010; Armour et al. 2012). Since the temperature
pattern associated with internal variability differs from the forced response, we should expect the
climate feedback associated with each to differ (Dessler 2012; Colman and Hanson 2017), and in
fact the climate feedback appears to vary across the historical record (Gregory and Andrews 2016;
Fueglistaler 2019). The climate feedback may vary between historical and future warming (Zhou
et al. 2016; Armour 2017; Proistosescu and Huybers 2017; Andrews et al. 2018), although the
importance of this effect may be modest (Lewis and Curry 2018).

Recent modelling work has explored a new framework in which the climate feedback is a linear
combination of radiative feedbacks associated with different regions of the surface, weighted by
the temperature change in each region (Zhou et al. 2017; Dong et al. 2019). This assumes that
the spatial radiative feedbacks themselves are constant, with only the map of surface tempera-
ture change evolving. This paper explores a corollary: since internal variability creates an ever-
changing pattern of surface temperature and top-of-atmosphere radiative imbalance, a sufficiently
long record of this variability should exhibit the behavior of these spatial radiative feedbacks. In
this paper, we propose and evaluate a multiple regression (MR) method to estimate the spatial
radiative feedbacks of six atmosphere-ocean general circulation models from control simulations,
which we compare to existing methods for estimating feedbacks from internal variability (Section
2). We do so in spite of the known bias in regression methods related to stochastic variation in

top-of-atmosphere fluxes (Spencer and Braswell 2008, 2011; Choi et al. 2014; Proistosescu et al.
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2018). We test the method by convolving the estimated spatial feedbacks with warming patterns
from forced simulations performed with the respective models (Section 3), assessing the method’s
accuracy in recreating aspects of the forced response. We discuss insights the MR method pro-
vides into climate dynamics, such as the competing nature of local and nonlocal cloud feedbacks

(Section 4) and summarize our findings (Section 5).

2. Illustrating the MR method with a conceptual model

In this section, we present a method for predicting spatial feedbacks from records of unforced
variability using multiple regression. We first set up a conceptual climate model designed to illus-
trate the method and capture some features of the complex climate models discussed in Section 3.
This conceptual model has two regions of equal area. In each, the change in surface temperature
(T;) 1s proportional to the net energy gain of that region, which is the sum of the net downwards
top-of-atmosphere (TOA) radiative flux (&;), the net gain from horizontal energy transport from
the atmosphere and ocean combined (—H in region 1, H in region 2), and additional random

fOI‘CiIlg (Emrfj):

dT;

i = N1 —H + Fyrp1 (D
t
a1

Q- = Ny +H+Fypp 2)

where c; is the surface thermal inertia associated with region i. This model can be re-expressed in
terms of anomalies relative to an initial equilibrium state, so that we consider 7/, N/, H', and F, . i
instead of T;, N;, H, and F,,r;. We assume that heat transport is proportional to the temperature

gradient between the two regions:

H =y(T{ - T,) 3)
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Changes in a region’s top-of-atmosphere radiative fluxes are caused by radiative feedbacks (4; ,
which represents the influence of surface temperature in region j on the net TOA flux in region i),
radiative forcing due to changes in a forcing agent such as an increase in CO» (Fro, ;), and radiative

forcing due to random atmospheric fluctuations that occur independently of surface temperature

(Froa,i):

Ny = MaT{+MaTs + Feo,a+ Froa “4)

Ny = T+ X215 + Feo,2+ Froan )

A1 and A, > are local radiative feedbacks, while A » and A> ;| are nonlocal radiative feedbacks
(where our sign convention ensures that a negative A implies a negative, stabilizing feedback).

Nonlocal radiative feedbacks (Rugenstein et al. 2016; Zhou et al. 2017; Po-Chedley et al. 2018;
Dong et al. 2019) are changes in a region’s top-of-atmosphere flux that occur due to changes in
surface temperature elsewhere, independent of local surface temperature changes. For example, in
Figure 1, regions 1 and 2 represent the convecting and subsiding branches of an overturning cell
respectively. Surface warming in region 1 propagates vertically, warming region 1’s free tropo-
sphere, and then horizontally into the free troposphere of region 2, increasing H’. Region 2 now
has a warmer troposphere, which radiates more, decreasing Nj. The resulting horizontal advection
may also increase the humidity of region 2’s free troposphere, increasing N}. Assuming region 2
has a subsidence-induced boundary layer inversion, its low cloud cover could also increase, caus-
ing a further decrease in Nj. All of these changes in N, occur independently of any changes in 75,
and conspire to make A; | positive or negative.

We note that an increase in H' will also increase 7, directly (Eq. 1; Feldl and Roe 2013b). While
this latter effect is connected to nonlocal radiative feedbacks in that both occur due to horizontal

fluxes of heat and moisture, the two effects are different, and can disagree in the sign of the
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resulting surface warming, as demonstrated by the above example. While the influence of H' on
surface temperature is important for understanding the evolution of the spatial pattern of warming,
in this paper we are focused only on the influence of surface temperature on TOA radiative fluxes,
and so we focus on nonlocal radiative feedbacks.

Suppose that region 1 has a weak positive local feedback A; | = 0.5 Wm2K~! (red solid line,
Figure 2b), and a stronger negative nonlocal feedback, so that A, | = —2 Wm 2K~ (light blue
solid line, Figure 2b). We also assume that the surface temperature of the subsiding region 2 has
no net effect on TOA fluxes, so that A2 =242, =0 Wm2K! (orange and gray solid lines in
Figure 2b). We assume that region 2’s thermal inertia is much larger than region 1’s, representing
more ocean heat uptake in this region (see Appendix for details).

We define the global climate feedback A to be the dependence of the globally averaged net TOA

flux on the globally averaged surface temperature, that is

A==y (A"—T@) T ©

=3 M1 A ..
where T = [g} JA= [ li; Ai;] , and a bar over a vector indicates the global average of that vector.

We do not have to use an anomaly for N because N is 0 in equilibrium. Note that even though
the spatial feedbacks A are constant, the global feedback A can change with time because of the
evolving spatial pattern of warming %(r).

We perform two 5000-year experiments: a ‘“control” experiment, where all variations in

— = = Fl

T} puiror(t) and Ny, (¢) are due to random forcing at the surface (F,, () = [ Fj,::; ;8} ) and TOA
- E! —

(Froa(t) = [F;Z;‘;Eg] ), and an “abrupt4x” experiment in which the time series Ta/brupt4x<t) and

N ébrupt4x(t) also respond to an initial step forcing akin to a quadrupling of CO, concentration

(Fco,1 = Fco,2 =8 Wm™2),
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For the abrupt4x simulation, the climate feedback A = 3—?, changes significantly around year
20. We therefore define two forced feedbacks, A4y cariy and Asy jare, Which are the slopes of the

linear regressions of Nabmpmx(f) against T (t) taken over years 1 to 20 and years 21 to 5000

abruptéx
respectively (Figure 2c). Before these regressions are taken, we average each annual time series
(gray dots) over roughly exponentially increasing time periods (colored dots). A4y = Auy jare —
Mx.,early is the change in feedback between the periods.

(t) and N/

We seek a method to predict Ayy eariys Ay jare, and Adgy given T

ontror () (internal
variability), and Ta/brupt4x<t) (the spatial pattern of warming). The simplest method would be to
regress annual averages of N ooz ror (t) against T ¢y 01 (t) to get the resulting regression slope Aconsror
(the slope of the blue line in Figure 2a), and to assume that Auy cariy = Ay 1ate = Acontror (Forster
and Gregory 2006; Murphy et al. 2009; Dessler 2010). We call this the “global” method because
it uses information about changes in global surface temperature only.

The radiative feedbacks associated with temperature change induced by random forcing (i.e.,
F}Wf and F“TOA) differ from those induced by uniform greenhouse forcing (Fcoz) (Dessler 2012;
Colman and Hanson 2017; Proistosescu et al. 2018). Our conceptual model illustrates how this can
arise from spatial variation. Since the thermal inertia in region 2 is larger, most of the temperature
variability occurs in region 1, so that A.,,,,; is weighted towards the feedbacks associated with
this region (Acomror = A1,1 +A2,1). The spatial pattern of warming in the forced response is initially
dominated by region 1 as well, once more because it has the lowest thermal inertia. As a result, the
global method predicts A4y ¢qriy Well (see Figure 2¢ and d). However, the global method always
predicts Adg, = 0, as it assumes a constant A. Since warming moves to region 2 over time and
M2+ 2 > Ay 1+ Az 1, Adyy is positive. As aresult, the global method underpredicts the warming

of the abrupt4x simulation by about 1.5 K (Figure 2c). To address this shortcoming, we need a

method that accounts for the spatial variation of feedbacks.
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The “local” method is a commonly used method (Boer and Yu (2003b), Crook et al. (2011), the

“local” method in Feldl and Roe (2013a), Brown et al. (2015), and Trenberth et al. (2015)) for

)Ll Jocal

where A, is the
A2.0cal i| i,local

estimating spatial feedbacks. In this method, we construct A;pcq; = [

(1) against T

: !/
result of regressing NV; i.control

i,control

(t). Taking the dot product of Atocar With T’a’ bruprax(t)
then provides an estimate of N ébmpt 4,(t) which we can use to estimate Agy cqriy, Adx jare, and Ady,.

This method assumes all radiative feedbacks are local, while allowing for the nonlocal effects of
heat transport (Feldl and Roe 2013b). However, if there are nonlocal radiative feedbacks, then the
local method can miss or conflate their effects. In region 1, estimates of A; j,¢ tend toward A1 | =
0.5 Wm2K~! (dotted red line, Figure 2b), missing the negative nonlocal feedback A21. Since
the early period is dominated by warming in region 1, the local method overestimates A4y cqriy
(where “overestimates” implies the estimate of A4y 41, is more positive than the true value, even
if both are negative, resulting in an overestimate of the sensitivity). On the other hand, T, tends
to be positively correlated with 7/, due to heat transport, while 7} tends to be anti-correlated with
Né because A, ; is negative. As a result, the local method predicts that A; ;.. is negative (dotted
orange line, Figure 2b), even though 7, has no net influence on N. Since 7, contributes more
to warming over time, the local method incorrectly predicts a more negative feedback (Figure 2c
and d). Similar discrepancies can occur when local feedbacks are used to diagnose feedbacks
in GCMs, which may explain instances when the local method fails to predict feedback changes
properly (Rose et al. 2014). We need a method that includes nonlocal feedbacks while accounting
for correlation between temperature in different regions.

We propose a multiple regression (“MR”’) method, which estimates the local and nonlocal feed-

backs associated with N/ (that is, the influence of 7| and 7; on N/) by regressing N/ (1) against

i,control

10
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both regions simultaneously:

/ / !/
i,control (t) = )VivlvMRTl,C()l’l[r()l (t) + )‘iyzaMRTZ,contml (t) + FTOAJ (7)

In least squares multiple regression, A; j mr is the same as the slope of the regression of Nl.’, control )
against Tj” control (1) s Where the star indicates that each time series is the residual after regressing
against the surface temperatures in all non-j regions (see Appendix). This removes the effect of
correlations between surface temperature in different regions giving spurious feedbacks, as with
A2 1ocal above. Multiple regression has been used to estimate other surface temperature-dependent
feedbacks from internal variability, though not radiative feedbacks (Liu et al. 2008; Li et al. 2012;
Li and Forest 2014; Liu et al. 2018). The dashed lines in Figure 2b show that, given sufficient
time, the MR method predicts the local and nonlocal feedbacks in each region, so that when we
multiply the full matrix of estimated spatial feedbacks Ayg = [i:ﬁ tzgﬂ by T/, NGRT
estimate Nabmpmx(f), the resulting estimates Auy eariy, Adxjare> and Ay, are accurate (Figure 2c¢
and d). Therefore, for this example, the MR method is able to account for the difference in climate
feedback between internal variability and the forced response.

Random fluctuations in N influence T via planetary energy gain at the same time that 7 influ-
ences N via radiative feedbacks. As a result, 7 will tend to lag N with a positive correlation, while
N will lag T with a negative correlation, so that regressions taken without a lag will be biased to-
wards 0 (Spencer and Braswell 2008, 2011; Choi et al. 2014; Proistosescu et al. 2018). This issue
does not occur for random forcing at the surface, which only affects N indirectly through radiative
feedbacks. Therefore, the more stochastic forcing that occurs at TOA (FTOA) as opposed to the
surface (F“surf), the more the regression of N vs. T will overestimate the true radiative feedback.
For the example in Figure 2, Fy,, s and Fy,,r» are white noise with variance 20 W2m—4, while

Froa,1 and Froap are white noise with variance 5 W2m—4, Figure S1 shows a case where these

11
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variances are 10 and 15 W?m~* respectively, with the result that all three regression methods over-
estimate A4y eqriy and Ay jare, While underestimating AA4,. In other words, given sufficient random
TOA forcing, regression estimates of spatial feedbacks will be biased. We consider this bias in
discussing our results in the next section.

It should be mentioned that Proistosescu et al. (2018) model ENSO variability as a distinct
additional mechanism by which N and 7 mutually influence each other, which similarly leads
to overestimates of A from regression-based methods. As part of their model, they assume that
T influences N with a lag of about three months. Since this is beyond the time scale of most
atmospheric processes, we assume that this feedback propagates in part through the ocean, so that
the atmospheric component may still operate through the same spatial feedbacks that operate under
other forms of variability and under the forced response (e.g., it could occur due to a “tropical

atmospheric bridge” mechanism; Klein et al. 1999).

3. Using the MR method on AOGCMs

To test the methods discussed above on atmosphere-ocean general circulation models
(AOGCMs), we use simulations from LongRunMIP, an archive of fully coupled millennial-length
simulations of complex climate models (Rugenstein et al. 2019). We chose the six models with
millennial-length control and abrupt4x simulations for which we have monthly output. Details of
these models and simulations are given in Table S1.

We alter the three methods from Section 2 to reflect the more complex nature of AOGCMs:

e CO, forcing can lead to atmospheric changes that are independent of surface warming. These
“adjustments” to forcing occur mostly within the first year (e.g., Gregory and Webb 2008).

We remove this year from our analysis, redefining our early period to be years 2 to 20.

12
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e For AOGCMs, there are more than two regions with distinct behaviors. Dividing our models

into n regions, equation 7 becomes
N;(t) = 2t MRTY contror(t) + 2i 2 MRTS contror (1) + -+ -+ Xin MRT, contror(t) + Froa i, (8)
giving a system of n equations
N'(t) = AT'(1) + Froa ©)

where A is a matrix of feedbacks A; ;. Each equation in this system has n — 1 degrees of
freedom, so n must be smaller than the length of the control simulation, and preferably much
smaller given the significant spatial correlation of surface temperature. For simplicity, we
divide the surface equally in latitude and longitude, although this may miss features of the
climate system. Since our control simulations last at least 1000 years (Table S1), we use a

15° by 15° grid, giving 288 regions (Figure 3).

Circulations, and therefore radiative feedbacks, change with season. Thus, we compute feed-
backs for each season individually, first by averaging all monthly time series into seasonal
time series (where the seasons are DJF, MAM, JJA, SON), and then performing a separate re-
gression for each season (e.g. all DJF values of N ! o) (1) against all DEJ values of TC’ ontror ()
creating a set of four feedbacks. We multiply each month of thlx(t) by the relevant seasonal
feedback, and take the annual average to estimate K’flx(t). We compare seasonal averages to
other approaches in Tables S2 and S3. While seasonal averaging tends to reduce the error in
the MR method, the qualitative behavior of the different methods is not affected by the choice

of time averaging.

Figures 3 and 4 show N vs. T' of the control and abrupt4x simulations of the six models respec-

tively. Figure 4 also shows N estimated using the three methods, assuming that each estimate starts

13
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with the true value of N at year 2. The solid lines in Figure 4 are local regressions of N against T
performed using LOESS (LOcally Estimated Scatterplot Smoothing; Cleveland and Devlin 1988,
see Appendix for more detail). We can use the slopes of these lines mapped against the time series
of T to estimate feedbacks as a function of time (lines in Figure 5).

Though there is a range of feedback values between models, all six forced simulations have a
feedback that gets less negative with time (black lines), consistent with past results for similar
models (Andrews et al. 2015). The MR method (green lines) matches or overestimates the feed-
back value, with this error tending to decrease with time. This error can range from ~1 Wm—2K~!
for the early years of CESM 104 and GISSE2R (that is, at least half of the feedback strength itself)
to roughly O for HadCM3L. The MR method correctly predicts that the feedback gets less negative
with time, although for some of the models it underestimates the magnitude of the change.

The global method (blue) overestimates the early feedback. Since the global method is agnostic
about the pattern of surface warming, the predicted feedback is mostly constant except for small
differences due to changes in the seasonal distribution of warming and in seasonal feedbacks (e.g,
the early years of HadCM3L). As a result, as the true feedback increases with time, it becomes
more positive than the global estimate for half the models. For some models, this allows the global
method to more accurately forecast the equilibrium warming than the other methods, albeit due to
compensating errors in the early and later periods (i.e., CESM104 and MPIESM12 in Figure 4).

The local method (orange) predicts a positive feedback for all models except GISSE2R, implying
a climate unstable to external forcing, and does not predict the increase in feedback with time seen
in all models.

The dots in Figure 5 represent estimates of A4y ¢qrry and Auy jqre (feedbacks before and after year
20; see Appendix for details). We visualize the estimates of these feedbacks and their difference

using a scatter plot (black dots in Figure 6), as in Figure 2d. The global and MR methods perform
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similarly for A4y ¢qriy and A4y 14r¢, While the MR method gets closer to accurately predicting A4y,
consistent with the discussion around Figure 4 and reflected by the root mean square errors in
Table 1 (for feedback values for all models and components, see Tables S7 and S8).

N’ and A can be expressed as the sum of shortwave (SW) and longwave (LW) terms, which can
be separated in turn into clear-sky (fluxes recalculated as if no clouds were present) and cloud
terms (the residual of total and clear-sky terms; cloud feedbacks defined this way may include
changes in cloud masking rather than in clouds themselves (Soden et al. 2004)).

Examining these component individually shows that the error in 7L4x7ear1y in the MR and global
methods is due primarily to SW cloud feedbacks (red markers in Figures 6a and b). Both the
MR and global methods have smaller errors in A4 4., (Figures 6d and e), but for the MR method
this is caused by a reduction in the error in SW cloud, while for the global method this is due
to offsetting errors in the SW and LW cloud feedbacks (see also Table 1). Cloud feedbacks are
similarly the cause of the local method’s large overestimation, while the local method outperforms
the other methods at predicting the primarily local SW clear feedback (Table 1). Note that the
global method has a relatively small error for the LW clear feedback, consistent with Lutsko and
Takahashi (2018). The increase in feedback with time (AA4,) and the variation in this increase
between models is driven by the SW cloud feedback (Figures 6g, h, and 1). The MR method has
the smallest error in estimating AAy4,, with this error tending to be an underestimate. Figures S2-5
show feedback time series plots for all component fluxes.

All methods examined contain some degree of error. We can find the geographic source of these
errors by looking at the true and estimated normalized change in ]lex (multi-model mean in Fig-
ure 7; errors in the multi-model mean and for individual models in Figures S6-S8), calculated by
taking the finite difference in Nix(t) between the first and last part of the indicated time period,

where each part contains similar amounts of warming (see Appendix). The difference is normal-
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ized by the global temperature change, allowing intermodel comparison. For the global method,

we make this estimate by regressing N (1) against Ti.(m,ml(t) (the “global” method in Feldl and

control
Roe (2013a) and the “local contribution” in Boer and Yu (2003a,b); Crook et al. (2011); Zelinka
et al. (2012); Andrews et al. (2015)) and using this as the predicted normalized change in K’Ax.

The MR method does quite well at recreating the multi-model spatial pattern of TOA flux
change, both for net and component fluxes (Figures S9-S12), with the exception of regions south
of 30°S and the north Atlantic. The MR method also overestimates the change in these regions in
individual models (Figures S6-S8). The error in these regions has contributions from all compo-
nent fluxes, foremost the SW cloud feedback (for multi-model mean component flux errors, see
Figures S13-17). For all periods, models, and fluxes except for SW clear-sky (which is primarily
a local feedback), the MR method outperforms the other two methods when scored by the area-
weighted root mean square error (Table 2; for comparison with annual or monthly approaches, see
Table S3; for values for individual models, see Table S4; for details on the error metric, see Ap-
pendix). Specifically, the global method has large compensating errors, especially in the tropics,
and the local method overestimates the change almost everywhere (Figures S6-S8).

There are several potential explanations for the MR method’s overestimate for TOA fluxes south
of 30°S and over the north Atlantic. These may be regions where there is significantly more
stochastic forcing at TOA than at the surface, resulting in a similar overestimation to that discussed
in Section 2 and shown in Figure S1. Alternatively, the spatial feedbacks that influence N’ in these
regions may be nonlinear, either in that they change in value as the world warms (e.g., a reduction
in the strength of the SW clear feedback once sea ice melts), or the effect of warming in different
regions combines nonlinearly, as might occur in response to circulation changes such as a shift in
the mid-latitude jet; or surface fluxes may influence N’ there independently of surface warming.

Further research is needed to diagnose this error.
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In spite of this overestimate, the MR method can be used to explain the multi-model forced
TOA flux response for roughly three quarters of the Earth using feedbacks estimated from internal
variability (see Table S5 and S6, which show the same error metrics as Tables 1 and 2, using only
TOA fluxes north of 30°S). We now discuss the spatial feedbacks estimated by the MR method, as

well as some of their implications.

4. Discussion

We first test if the spatial feedbacks estimated using the MR method exhibit behavior broadly
consistent with physically modelled feedbacks. The i column of A represents the change in N’
from warming in region i. Zhou et al. (2017) performed fixed-SST experiments with the CAMS
model where the temperature in region i was perturbed. The top row of Figure 8 shows spatial
cloud feedbacks for three representative regions calculated using this approach. The bottom row
shows the multi-model and multi-season mean response for warming in similar regions estimated
by the MR method. For both approaches, warming in the extratropics or in regions of tropical
subsidence produces cloud feedbacks that are mostly local and positive, while warming in tropical
convecting regions has significant nonlocal feedbacks which are mostly negative. Since the mod-
els, region sizes, and degree of perturbation differ, the details and magnitudes of the feedbacks
differ. Further, the fixed-SST method allows land temperatures to evolve freely, so that regions
that have significant nonlocal effects, like tropical convecting regions, can cause large changes in
TOA fluxes over land (Figure 8b). The MR method is able to estimate land feedbacks directly, so
that TOA flux changes due to land warming are not included in these tropical convecting feedbacks
(Figure 8e). See also Figure 4 in Dong et al. (2019).

The top left panel of Figure 9 shows a map of the multi-model and multi-month mean spatial

feedbacks estimated by the MR method: the change in N caused by warming in each region di-
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vided by that region’s fractional area (so that smaller, polar regions do not have artificially smaller
feedbacks). Spatial feedbacks are strongly negative in regions of tropical convection (e.g., Indone-
sia and Central America) and are mostly positive over the tropical oceans in regions of atmospheric
subsidence as well as much of the extratropical oceans, in keeping with the examples from Fig-
ure 8. These strongly negative feedbacks are robust when feedbacks are recalculated using just
the first or second half of the control simulations (Figures S18-22), although outside these regions
there is some noise, with the sign of roughly a third of net feedback cells differing between the
first and second halves. The variation in the spatial pattern is largely determined by the SW cloud

feedback (bottom left panel, Figure 9; for all flux components, see Figures S19-S22).

a. Local and nonlocal feedbacks

The MR method allows us to split spatial feedbacks into local (the diagonal elements of A, giving
the influence of warming on TOA fluxes directly overhead) and nonlocal components (the off-
diagonal elements of A), and to calculate the local and nonlocal components of the map of spatial
feedbacks (middle and right columns of Figure 9 respectively). We note that the devision between
local and nonlocal feedbacks depends on grid resolution, with local feedbacks in coarser grids
incorporating more nonlocal processes. For the grid considered in this paper, the local feedback
is positive almost everywhere, due to cloud feedbacks (Figures S21 and S22): in the tropics and
in subtropical subsiding regions, local warming reduces lower tropospheric stability, leading to
a loss of low clouds and a positive SW cloud feedback (Klein and Hartmann 1993; Wood and
Bretherton 2006; Zhou et al. 2017; Dong et al. 2019). This result holds for each AOGCM except
for GISSE2R, which lacks a positive local SW cloud feedback (Figure S24, Table S8). For most
models, there is a partially compensating negative local LW cloud feedback in tropical convecting

regions, possibly due to an iris effect (Lindzen et al. 2001; Mauritsen and Stevens 2015). Outside
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of the tropics, there is a positive local LW cloud feedback, possibly associated with an increase in
middle and high cloudiness as convection increases (Zelinka et al. 2012).

Positive local feedbacks provide an explanation for observational studies that use the local
method to predict spatial feedbacks, finding that they are positive over much of the Earth and
in the global mean (Brown et al. 2015; Trenberth et al. 2015). For example, the multi-model mean
feedbacks estimated using the local method (top middle panel, Figure S23) resemble the feedbacks
in the upper right panel of Figure 10 from Trenberth et al. (2015). While local method feedbacks
can differ from the local component of MR method feedbacks due to correlation between temper-
ature in different regions as discussed in Section 2, the observational studies provide evidence that
real world local feedbacks are substantially positive. If we use the MR method to estimate the
local components of Mx,early and A4y ;e (Table S8), we get positive values for all models except
GISSE2R. For these models, the mean estimated local feedback is 3.37 Wm 2K~ for the early
period and 3.13 Wm 2K ™! for the late period (Tables S8).

The MR method implies that in the absence of negative nonlocal feedbacks, five out of six of
these AOGCMs would be unstable to radiative forcing, even accounting for the dominant stabiliz-
ing Planck feedback. The MR method predicts that there are strongly negative nonlocal feedbacks
coming from regions of tropical convection (upper right panel, Figure 9), largely due to the SW
cloud feedback (lower right panel). This is consistent with tropical convecting regions behaving
similarly to region 1 of the conceptual model from Section 2: surface warming in the convecting
tropics propagates throughout the tropical free troposphere, increasing the temperature aloft while
leaving surface temperatures alone. This increases the lower tropospheric stability, and thus low
cloud cover (a negative SW cloud feedback), as well as the troposphere’s outgoing longwave radi-
ation (a negative LW clear feedback) (Rose and Rayborn 2016; Andrews and Webb 2017; Ceppi

and Gregory 2017; Klein et al. 2017; Zhou et al. 2017; Dong et al. 2019). Note that incorporating
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these nonlocal interactions changes both local and total values of the LW clear feedback, giving
different values than studies that analyze this feedback purely locally (e.g., Koll and Cronin 2018).

For the five models with positive local components, the average nonlocal component of the
abrupt4x feedbacks is —4.21 Wm~2K~! for the early period and —3.69 Wm 2K~ for the late
period (Table S8). so that the net forced climate feedback is a small residual between competing
local and nonlocal feedbacks, with local and nonlocal feedbacks strongly anti-correlated between
different models (Table S8; the correlation coefficient for early period non-GISSE2R local vs.
nonlocal feedbacks is —0.96, and for late is —0.98). A modest shift in the relative strength of
these feedbacks (for example, due to a shift in circulation) could lead to large changes in cli-
mate sensitivity; an increase in the local feedback of only a third would be enough to make these
AOGCMs unstable (local and nonlocal feedbacks differ by ~1 Wm™2K~!, which is on average
roughly a third of the magnitude of the local feedback for the non-GISSE2R models). Additional
research is needed to understand what mechanisms cause the anti-correlation between local and
nonlocal feedback strength, and whether we expect this cancellation to hold in different climate
states. Given that the local/nonlocal cancellation does not hold in all contexts — for example, the
nonlocal feedback’s seasonal cycle has a larger amplitude and is more latitudinally constrained
than the local feedback’s seasonal cycle (Figure S25) — it is unlikely that this cancellation is purely
a statistical artifact. Our findings have bearing for exoplanet research, as they suggest that it may
be harder to have a cloudy atmosphere with a stable climate than previously thought (Leconte et al.

2013), potentially reducing the chance of finding habitable worlds.

b. The cause of the increase in climate feedback over time

For all six models, the change in feedback with time (AAy4,) is positive, primarily because of the

SW cloud feedback, and secondarily the LW clear feedback (Figure 4 and Table S7). The MR
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method gets the correct sign of AA4, but underestimates this increase for each model, once more
primarily due to the SW cloud feedback (Table S8).

We can estimate how much the change in the spatial pattern of warming with time (Figure 10a)
contributes to A4, by multiplying this change by the MR estimate of the spatial pattern of feed-
backs for each flux component (Figure 9, Figures S18-S22). The resulting maps show the contri-
bution of the change in warming pattern to the change in feedback (Figures 10b-f).

The MR method identifies two main latitude bands that contribute to the increase in feedback
with time: the tropics, whose convecting regions increase the SW cloud and LW clear feedbacks
(less warming in these regions reduces the role of the strongly negative nonlocal feedbacks dis-
cussed above, consistent with Andrews and Webb 2017; Ceppi and Gregory 2017; Dong et al.
2019; Fueglistaler 2019); and the Southern Ocean, which increases the SW clear feedback (due to
the delayed warming in this region leading to the delayed melting of sea ice). The MR method
estimates that the LW clear sky and SW cloud feedback have offsetting negative contributions in
the Southern Ocean. While the LW clear sky offset is consistent with the total change in the LW
clear feedback being small, and with the LW clear TOA flux change getting more negative in the
Southern Ocean due to a more strongly negative local feedback (zonal figures in the top row of
Figure S19), the change in the SW cloud TOA flux is too negative in this region (lower left panel
of Figure S17), suggesting that the SW cloud negative contribution is an error, and is likely the
reason for the MR method’s underestimate of AAy,.

While the exact evolution of temperature patterns in the tropics in AOGCMs may be incorrect
due to cold-tongue biases (Seager et al. 2019), our findings match with Dong et al. (2019), in that
as long as the feedbacks in tropical convecting regions are far more negative than anywhere else,
the delayed warming in regions of ocean heat uptake will ensure an increase in sensitivity over

time. Observational evidence suggests that N depends on tropical midtropospheric temperatures
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(Dessler et al. 2018; Ceppi and Gregory 2019; Fueglistaler 2019), supporting our argument that a
reduction in the share of surface warming occurring in the tropical convecting regions which set

these temperatures likely influences the Earth’s sensitivity.

5. Conclusions

The global climate feedback, one of the key parameters in determining future climate change,
is inconstant in part because radiative feedbacks vary spatially. The MR method estimates these
spatial feedbacks from records of its internal variability, and improves upon existing methods for
doing so by incorporating both local and nonlocal radiative responses to surface warming. For
the six atmosphere-ocean general circulation models studied, the spatial feedbacks estimated by
the MR method applied to the pattern of surface warming recreate the spatial pattern of top-of-
atmosphere flux response to forcing more accurately than existing methods, as well as providing
better estimates of the change in feedback with time. The method consistently overestimates
the change in TOA flux over the Southern Ocean and north Atlantic, and so overestimates the
sensitivity. The method finds that that there are significant negative nonlocal feedbacks associated
with regions of tropical convection, and that the reduction in the share of warming that occurs
in these regions over time contributes to an increase in the global feedback with time in these
models, consistent with recent studies (Andrews and Webb 2017; Ceppi and Gregory 2017; Dong
et al. 2019; Fueglistaler 2019).

The MR method finds that five of the six AOGCMs have strongly positive local cloud feedbacks
countered by strongly negative nonlocal cloud feedbacks. These positive local feedbacks may
explain why studies that use local regressions to estimate spatial feedbacks from observed internal
variability find that they are on average positive (Brown et al. 2015; Trenberth et al. 2015). While

the AOGCMs exhibit an anti-correlation between local and nonlocal feedbacks, a small relative
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shift in the balance between these feedbacks could cause large changes in sensitivity, and such
shifts may be relevant for paleoclimate or future warming. Given the large magnitudes associated
with these local and nonlocal cloud feedbacks, it may be harder for cloudy exoplanets to have
stable atmospheres, reducing the chances of finding habitable worlds.

Spatial feedbacks estimated from observations could potentially improve warming forecasts and
serve as emerging constraints on AOGCMs. The success of the MR method for most fluxes and
regions of the Earth (with the important exception of Southern Ocean cloud feedbacks) suggests
that many of the spatial feedbacks at work under global warming are observable under internal
variability. Challenges remain to applying the MR method to observations. We would need to
reduce the information necessary to fit our statistical model to be less than the length of the satellite
record; to remove changes in forcing from records of top-of-atmosphere fluxes; and to account for
systematic biases in the observations themselves. We would also need to account for regions of the
Earth and states of the climate where the MR method is biased, such as for Southern Ocean cloud
feedbacks. Furthermore, since spatial feedbacks are just one link in the coupled energy balance
of the climate, we would need complementary theory to complete the forecast of future warming,
particularly its spatial pattern. Still, our results suggest that the processes that will determine the

sensitivity in both the near and far future may be observable today.
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APPENDIX

Data and methods

a. Data/code access

For LongRunMIP data access, visit http://www.longrunmip.org/. This paper’s code is

available at https://github.com/jsbj/spatial.

b. Matrix and vector notation

Note that in the main body of the text, time is treated as continuous, so that time-series are
written as functions (e.g., T(t) is the evolving spatial pattern of warming). Since the Appendix
documents the calculations we have employed, it treats time as discrete, and so time is instead
treated as an additional dimension (e.g., T is the evolving spatial pattern of warming). Therefore,
a vector in the main body of the text refers to a spatial pattern, while a vector in the Appendix

refers to a time-series of a scalar value (such as a global average).
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c. Conceptual model

The conceptual model is a system of stochastic differential equations:

dTy Iy
cl? - Nl_H ‘I'Fsurf,l
dr; , ,
Q= = Ny+H' + Fyry2
t
where H' = y(T{ — T;) and
Ny = MaT{+M2T5+Feo,1 +Froaa (A1)
Né = 1271T1/+),272T2/+FC0272 +Froaz (A2)

The thermal inertia c; is defined as m;pc;,, where p and c, are the density and specific heat of
ocean water respectively, and m; is an equivalent mixed layer depth; m is S0m, and m5 is 1000m.
Fco,.1 = Fco, 2 are both 0 Wm~2 (8 Wm™2) for the control (abrupt4x) simulation. A;; = 0.5
Wm 2K !, Ai=-2 Wm 2K, Mo=My= OWm2K~!, and y =2 Wm2K~!. The terms
I:";u, rand ﬁTOA are white noise processes. In the example shown in Figure 2, the variance of Fy,,r |
and Fy,r is 40 Wm~2 and the variance of Froa1 and Fros is 5 Wm~2, while for the example
in Figure S1, the variance of Fy,,r | and Fy,, 7> is 10 Wm~2 and the variance of Froa1 and Froap

is 15 Wm~2.

d. The multiple regression method

Suppose that we have a time series of surface temperatures and TOA radiative fluxes of the
Earth, real or simulated, where the surface of the Earth is regridded into ng,;4; (288) regions, and
where we have n;,,, years of monthly observations. For each season s (1 < s <4), we can define an

Ntime X Ngrig Matrix T,,, where the element in row i and column j, T; ; 5, is the surface temperature
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20 inregion j during season s of year i. We can also define a matrix of anomalies, T}, where

521

522

523

524

525

526

527

528

529

5

<}

0

T,

Ntime

Ty Ty

Ty 14 VLR

nlim€717s Tntim€727s
Ntime . Ntime . Ntime .

Zl:l ]—;7 1 » Zl:l ]—;7275‘ e Zli] 7;7”gridas

Ntime Ntime Ny
1 thznlw ]}717‘9 th:nlw ]}7275‘ e Zlinlw 7}7ngridvs

time T Ntime Ntime .
Zi:l T Zi:l Tins - Zi:l ngn'd,s

Tl Mgrid»S

T27ngrid7s

anime MNerid »S

To estimate the spatial feedbacks associated with a TOA radiative flux of type f (where f is

either net, LW clear, SW clear, LW cloud, or SW cloud) and season s, we first define an 7y, X

/

Ngrig Matrix of anomalies R re which is analogous to T, above (N from the main body of the text

is Ruer). We can fit the statistical model defined in Equation 9 using least squares to solve for

seasonal spatial feedbacks (A ):

Arar Afan

Afar Aran

A‘fﬂ’lg”'d,l 2/fvngridaz

A’fvl Mgrid
Afon, .
f2.ngrid _ (T;TT;)flT;TR},S (A3)
A'legrid7ngrid_

Seasonal feedbacks are used in Section 3, but Section 2 uses an annual version, in which case

instead of a set of four seasonal feedback matrices, only one feedback matrix estimated using the

above Equation d, with the difference that the time series are annual averages. The “monthly”

approach in Section 1.2.1 of the SI is the same as the seasonal approach in Equation d, except
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instead of a four regressions, twelve are performed, with all time series being monthly averages
sampled every twelve months. The “all months” approach instead performs only one regression,
just like the annual approach, except that monthly average time series are used instead of annual
averages (the logic being that even though months may have different properties, there may be an

advantage in maximizing the data available to fit a regression).

e. Estimating the forced response
1) FORCED FEEDBACKS

Suppose that we have a nyime apruprax-year long abruptdx simulation of a GCM for which we
have spatial feedbacks estimated from a control run. We then define an early period (years 2 to 20)
and a late period (years 21 tO Myime abrupr4x)- The true feedbacks Ay , for the abrupt4x simulation
during each period p (where p is early or late) are defined as the slope of the least squares fit of
the linear regression of the time series of globally averaged TOA flux anomalies of type f from

/

the abrupt4x simulation (R ), against the globally averaged surface temperature anomalies

f,abruptdx
from the abrupt4x simulation 7/, Dt
{Toprupnactp (R }
Aabrupmx,f,p _ abrupt4xJ P f,abruptdxJ p ( A 4)

”{Ta/l7rupt4x}l7H2

where the curly brackets denote that the time series are averaged over exponentially longer peri-

ods, with annual averages for the first decade increasing to centennial averages by the simulation’s

-

end, and the p subscript denotes whether values from before or after year 20 are used. R’ﬁ abruptax

and T’

abruptdy A€ Vectors with as many entries as years in the abrupt4x simulation (1000 years).

We can make estimates of these feedbacks using the MR method by first estimating the abrupt4x

simulation’s TOA radiative flux of type f for each month of the year m by multiplying the surface
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/

temperature time series of that abrupt4x simulation for that month, T, abruptdx (@ Ntime,abruprax X

ngrig Matrix) by the spatial feedbacks for that month’s season:

R},m,abrupmx = :n,abrupz4fo,S(m) (A5)

We use months instead of seasonal averages because our seasons do not start in January, and

this approach allows us to have annual averages that start in January. These monthly time se-

/

can then be turned into annual averages R F abruptax:

ries R}m abruptix and then global averages

ﬁ} abruptdx’ allowing us to estimate the feedbacks for period p by performing the same least squares

fit as above:

i ) b fp = {Ta/bmpt4x,p} ’ {le,abrupt4x,p}
abruptdx,f,p — =
||{Talbrupt4x7p}||2

(A6)

2) SPATIAL PATTERNS OF TOA FLUX CHANGE

We quantify the normalized spatial pattern of TOA radiative flux change of flux type f across

-

a period p by taking a finite difference approach, taking the mean value of R’

¢ abruptax during two

parts of the period and subtracting the first part from the second (where the divisions for the early
period are years 2-6 and 7-20, and the divisions for the lafe period are 21-170 and 171-1jme apruprax
with both divisions chosen to allow for substantial warming in each period), and then dividing this

by the average change in the globally averaged surface temperature between these two periods:

/ /
Rf,abrupt4x7i,1 Rf,abrupt4x,i71
R . R .
Ztend’p f.abruptdx,i,2 _ Zlmidw f.abruptdx,i,2
i:lm,'d‘p-Fl . i:tstart,p
/ /
Af_é/ . _Rf,abrupt4x,ng,id_ _Rf,abrupt4x,ng,id_ A7
f,abruptdx,p — ¢ P ( )
end,p T L Z mid,p T )
Zi:fmid,p+1 abrupt4x,i i=tsiart,p abrupt4x,i
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where fsq/r,p and e, , are the first and last years in period p, respectively, where 7,4, 18 6 for

! . is the element in the ' row and j*"

the early period and 170 for late period, where R 't abruptax,i.j

column of R/

f abruptdx’ and where Tj,prax,; 18 the i element in Ty, prdx- Finite difference is used

instead of regressing values against a global average because the presence of local and nonlocal
feedbacks causes nonlinear relationships between N/ (¢) and T}/ (r) (or T (1)), which would lead to

biased estimates of change from a linear regression.

f. Errors

We calculate two types of errors: feedback errors (Tables 1 and S2), and spatial errors (Tables 2
and S3). We add a subscript g to our feedbacks and spatial patterns of TOA flux change to signify
that they belong to the GCM g, where g is one of CCSM3, CESM104, GISSE2R, HadCM3L,

IPSLCMSA, and MPIESM12. The feedback error is given by the root mean square error:

1 A
8feedback,f,p = n Z (Af,abrupmx,p,g - )Lf,abrupt4x,p,g)2 (A8)
GCMs geGCM's

where ngcys is 6, the number of AOGCMs. The spatial error is measured by taking the area-

weighted root mean square error of the spatial estimate

A
-

Nerid D/ AP 2.
. Zi=1 ( f,abruptdx,p,i ARf,abrupt4x,p,i) ai A9
Exparial f0 = (A9)

Yoy ai

where a; is the area of the i'” grid cell. For the spatial errors in the main body of the paper, this is

taken on multi-model mean values of AR’ - and AR/ For the same calculation

f,abruptdx,p,i f,abruptdx,p,i*
for individual models (Table S4 and Figures S6-S8 in the supplementary materials), values for

each model are used instead.
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g. Other methods to calculate feedbacks

We consider two other methods for deriving spatial feedbacks, estimating abrupt4x feedbacks,

and estimating spatial patterns of TOA flux change:

1) THE GLOBAL METHOD

The seasonal version of the “global” method used in the main body of the paper is estimated

using the least squares fit on this regression:

)Lglobal,f,s: S—» d (A10)

where Ty and R 1,5 are globally and seasonally averaged time series of control simulation surface
temperature and TOA flux f respectively, sampled every fourth seasonal value so that all elements
of the time series are from season s. The four seasonal feedbacks are used to recreate estimates of
the global averaged time series R f.abrupr4x>» Which in turn is used, as above, to estimate abrupt4x
feedbacks. Once more, different averaging of the control time series and groupings of regression
equations can be used to make the annual, monthly, and all months versions of this method featured
in Tables S3 and S4.

The normalized spatial pattern of TOA flux change can be found by first estimating the “local
contribution” (Boer and Yu 2003a,b; Crook et al. 2011; Zelinka et al. 2012; Andrews et al. 2015),
using Equation 1, but replacing the time series vector I_é} , with the spatial time series matrix

}7 , from above, and replacing the single feedback Ag/,pa, r,s With the spatial vector of feedbacks,

—

Aglobal. f-

2) THE LOCAL METHOD
The “local” method assumes the statistical model
Ri(t) = Miocar i T} (t) + €(t) for each region i (A11)

1
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Spatial feedbacks are estimated using least squares:

7/ vR},l

Alocal,f,l ||T“1’H2

Py 7, vR},z

- local,f,2 ||T“/H2

. — 2
Alocal,f - - (A12)
7! p/
A Norid .Rfﬁngrid
i local,f.,ng,.,-d_ I ”T’{gn’d 12

where 7/ and ﬁ} ; are the i rows of T’ and R/, respectively. We can then generate estimates of

Rl

F abruprax AS above. We apply these estimates to Equations A6 and A7 to estimate forced global

feedbacks and spatial patterns of TOA flux change.

h. Local regression

We use LOESS (LOcally Estimated Scatterplot Smoothing; Cleveland and Devlin 1988) to take
local regression of scatterplots of N vs T'. LOESS uses a weighted regression of a certain number
of nearest neighbors, in our case 30. Full details can be found in the code for this paper listed
above and in the LocallyWeightedRegression.jl Julia package (https://github.com/juliohm/

LocallyWeightedRegression. jl).
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81 TABLE 1. Feedback errors. Root mean square errors of estimates of abrupt4x feedbacks (Aay carty, Adx,iare) and
s22 their change with time (AA4,), for net TOA fluxes and each component flux (in Wm 2K 1) and for the seasonal
sss  versions of the three methods presented in Section 2 (see Appendix for details). For annual and monthly values,

s« see Table S2, and for fluxes north of 30°S, see Table S5.

net LW clear SW clear LW cloud SW cloud

MR global local | MR global local | MR global local | MR global local | MR global local

early 069 0.74 254|008 0.12 063 |0.18 048 1.21 {0.13 023 0.02 | 045 055 1.19
late 0.29 0.26 1.87 | 0.15 0.21 0.47 | 0.13 0.52 1.09 | 031 035 0.17 |02 06 0.65

change | 044 0.73 0.78 | 0.12 0.17 022 | 0.08 0.11 0.18 | 0.19 0.13  0.17 | 039 0.57 0.64
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normalized change in TOA fluxes during the early and late periods of the abrupt4x simulations, and the change
in pattern between these period (see Appendix for details). All values have units of Wm~2K~!. For annual and

monthly versions in addition to seasonal, see Table S2, for individual models see Table S4, and for fluxes north

of 30°S, see Table S6.

net LW clear SW clear LW cloud SW cloud
MR global local | MR global local | MR global local | MR global local | MR global local
early 1.02 341 277 [ 033 229 1.02 |07 523 215(082 109 071 |1.05 515 225
late 0.8 3.08 1.86 [ 0.34 227 0.75 | 052 5.13 1.67 | 1.28 1.21 1.03 | 1.09 5.1 1.85
change | 0.74 1.14 126 | 027 091 042|054 072 083 | 084 079 0.79 | 1.01 1.27 1.37
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

A schematic representation of the conceptual model used in Section 2, consisting of an over-
turning cell with a convecting (1) and a subsiding (2) region. Warming of the surface tem-
perature 77 has nonlocal effects: it increases the horizontal heat transport H, and it changes
properties of the atmosphere aloft in region 2 that affect its net top-of-atmosphere radiative
flux, N,, for instance by warming its free troposphere, increasing its lower tropospheric sta-
bility, and therefore increasing its low cloud cover. The dependence of N, on 77 (holding 7>
fixed) is an example of a nonlocal radiative feedback.

Two experiments are performed with the conceptual model in Equation 1: an unforced “con-
trol” simulation (panels a,b) and a forced “abrupt4x” simulation (panels c,d). Values of N vs.
T' from each experiment are given by the black dots in panels a and c, representing annual
averages for the control simulation and exponentially increasing averages for the abrupt4x
simulation. The global method assumes that the slope of the regression in panel a (blue line)
gives the slope of the black dots in the lower left panel, underestimating the increase in this
slope over time (blue lines and markers, panels c,d). The local method regresses N/ against
Ti’ to estimate A; for both regions (dotted lines, panel b), which leads to an overestimate of
the combined feedback associated with region 1 (A; = A1 + 42,1, dotted red line in panel
b), and therefore an overestimate of the feedback early on (orange lines and markers, panels
c,d). The MR method, given sufficient years to regress over, correctly estimates all spatial
feedbacks (dashed lines, panel b), accurately predicting the feedbacks and its change with
time (green lines and markers, panels c,d).

Plots of N vs. T' for control simulations of six coupled atmosphere-ocean general circulation
models (see Table S1 for details). We use the simulations to estimate spatial feedbacks using
the global, local, and MR methods. We regrid simulations to 15° x 15° grlds giving 288
regions. . .

Nvs. T for abrupt4x simulations of the same six GCMs from Figure 3 (black dots). Col-
ored dots show estimates of N, prax(f) made using the spatial feedbacks inferred from each
model’s control simulation and its spatial pattern of warming ( abmpm( )) using the three
methods described in the text; year one is not included in any method. Larger dots repre-
sent averages taken over exponentially increasing periods, except gray dots, which show all
years. Solid lines show local regressions using LOESS. Global estimates for GISSE2R does
not appear because it is nearly identical with MR estimates.

True and estimated abrupt4x feedbacks as a function of time calculated using slopes of
the local regression from Figure 4 (solid lines). Vertical dotted lines show the division
between the early (2-20 years) and late (21-end) periods. Dots show true and estimated
values of A4y eariy and A4y 140 Feedbacks get more positive over time for all models. The MR
and global methods 1n1t1ally overestimate feedbacks. The MR estimate increases with time
as well, while the global method predicts a roughly constant feedback. The local method
greatly overestimates the true feedback for all models except GISSE2R. Figures S2-5 give
the same plot for component fluxes. e e

True vs. estimated feedbacks for the early (panels a, b, and c) and late (panels d, e, and f)
periods and the change between them (panels g, h, and 1). Black dots give values for the net
feedback, while colored markers give values of the component feedbacks, which sum to the
net feedback. The MR and global methods overestimate the early feedback due to SW cloud
(red) feedbacks. The MR estimate of the late period has a small error across all components
(panel d), while the global estimate has a smaller net error due to offsetting errors between
LW and SW cloud feedbacks (panel e). As in Figure 5, the MR method is able to capture
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Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

some of the change in feedback, while the global method does not. The local method greatly
overestimates the net feedback, primarily due to cloud feedbacks. Numerical values of the
feedbacks are given in Table S7 and S8.

Multi-model mean spatial pattern of net TOA flux change associated with the early (top
row) and late (middle row) periods and the change between them (bottom row), calculated
by taking the finite difference across each period. Changes are normalized by the total
warming in each period, giving units of Wm—2K~!. The MR method is close to the true
pattern except for overestimates south of 30°S and during the early period in the North
Atlantic. This holds for individual flux components as well (Figures S9-S17). The global
and local methods both have substantial errors over most of the globe. Figures S6-S8 show
errors (estimates - true values) for the multi-model mean and individual models.

Net cloud feedbacks associated with warming in regions circled in green estimated for
CAMS by Zhou et al. (2017) using fixed-SST experiments (panels a, b, and c) or as a multi-
model and multi-season mean using the MR method (panels d, e, and f). For perturbations
outside of tropical convecting regions (panels a, c, d, and f), the effects are mostly local and
positive, while perturbations in tropical convecting regions have significant negative nonlo-
cal effects in many regions of the Earth (panels b, €). Note that fixed-SST experiments allow
some land warming in response to these perturbations (panel b), while the MR method is
agnostic about whether the surface is land or ocean, and so does not include resulting land
warming (panel e).

Multi-model and multi-season mean spatial feedbacks estimated by the MR method. Panel
a shows the estimated change in N caused by warming a degree in each cell as weighted by
the cell’s area. This is the sum of local changes in N (panel b), which are almost uniformly
positive, and nonlocal changes (panel c¢), which are usually negative, especially in regions
of tropical convection. The competing positive local and negative nonlocal components are
primarily due to the SW cloud feedback (panels d, e, and f). For maps of all flux components
and assessments of uncertainty, see Figures S18-S22. For spatial feedbacks of all methods,
see Figure S23. Compare with estimates of spatial feedbacks for CAM4 in Figure 5c of
Dong et al. (2019). .

Panel a shows the multi-model mean change in the pattern of warming between the abrupt4x
early and late period, showing a shift towards regions of deep ocean heat uptake. Multiply-
ing this pattern by MR-estimated spatial feedbacks gives an estimate of each grid cell’s
contribution to the change in feedback with time, A4, (panels b-f). Although the resulting
patterns are patchy, there are positive contributions from tropical convecting regions via the
SW cloud and LW clear feedbacks, and from regions of Southern Ocean sea ice in the SW
clear feedback, as shown by the accompanying zonal averages. The LW clear feedback has a
compensating negative term from the Southern Ocean, so that its total estimated contribution
to A4y is smaller than the SW cloud feedback’s (e.g., Figure S2 vs. Figure S5).
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F1G. 1. A schematic representation of the conceptual model used in Section 2, consisting of an overturning
cell with a convecting (1) and a subsiding (2) region. Warming of the surface temperature 77 has nonlocal effects:
it increases the horizontal heat transport H, and it changes properties of the atmosphere aloft in region 2 that
affect its net top-of-atmosphere radiative flux, N,, for instance by warming its free troposphere, increasing its
lower tropospheric stability, and therefore increasing its low cloud cover. The dependence of N, on 7} (holding

T, fixed) is an example of a nonlocal radiative feedback.
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FIG. 2. Two experiments are performed with the conceptual model in Equation 1: an unforced “control”
simulation (panels a,b) and a forced “abrupt4x” simulation (panels c,d). Values of N vs. T' from each experiment
are given by the black dots in panels a and c, representing annual averages for the control simulation and
exponentially increasing averages for the abruptdx simulation. The global method assumes that the slope of
the regression in panel a (blue line) gives the slope of the black dots in the lower left panel, underestimating the
increase in this slope over time (blue lines and markers, panels c,d). The local method regresses N; against T/
to estimate A; for both regions (dotted lines, panel b), which leads to an overestimate of the combined feedback
associated with region 1 (A; = A1 + A1, dotted red line in panel b), and therefore an overestimate of the
feedback early on (orange lines and markers, panels c,d). The MR method, given sufficient years to regress

over, correctly estimates all spatial feedbacks (dashed lines, panel b), accurately predicting the feedbacks and its
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and the change between them (panels g, h, and i1). Black dots give values for the net feedback, while colored
markers give values of the component feedbacks, which sum to the net feedback. The MR and global methods
overestimate the early feedback due to SW cloud (red) feedbacks. The MR estimate of the late period has a
small error across all components (panel d), while the global estimate has a smaller net error due to offsetting
errors between LW and SW cloud feedbacks (panel e). As in Figure 5, the MR method is able to capture some
of the change in feedback, while the global method does not. The local method greatly overestimates the net

feedback, primarily due to cloud feedbacks. Numerical values of the feedbacks are given in Table S7 and S8.
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F1G. 7. Multi-model mean spatial pattern of net TOA flux change associated with the early (top row) and
late (middle row) periods and the change between them (bottom row), calculated by taking the finite difference
across each period. Changes are normalized by the total warming in each period, giving units of Wm2K~!.
The MR method is close to the true pattern except for overestimates south of 30°S and during the early period
in the North Atlantic. This holds for individual flux components as well (Figures S9-S17). The global and local
methods both have substantial errors over most of the globe. Figures S6-S8 show errors (estimates - true values)

for the multi-model mean and individual models.
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FI1G. 8. Net cloud feedbacks associated with warming in regions circled in green estimated for CAMS by
Zhou et al. (2017) using fixed-SST experiments (panels a, b, and c) or as a multi-model and multi-season mean
using the MR method (panels d, e, and f). For perturbations outside of tropical convecting regions (panels a,
¢, d, and f), the effects are mostly local and positive, while perturbations in tropical convecting regions have
significant negative nonlocal effects in many regions of the Earth (panels b, e). Note that fixed-SST experiments
allow some land warming in response to these perturbations (panel b), while the MR method is agnostic about

whether the surface is land or ocean, and so does not include resulting land warming (panel e).
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FI1G. 9. Multi-model and multi-season mean spatial feedbacks estimated by the MR method. Panel a shows
the estimated change in N caused by warming a degree in each cell as weighted by the cell’s area. This is the
sum of local changes in N (panel b), which are almost uniformly positive, and nonlocal changes (panel c), which
are usually negative, especially in regions of tropical convection. The competing positive local and negative
nonlocal components are primarily due to the SW cloud feedback (panels d, e, and f). For maps of all flux
components and assessments of uncertainty, see Figures S18-S22. For spatial feedbacks of all methods, see

Figure S23. Compare with estimates of spatial feedbacks for CAM4 in Figure 5c of Dong et al. (2019).
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F1G. 10. Panel a shows the multi-model mean change in the pattern of warming between the abrupt4x early

and late period, showing a shift towards regions of deep ocean heat uptake. Multiplying this pattern by MR-

estimated spatial feedbacks gives an estimate of each grid cell’s contribution to the change in feedback with

time, A4, (panels b-f). Although the resulting patterns are patchy, there are positive contributions from tropical

convecting regions via the SW cloud and LW clear feedbacks, and from regions of Southern Ocean sea ice in the

SW clear feedback, as shown by the accompanying zonal averages. The LW clear feedback has a compensating

negative term from the Southern Ocean, so that its total estimated contribution to A4, is smaller than the SW

cloud feedback’s (e.g., Figure S2 vs. Figure S5).
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