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Abstract

Changes in monsoon precipitation have profound social and economic impacts as more than two-
thirds of the world’s population lives in monsoon regions. Observations show a significant
reduction in global land monsoon precipitation during the second half of the 20th century.
Understanding the cause of this change, especially possible anthropogenic origins, is important.
Here, we compare observed changes in global land monsoon precipitation during 1948~2005 with
those simulated by 5 global climate models participating in the Coupled Model Inter-comparison
Project-phase 5 (CMIP5) under different external forcings. We show that the observed drying trend
is consistent with the model simulated response to anthropogenic forcing and to anthropogenic
aerosol forcing in particular. We apply the optimal fingerprinting method to quantify
anthropogenic influences on precipitation and find that anthropogenic aerosols may have
contributed to 102% (62~144% for the 5~95% confidence interval) of the observed decrease in
global land monsoon precipitation. A moisture budget analysis indicates that the reduction in
precipitation results from reduced vertical moisture advection in response to aerosol forcing. Since
much of the monsoon regions, such as India and China, have been experiencing rapid
developments with increasing aerosol emissions in the past decedes, our results imply a further
reduction in monsoon precipitation in these regions in the future if effective mitigations to reduce
aerosol emissions are not deployed. The observed decline of aerosol emission in China since 2006
helps to alleviate the reducing trend of monsoon precipiptaion.

Key words: global monsoon, detection, attribution, aerosol forcing
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1 Introduction

Changes in monsoon precipitation are of great scientific importance and significant societal
concern owing to the facts that monsoon affects a large population. The global monsoon system
includes Asian-Australia monsoon (South Asian, East Asian, Northwestern Pacfic and Australian
monsoons), African monsoon (North African and South African monsoons) and American
monsoon (North American and South American monsoons). A number of observational studies
have reported a significant drying trend in the global monsoon precipitation during the second half
of the 20th century (Wang and Ding, 2006; Zhou et al., 2008a; Zhang and Zhou, 2011; Polson et
al., 2014). Understanding the causes of these changes is vital to infrastructural planning, water
resource management, and sustainable development.

The changes of global monsoon are modulated by several factors. Different factors including
the greenhouse gases (GHGs) (Kitoh et al., 2013; Song et al., 2014; Chen and Zhou, 2015),
anthropogenic aerosols (AAs) (Held et al., 2005; Lau et al., 2006; Meehl et al., 2008; Bollasina et
al., 2011; Qian et al., 2011; Jiang et al., 2013, 2015; Guo et al., 2013; Wu et al., 2013; Polson et
al., 2014; Song et al., 2014; Li et al., 2016; Zhang et al., 2018), and natural internal variability of
the climate system, such as the Inter-decadal Pacific Oscillation (IPO) (Zhu and Yang, 2003; Yang
et al., 2004; Zhou et al., 2008b; Li et al., 2010; Wang et al., 2012; Huang et al., 2020), have been
proposed to explain the observed reduction in monsoon precipitation. The impact of individual
factors is regional dependent, including the sign and magnitude of impact (Polson et al., 2014;
Pascale et al., 2017).

Greenhouse gases can modulate monsoon circulations in two ways. On the one hand, the
greenhouse gases can intensify the land-sea thermal contrast and the hemispheric thermal contrast
to enhance East Asian summer monsoon. On the other hand, it would broaden the descent branch
of Hadley circulation and weaken Walker circulation by increasing the atmpsheric stability,
weakening the monsoon circulation. Competetion between the two mechanisms leads to a slightly
increase in East Asian summer monsoon (Song et al., 2014; Lau and Kim, 2017). Greenhouse
gases may also result in uneven warming of sea surface temperature, thus modulating regional
monsoon circulations. In the late half of 20" century, the warming in the tropical Northwestern
Pacific has led to anmolaous circulation anomalies at lower level and transported more dry air to
South Asia, resulting in reduced rainfall over South Asia (Annamalai et al., 2013).

The impact of anthropogenic aerosol forcing is more complex. Although the impact of
anthropogenic aerosols on the decline of northern hemispheric monsoon precipitation in the past
decades has been detected (Polson et al., 2014), there is no consensus on the dominant dynamical
processes. In the East Asian summer monsoon season, aersols could reduce the land-sea thermal
contrast and increase atmospheric stability, thus weakening the summer monsoon circulation
(Song et al., 2014). In South Asia, aerosols could reduce the income shortwave radition, cool the
surface, reduce local evaporation and water vapor content. It could also increase the atmospheric
stability and reduce the hemispheric thermal contrast, resulting in a weaker South Asian summer
monsoon and less precipitation (Lau et al., 2006; Bollasina et al., 2011; Salzmann et al., 2014; Guo
et al., 2013). In addition, different types of aersols extert different impacts (e.g., the local and
remote forcing of aerosols) on regional monsoons (Jiang et al., 2013; Dong et al., 2016; Wang et
al., 2017). Recent studies documented that the land use and land cover changes in the recent
decades can alter the albedo and evaportation to reduce monsoon precipitation (Krishnan et al.,
2016; Paul et al., 2016).
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In addition to the external forcings, the monsoon system is influenced by internal variability
of the climate. On the decadal to inter-decadal time scales, the Atlandtic Multi-decadal Oscillation
(AMO) and Pacific Decadal Oscillation (PDO/IPO) can extert impacts on regional to hemespheric
monsoon precipitation changes through modulating the Walker and Hadley circulation (Zhou et
al., 2008b; Li et al., 2010; Krishnamurthy and Krishnamurthy, 2014; Wang et al., 2013; Jiang and
Zhou, 2019). Thus, the changes in the global monsoon system are the compound results of external
forcings and interal variability. Due to the complexity of the global monsoon system, it is still
unclear about the main cause and mechanisms behind the declined precipitation in global land
monsoon since the 1950s.

Here, we consider these multiple factors in a unified framework to determine the dominant
factor, quantify its contribution, and physically understand how competing factors influence the
observed changes from a global perspective. To understand the potential relative contributions of
natural (solar variations and volcanoes) and anthropogenic (well-mixed GHGs, aerosols) forcings
to the drying trend in global land monsoon domains, ensemble simulations from 5 state-of-the-art
coupled climate system models are used to attribute the observed long-term trend. The rigorous
“optimal fingerprinting” method is used to examine whether the anthropogenic influence is
detectable and attributable in the historical changes of global land monsoon precipitation. A
moisture budget analysis is then performed to understand the physical processes that dominate the
detected historical changes. We show evidences that the drying trend in monsoon precipitation
results from the reduction in vertical moisture advection due to aerosol forcing, the underlying
physical processes include a thermodynamic effect due to the reduction in atmospheric humidity
and a dynamic effect due to weakening of the land-sea thermal contrast and thus monsoon
circulation.

The remainder of the paper is organized as following. The data and mtethods are decrisbed
in section 2. The analysis results are presented in section 3. Section 4 summarizes the major
findings along with a discussion.

2 Data and Methods

2.1 Data

Multiple observational datasets are compared to better account for uncertainties in the
observations. The six observational monthly precipitation datasets used in our analysis include
Climate Research Unit TS V4.01 (CRU) (Harris et al., 2014), Global Precipitation Climatology
Center Full V6 (GPCC) (Schneider et al., 2014), University of Delaware precipitation V4.01
(Delaware) (Willmontt et al., 2001), NOAA’s Precipitation Reconstruction over Land (PREC/L)
(Chen et al., 2002), Variability Analysis of Surface Climate Observations (VASClimO, V1.1) from
1950~2005 (Beck et al., 2005); and GHCN V2 (Peterson et al., 1997). All data sets are regridded
to a common 2.5° x 2.5° resolution. We focus on the common time period of 1948~2005. An
ensemble average of CRU, GPCC, Delaware, PREC/L and GHCN data is used in our analysis.
The precipitation dataset from VASClimO is not employed when calculating the ensemble mean
due to a shorter time coverage, we note that it also shows a similar trend over the common time
period of 1951~2000 (Fig. 1).
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Figure 1. The spatial distributions of the linear trends in the local summer precipitation during
1951~2000 derived from (a) the multi-observation ensemble mean of CRU, GPCC, University of
Delaware, PREC/L, and GHCN, and (b) VASCIlimO. Stippling indicates the 5% significance
level. Red lines denote the global land monsoon regions.

We analyze 5 CMIP5 models (i.e., CanESM2, CSIRO-Mk3-6-0, GFDL-CM3, GISS-E2-H,
and GISS-E2-R), which provide separate forcing simulations under greenhouse gases,
anthropogenic aerosols, and natural forcing (NAT) forcings only, meanwhile each individual
forcing simulation includes multiple realizations (Tablel; Taylor et al.,, 2012). The 5 models
provide a total of 101 simulations, including 32 historical, 23 historical GHG, 23 historical
anthropogenic aerosols, and 23 historical natural experiments. The historical simulations (4LL-
forcing) are forced by both natural forcings (i.e., solar variability and volcanic aerosols) and
anthropogenic forcings (i.e., GHGs and anthropogenic aerosols) (Table 2). The historical GHG
(GHG-forcing), the historical anthropogenic aerosol (44-forcing), and the historical natural (NAT-
forcing) simulations are the same as the historical simulations, except that they are only forced by
well-mixed GHGs, aerosols, or natural forcings, respectively. All model data are regridded onto a
common 2.5° x 2.5° grid with bilinear interpolation. The global land monsoon areas (see
definitions below) in the models are masked by the observations.

Table 1. Details of the 5 CMIP5 Models used in this study. All five models include a representation
of the direct and indirect aerosol effects.

Model CanESM2  CSIRO-Mk3-6-0 GFDL-CM3 GISS-E2-H GISS-E2-R
Institut CCCma CSIRO-QCCCE  NOAA-GFDL  NASA-GISS NASA-GISS
nstitute Canada Australia USA USA USA
Horizontal resolution 64*128 96*192 90*144 90*144 90*144
ALL 5 10 5 6 6
Ensemble size
GHG 5 5 3 5 5
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AA 5 5 3 5 5

Nat 5 5 3 5 5
Solar SOLARIS SOLARIS SOLARIS SOLARIS SOLARIS
Natural forcing
agents
Volcanic S S S S S
GHG ITASA ITASA ITASA ITASA ITASA
Anthropogenic
forcing agents
Aerosol El E2 El C C

SOLARIS: http://sparcsolaris.gfz-potsdam.de/cmip5.php;

S: Sato et al. (1993);

C: The three-dimensional aerosol distributions specified as the monthly 10-year mean aerosol concentrations,
derived using the CAM-Chem model, which is driven by the Lamarque et al. (2010); the anthropogenic aerosols
include organic carbon (OC), black carbon (BC) and sulfur dioxide (SO,).

E1: the anthropogenic aerosol emissions taken from the Lamarque et al. (2010);

E2: Same as E1 but with the black carbon increased uniformly by 25% and the organic aerosol increased by 50%
(Rotstayn et al. 2012).

Table 2. The list of the CMIP5 control simulations used for evaluating the internal climate
variability. The overall drift of the control simulation is removed by subtracting a linear trend over
the full period.

Number of non-overlapping 58-year segments non-

No. Model Length (year) overlannine S8-vear seoments
1 bce-csml-1 500 8
2 BNU-ESM 559 9
3 CCSM4 501 8
4 CNRM-CMS5 600 10
5 CSIRO-Mk3-6-0 500 8
6 CanESM?2 996 17
7 FGOALS-g2 900 15
8 GFDL-CM3 500 8
9 GISS-E2-H 480 8
10 GISS-E2-R 850 14
11 HadGEM2-ES 336 5
12 IPSL-CM5SA-LR 1000 17
13 MIROC-ESM 531 9
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14 MIROC-ESM-CHEM 255 4

15 MRI-CGCM3 500 8
16 NorESM1-M 501 8
17 ACCESS1-0 250 4
18 CESMI1-CAMS 319 5
19 FGOALS-s2 501 8
20 HadGEM2-CC 240 4
21 MIROCS 670 11
22 MPI-ESM-LR 1000 17

2.2 Definition of global monsoon region

Global monsoon region is defined as the region with the annual range of precipitation (local
summer minus local winter) greater than 2.0 mm day™' and local summer precipitation exceeding
55% of the annual total amount (Wang and Ding., 2008). In the northern (southern) hemisphere,
summer (winter) is from May to September, and winter (summer) is from November to March.

2.3 Detection and attribution

According to the IPCC Assessment report, “Detection of change is defined as the process of
demonstrating that climate or a system affected by climate has changed in some defined statistical
sense without providing a reason for that change. An identified change is detected in observations
ifits likelihood of occurrence by chance due to internal variability alone is determined to be small.
Attribution is defined as the process of evaluating the relative contributions of multiple causal
factors to a change or event with an assignment of statistical confidence.” (Hegerl et al., 2010;
Bindoff et al., 2013; Sun et al., 2013).In the optimal fingerprinting method, observed summer
precipitation anomalies averaged over the global land monsoon regions were multi-linearly
regressed against the model-based signals via a generalized total least square (TLS) method (Allen
and Stott, 2003).

y =Xz Bi(xi — &) + & (1)

where y represents the observation, x, represents the climate response to the ith external

forcing considered (i.e., the fingerprint or signal of the specific external forcing (e.g., ALL-forcing,
GHG-forcing, AA-forcing, or NAT-forcing)). The time series is calculated with five-year non-
overlapping averages for the global land monsoon region as a whole. &, represents the effect of
internal variability in the estimated responses due to limited number of available simulations. m
represents the size of the external forcings. &, represents the noise in the observation and is
associated with internal climate variability. [, is the scaling factor.

Detection of a specific response is claimed if the corresponding scaling factor is significantly
inconsistent with zero (i.e., the lower bound of 90% confidence interval of a scaling factor is larger
than zero). Furthermore, attribution is claimed if the scaling factor is inconsistent with zero and
consistent with one (i.e., the 90% confidence interval includes one), meanwhile other plausible
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causes are excluded (Hegerl et al., 2010). The ensemble simulations underestimate (overestimate)
the observed response with a 3 greater (less) than one.

The attributable changes from different external forcings can be further estimated based on the
derived scaling factors (e.g., Allen and Stott, 2003; Sun et al., 2014; Xu et al., 2015). For each
external forcing, it is estimated as the linear least-square trend from the ensemble mean simulations
multiplied by the corresponding scaling factor. The uncertainty ranges of the attributable changes
are estimated based on the 90% confidence intervals of , which involve the effects of internal
variability in both observations and simulations.

To estimate the internal variability (i.e., noise), a total of 12489 years in the pi-Control
simulations from the 22 CMIP5 models were divided into non-overlapping 58-year chunks, which
provided 204 chunks (Table 2). In addition, the intra-ensemble variability (i.e., the residuals of the
historical simulations after subtracting their respective ensemble means) was provided for a total
of 101 runs (Table 1). For each historical simulation, the period 1890-2005 was used, which
provided 2 chunks of the 58-year segments. Thus, 202 chunks of noise estimation were derived
from the intra-ensemble variability. In total, the 406 chunks of noise estimation were divided into
two independent sets, where one set was used for optimization and the other was used for the
residual consistency test (Allen and Tett, 1999; Zhang et al., 2007; Xu et al., 2015).

We conduct the one-signal detection analysis for local summer precipitation changes averaged
over the global land monsoon region. The optimal detection is performed in a reduced space
spanned by leading empirical orthogonal functions (EOFs) for the model-simulated internal
variability (e.g., Zhang et al., 2007; Sun et al., 2014; Xu et al., 2015). The number of EOFs retained
is based on the residual consistency test (Allen and Tett, 1999; Allen and Stott, 2003). To test the
robustness of the detection results, we perform the detection analysis using a range of numbers of
EOFs retained.

2.4 Moisture budget analysis

Within the atmosphere, precipitation is balanced by the sum of evaporation, convergence of the
column-integrated moisture flux, and the residual (which mainly includes transient eddies and
contributions from surface processes due to topography) (Chou et al., 2013a):

P=E-<V-Vg>+o 2)
where P represents precipitation, £ represents evaporation, V is the wind vector, ¢
represents the specific humidity, and — <V -Vg > represents the convergence of the column-
integrated moisture flux. The term — <V -Vg > can be divided into two terms: vertical moisture

advection (— < @0 ¢ >) and horizontal moisture advection (- <V, -V, g >). Then, the changes in

precipitation can be expressed by changes in evaporation, horizontal moisture advection, vertical
moisture advection, and residuals, as in Eq. (3).

P'=E'-<w0,q>-<V,-V,g>+5' (3)
where prime indicates departure from the climatology. The subscripts p and % denote the
pressure and the horizontal direction, respectively. V, represents the horizontal wind vector, and
V, is the horizontal differential operator. The vertical moisture advection change, — < @0 g >' is
further approximated as the sum of the thermodynamic contribution, — < @d g’ >, the dynamic
contribution, —<@'0,q >, and the nonlinear term, —<®'0,q'> . The overbar denotes the

climatology. —< @0 ,q" > is associated with changes in water vapor, which are mainly induced by
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temperature changes; — < @'0 g > is associated with changes in pressure velocity, which are
mainly induced by atmospheric circulation changes; —<®'d,¢"> involves changes in both

vertical circulation and moisture and is found to be relatively small. Hence, Eq. (3) can be
approximated by:

P'rE'-<@0,q'>-<00,qg>-<V,-V,qg> 4)

Changes in precipitation and evaporation are coupled with each other; thus the causal
relationship cannot be distinguished by the moisture budget analysis.

3 Results
3.1 Comparison between observations and model simulations

(

a) Time series

. CanESM2 CSIRO-Mk-3-6-0 GISS-E2-R MME
2\

Anomalies
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Figure 2. Changes in global land monsoon precipitation during 1948~2005. (a) Time series of
local summer precipitation during 1948~2005 averaged over the global land monsoon regions
derived from multiple observations and ALL-forcing simulations from the 5 CMIP5 models.
Precipitation anomalies (units: mm month™) are with respect to 1948~2005 and smoothed with a
5-year running mean. The thick black line denotes the multi-observation ensemble mean (without
VASCIimO due to its shorter time coverage of 1951~2000), and the thick red line denotes the
multimodel ensemble mean (MME) of the historical simulations. (b) Linear trends (mm month™
(58yr)™") in local summer precipitation averaged over the global land monsoon regions. Bars
represent the ensemble-mean trends, and the error lines show the range of different realizations.
Trends that are statistically significant at the 5% level are marked with stars.

We used five sets of observational precipitation data to identify the trends during 1948~2005
in the global land monsoon domain (Fig. 2a). The ensemble mean of the 5 datasets shows a
remarkable reduction in monsoon precipitation during the period 1948~2005 (Fig. 2a), with a linear
trend of -10.55 (ranging from —5.39 to -14.34) mm month™ (58 yr)', which corresponds to -5.92%
(-3.02% to -8.22%) of the 1961-1990 climatology and is statistically significant at the 1% level
(Fig. 2b). The decreasing trend is consistent with previous studies that used more or less data
(Wang and Ding, 2006; Zhou et al., 2008a, b; Zhang and Zhou, 2011), demonstrating the
robustness of the drying trend.
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To estimate the contributions of external forcings, we compare the observed changes to those
simulated by the 5 state-of-the-art coupled climate system models of the CMIP5. The 5 models
reasonably reproduce the climatology of local summer precipitation over the global land monsoon
regions, with a pattern correlation coefficient of 0.84 between the multi-observation ensemble
mean and the multimodel ensemble mean (MME), calculated on a common 2.5°X2.5° spatial
resolution (only land monsoon regions are retained), forming a solid basis for our analysis of the
long term monsoon precipitation changes (Fig. 3a and b).
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Figure 3. The climatology (units: mm day™") of the global land summer precipitation in (a) the
observations and (b) the MME of the ALL-forcing historical simulations. The red lines denote
the global land monsoon region. (¢) The climatological moisture budget terms averaged over the
global land monsoon region in the MME of the ALL-forcing simulations. P-E is precipitation

—<wdq > —<vdq >

minus evaporation, is the vertical moisture advection, is the horizontal

moisture advection, and Res is the residual term.

In terms of the trends in the local summer precipitation, the all-forcing ensemble (ALL)
reasonably captures the drying trend over the global land monsoon domain (Fig. 2a). The drying
trend in the MME is -6.49 mm month®" (58 years)"™", or -3.89% of the 1961~1990 climatology,
which is within the range of multiple observations (Fig. 2b). All the 5 models are qualitatively
consistent in reproducing the drying trend, although with differences in magnitudes. The consistent
changes in the local summer global land monsoon precipitation between the observations and the
ALL-forcing historical simulations imply that external forcing has played a role in driving the long
term changes in the local summer precipitation.

10



289
290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

P J(a ——oBs ——ALL GHG ——AA NAT
S 6.0
5§ 304
s ] ' ».>‘\K\/\ -
§ 007 <V = \
£ 3.0 o
=3 ]
8 -6.0 4
& 1
€20 +r——"+—"7—"—T——— 77
1950 1960 1970 1980 1990 2000
4 Jp) ——0BS ——=AL —=GHAG =—=AA _=—=NAT
2 0o g I i
g ] e
5 ]
g 8
S ]
8 ]
a -12
16 T T T T T T T
0BS  CanESM2 (qRrO-MK36 0 oepl-CM3 s E2H  GgsE2R  MME
T ALL AR
5 207 et
27 i 4
3 ] 14 14 ;
o 0.0
£ —
< ]
] ]
@ 20
4.0 | ‘ X X

CanESM2 Cs\Roij3*5‘° GFD\I»CNB G\SS‘-EZ‘H G\gS‘—EZ'R MIII\E

Figure 4. Detection and attribution of global land monsoon precipitation changes under different
forcing agents. (a) Time series of the 5-year running average global land monsoon precipitation
anomalies with respect to the 1948~2005 mean (units: mm month™) in the multi-observation
ensemble mean and the multimodel ensemble mean under individual forcings. Gray shadings
represent the range of different observations, and light pink shadings represent the range of ALL-
forcing simulation results. (b) Linear trends (units: mm month™ 58yr) in global land monsoon
precipitation. Bars represent the ensemble mean, which are labeled with stars if the trend is
statistically significant at the 5% level. Error lines represent the ranges of different realizations. (c)
The results of the optimal fingerprinting detection at an EOF truncation of 10. Solid circles and
error bars represent the best estimate and the 5-95% uncertainty range of the scaling factors,
respectively. The cross symbols indicate failure of the residual consistency test at the 10% level.
In (a)-(c), red represents ALL-forcing, green represents GHG-forcing, purple represents AA-
forcing and orange represents NAT-forcing.

A further comparison of the individual ensembles forced with different forcing combinations
reveals that the significant drying trend over the global land monsoon regions originates from
anthropogenic influences mainly caused by aerosols (Fig. 4a and b). The dominance of the aerosol
forcing on the drying trend is evident in all the 5 models (Fig. 4b). In contrast, the trends of both
the GHGs and natural forcing ensembles are weak and statistically insignificant (Fig. 4a and b).
3.2 Detection and attribution of the anthropogenic forcing

The temporal evolutions of the observed and simulated precipitation are compared
quantitatively using the “optimal fingerprint” method, a regression procedure that has been widely
used in the community of detection studies. We focus on the ensembles of the 5 models. Over the
global land monsoon regions, the scaling factors for the ALL-forcing and AA-forcing simulations
are significantly greater than zero, indicating that the ALL-forcing and the AA-forcing had a
detectable influence on the decrease in global monsoon precipitation. The scaling factors for the
ALL-forcing and AA-forcing simulations are consistent with unity, indicating that the decline in
global land monsoon precipitation can be attributed to aerosol emissions (Fig. 4c). We note that
the detected seasonal mean precipitation changes is different to that of extreme precipitation at
regional scales. For example, while the increases in greenhouse gases has had a detectable
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contribution to the observed shift toward heavy precipitation in the eastern China, the
anthropogenic aerosols partially offset the effect of the greenhouse gases forcing, but cannot be
detected by the optimal fingerprint method (Ma et al., 2017).
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Figure 5. The results of optimal fingerprinting detection at EOF truncations of 5~9. Solid circles
and error bars are the best estimate and the 5~95% uncertainty range of scaling factors, respectively.
Cross symbols indicate fail of the residual consistency test at the 10% level. The effects of ALL
and AA are detectable over a wide range of EOF truncations ranging from 5~10.

The detectable effects of the ALL and AA forcings are consistent in all individual models and
over a wide range of EOF truncations ranging from 5~10, demonstrating the robustness of the
detection results (Fig. 4c and Fig. 5). The effects of GHG and NAT forcings are not detected, either
due to the failure of the residual consistency test or the scaling factor spanning zero, which vary
substantially across individual models (Fig. 4c and Fig. 5).
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339 We further estimate the drying trends attributable to different forcing agents by multiplying
340  the simulated linear trends in the MME with respective scaling factors from the one-signal
341  detection analysis (Fig. 6). The ALL forcing has contributed to approximately 100% (63~140%
342 for the 5~95% confidence interval) of the observed trend in the global land monsoon precipitation
343 during 1948~2005 (~10.55 mm month™ (58yr)™). In particular, the anthropogenic acrosols have
344  contributed to 102% (62~144%) of the observed trend.

345 3.3 Physical processes of difference anthropogenic forcings on precipitation changes
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Figure 7. Spatial patterns of linear trends in local summer precipitation under different forcings.
The spatial distributions of linear trends in local summer precipitation during 1948~2005 derived
from the multi-observation ensemble mean (a), and the multimodel ensemble mean of ALL-
forcing simulations (b), AA-forcing simulations (c), GHG-forcing simulations (d), and NAT-
forcing simulations (e). Units are mm month™ (58yr)”. Stippling indicates the 5% significance
level. Only the global land monsoon regions are shown.

What are the regional features of the monsoon precipitation trends? In the observations, the
drying trends are significant in the North and South African monsoon regions, the South and East
Asian monsoon regions, part of the Australian monsoon region, and most parts of the North and
South American monsoon regions (Fig. 7a). The simulated (ALL-forcing run) large-scale drying
trend in precipitation over the global land monsoon regions is generally consistent with the
observed pattern, exhibiting more spatially coherent features (Fig. 7b). Regional discrepancies are
seen with drying overestimations in the eastern part of the South American monsoon region and
underestimations in the eastern part of the North African monsoon region.

Comparisons of the spatial patterns of the precipitation trend under individual forcings confirm
the dominant effect of aerosols on the drying trends in the South and East Asian monsoon regions,
the North and South American monsoon regions, and part of the African monsoon region (Fig. 7c).
The impact of the GHG forcing is more pronounced in the South and East Asian monsoon regions
and part of the African monsoon region, leading to wetter conditions (Fig. 7d) and, thus, partly
compensating the drying trends caused by aerosols (Fig. 7¢). It is worth noting that the GHG
forcing has also led to drying conditions in the American monsoon regions (Fig. 7d), which is
consistent with simulations driven by an increase in CO, due to increased atmospheric stability
(Pascale et al., 2017). No significant trends are seen in the natural forcing ensembles (Fig. 7e).

How did the anthropogenic forcings affect the changes in the global land monsoon
precipitation? A moisture budget analysis is conducted over the global land monsoon regions
during 1948~2005. For the climate mean states, the global land monsoon precipitation is generally
balanced by evaporation and vertical moisture advection, whereas the contributions of the
horizontal moisture advection and residuals are relatively small and negligible (Fig. 3c¢).
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Figure 8. Moisture budget analysis for the drying trend in precipitation. (a) The trends in moisture
budget terms averaged over the global land monsoon region. The vertical moisture advection
(—<wdgq >) is separated into a thermodynamic term (7H) and a dynamic term (DY). The red,
green, purple and orange bars denote the MME of the ALL, GHG, AA, and NAT forcings,
respectively. (b)-(i) Spatial patterns of linear trends in evaporation (b, f), the thermodynamic (c, g)
and dynamic (d, h) terms of the vertical moisture advection, and the specific humidity at 850 hPa
(e, 1) during 1948~2005 in the multimodel mean of the AA-forcing (b-e) and GHG-forcing (f-1)
simulations. Stippling indicates the 5% significance level. Units are mm month™ (58yr)”, except
for figures () and (i), whose units are 0.1 kg™'(58yr)™.

For the linear trend during 1948~2005 in both the ALL-forcing and AA-forcing experiments,
the drying trend in precipitation over the global land monsoon regions is dominated by the vertical
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moisture advection, which is further separated into a thermodynamic and dynamic component (Fig.
8a). The thermodynamic increase in moisture advection (higher humidity due to higher
temperature) in response to GHG forcing is largely offset by the decrease in the dynamic
component (enhanced atmospheric stability and weakening of tropical circulation (Held et al.,
2006; Schneider et al., 2010; Chou et al., 2013a, b)). Therefore, the net effect of moisture advection
change is weak due to GHG forcing. Both the thermodynamic and dynamic effects of AA cause a

reduction in the vertical moisture advection, where the thermodynamic effect is dominant (Fig.
8a).
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Figure 9. The trends of the precipitable water during the local summer of 1948~2005 for the multi-
model ensemble mean of (a) ALL-forcing, (b) GHG-forcing and (¢) AA-forcing simulations. The
stippling indicates a 10% significance level. The red lines denote the global monsoon regions.

How did the aerosol and GHG changes affect the regional features of monsoon precipitation?
For the thermodynamic component of vertical moisture advection, which reduces under the aerosol
forcing due to that in specific humidity as the surface cools down, is significant over all land
monsoon regions (Fig. 8c and e). In contrast, the GHG forcing increases the specific humidity and
hence the thermodynamic component of moisture advection, which is also significant over all land
monsoon regions (Fig. 8g and 1). The examination of column integrated precipitable water changes
shows that the decline in AA-forcing has been offset by an increase in GHG-forcing (Fig. 9). Thus,
the thermodynamic effect of GHGs is on par with but opposes the effects of aerosols on
precipitation.
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412 Figure 10. The trends of the surface air temperature during the local summer of 1948~2005 for
413 the multi-model ensemble mean of (a) ALL-forcing, (b) GHG-forcing and (c) AA-forcing
414 simulations. The stippling indicates a 10% significance level. The red lines denote the global

415  monsoon regions.
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1948~2005, for the multi-model ensemble mean of the AA-forcing simulations. The stippling
indicates a 10% significance level. The red lines denote the global monsoon regions.

Both the GHG-forcing and AA-forcing experiments show a reduction in the dynamic
component of moisture advection in the context of globally averaged precipitation over land
monsoon regions (Fig. 8a). While the reduction in GHG-forcing is understood to result from
increased atmospheric stability and, hence, weakened tropical circulation under global warming
(Held et al., 2006; Schneider et al., 2010; Chou et al., 2013b; Lau and Kim, 2017; Pascale et al.,
2017), the reduction in AA-forcing results from weakening of the monsoon circulation as a result
of the weakened land-ocean thermal contrast and hemispheric asymmetry (i.e., the northern
hemisphere is colder than the southern hemisphere (Lau and Kim., 2017)). This is caused by
aerosol-induced reductions in downward shortwave radiation through aerosol-radiation and
aerosol-cloud interactions (Figs. 10 and 11).

Distinctive regional patterns should be noticed. While the reduction in the dynamic term of the
GHG forcing simulation is evident and significant over nearly all land monsoon regions, no well-
organized consistent change pattern is seen in the AA-forcing simulation; the reduction is weak
and only significant over the Asian monsoon region and parts of the North and South American
monsoon regions, while parts of the African monsoon region even witness an increase in
precipitation. The dynamic response of regional monsoon circulation to aerosol forcing deserves
further study.

4 Conclusions and discussions

In this study, we find that anthropogenic forcing has had a detectable and attributable influence
on the significant drying trend of the global land monsoon precipitation during 1948~2005. The
optimal fingerprinting analysis shows that the observed drying trend (~10.55 mm month™ (58 yr)
") is attributable to anthropogenic aerosols, with a contribution of 102% (62~144% for the 5~95%
confidence interval). A moisture budget analysis reveals that the drying trend in monsoon
precipitation results from the reduction in vertical moisture advection due to aerosol forcing. The
cooling effects of aerosol forcing are two-fold: a thermodynamic effect due to the reduction in
atmospheric humidity and a dynamic effect due to weakening of the land-sea thermal contrast and
thus monsoon circulation. Both contribute to the reduction in vertical moisture advection. The
warming effects of GHG forcing are also two-fold: a thermodynamic effect, which increases
atmospheric moisture, and a dynamic effect, which reduces vertical advection by increasing
atmospheric stability. The thermodynamic and dynamic effects largely offset each other, resulting
in a weak net wetting trend.

Our demonstration on the effects of anthropogenic aerosol on the drying trend in global
monsoon precipitation has important implications for the future. Since much of the monsoon
regions, such as India, are also regions of rapid development with increasing aerosol emissions (Li
et al., 2016), our results imply that there would be a further reduction in monsoon precipitation in
these regions if a clean energy policy is not deployed for effective mitigation in the future. Since
the late 1970s, the sulphate aerosol emissions in China has gradually increased, with a decline after
2006 because of adjustment of energy structure in China (Li et al., 2017). The reduction in aerosols
emissions not only improved the air quality, but also the water resources in monsoon regions.
Given the availability of the monsoon simulation, this study only focused on 1948~2005. Previous
studies have shown that the global monsoon precipitation has experienced a recovery since 1979
(Wang et al., 2012; Lin et al., 2014). There is lack of detection and attribution studies to quantify
the relative contributions of different external forcings to this increasing trend, although studies
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indicated that the anthropogenific greenhouse gases may play a role (Wang et al., 2012; Zhang and
Zhou, 2014).

Although we used ensemble simulations from CMIPS5, particularly multi-model and members,
to increase the robustness of the results, we note that there are still large uncertainties in the
estimatation of aerosol forcing on precipitation changes due to the complexity of aersol climate
effects, including the direct and indirect effects of aerosols (Wu et al., 2018; Li et al., 2016; Zhou
et al., 2018). Limited observational and cloud-resolving modeling studies suggest that the net
effect (enhance or suppress) of aerosol on precipitation relies on the aerosol type, meteorological
background (such as cloud-water content), precipitation intensity, region of interest, etc. (Zhao et
al., 2006; Qian et al., 2009; Li et al., 2011). The aerosol satellite observations and stational
precipitation observations show that the increase in aerosol concentration in China during the past
several decades can increase the atmospheric stability, weaken vertical motion and reduce total
rainfall over eastern China (Zhao et al., 2006). Aerosols can also increase cloud droplet number
concentration, reduce the cloud droplet size and thus contribute to the decreasing trend in light
rainfall over easten China (Qian et al., 2009). In addition, the quality of aerosol forcing in each
monsoon region used to force the historical simulations exists large uncertainty. There is
substantial uncertainty in present-day top-of-atmosphere aerosol effective radiative forcing, with
a 5%-10-95% confidence interval spanning ~1.9 W m™to 0.1 W m™ (Myhre et al., 2013). The
uncertainty in aerosol radiative forcing is one of the uncertainty sources for detection and
attribution results and the associated physical understanding. The undergoing sixth phase of
Coupled Model Intercomparison Project (CMIP6, Eyring et al., 2016) updated the historical
anthorogenic aerosol forcing, greenhouse gas forcing and land use forcing, which are used for the
Detection and Attribution Model Intercomparison Project (DAMIP, Gillett et al., 2016). The new
output would provide solid data support for the attribution studies of monsoon precipitation
changes. It is desirable to examine the monsoon precipitation response to aersol forcing based on
the newly released CMIP6 output. We should note that the multi-model framework of CMIP may
also include structural or parametric uncertainties. It remains a challenge in the climate research
community as to improve the model simulation of the aerosol-monsoon interaction, and to reduce
uncertainties in aerosol-climate feedback based on observations (Li et al., 2011; Wu et al., 2015;
Zhou et al., 2018).
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