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Abstract—Automated classification of Schistosoma mansoni
granulomatous microscopic images of mice liver using Artificial
Intelligence (Al) technologies is a key issue for accurate diagnosis
and treatment. In this paper, three grey difference statistics-based
features, namely three Gray-Level Co-occurrence Matrix
(GLCM) based features and fifteen Gray Gradient Co-occurrence
Matrix (GGCM) features were calculated by correlative analysis.
Ten features were selected for three-level cellular granuloma
classification using a Scaled Conjugate Gradient Back-
Propagation Neural Network (SCG-BPNN) in the same
performance. A cross-entropy is then calculated to evaluate the
proposed Sigmoid input and the ten-hidden layer network. The
results depicted that SCG-BPNN with texture features performs
high recognition rate compared to using morphological features,
such as shape, size, contour, thickness and other geometry-based
features for the classification. The proposed method also has a
high accuracy rate of 87.2% compared to the Back-Propagation
Neural Network (BPNN), Back-Propagation Hopfield Neural
Network (BPHNN) and Convolutional Neural Network (CNN).

Keywords: back-propagation neural network; gray gradient co-
occurrence matrix; gray level co-occurrence matrix; microscopic
image classification; scaled conjugate gradient

I. INTRODUCTION

Schistosoma mansoni granulomatous is a parasite egg
deposited in a host leading to fibrosis diseases due to the
mansoni infection. Granulomatous diseases of the liver span a
huge range of infectious, drug-related, and immunologic
disorders, which have different granulomas types and fibrosis
stages [1]. Recently, researchers have conducted several
experimental analyses on cellular granuloma of mice liver using
high-resolution microscopes, such as cell phase-contrast
microscopy and probe-based confocal laser endomicroscopy
[2] [3]. Accordingly, image processing has a significant role to
separate surrounding tissues based on shape, color and texture
analysis to distinguish between normal and abnormal liver
cases using the captured microscopic images for further
diagnosis [4]. For automated computer-aided diagnosis
systems, medical image processing, including image

preprocessing, feature extraction and classification have all
been developed.
For mice liver cellular granulomatous detection and
classification, feature extraction has a significant role to
measure and digitalize the inherent nature of the fibrosis regions
and their attributes as well asto decompose and symbolize these
regions to form the feature vector for further classification.
Most researchers have focused on morphological feature based
automatic recognition of microscopic images [5], while
morphological feature calculations take more of a geometrical
analysis on the microscopic images. On the contrary, texture
analysis is an important research content for image
understanding, analysis, recognition, and description of the
difference of the structure, direction, granularity and regularity
of the different regions of the microscopic image [6-7].
Moreover, texture contains not only the surface
properties/characteristics but also some extent that reflects the
relationship between them and the environment. Therefore, the
texture features in gray statistical information can reflect the
distribution structure and spatial information [8]. For diagnosis
and treatment, the feature extraction process is followed by the
classification process, where image quantitative analysis is used
to calculate the texture of the Region of Interest (ROI) and
morphological features, and form a feature vector space for the
purposes of classification. In microscopic image classification,
an artificial neural network is extensively used for prediction
and classification. The artificial neural network has high-speed
information processing ability and large knowledge storage
capacity, and typical algorithms include the Back-Propagation
Neural Network (BPNN), Competitive Kohonen Neural
Network (CKNN), Feed-forward Neural Network (FNN) and
Hopfield Neural Network (HNN). Hence, artificial neural
networks have a significant role in medical image analysis and
classification.

For microscopic liver image analysis and classification,
Akram et al. [9] selected features based on texture and color



properties for further classification of the abnormal liver images
using the Support Vector Machine (SVM) to perform
classification. The results depicted that the extracted texture-
based features with the SVM classifier achieved an accuracy of
83% on a mice liver dataset. Furthermore, Amin and Mahmoud-
Ghoneim [10] applied statistical texture analysis approaches,
namely run-length matrices and co-occurrence on microscopic
images of rats’ samples followed by classification using linear
discriminant analysis and agglomerative hierarchical
clustering. The classification results proved that texture
analysis was successful to discriminate between the control and
fibrosis groups with 100% sensitivity and specificity. Meng et
al. [11] implemented texture features based histology image
supervised classification and multimodal fusion. Xie et al. [12]
used tumor color, texture and border features for melanoma
classification; Kosmas Dimitropoulos et al. [13] used adaptive
neuro-fuzzy inference systems for automatic detection of
centroblasts (CBs) in microscopic images.

Texture features calculation to find the defects of parameters,
such as texture features that are specific to a pathological region
has been shown to be difficult and time-consuming using
BPNN based classification [14]. Therefore, it becomes
necessary to develop techniques, such as conjugate gradient, to
overcome this shortcoming. The conjugate gradient method is
a special conjugate direction method, also related to the
gradient, which utilizes the gradient information of an objective
function (the product of the gradient and the direction satisfies
the “descent” condition). The conjugate gradient method differs
from that in the negative gradient direction of the current point
and is conjugate with the search direction in front to obtain a
new search direction [15~16]. Chen et al. [17] proposed a
regularized deep feature extraction method using a
Convolutional Neural Network (CNN) for hyperspectral image
classification. Geng et al. [18] introduced deep supervised and
contractive neural network using a Gray Level-Gradient Co-
occurrence Matrix (GLGCM). Furthermore, Chen et al. [19]
used BPNN for recognition on oceanic internal waves based on
Gray Gradient Co-occurrence Matrix (GGCM). Yu used an
improved LBP algorithm for texture and face classification
[20].

In this paper, the gray level co-occurrence matrix (GLCM) is
improved according to a weighting coefficient. The redundant
features are removed through the analysis of the correlation of
texture features of the microscopic image of Schistosoma
mansoni based cellular granulomatous of mice liver. The gray-
difference based features, GLCM based features, combined
with GGCM for cellular granuloma microscopic image of mice
liver feature calculations is thus proposed in this paper.
Furthermore, a scaled conjugate gradient BPNN (SCG-BPNN)
for classification is deployed. The organization of the remaining
sections is as follows. Section 2 presents the methods for image
classification and the experimental process. Section 3 addresses
the results and comparative analysis. Section 4 involves the
conclusions of the present study.

Il. METHODOLOGY
A. Texture-based Features Extraction

Statistical computation is carried out in regions containing
multiple pixels and often has strong resistance to noise. In this
work, 21 texture-based features were calculated, including grey
difference statistics-based features (mean, contract, and
entropy), GLCM (energy, correlation, and inertia moment) and
GGCM based features (T1-T15). By correlative analysis, 10
features are then selected as a vector input for the Scaled
Conjugate Gradient Back-Propagation Neural Network (SCG-
BPNN) [21].

Assume (X,Yy) is a pixel’s coordinates in a microscopic
fibrosis image, where xe{1,2,....m} , and ye{1,2,...,n} ,
which contains L gray levels. Accordingly, (x+AXx,y+Ay)
is the nearby pixel, where Ax>0, and Ay >0 as f(x,y) is

the intensity value of this pixel. So, the gray value can be
calculated by:

0, (T (x¥)=9(F (x¥))-g(f (x+axy+ay))
)

where g, is the gray difference. Thus, for m levels, by
counting g, in each m, the probability p(i) on each g, can
be obtained, where (i=1,...,m).

(1) Gray Difference-based Features
Hence, the features of mean, contract, and entropy are given
from [22]:

134, .
mean:aglp(l) )
contract = Zm: i’p(i) ®)
entropy:—i p(i)log, (p(i)) 4

(2) Gray-level Co-occurrence Matrix-based Features

The GLCM is a common method to describe the texture by
examining the spatial correlation characteristics of the gray
level. It is based on the statistical analysis of two pixels with a
given distance. Intuitively speaking, if the image is constituted
with similar blocks of pixels’ gray value, the GLCM is diagonal
elements with relatively large value; if the pixel gray value
change in the local area, then the off-diagonal elements will
have relatively large values. The energy, correlation and inertia
moment can be calculated as [6, 22, 23]:

m-1m-1
energy = > > P’ 5)
x=0 y=0
1 m-1m-1
correlation = (x=p )(Y— 14 )Py, (6)
Ux 0\{ x=0 y=0
L-1L-1 i 2
im= li-ij P, ()
i=0 j=0
where P, is the probability of point (x,y) in the i =1---,m
m-1 m-1 m-1 m-1
gray level, u=) x> p, 4 =Zyz Py
x=0 y=0 y=0 x=0



ax=\/m2_l(x—ux)2m2_lpxy , and ay=\/m2_1(y—m)2j2_:pxy :

x=0 y=0 y=0
which are the variances and the standard deviations at both the
x and Y pixel location.

For rough texture, P, are close to main diagonal, so that im

is smaller, while for fine texture, im is larger.

(3) Gray Gradient Co-occurrence Matrix

The GGCM includes the extracted texture features by using
gray and gradient synthetic information, which is similar in
process to the GLCM. The Sobel operator may be applied to

f(xy) and let g(x,y) refer to gray that have the digitized
form G(x,y), thus the new gray L, is used to calculate the new
gray image G(x,y) as:
g(x,y)-min(g(x,y)
G(x,y)= max (g (1 y))—n(ﬁin(g(x,)y))(Lg -1) 8)
The gray gradient co-occurrence matrix H, is defined as
number of {(X, y)| f (X, y) :O,G(X, y) = j} which has

the normalized form of:
H;
"Hii ” o )

ij

i=0 j=0
According to ||Hij || 15 features are defined and extracted as

reported in TABLE | [19]. The features mentioned above were
then normalized and organized as an input vector for
classification using SCG-BPNN, while the target used fewer
features under the same performance by SCG-BPNN.

B. Scaled Conjugate Gradient Back-propagation Neural
Network

The BPNN is a multilayer network with the Widrow-Hoff
learning algorithm and nonlinear differentiable transfer
function. A typical Back-Propagation (BP) network uses a
gradient descent algorithm, defined by the Widrow-Hoff
algorithm. It is a method for computing the gradient of a
nonlinear multilayer network [24]. The input of the J" output
layer unit is:

P
netc, = > W,b, (10)
J=1
where the actual output is given by:
C, = f (netc,) (12)

The weighted input of the hidden layer unit | is given by:

neth, =Y v,a (12)
k=1
Thus, the actual output of the unit 1 is:
b, = f (netb,) (13)
where f isa differential decreasing function, given by:
1
f(x)= 14
( ) l+e™ (14)

The algorithm of these steps is described in Algorithm 1.

Algorithm 1: Proposed BPNN
Step 1: Initialize the network and learning
parameters, such as setting the initial weights of the
network, and learning factors
Step 2: Provide training mode, and training
network to meet the learning requirements.
Step 3: Process the forward propagation as
follows:
(1) the input mode for a given training mode
(2) the output of the network model
(3) compared with the desired model
(4) If the error occurs, then go to Step 4;
otherwise, return to Step 2.
Step 4: Process the backward propagation steps:
(1) calculates the error of the same cell;
(2) corrects the weights and thresholds;
(3) returns to Step 2
To guarantee fast/accurate convergence of the neural
networks, the Scaled Conjugate Gradient (SCG) algorithm was
applied. The conjugate gradient method uses the first derivative
information, but overcomes the disadvantage of slow
convergence of the steepest descent method. Additionally, it
avoids the need to store and compute the Hesse matrix and the
shortcomings of the inverse of the Newton method. It only
requires a small storage capacity and provides fast convergence
and high stability without any external parameters. However,
the SCG uses second order information from the NN but

requires only O(N) memory usage, where N is the number

of weights in the network.

The performance of SCG was benchmarked against the
performance of the standard BP, the Conjugate Gradient Back-
propagation (CGB) algorithm and the one-step Broyden-
Fletcher-Goldfarb-Shanno memoryless quasi-Newton
algorithm (BFGS) [15]. The SCG process is described in
Algorithm 2. The used pseudo-code is given in Algorithm 3.

Algorithm 2:
algorithm

Scaled conjugate gradient (SCG)

Step 1: Given an initial iterates X © and precision of
iterative coefficient h
Step 2: Let negative gradient of X be the search
direction: S =—Af (X))
Step 3: One dimensional search via s® as
X kD) _ y 0y 005K
Step 4: Check convergence:
If]| AF (X“P)|i<h then

X* =X (k+1) : f(X*) — f(x(k+1))

Output optimization solution; go to End.

Else go to Step 5
Step 5: If k =n then let X @ = X% g0 to Step 2

Else go to Step 6
Step 6: Construct new gradient direction




B || Af (x(k +D) |1

|| Af (X (K)) I
S(k+1) =_Af (X(k))-i-ﬁ(k)s(k)
k=k+1 goto Step 3

Algorithm 3: GGCM H- matrix Calculation
INPUT: image file, grey
OUTPUT: H basic-normalized scale matrix
IN&imread('D1_03.png’); % image input
Imshow (IN)
gray€256;
[R, C]€&size (IN)
% Calculating gradients matrix using square sum
GM<«&zeros (R-1, C-1)
FORi (1to R-1)

FORj (1to C-1)

n_GM<(IN i, JED-ING ) 2+(IN(i+1,))-
IN(i,j)"2
GM(i,j)€sqrt(double(n_GM))
ENDFOR
ENDFOR

/I Minimum and maximum
n_min€&min (GM (2));
n_max€&max (GM ());
/I Discrete the gray level of the gradient image
/] Set new gray as new_gray
new_gray<32;
/I Let new gradient matrix be new_GM
new_GM<&zeros (R-1, C-1);
new_GM<&uint8((GM-n_min)/(n_max-n_min) *
(new_gray-1))
/I Gray gradient co-occurrence matrix calculation
/[The gradient matrix is 1 less than the gray scale matrix
and ignores the most outlying of the gray scale matrix
H<&zeros (gray, new_gray)
FORi(1toR-1)
FORj (1to C-1)

H(IN(,j)+1,new_GM(i,j)+1)€ H(IN(,j)+1,

new_GM(i,j)+1)+1
ENDFOR

ENDFOR
/I Let normalized gray gradient matrix be H_basic
Total&€i*j
H_ basic&H/total

I11. RESULTS AND DISCUSSION

In the current study, microscopic images of magnification
3400 were acquired and examined in the Medical Parasitology
Department, Faculty of Medicine, Tanta University, Egypt.
These acquired liver samples from normal and Schistosomiasis
mansoin infected mice are illustrated in Fig. 1. Some
representative images of histopathological samples are obtained
from the control liver group; fibrosis and granuloma are
illustrated in Fig. 1(a)-(c). Fig. 1(a) demonstrated that the
histological analysis of healthy liver shows a normal liver
lobular architecture, while the liver fibrosis in Fig. 1(b) has
disruption of the tissue architecture, the extension of fibers, and
fibers accumulation. In addition, the liver granuloma in Fig.

1(c) shows multinucleated giant cells and lymphocytes or a
conglomeration of smaller granulomas. Images were encoded
at 24-bits per pixel on red, green, and blue channels.

The colored images were processed using Matlab (version
2017a) to create grey level images of size 256*3*256 and to
compute the gradient vectors matrices. To increase the dataset
size, each healthy liver image was divided into two sub-images
of 256*3*128 size. Thus, 20 images of each class were used in
this study. The training phase used 30 images (10 of each class)
and the test phase used the rest of 30 images.

A. Features Calculation

Mean (M), Contract (Co), Entropy (E), Energy (En),
Correlation (C), and Inertia Moment (IM) of 30 images were
calculated and shown in Table 1. The four directions of 0, 45,
90, and 135 on En, C, and IM were calculated and the mean of
these four directions was adopted for the next step. The GGCM
features in Tables 2-4 list the 1st, 2nd, and 3rd level-fibro
cellular granuloma.

B. Training process

A ten-hidden layer NN design with three grey difference
statistics-based feature (M, Co, E), three gray-level co-
occurrence matrix-based features (En, C, IM), and gray gradient
co-occurrence matrix-based features (T1-T15) was constructed.
There were 21 features of images, 3200 data applied. Thus, the
input matrix is 21*3200, and the target matrix is 3*3200, in

which 1% level-fibro cellular granuloma is [1,0,0]" , 2" level-
fibro cellular granuloma is [0,1,0]" , and the 3" level-fibro

cellular granuloma is [0,0,1] . The cross-entropy was

performed with the proposed SCG-BPNN training process as
shown in Fig. 2. Setting 70% of data for training (2240
records), was presented to the network during training, and the
network was adjusted according to its error; 15% for
validation (480 records), which is used to measure network
generalization, and to halt training when generalization stops
improving; and 15% for testing (480 records), which is to
provide an independent measure of network performance
during and after training as shown in Fig. 3 [25]'.

\
v

Fig. 1. Samples from the three levels of cellular granuloma
microscopic images of mice liver, where (a) first level-fibro
cellular granuloma, (b) second level-fibro cellular granuloma,
and (c) third level-fibro cellular granuloma.

Hidden Layer with Delays

Output Layer

y(@®

10 2
Fig. 2. 10 hidden layers BPNN using SCG.



Table 1 GLCM Features’ value of three classifications

Inertia Moment

Images Mean(M) Contract (Co) Entropy (E) Energy (En) Correlation (C) (IM)
Al 0.5846 2.27E+04 5.9544 0.0205 0.8963 2.5124
A2 0.549 2.01E+04 5.9662 0.0214 0.9061 3.5518
A3 0.5728 2.18E+04 5.9897 0.0201 0.8857 2.8477
A4 0.5474 2.00E+04 5.9863 0.0187 0.9063 3.2446
A5 0.5516 2.01E+04 52921 0.0443 0.9440 0.8211
A6 0.5508 2.01E+04 5.5094 0.0344 0.9400 1.9194
A7 0.5935 2.33E+04 5.6296 0.0359 0.9148 1.3437
A8 0.6669 2.92E+04 4.8391 0.0453 0.9684 0.5520
A9 0.5909 2.30E+04 53227 0.0359 0.9404 1.2386
Al0 0.5029 1.68E+04 5.6044 0.0263 0.9174 2.7570
BI 0.5737 2.18E+04 5.8114 0.0223 0.9184 2.4489
B2 0.5116 1.73E+04 5.1946 0.0353 0.9442 1.1807
B3 0.5505 2.01E+04 5.5709 0.0245 0.9296 1.9294
B4 0.5551 2.04E+04 5.7232 0.0219 0.9124 2.4392
BS 0.5675 2.13E+04 5.4361 0.0264 0.9358 1.6751
B6 0.5775 2.20E+04 5.6042 0.0284 0.9194 1.7089
B7 0.5741 2.18E+04 5.7882 0.0216 0.9148 22714
B8 0.5574 2.06E+04 5.5938 0.0276 0.9242 2.3149
B9 0.5567 2.06E+04 5.7916 0.0202 0.8831 3.3948
B10 0.5366 1.91E+04 5.6746 0.0240 0.9223 2.6020
Cl 0.5103 1.76E+04 6.4062 0.0176 0.7574 5.5554
2 0.4928 1.64E+04 6.2778 0.0209 0.7753 49723
C3 0.4978 1.69E+04 6.5513 0.0162 0.7270 6.2586
c4 0.5263 1.87E+04 6.3818 0.0149 0.7163 53177
Cs 0.5113 1.78E+04 6.5959 0.0145 0.6927 7.2491
C6 0.5217 1.83E+04 6.3612 0.0197 0.7039 5.3325
C7 0.5216 1.82E+04 6.0952 0.0247 0.8114 3.8107
C8 0.4977 1.69E+04 6.5391 0.0164 0.6755 6.9137
C9 0.5084 1.75E+04 6.3609 0.0194 0.7469 5.0677
CI10 0.4994 1.70E+04 6.5444 0.0149 0.7167 5.1681
Table 2. 1st level-fibro cellular granuloma
Tl Al A2 A3 A4 A5 A6 A7 A8 A9 A10
T1 0.3019 0.3139 0.3024 0.3152 0.3294 0.3257 0.3141 0.3364 0.3248 0.3390
T2 15.5918 15.3242 15.6748 14.6702 10.7114 12.3308 12.9371 9.2091 12.1174 13.3615
T3 48666.9506 60813.9609 48886.0521 53214.4055 60096.4041 53995.5007 59367.6702 51247.4335 54294.4579  73663.4528
T4 1912331.3988 2016587.3570  1950295.7037  1879498.2690 1302821.3737  1488417.5935 1433212.6591 1282583.9918 1419916.1481 1752166.1768
T5 0.0011 0.0026 0.0011 0.0018 0.0009 0.0011 0.0009 0.0008 0.0009 0.0035
T6 105.5963 114.8666 103.9456 109.8143 101.2361 98.2116 96.8497 115.6000 105.9825 117.0239
T7 15.5918 15.3242 15.6748 14.6702 10.7114 12.3308 12.9371 9.2091 12.1174 13.3615
T8 57.2349 69.7490 58.3750 68.3788 45.4182 59.3752 46.3586 52.3749 53.7958 71.3283
T9 13.2476 13.4091 13.2915 13.2480 11.1861 12.2821 12.2932 10.1674 12.0661 12.9066
T10 -111.5312 -206.1009 -123.9672 -104.1345 -9.1072 -3.0095 -44.2040 -50.1271 -10.8259 -155.0087
T11 2.3345 2.3310 2.3326 2.3464 2.2555 2.3066 2.2602 2.3081 2.2974 23194
T12 0.9691 0.9452 0.9604 0.9744 1.1261 1.0684 1.0835 1.1341 1.0891 1.0085
T13 3.2876 3.2281 3.2747 3.2829 3.3727 3.3461 3.3356 3.4238 3.3682 3.2780
T14 11775.2088 15365.6265 11623.9618 14111.8418 10364.4484 11057.7967 9429.9789 14065.2696 11871.8984 16310.2245
T15 0.0083 0.0109 0.0095 0.0131 0.0029 0.0076 0.0052 0.0012 0.0037 0.0106
Tables 3. 2nd level-fibro cellular granuloma
Tl B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
T1 0.3086 0.3142 0.3199 0.3102 0.3150 0.3131 0.3054 0.3293 0.3246 0.3314
T2 14.2179 12.1362 13.1355 14.0665 12.8627 13.5024 14.2457 13.2809 14.1569 13.7770
T3 47471.7426 52280.3008 51809.5428 48676.1086 52538.3466 52287.9610 47559.9637 59497.6592 57677.1244  64358.5400
T4 1690970.5634 1355140.5665  1536245.5592  1649390.1181 1437381.0482  1523692.4917 1637523.8702 1646636.8041 1771055.6159 1780784.7645
T5 0.0010 0.0009 0.0013 0.0011 0.0011 0.0009 0.0009 0.0021 0.0021 0.0028
T6 105.2023 104.3330 114.8417 106.4662 105.0355 102.4853 105.1254 106.3970 116.4003 115.0945
T7 14.2179 12.1362 13.1355 14.0665 12.8627 13.5024 14.2457 13.2809 14.1569 13.7770
T8 62.1734 58.1669 61.5291 61.1262 58.5088 53.8183 59.3140 67.2009 65.6223 69.0537
T9 12.9438 11.9675 12.5391 12.8662 12.2912 12.5619 12.8598 12.7302 13.0260 13.0237
T10 -51.0151 -20.1204 -48.5817 -56.4202 -44.0639 -25.8506 -60.6437 -92.3635 -127.3191 -130.2682
T11 2.3454 2.3147 2.3329 2.3392 2.3152 2.3102 2.3408 2.3217 2.3324 2.3277



T12 1.0162 1.1017 1.0574 1.0280 1.0810 1.0604 1.0299 1.0316 1.0025 0.9988
T13 3.3391 3.3880 3.3610 3.3432 3.3731 3.3571 3.3522 33137 3.2961 3.2809
T14 12413.2483 11986.6066 14384.3877 12552.4968 12158.3096 11023.8733 12063.9336 13533.3587 15184.3276 15463.8116
T15 0.0091 0.0050 0.0052 0.0086 0.0066 0.0059 0.0083 0.0109 0.0076 0.0093
Table 4. 3rd level-fibro cellular granuloma
T1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
T1 0.3111 0.3168 0.3101 0.2995 0.3037 0.3068 0.3066 0.3002 0.3022 0.2985
T2 16.7161 16.1987 17.3973 17.1418 17.5933 16.8010 15.3368 17.5719 16.8337 17.4637
T3 9173.0569 9215.6099 9269.3695 7711.2967 7637.8552 8235.4866 10043.9520 7975.3021 9375.5377 6902.9449
T4 419324.6869 370394.6909 450648.6879 350891.7553 411413.7763 365925.4825 353987.2040 413205.5556  428587.4277 359326.2402
TS5 0.0021 0.0023 0.0025 0.0015 0.0021 0.0015 0.0014 0.0017 0.0015 0.0016
T6 110.5868 110.2067 116.5026 94.5674 111.8048 94.4182 99.4258 100.8519 99.9060 119.8363
T7 16.7161 16.1987 17.3973 17.1418 17.5933 16.8010 15.3368 17.5719 16.8337 17.4637
T8 63.2031 63.5937 63.2421 53.1304 62.1079 54.4959 58.5130 58.1464 57.8339 52.7525
T9 13.7180 13.6377 13.8599 13.6579 13.8366 13.6584 13.2450 13.7858 13.6211 13.7487
T10 -191.5271 -208.2920 -233.2392 -156.7994 -196.6382 -139.1340 -101.1759 -177.5633 -133.8385 -178.7957
T11 23314 2.3186 2.3295 2.3024 2.3376 2.2991 2.3055 2.3193 2.3176 2.3199
T12 0.8608 0.8897 0.8072 0.8580 0.8022 0.8681 0.9699 0.8148 0.8761 0.8268
T13 3.1541 3.1664 3.0936 3.1414 3.1029 3.1432 3.2454 3.1049 3.1672 3.1246
T14 13377.5885 13484.2243 14479.9928 9317.7039 13317.9315 9459.0545 10872.5308 10861.7394 10698.9772 13809.5914
T15 0.0090 0.0090 0.0077 0.0106 0.0085 0.0108 0.0098 0.0101 0.0100 0.0047
Table 5. Predictive accuracy rate with different neural MSE. Furthermore, the SCG-BNPP-21 took higher

networks computation time compared to the SCG-BPNN-10 as
- cE MSE PAR demonstrated in Table 6.
Best Validation Performance is 0.10862 at epoch 31
BPNN [21] 0.62 0.077 0.855 100 :
CNN [27] 0.71 0.068 0.788 I:"';am .
BPHNN [23]  0.61 0.066 0.685 - —_—Test
FUZZY NN [28] 0.65 0.082 0.752 g e Best
SCG-BPNN-10  0.67 0.066 0.872 -
SCG-BPNN-21  0.75 0.071 0.821 2
Table 6. Comparing to time consuming in large scale dataset E
(70% for training) >
o
Samples SCG-BPNN-10 SCG-BPNN-21 E
1020 0.077 0.62 @
2050 0.068 0.71 S
3600 0.066 0.61 S_ - -
5400 0.082 0.65 10 7
7200 0.071 0.75
] 5 10 15 20 25 30 35
1020 0.066 0.67 37 Epochs
By. correlative analysis of the features’ calculations, ; Gradient = 000089127, at epoch 37
especially for texture-based features, M, Co, E, C, IM and T2, 10 ' ' ' ‘ '
T4, T6, T7, T15 were selected as a vector input for the SCG- _
BPNN by correlative analysis, where the results are illustrated s 2
in Fig. 4. The results establish the superiority of the proposed g
features with the SCG-BPNN classifier. Additionally, the
prediction result is very important for NN models. The learning 104
process in fact is to adjust system parameters to make the results
more and more accurate, which are the accuracy rate, is to 5 __Validation Checks = 6, at epoch 37
accumulate the "loss" of each sample, and then calculate the .
average value [24-25]. =4l .
A comparative study was performed with other related %;a ¢ ¢ ¢
studies using the BPNN, CNN, BPHNN, and fuzzy NN with the 27 ¢ ¢ ¢ 0
proposed methods SGC-BPNN-10 and SGC-BPNN-21. All N UUUAITRUURIRATRIUTR IR
features are reported in Table 5 showing the Predictive o s 10 15 20 25 30 3
37 Epochs

Accuracy Rate (PAR), Cross Entropy (CE) and Mean Squared
Error (MSE). The different algorithms listed in TABLE V were
used for the same dataset from Section 3.2. It is obvious that the
proposed method SCG-BPNN-10 has higher PAR with low
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Fig. 3. Performance by epochs, training state, error histogram
and receiver operating characteristic with all features.

Best Validation Performance is 0.11686 at epoch 5
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Fig. 4. Performance by epochs, training state, error histogram
and receiver operating characteristic with ten features after
correlative analysis.

IVV. CONCLUSIONS

Pathologists primarily use microscopic methods to
qualitatively analyze microscopic images of cancer cells by
using visual methods. The use of empirical knowledge to
diagnose people's health has a significant role in clinical
pathology. However, such methods are subjective and consume
significant time. Furthermore, the captured microscopic images
may be blurred, noisy, have poor contrast, unclear boundary,
and human visual fatigue caused by long-term reading. These
drawbacks will affect the accuracy of diagnostic analysis and
judgment. With the rapid development of computer technology
and the maturity of image graphics processing technology, the
requirements for detecting objectivity are getting higher and
higher, and computer image processing and analysis technology
plays an increasingly important role in clinical diagnosis and

treatment. The traditional method is to explore the
classification, cell counting and texture analysis of
precancerous lesions, pathology image retrieval and



management, visualization surgery and reconstruction of
human body models. This paper diagnoses diseases by
identifying and analyzing microscopic images of diseased cells
and can accurately identify and classify microscopic images
[26]. The results are as follows:

(1) Realizing the automatic classification of microscopic

images of Schistosoma mansoni

granuloma using Al

technology,

(2) Texture features such as CGCM and GGCM are
calculated, and the SCG-BPNN based network training has
been verified.

(3) Through cross entropy evaluation, Sigmod input and ten
hidden layer network, the training results show that our SCG-
BPNN-10 has a high recognition rate with texture features.
Compared with BPNN, back-propagation BPHNN and CNN,
the proposed method also has higher accuracy.

In the future, insufficient training data, the design of neural
network structures, and the definition of loss functions will all
be considered.
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