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Abstract— Network studies of brain connectivity have 

demonstrated that the highly connected area, or hub, is a vital 

feature of human functional and structural brain organization. 

Hubs identify which cognitive region plays an important role in 

each task. In addition, a complex visuomotor learning skill 

causes specific changes in activation across brain regions. 

Accordingly, this study utilizes the hub as a feature to map the 

visuomotor learning tasks and their dynamic functional 

connectivity (dFC). The electroencephalogram (EEG) data 

recorded under three different behavior conditions were 

investigated: motion only (MO), vision only (VO), and tracking 

(Tra) conditions. Here, we used the phase locking value (PLV) 

with a sliding window (50 ms) to calculate the dFC at four 

distinct frequency bands: 8-12 Hz (alpha), 18-22 Hz (low beta), 

26-30 Hz (high beta) and 38-42 Hz (gamma), and the eigenvector 

centrality to evaluate the hub identification. The Gaussian 

Mixture Model (GMM) was applied to investigate the dFC 

patterns. The results showed that the dFC patterns with hub 

feature represent the characteristic of brain at visuomotor 

coordination behavior.  

Keywords— EEG, visuomotor learning, dynamic functional 

connectivity, eigenvector centrality. 

I. INTRODUCTION 

Recently, there are many studies considering dynamic 

functional connectivity (dFC) as a promising subfield [1] [2] 

[3] [4] [5]. Brain functional connectivity undergoes dynamics 

changes from the awake [6] to the unconscious.  Although 

many studies are demonstrating the dynamic functional 

connectivity in consciousness,  few studies have investigated 

changes in anticipatory mechanisms measured by both 

visuomotor coordination and EEG functional connectivity 

during time paradigms of modular learning [7].  This study 

examined the correlation between dynamic functional 

connectivity and visuomotor coordination behavior.  

Furthermore, we identified which brain areas were 

involved in visuomotor coordination. It defined the sensory, 

motor, and visual regions as the regions of interest (ROIs). 

This study differs from other EEG research in that we used 

the feature named “brain hub”, which was characterized by 

its high degree of connectivity to other regions and its central 

placement in the network [8]. A hub is a new approach to the 

identification and classification of putative hub regions in 

brain networks base on multiple network structural 

embedding of such areas and their functional roles. In terms 

of identification of hub nodes, there are several variations of 

centrality metrics. In this work, we chose to apply 

eigenvector centrality (EVC) because it incorporates the 

entire graph structure in determining the relative importance 

of each node in the network [9] [10] [11]. We used a hub as 

a feature for dynamic spatial patterns, or state, classification.  

The dFC states have been found across time and subjects by 

the unsupervised machine learning technique - Gaussian 

Mixture Model classification.  

In this study, we address this problem by utilizing an 

existing dataset from Reading University with simultaneous 

EEG signal. The data were collected both during motion only, 

vision only and tracking trials on a small sample of 10 

subjects. By far, the most common strategy to study dFC 

based on computing the phase locking value between each 

pair of brain regions over window times. The reoccurring 

dFC states have been found across time and subjects by 

employing GMM clustering algorithm. This study has two 

primary purposes: (1) to understand the dynamic transition of 

the EEG functional connectivity related to the difference 

experiment behavior tasks and determine which state are the 

most contribution for the difference; (2) to explore the 

cortical region of hub which play an essential role in the 

organization of the overall networks in these tasks.  

II. MATERIAL  

A. Participants and experiment protocol 

Twelve right-hand and healthy subjects took part in this 
experiment (4 males, 8 females, all right-handed, between 19 
and 24 years old). All of subjects were students at the 
University of Reading. The experiment was approved by the 
Ethic Committee of School of Systems Engineering, 
University of Reading. Behavioral tasks included three 
experiment conditions, which are motion only condition 
(MO), vision only condition (VO) and tracking condition 
(Tra). The participants sat comfortably in an office chair and 
took in a total of 60 trials for three conditions. The trial time 
was 40 seconds, while there were 10 seconds between each 
trial. Participants first performed Tra, then MO, and finally 
VO trials. In Tra condition, participants were asked to move 
the track a red-dot target, which moved in a circular trajectory 
with a constant speed, with a tracer. In the MO condition, 
participants were asked to move the tracer in a circular path at 
an arbitrary but constant speed while the target not shown. In 
the VO condition, participants did not take control of the 
tracer. Recorded position of the target and tracer form 
previous tracking trials would be played on the screen, with 
both tracer and target are shown. 
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B. ROIs selection 

This study defined four ROIs according to Broadman’s 
area: primary motor cortex (FC3, FC1, C5, C3, C1, CP3 are 
ROI_1 ), pre-parietal somatosensory association cortex (C3, 
C1, Cz, CP1, CPz are ROI_2), superior parietal 
somatosensory association cortex (CP3, CP1, P3, P1, Pz are 
ROI_3), and primary visual cortex (PO3, POz, PO4, Oz are 
ROI_4). 

C. EEG data preprocessing 

EEG data were processed by applying MATLAB and 

EEGLAB (Swartz Center for Computational Neuroscience, 

La Jolla, CA). First, the data were band-pass filtered (0.1-50 

Hz, EEGLAB embedded FIR filter), then the filtered time 

series were cut into trials. After that, an independent 

component analysis (ICA) was performed on the data to 

remove eye blinking and other artifacts. The whole trial 

would be rejected if more than 50% of ICs were recognized 

as artifacts. After ICA analysis step, the data were processed 

with the Laplacian operator through CSD toolbox. This 

processing is aimed to avoid the phase synchronization 

resulted from both electrodes sharing a common source.    

III. METHODS 

Most human actions require the integration of numerous 

functional areas widely distributed over the brain. The 

underlying mechanism behind this large scale network is 

generally described by the term functional connectivity. The 

functional connectivity is studied by considering the 

similarities between the time series or activation maps. The 

time resolution of EEG is high enough to access a dynamic 

of brain network activity. Various measures of 

synchronization, such as synchronization likelihood and 

phase synchronization, had been proposed to detect the 

general interdependencies. Synchronization is also believed 

to be a central mechanism behind the interaction between 

brain areas [12]. In this study, the phase synchronization 

between recorded channels in defined frequency, namely 

frequency range in alpha (8-12 Hz), low beta (18-22 Hz), high 

beta (26-30 Hz) and gamma (38-42 Hz) bands. Employed 

synchrony, called phase locking value (PLV), was introduced 

by [13].     

A. Brain dynamic functional connectivity using PLV 

A functional connectivity metric known as PLV depends 
on the instantaneous phase of signals. The assumption is that 
if two brain regions are functional connected, the difference 
between the instantaneous phase of the signals from these 
regions should remain or less constant. In this study, the used 
phase locking index is the phase locking value, which is 
calculated by the equation below. 
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Where 𝜃(𝑓, 𝑡) is the instantaneous phase of two signals 
and δ is the time window where each PLV are calculated. 
There is no phase locking if the PLV varies from 0. Versus, 
the phases are completely locked when PLV is equal to 1. To 
build a fully connected graph, a threshold 𝜃 (highest 10%) to 
remove quick connections of the functional connectivity 
metric [14]. It was used to threshold the correlation matrix into 

the adjacency matrix 𝐴 = (𝑎𝑖𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑁  of a metric 

PLV: 

 𝑎𝑖𝑗 = {
1 , 𝑃𝐿𝑉𝑖𝑗 ≥ 𝜃

0 , 𝑃𝐿𝑉𝑖𝑗 < 𝜃
 () 

B. Graph theory 

A graph is a mathematical object that can be used to 

represent networks, especially brain network. The channels 

are the graph nodes, and edges represent the functional 

connectivity between those connected channels. In this study, 

we describe a measure that detects aspects of global brain 

connectivity and quantifies essential of an individual brain 

region. To examine the dynamic functional connectivity, 

PLV was calculated by using sliding time window 50 ms.  

 
 

Fig. 1. Schematic depicting computiation of the dFC states. First, the dFC matrices of individual subject are computed 
on windowed portions by PLV. Then, dFC states of all subjects are classified using GMM algorithm with EVC feature.   

 



Furthermore, the network analysis of brain connectivity 
was used to identify sets of regions that are critically important 
for enabling efficient neuronal signaling and communication. 
The EVC specify specifically weights nodes based on their 
degree of connection within the network. It does so by 
counting both the number and quality of links so that a node 
with few connections to some high-rank other nodes may 
outrank one with a larger number of mediocre contact [15]. 
Google’s PageRank algorithm is a variant of EVC [16]. The 
EVC was introduced by Bonacich [17]. This is simply the first 
eigenvector of the adjacency matrix 𝐴, which corresponds to 
the largest eigenvalue 𝜆1: 

 𝐸𝑉𝐶(𝑖) =
1

𝜆1
𝐴𝜇1 =

1

𝜆1
∑ 𝑎𝑖𝑗𝜇1(𝑗)
𝑁
𝑗=1  () 

 These produces estabilish undirected and weighted 

networks — the nodes defined as ‘hub’ whose EVCs are 

above the thresholds. The mean EVC thresholds across 

subjects were calculated with the highest 10% [18]. We then 

applied the Gaussian Mixture Model to identify reoccurring 

connectivity pattern, which we defined as dynamic functional 

connectivity states (dFC states) (Fig. 1). Because dFC states 

reoccur across time and the subjects, the clustering algorithm 

was applied to the set of all subjects in three behavioral tasks 

(𝑡𝑎𝑠𝑘𝑠 × 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 × 𝑤𝑖𝑛𝑑𝑜𝑤𝑠). The number of states was 

determined automatically by using the variational Bayesian 

model selection [19]. We repeated the clustering algorithm 

50 times to increase the chances of escaping the local 

minima.  

In addition to describing the connectivity differences that 

distinguish dFC states, we also examine their occurrence as a 

function of time and the transition between them. The dFC 

states have been investigated in a variety of studies, which 

have shown that the dFC states are associated with ongoing 

cognition, consciousness level, flexible behavior. A current 

new perspective suggests that the abundance of the brain’s 

dynamic repertoire facilitates novel cognition and behaviors, 

making it possible to adapt to external task demands rapidly 

and efficiently [20]. The dFC states transitions resulting in 

the abundant shape of brain connections that are required to 

assist in behavior task performance. Therefore, we 

hypothesized that the activity of brains might have a different 

transition frequency of dFC states for different task 

performance. Differences in the reoccurrence time of each 

dFC state for every behavior task was examined using Chi-

square tests. 

IV. RESULT 

A. The behavior tasks related to brain functional network 

The classification was trained with the EVC feature of all 

subjects and all behavior task conditions. The dynamic 

functional connectivity networks were pooled together and 

clustered into 20 clusters as 20 states. For each subject, the 

property of all dFCs was examined: the reoccurrence times of 

all the dFC states. We used Chi-square tests revealed 

significant differences in the reoccurrence times of the states 

between three conditions in four frequency band. From the 

result in Table I, the reoccurrence time of dFC states and 

behavior tasks were statistically significantly associated with 

 

 
 

Fig. 2. There are 20 dFC patterns of classifacation result. 

TABLE I. CHI SQUARE TEST RESULT 

Frequency band 𝝌𝟐(𝒅𝒇 = 𝟑𝟖) 𝒑 − 𝒗𝒂𝒍𝒖𝒆 

8-12Hz 482.85 < 0.01 

18-22Hz 298.09 < 0.01 

26-30Hz 256.81 < 0.01 

38-42Hz 646.08 < 0.01 

 



the level of significant 1% (𝜒2 = 482.85  for alpha, 𝜒2 =
298.09  for low-beta, 𝜒2 = 256.81  for high-beta, 𝜒2 =
646.08 for gamma, all of 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.01).  

Another approach, based on the Chi-square contribution, 

tell us which dFC states contribute most to a particular 

outcome for each frequency band. The result was shown in 

Fig. 2 and Table II. These cells of Table II contributed more 

50% to the total Chi-square score and thus account for most 

of difference between three conditions. In alpha wave band, 

MO and Tra had same states 8 and 4. In these states, the alpha 

synchronization almost occurs in the right hemisphere. While 

with VO, alpha synchronization occured in the left at the 

primary motor cortex, somatosensory association cortex, and 

visual cortex. In beta, MO and Tra continuously share the 

state 11, while VO and Tra have the same state 7 in a high-

beta. In gamma band, three conditions were utterly different. 

State 14 is essential with VO condition because it appears in 

three frequency bands.  

B. Important network regions defined by hubs 

To have a better understanding of the characteristics of the 

dFC, we identified as “hub” the node with 10% highest EVC 

for each state. The hub, which plays a vital role in the 

organization of the overall networks [21], is the node with 

EVC above or below a threshold computed by the statistical 

quartile for each behavior tasks. Fig. 3 shows the hub 

structures of 20 dFC states. To identify cortical regions of the 

hub, we used Monte Carlo analysis to calculate the 

overlapping area of the hub for each state. Finally, we 

assessed whether the hub patterns within the ROIs could be 

characterized the task conditions. To test the appearance of 

hubs on ROIs, we used the F-test across the subjects, and the 

result was shown in Table III The overlapping regions were 

high on ROI_1 at all three task conditions. The p-value for 

the test of hubs appearance was less than the level of 

significant 5%.  There were the same hubs in the ROI_3 at 

motion task and vision task at the high-beta. Hubs did not 

appear in ROI_4 at all tasks.  The difference is in the ROI_2. 

When vision conditions only had the hubs in an alpha, others 

condition had the hubs in three wave bands, low and high 

beta, gamma for motion condition and alpha, low beta, 

gamma for tracking condition. 

V. DISCUSSION  

Currently, there are many studies to examine how 

differences in dFC between different contexts relate to 

cognitive demands and behavioral performance [1] [22] [23]. 

Our analysis of dynamic functional connectivity follows 

these ideas. In this study, we employed a visuomotor 

coordination behavior approach to analyze the brain dynamic 

functional connectivity. EEG data of three behavior tasks 

which had similar and different characteristics were used. 

The MO had the same motion as Tra and participant received 

the same sensory feedback as they were touching the haptic 

device. However, there were not any target on display; the 

participants did not have the visual feedback, versus from 

VO. Tra was the combination of MO and VO. Hub 

represented for the channels which had high synchronization. 

TABLE II. THE STATES HAVE THE CONTRIBUTION DIFFERENCE OVER 50% FOR EVERY CONDITION TASKS AND FREQUENCY BAND. 

 8-12Hz 18-22Hz 26-30Hz 38-42Hz 

MO S8 (12.08%), S4 (10.79%), 

S11(6.56%) 

S11(8.48%), S12 (7.36%),  

S4 (6.31%), S16 (5.49%) 

S2 (5.38%), S11(4.28%) S6 (11.80%), S15 (6.93%), S4 (5.12%), 

S18 (4.46%), S3 (4.18%) 

VO S12 (6.73%) S14 (5.84%), S12 (5.71%) S14 (5.99%), S7 (5.99%) S14 (5.19%), S6 (4.48%) 

Tra S4 (7.86%), S8 (6.33%) S11 (7.57%), S7 (4.86%) S2(11.05%), S7 (6.19%), 
S3(5.37%), S11 (5.25%) 

S8 (4.90%) 

 

 
Fig. 3. The Chi-square contribution differene result for 4 frequency band: alpha, low-beta, high-beta and gamma. 

Blue color represented for contribution ratio. 

 

 



Our result suggests that the hub of dynamic functional 

connectivity patterns might remain the similarities and the 

differences of characteristics in visuomotor coordination 

behaviors. The most central brain regions are in the primary 

motor cortex. Synchronized activity in the primary cortex is 

modulated in the alpha, beta, and gamma frequency bands 

during various stages of movement planning and execution 

[24]. A significant difference is in superior parietal 

somatosensory association cortex. MO and Tra have the hub 

in low-beta and gamma wave band at this region. While VO 

and Tra have the hub in alpha wave band.  A central role for 

pre-parietal flexible hubs in cognitive control of task 

demands [25]. That results show that the dFC patterns with 

hub feature represent the characteristic of brain at visuomotor 

coordination behavior. 
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