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Abstract— Network studies of brain connectivity have
demonstrated that the highly connected area, or hub, is a vital
feature of human functional and structural brain organization.
Hubs identify which cognitive region plays an important role in
each task. In addition, a complex visuomotor learning skill
causes specific changes in activation across brain regions.
Accordingly, this study utilizes the hub as a feature to map the
visuomotor learning tasks and their dynamic functional
connectivity (dFC). The electroencephalogram (EEG) data
recorded under three different behavior conditions were
investigated: motion only (MO), vision only (VO), and tracking
(Tra) conditions. Here, we used the phase locking value (PLV)
with a sliding window (50 ms) to calculate the dFC at four
distinct frequency bands: 8-12 Hz (alpha), 18-22 Hz (low beta),
26-30 Hz (high beta) and 38-42 Hz (gamma), and the eigenvector
centrality to evaluate the hub identification. The Gaussian
Mixture Model (GMM) was applied to investigate the dFC
patterns. The results showed that the dFC patterns with hub
feature represent the characteristic of brain at visuomotor
coordination behavior.

Keywords— EEG, visuomotor learning, dynamic functional
connectivity, eigenvector centrality.

l. INTRODUCTION

Recently, there are many studies considering dynamic
functional connectivity (dFC) as a promising subfield [1] [2]
[3] [4] [5]. Brain functional connectivity undergoes dynamics
changes from the awake [6] to the unconscious. Although
many studies are demonstrating the dynamic functional
connectivity in consciousness, few studies have investigated
changes in anticipatory mechanisms measured by both
visuomotor coordination and EEG functional connectivity
during time paradigms of modular learning [7]. This study
examined the correlation between dynamic functional
connectivity and visuomotor coordination behavior.

Furthermore, we identified which brain areas were
involved in visuomotor coordination. It defined the sensory,
motor, and visual regions as the regions of interest (ROIS).
This study differs from other EEG research in that we used
the feature named “brain hub”, which was characterized by
its high degree of connectivity to other regions and its central
placement in the network [8]. A hub is a new approach to the
identification and classification of putative hub regions in
brain networks base on multiple network structural
embedding of such areas and their functional roles. In terms
of identification of hub nodes, there are several variations of
centrality metrics. In this work, we chose to apply
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eigenvector centrality (EVC) because it incorporates the
entire graph structure in determining the relative importance
of each node in the network [9] [10] [11]. We used a hub as
a feature for dynamic spatial patterns, or state, classification.
The dFC states have been found across time and subjects by
the unsupervised machine learning technique - Gaussian
Mixture Model classification.

In this study, we address this problem by utilizing an
existing dataset from Reading University with simultaneous
EEG signal. The data were collected both during motion only,
vision only and tracking trials on a small sample of 10
subjects. By far, the most common strategy to study dFC
based on computing the phase locking value between each
pair of brain regions over window times. The reoccurring
dFC states have been found across time and subjects by
employing GMM clustering algorithm. This study has two
primary purposes: (1) to understand the dynamic transition of
the EEG functional connectivity related to the difference
experiment behavior tasks and determine which state are the
most contribution for the difference; (2) to explore the
cortical region of hub which play an essential role in the
organization of the overall networks in these tasks.

1. MATERIAL

A. Participants and experiment protocol

Twelve right-hand and healthy subjects took part in this
experiment (4 males, 8 females, all right-handed, between 19
and 24 years old). All of subjects were students at the
University of Reading. The experiment was approved by the
Ethic Committee of School of Systems Engineering,
University of Reading. Behavioral tasks included three
experiment conditions, which are motion only condition
(MO), vision only condition (VO) and tracking condition
(Tra). The participants sat comfortably in an office chair and
took in a total of 60 trials for three conditions. The trial time
was 40 seconds, while there were 10 seconds between each
trial. Participants first performed Tra, then MO, and finally
VO trials. In Tra condition, participants were asked to move
the track a red-dot target, which moved in a circular trajectory
with a constant speed, with a tracer. In the MO condition,
participants were asked to move the tracer in a circular path at
an arbitrary but constant speed while the target not shown. In
the VO condition, participants did not take control of the
tracer. Recorded position of the target and tracer form
previous tracking trials would be played on the screen, with
both tracer and target are shown.
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B. ROIs selection

This study defined four ROIs according to Broadman’s
area: primary motor cortex (FC3, FC1, C5, C3, C1, CP3 are
ROI_1), pre-parietal somatosensory association cortex (C3,
Cl, Cz, CPl, CPz are ROI_2), superior parietal
somatosensory association cortex (CP3, CP1, P3, P1, Pz are
ROI_3), and primary visual cortex (PO3, POz, PO4, Oz are
ROI_4).

C. EEG data preprocessing

EEG data were processed by applying MATLAB and
EEGLAB (Swartz Center for Computational Neuroscience,
La Jolla, CA). First, the data were band-pass filtered (0.1-50
Hz, EEGLAB embedded FIR filter), then the filtered time
series were cut into trials. After that, an independent
component analysis (ICA) was performed on the data to
remove eye blinking and other artifacts. The whole trial
would be rejected if more than 50% of ICs were recognized
as artifacts. After ICA analysis step, the data were processed
with the Laplacian operator through CSD toolbox. This
processing is aimed to avoid the phase synchronization
resulted from both electrodes sharing a common source.

I1l. METHODS

Most human actions require the integration of numerous
functional areas widely distributed over the brain. The
underlying mechanism behind this large scale network is
generally described by the term functional connectivity. The
functional connectivity is studied by considering the
similarities between the time series or activation maps. The
time resolution of EEG is high enough to access a dynamic
of Dbrain network activity. Various measures of
synchronization, such as synchronization likelihood and
phase synchronization, had been proposed to detect the
general interdependencies. Synchronization is also believed
to be a central mechanism behind the interaction between
brain areas [12]. In this study, the phase synchronization
between recorded channels in defined frequency, namely
frequency range in alpha (8-12 Hz), low beta (18-22 Hz), high
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beta (26-30 Hz) and gamma (38-42 Hz) bands. Employed
synchrony, called phase locking value (PLV), was introduced
by [13].

A. Brain dynamic functional connectivity using PLV

A functional connectivity metric known as PLV depends
on the instantaneous phase of signals. The assumption is that
if two brain regions are functional connected, the difference
between the instantaneous phase of the signals from these
regions should remain or less constant. In this study, the used
phase locking index is the phase locking value, which is
calculated by the equation below.

PLV(f,0) = |5 ¢ explio(f, 1)} (1)

Where 6(f,t) is the instantaneous phase of two signals
and 8 is the time window where each PLV are calculated.
There is no phase locking if the PLV varies from 0. Versus,
the phases are completely locked when PLV is equal to 1. To
build a fully connected graph, a threshold 6 (highest 10%) to
remove quick connections of the functional connectivity
metric [14]. It was used to threshold the correlation matrix into
the adjacency matrix 4 = (a;;),1<1i,j <N of a metric
PLV:

(1 ,PLV;>8 ,
“U‘{o ,PLV; < 6 2)

B. Graph theory

A graph is a mathematical object that can be used to
represent networks, especially brain network. The channels
are the graph nodes, and edges represent the functional
connectivity between those connected channels. In this study,
we describe a measure that detects aspects of global brain
connectivity and quantifies essential of an individual brain
region. To examine the dynamic functional connectivity,
PLV was calculated by using sliding time window 50 ms.
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Fig. 1. Schematic depicting computiation of the dFC states. First, the dFC matrices of individual subject are computed
on windowed portions by PLV. Then, dFC states of all subjects are classified using GMM algorithm with EVC feature.



Furthermore, the network analysis of brain connectivity
was used to identify sets of regions that are critically important
for enabling efficient neuronal signaling and communication.
The EVC specify specifically weights nodes based on their
degree of connection within the network. It does so by
counting both the number and quality of links so that a node
with few connections to some high-rank other nodes may
outrank one with a larger number of mediocre contact [15].
Google’s PageRank algorithm is a variant of EVC [16]. The
EVC was introduced by Bonacich [17]. This is simply the first
eigenvector of the adjacency matrix A, which corresponds to
the largest eigenvalue 4;:
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These produces estabilish undirected and weighted
networks — the nodes defined as ‘hub’ whose EVCs are
above the thresholds. The mean EVC thresholds across
subjects were calculated with the highest 10% [18]. We then
applied the Gaussian Mixture Model to identify reoccurring
connectivity pattern, which we defined as dynamic functional
connectivity states (dFC states) (Fig. 1). Because dFC states
reoccur across time and the subjects, the clustering algorithm
was applied to the set of all subjects in three behavioral tasks
(tasks X subjects X windows). The number of states was
determined automatically by using the variational Bayesian
model selection [19]. We repeated the clustering algorithm
50 times to increase the chances of escaping the local
minima.

In addition to describing the connectivity differences that
distinguish dFC states, we also examine their occurrence as a
function of time and the transition between them. The dFC
states have been investigated in a variety of studies, which
have shown that the dFC states are associated with ongoing
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cognition, consciousness level, flexible behavior. A current
new perspective suggests that the abundance of the brain’s
dynamic repertoire facilitates novel cognition and behaviors,
making it possible to adapt to external task demands rapidly
and efficiently [20]. The dFC states transitions resulting in
the abundant shape of brain connections that are required to
assist in behavior task performance. Therefore, we
hypothesized that the activity of brains might have a different
transition frequency of dFC states for different task
performance. Differences in the reoccurrence time of each
dFC state for every behavior task was examined using Chi-
square tests.

IV. RESULT

A. The behavior tasks related to brain functional network

The classification was trained with the EVC feature of all
subjects and all behavior task conditions. The dynamic
functional connectivity networks were pooled together and
clustered into 20 clusters as 20 states. For each subject, the
property of all dFCs was examined: the reoccurrence times of
all the dFC states. We used Chi-square tests revealed
significant differences in the reoccurrence times of the states
between three conditions in four frequency band. From the
result in Table I, the reoccurrence time of dFC states and
behavior tasks were statistically significantly associated with

TABLE I. CHI SQUARE TEST RESULT

Frequency band x*(df = 38) p — value
8-12Hz 482.85 <0.01
18-22Hz 298.09 <0.01
26-30Hz 256.81 <0.01

38-42Hz 646.08 <0.01

(10)

(15)

Fig. 2. There are 20 dFC patterns of classifacation result.
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Fig. 3. The Chi-square contribution differene result for 4 frequency band: alpha, low-beta, high-beta and gamma.

Blue color represented for contribution ratio.

the level of significant 1% (y? = 482.85 for alpha, 2 =
298.09 for low-beta, y2 = 256.81 for high-beta, x?
646.08 for gamma, all of p — value < 0.01).

Another approach, based on the Chi-square contribution,
tell us which dFC states contribute most to a particular
outcome for each frequency band. The result was shown in
Fig. 2 and Table 1I. These cells of Table Il contributed more
50% to the total Chi-square score and thus account for most
of difference between three conditions. In alpha wave band,
MO and Tra had same states 8 and 4. In these states, the alpha
synchronization almost occurs in the right hemisphere. While
with VO, alpha synchronization occured in the left at the
primary motor cortex, somatosensory association cortex, and
visual cortex. In beta, MO and Tra continuously share the
state 11, while VO and Tra have the same state 7 in a high-
beta. In gamma band, three conditions were utterly different.
State 14 is essential with VO condition because it appears in
three frequency bands.

B. Important network regions defined by hubs

To have a better understanding of the characteristics of the
dFC, we identified as “hub” the node with 10% highest EVC
for each state. The hub, which plays a vital role in the
organization of the overall networks [21], is the node with
EVC above or below a threshold computed by the statistical
quartile for each behavior tasks. Fig. 3 shows the hub
structures of 20 dFC states. To identify cortical regions of the
hub, we used Monte Carlo analysis to calculate the
overlapping area of the hub for each state. Finally, we

assessed whether the hub patterns within the ROIs could be
characterized the task conditions. To test the appearance of
hubs on ROIs, we used the F-test across the subjects, and the
result was shown in Table 111 The overlapping regions were
high on ROI_1 at all three task conditions. The p-value for
the test of hubs appearance was less than the level of
significant 5%. There were the same hubs in the ROI_3 at
motion task and vision task at the high-beta. Hubs did not
appear in ROI_4 at all tasks. The difference is in the ROI_2.
When vision conditions only had the hubs in an alpha, others
condition had the hubs in three wave bands, low and high
beta, gamma for motion condition and alpha, low beta,
gamma for tracking condition.

V. DISCUSSION

Currently, there are many studies to examine how
differences in dFC between different contexts relate to
cognitive demands and behavioral performance [1] [22] [23].
Our analysis of dynamic functional connectivity follows
these ideas. In this study, we employed a visuomotor
coordination behavior approach to analyze the brain dynamic
functional connectivity. EEG data of three behavior tasks
which had similar and different characteristics were used.
The MO had the same motion as Tra and participant received
the same sensory feedback as they were touching the haptic
device. However, there were not any target on display; the
participants did not have the visual feedback, versus from
VO. Tra was the combination of MO and VO. Hub
represented for the channels which had high synchronization.

TABLE Il. THE STATES HAVE THE CONTRIBUTION DIFFERENCE OVER 50% FOR EVERY CONDITION TASKS AND FREQUENCY BAND.

8-12Hz 18-22Hz 26-30Hz 38-42Hz
MO S8 (12.08%), 54 (10.79%), S11(8.48%), S12 (7.36%), S2 (5.38%), S11(4.28%) S6 (11.80%), S15 (6.93%), S4 (5.12%),
511(6.56%) S4 (6.31%), S16 (5.49%) S18 (4.46%), S3 (4.18%)

VO 512 (6.73%) S14 (5.84%), S12 (5.71%)

514 (5.99%), S7 (5.99%)

S14 (5.19%), S6 (4.48%)

Tra  S4 (7.86%), S8 (6.33%) S11 (7.57%), ST (4.86%)

S2(11.05%), S7 (6.19%),
S3(5.37%), S11 (5.25%)

S8 (4.90%)




TABLE Ill. THE P-VALUE FOR APPEARANCE EVC HUBS BY USING F TEST IN EACH FREQUENCY BAND AND THREE BEHAVIOR TASKS.
THERE IS HUB AT THE REGION WHICH HAS P-VALUE SMALLER THAN 0.1.

MOTION ONLY (MO)

VISION ONLY (VO)

TRACKING (Tra)

ROI1 ROI2 ROIL3 ROI4 ROI1 ROIL2 ROIL3 ROI4 ROI1 ROI2 ROIL3 ROI4
8-12Hz 0.0755 01171  0.4129 0.4966 | 0.0064 0.0079  0.1542 0.7057 | 0.0425 0.0532  0.2853 0.4455
18-22Hz  0.0163  0.0810  0.1209 0.7057 | 0.0092 0.1767  0.4244 0.6538 | 0.0067 0.0028  0.4577 0.8137
26-30Hz 00329  0.0769  0.0256 0.4456 | 00014 01214 0.0178 04733 | 0.0020 03258  0.1799 0.9998
38-42Hz 00115 00115  0.2027 0.6849 | 00219 0.2751  0.3308 04810 | 0.0384 00731  0.2427 1

Our result suggests that the hub of dynamic functional
connectivity patterns might remain the similarities and the
differences of characteristics in visuomotor coordination
behaviors. The most central brain regions are in the primary
motor cortex. Synchronized activity in the primary cortex is
modulated in the alpha, beta, and gamma frequency bands
during various stages of movement planning and execution
[24]. A significant difference is in superior parietal
somatosensory association cortex. MO and Tra have the hub
in low-beta and gamma wave band at this region. While VO
and Tra have the hub in alpha wave band. A central role for
pre-parietal flexible hubs in cognitive control of task
demands [25]. That results show that the dFC patterns with
hub feature represent the characteristic of brain at visuomotor
coordination behavior.
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