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Abstract— Advanced space-weather forecasting relies on the ability to accurately predict near-Earth solar
wind conditions. For this purpose, physics-based, global numerical models of the solar wind are initialized
with photospheric magnetic field and coronagraph observations, but no further observation constraints are
imposed between the upper corona and Earth orbit. Data assimilation (DA) of the available in situ solar
wind observations into the models could potentially provide additional constraints, improving solar wind
reconstructions, and forecasts. However, in order to effectively combine the model and observations, it is
necessary to quantify the error introduced by assuming point measurements are representative of the model
state. In particular, the range of heliographic latitudes over which in situ solar wind speed measurements
are representative is of primary importance, but particularly difficult to assess from observations alone.
In this study we use 40+ years of observation-driven solar wind model results to assess two related prop-
erties: the latitudinal representivity error introduced by assuming the solar wind speed measured at a given
latitude is the same as that at the heliographic equator, and the range of latitudes over which a solar wind
measurement should influence the model state, referred to as the observational localisation. These values
are quantified for future use in solar wind DA schemes as a function of solar cycle phase, measurement
latitude, and error tolerance. In general, we find that in situ solar wind speed measurements near the ecliptic
plane at solar minimum are extremely localised, being similar over only 1° or 2° of latitude. In the uniform
polar fast wind above approximately 40° latitude at solar minimum, the latitudinal representivity error
drops. At solar maximum, the increased variability of the solar wind speed at high latitudes means that
the latitudinal representivity error increases at the poles, though becomes greater in the ecliptic, as long
as moderate speed errors can be tolerated. The heliospheric magnetic field and solar wind density and
temperature show very similar behaviour.

Keywords: Solar wind / space weather forecasting / data assimilation

1 Introduction

Near-Earth solar wind conditions are routinely forecast for
several days ahead on the basis of photospheric magnetic field
observations (e.g., MacNeice et al., 2018). Such forecast
schemes typically involve two coupled models; a steady-state
coronal model (e.g., Linker et al., 1999; Arge et al., 2003) that
covers the photosphere to approximately 20 solar radii (Ry),
and a heliospheric model (e.g., Riley et al., 2001; Odstrcil,
2003; Toth et al., 2005; Pomoell & Poedts, 2018) that spans
approximately 20 R, to at least 215 R, (1 AU). Solar wind
speed at the heliospheric inner-boundary is derived from
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imperfect empirical relations to the coronal magnetic field
configuration and consequently introduces a large degree of
uncertainty (Arge et al., 2003; McGregor et al., 2011; Riley
etal., 2015). Transient solar wind structures representing coronal
mass ejections can be characterised using coronagraph observa-
tions and used to modify the inner boundary conditions to the
heliospheric models (Zhao et al., 2002; Mays et al., 2015). But
beyond this distance, no further observational constraints are
placed on the heliospheric models, i.e. they are entirely “free
running” from 20 R, to 215 R,

For both space-weather forecasting and reconstruction of
past heliospheric conditions, it is desirable to constrain
heliospheric models using all available observations. Data
assimilation (DA) is the mathematically rigorous process of
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combining models and observations, taking account of their
individual uncertainties (Kalnay, 2002; Asch et al., 2016). This
methodology has long been used in atmospheric and oceanic
sciences (Sasaki, 1970; Ghil & Malanotte-Rizzoli, 1991; Rabier,
2005) and has more recently been adopted in relatively data-rich
areas of space physics (Bust & Mitchell, 2008; Hickmann et al.,
2015; Glauert et al., 2018; Temmer et al., 2018; Aseev &
Shprits, 2019; Elvidge & Angling, 2019). In the heliosphere,
we have recently demonstrated assimilation of in situ solar wind
observations (Lang et al., 2017; Lang & Owens, 2019), though
the same methods should be broadly applicable to other remote
observing techniques in the future (e.g., Manoharan, 2012;
Barnard et al., 2019). In order to accommodate in situ measure-
ments into the model state, it is necessary to know the spatial
domain over which measurements are representative and the
error introduced by any spatial mismatch between model and
measurement point (Waller et al., 2014; Janji et al., 2018).
A stationary spacecraft will sample all solar longitudes over a
complete solar rotation, which is equivalent to sampling all lon-
gitudes at a single time if the solar wind is assumed to be in a
quasi-steady state (e.g., Kahler et al., 2016). This assumption is
increasing invalid as solar activity, and the dynamic nature of the
corona, increases. In the radial direction, observations can be
mapped back or forwards by considering momentum exchange
between solar wind streams. Thus under the steady-state assump-
tion, observations can be adequately mapped in longitude and
radial distance. The difficulty is knowing the heliographic
latitude range over which a measurement is representative. For
DA within a three-dimensional solar wind model (e.g., Lang
et al., 2017), this is essential information in terms of the “local-
isation”’; the volume of the model state that is relevant to — and
thus should be influenced by — measurements from a given point
in space. The assumed latitudinal range of influence can have a
large effect on the reconstructed solar wind, even over the small
heliographic latitude ranges sampled by in-ecliptic spacecraft
(Owens et al., 2019b). For DA with a two-dimensional solar
wind model (e.g., Lang & Owens, 2019), a latitudinal represen-
tivity error is introduced by using in situ measurements from
latitudes away from that being modelled (typically the helio-
graphic equatorial plane). This, along with the inherent measure-
ment error (small for in situ observations) forms part of the
“observational error” in DA.

Computing these solar wind latitudinal representivity
properties from current or planned observations is difficult, if
not impossible; there are no pairs of observations at the same
radial distances and longitudes, but at a range of latitudinal
separations. Furthermore, the latitudinal representivity error is
expected to be a strong function of solar activity (e.g., McComas
et al., 2003), requiring any such data to be further stratified.

Recently, we used magnetogram-constrained simulations of
the solar wind to estimate the difference in solar wind speed
encountered at Earth and the L5 position, 60° behind Earth in
its orbit, owing entirely to the small time-varying difference
in latitude (Owens et al., 2019a, hereafter “Paper 1”). While
the latitudinal difference is small, varying from 0° to approxi-
mately 7° over the year, it can lead to sampling significantly
different solar wind streams at the two locations, even under
the perfectly steady-state approximation. This is a result of a
systematic displacement relative to the heliospheric current
sheet (HCS) and the associated solar wind speed structures.

Paper 1 showed that this difference is maximized at solar
minimum and minimized at solar maximum, owing to the
respective latitudinal structuring of the solar wind at those times.
The focus of Paper 1 was on the limitations of L5 observations
to provide a forecast of near-Earth conditions. In this study, we
exploit the same dataset to quantify the latitudinal representivity
properties as a function of latitude and solar activity. While no
data assimilation is performed in this study, it seeks to estimate
properties which are necessary to enable effective solar wind
DA in future studies.

2 Data and methods

We use the same dataset detailed in Paper 1 and Owens
et al. (2017). In summary, it comprises 40+ years of solar wind
simulations from the magnetohydrodynamics algorithm outside
a sphere (MAS) global coronal and heliosphere model (Linker
et al., 1999; Riley et al., 2012) constrained using the observed
photospheric magnetic field. The heliospheric model covers
30-215 R, and has 128, 111, and 140 gridcells in the
azimuthal, meridional, and radial directions. Thus the gridcell
size at 1 AU means the model will not be able to resolve radial
structures below ~10° km and time scales shorter than approx-
imately 1 h. The steady-state approximation of the solar wind
solutions means that the values presented here represent a lower
limit, with transient structures, small-scale turbulence, and
rapidly-evolving large-scale structures providing additional
sources of variability.

Examples of the obtained 1-AU solar wind solutions at solar
minimum and maximum are shown in Figure 1. At solar mini-
mum, solar wind speed is a strong function of latitude. Thus
spacecraft at 0°, 3.5°, and 7° latitude see different solar wind
stream structure. At solar maximum, however, the latitudinal
structure in solar wind speed is much less prevalent. Conse-
quently, spacecraft at 0°, 3.5°, and 7° latitudes would see very
similar solar wind speeds.

We use 1-AU solar wind speed solutions for each
Carrington rotation (CR) between 1625 and 2207 (i.e., February
1975—-August 2018). For each CR, we extract synthetic space-
craft observations between 6 = —90° and 90° latitude in 1° steps.
At each latitude, 0, the CR data are combined into a single
sequence, Vj, spanning the whole 40+ years. Differences
between the speed at latitude 0 and the heliographic equator,
Vo—Vy, are computed on a point-by-point basis, i.e. the differ-
ence is computed at the same longitude and the same time.

The 1975-2018 interval is also further divided into solar
minimum and maximum periods. As in Paper 1, this is done
on the basis of solar cycle phase, defined to be 0 and 1 at con-
current solar minima, rather than a sunspot number threshold, as
the latter would produce different durations of solar minimum
and maximum in small or large sunspot cycles. We define solar
minimum and maximum using solar cycle phase limits of
0.17 and 0.67 of the way through the cycle from solar minimum
(Owens et al., 2011), which both splits the dataset in half and
selects similar sunspot number gradients in the rise and declin-
ing phase of each cycle.

As in Paper 1, we note that the model solar wind solutions do
not necessarily need to provide accurate forecasts in order to
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Fig. 1. Examples of model 1-AU solar wind structure at solar minimum (left) and solar maximum (right). Top: solar wind speed at 1 AU as a
function of latitude and longitude. The yellow curve shows the heliospheric current sheet. Second row: same as top, but a zoom in of 15° about
the heliographic equator. White, red, and black horizontal lines show 0°, 3.5°, and 7° latitude, respectively. Third row: solar wind speed at the
three highlighted latitudes, in the same format. Bottom: the difference in solar wind speed between a given latitude and the equator.

Figure adapted from Owens et al. (2019a).

serve the purposes required by this study (following the philos-
ophy expressed by aphorism that “all models are wrong, but
some models are useful” Box, 1976). We require only that the
model reproduces the solar wind speed structures in a statistical
sense. Specifically, we require accurate representation of the lat-
itudinal width and shape of the slow wind band for the given
phase of the solar cycle. These features determine the propor-
tions and durations of fast/slow wind at a given latitude. The
modelled width of the slow solar wind band has been shown
to provide good agreement with the three Ulysses (Wenzel
et al., 1992; McComas et al., 2003) latitudinal passes under dif-
fering solar activity levels (Jian et al., 2011, 2016; Owens et al.,
2017. The proportions of fast and slow wind seen in the ecliptic
are generally well reproduced in a point-by-point manner
(Owens et al., 2008; Riley et al., 2010; Jian et al., 2015).

More importantly, identification of high-speed streams and
allowance for timing errors — which are not critical to the present
study — demonstrates that the model produces the general solar
wind stream structure near the ecliptic plane (Owens et al.,
2005), particularly once transient solar wind structures are dis-
counted (Owens et al., 2008; Jian et al., 2015, 2016). Of course,
such timing errors are a critical issue for using such models for
forecasting purposes, and it is hoped that the data assimilation of
in situ observations enabled by this study will aid in that regard.

3 Results

The top-left panel of Figure 2 show the distributions of Vj as
a function of 0. Over the whole 1975-2018 interval, there is a
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Fig. 2. Top: the distributions of Vj, the solar wind speed at 1 AU, as a function of heliographic latitude, 0, for 40+ years of model results. The
red line shows the median, the dark-pink shaded region spans the 2575 percentiles of the distribution (i.e., the inter-quartile range), while the
light-pink regions spans 5-95 percentiles of the Vj distribution. Panels, from left to right, show the whole dataset, solar minimum, and solar
maximum periods, respectively. Bottom: the distributions of the difference in solar wind speed at a given latitude to that at the equator,

i.e. Vo—Vpy, as a function of 0. In the same format as the top panels.

strong tendency for slow wind near the equator and fast wind
near the poles, though almost the complete range of speeds
can be encountered at all latitudes. The top-centre and top-right
panels of Figure 2 show the data further divided into solar
minimum and solar maximum conditions, respectively. At solar
minimum, latitudes above 60° show exclusively fast wind,
whereas this is not the case at solar maximum, when there exists
slow wind even at the poles. Slow solar wind also dominates a
broader latitude range about the equator at solar maximum than
solar minimum.

The bottom panels of Figure 2 show the distribution of
Vo—Vy, the speed difference between equator and latitude 0.
The median of the V,—Vj distribution is the bias in assuming
Vy is the same as Vj,. This bias results from different proportions
of fast and slow wind at different latitudes. The width of the
Vo—Vp distribution is the (random) error in assuming Vj is
the same as V). It results from different longitudinal structure
at different latitudes, and hence different phasing in solar wind
speed structure.

The variation in Vy—V, with 0 is fairly complex. Close to
the poles, assuming Vj is representative of V, would introduce
a strong negative bias, meaning V;, would be overestimated.
Similarly, the width of the V,—V) distribution is highly asym-
metric about the median, and thus the random error would be
more likely to lead to large overestimates than large underesti-
mates in V;. Closer to the equator, the bias is near zero. The
random error decreases towards the equator as well as becoming
more symmetric.

As we are primarily interested in latitudes close to the
heliographic equator, such as the latitudinal separations of
spacecraft in the ecliptic plane, Figure 3 shows the same results
confined to within +10° latitude. Over this range, the Vy—Vj
distribution is centred close to zero, meaning there is little sys-
tematic bias. The distribution is also approximately symmetric,
with increasing inter-quartile range (and hence random error)
with 6. The random error increases far more rapidly with 0 at

solar minimum than solar maximum, as expected. This is a
result of the latitudinal gradient in solar wind speed near the
equator generally being larger at solar minimum than solar max-
imum. We also note the slight asymmetry between the northern
and southern hemispheres. This may be related to uneven sam-
pling of the 22-year Hale cycle, which can affect solar wind
properties (e.g., Thomas et al., 2013).

Having surveyed the basic trends in the data, we now quan-
tify the latitudinal representivity properties as a function of lat-
itude and solar activity. This is computed in two forms. Firstly,
we compute the latitudinal representivity error introduced by
assuming a solar wind speed measurement at a given latitude
is representative of the heliographic equator. Secondly, we com-
pute the latitudinal range over which a solar wind speeds can be
considered similar, to within a given error tolerance. This deter-
mines the latitudinal localisation, i.e. the latitudinal range of
influence of a solar wind measurement on the model state.

3.1 Latitudinal representivity error

The methodology for determining the latitudinal represen-
tivity error (here taken to be the error introduced by assuming
a measurement at latitude 0 is representative of the heliographic
equator) is demonstrated using 6 = 7°, approximately the largest
latitudinal separation from the heliographic equator made by
spacecraft in the ecliptic plane. Figure 4 shows the time series
of the V,—V; distribution parameters. Different solar cycles
have been colour-coded to enable identification of cycle-
to-cycle variations. The median of Vy—V; is close to zero for
much of the 40+ year interval, meaning there is little systematic
bias. There are, however, short lived intervals with large biases
at the depths of solar minimum. Negative biases, which would
mean Vj is overestimated on the basis of V5 observations, are
typically larger than positive biases. The width of the V,—V;
distribution, as measured here by the inter-quartile range
(IQR), also peaks at solar minimum, but shows a smoother
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Fig. 3. Same as Figure 2, but only showing latitudes between —10° and 10°.
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Fig. 5. Scatter plots of 1-CR averages of V,—V5, the solar wind
speed difference between the equator and 7° latitude, with solar
activity. Top: the inter-quartile range of Vy,—V; as a function of
sunspot number (left) and sunspot cycle phase (right), where solar
minimum is 0 and 1, and solar maximum is approximately 0.5.
Bottom: the median of Vy—V; as a function of sunspot number (left)
and sunspot cycle phase (right). In all panels, solar cycles 21, 22, 23,
and 24 have been coloured black, red, blue, and white, respectively.

variation through the solar cycle. The variation in IQR is asym-
metric with regards to the rise and declining phases of the cycle,
and the values at the maximum of solar cycle 21 are very similar
to those at the maximum of solar cycle 24, despite the factor 2
decrease in sunspot number. Thus the random latitudinal repre-
sentivity error is more clearly ordered by solar cycle phase than
sunspot number. This is more clearly shown in the scatter plots
of Figure 5: when IQR is shown as a function of sunspot
number, the four solar cycles separate out, whereas when shown
as a function of solar cycle phase, they largely overlap. This
behaviour can also be seen to a lesser degree in the median.

Figure 6 shows the joint variation of the Vy—V, bias
(median) and random latitudinal representivity error (IQR or
5-95-percentile range) with latitude and solar cycle phase in
equally-spaced bins. The median values are small compared
with the IQR values (note the compressed colour scale) at all
latitudes and solar cycle phases. The IQR and 5-95 percentile
range increase with latitude, as expected, and during the
declining phase and solar minimum. These values are listed in
Tables 1-3.

3.2 Latitudinal range of influence

In the previous section, we computed the latitudinal
representivity error, the error introduced by using solar wind
measurements to represent speeds at other latitudes. In this

section, we determine the inverse; the latitudinal range over
which the solar wind can be considered similar, to within some
error tolerance. In a three-dimensional solar wind model, this
property could be used to inform the localisation volume over
which a measurement influences the model state. Thus we refer
to this property as the latitudinal range of influence of in situ
solar wind measurements as the localisation parameter, A.

The methodology for determining / is illustrated in Figure 7
for a hypothetical solar wind observation made at heliographic
latitude of 14° and a solar cycle phase between 0.4 and 0.5
(close to solar maximum). At this latitude and phase of the solar
cycle, the median solar wind speed is approximately
340 km s~ !, with an IQR spanning 310400 km s~ ' and the
Sth (95th) percentile at 290 (610) km s~ L. The black lines in
the bottom panel show latitudes, Oyyn = —2.7° and Oyax = 25°,
at which either the 5 or 95 percentiles of the V4,— V) distribution
first exceeds the chosen solar wind speed error tolerance, Vrop.
(In this example a very large value of Vygp, = 200 km s~ ! has
been used, purely for illustrative purposes.) Thus Oy and
Omax span the latitudinal range at which at most (i.e., 90%)
of the data points are expected to be within Vrqp of the those
at the measurement point. So in this instance, the latitudinal
range over which the solar wind can be considered similar to
that at 14° is asymmetric, stretching 16.7° south of the measure-
ment latitude and 11° north. As with the V—Vj, distributions
presented in Figure 2, this asymmetry is only noticeable for lat-
itudes greater than approximately 10°. At latitudes associated
with the ecliptic plane, Oyqn and Oyax are nearly symmetric
about the observation latitude. While asymmetric localisation
in a DA scheme is possible, we take the simplifying step of
defining A to be the smaller of the two latitude ranges, in this
instance 11°.

Figure 8 shows 4 as a function of latitude and solar cycle
phase, for a range of Vrgp values. At solar minimum and in
the declining phase of the solar cycle, solar wind speed below
approximately 40° is similar over latitudinal ranges smaller than
3°, even when relatively large speed errors are tolerated. Above
50° the uniform fast wind from the poles means speed is similar
for separations above 10°. At solar maximum, the uniform fast
wind at the poles is no longer present and the large 4 at high
latitude is also removed. Closer to the equator, A is higher than
at solar minimum, so long as moderate to large solar wind speed
errors are tolerated.

Restricting analysis to within 7° of the heliographic equator,
the range covered by the ecliptic plane, the variation in 4 is
almost entirely a function of solar cycle with no systematic
latitudinal variation. For this reason, Table 4 provides /4 values
averaged over —7° to 7° heliographic latitude, for various VoL
values and as a function of solar cycle phase.

4 Other solar wind parameters

Now that the methodology has been demonstrated for solar
wind speed, we repeat the analysis for other solar wind param-
eters, namely the heliospheric magnetic field (HMF) intensity,
B, the radial and poloidal components of the HMF, B, and B,
respectively, the proton number density, n, and solar wind tem-
perature, 7. For reasons of space, we only provide the final sum-
mary plots here in the main text. Tabulated values are provided
in the Supplementary Materials (equivalent to Tables 1-4).

Page 6 of 14


https://www.swsc-journal.org/10.1051/swsc/2020009/olm

M.J. Owens et al.: J. Space Weather Space Clim. 2020, 10, 8

V, -V, median [km s™] V,-V,IQR [kms™] V, -V, 595 percentile [km s™]

[0}

&

2 6 6
=2 0

3

S 4 4
®

-

N

'
25
[=]

N

o
o

0 0.5 1

= 20 200
10 B 10 10
15
1150 8
5 6
] 100
5 !
50 I
-15 50
0
. . 5 0 0
0 0.5 1

400

350

300

250

200

150

100

0 0.5 1
Solar cycle phase Solar cycle phase Solar cycle phase

Fig. 6. V,—V), solar wind speed difference between the equator and other latitudes, as a function of solar cycle phase and latitude. Left: the
median of Vy—V,. Centre: the inter-quartile range of Vy—Vj. Right: the 5-95-percentile range of Vy—V).

Table 1. The median values of the solar wind speed differences between the equator and other latitudes, i.e. Vo— V), as a function of solar cycle

phase and latitude. All values are given in km s~ '.

Latitude (degrees) Solar cycle phase (bin centre)

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.3 0.5 0.2 0.2 0.2 -0.3 0.2 —0.6 0.5 1.7
2 0.0 0.8 0.3 0.3 0.3 —0.6 0.3 -1.3 0.8 3.1
3 —14 1.0 0.5 0.5 0.3 -0.9 0.3 -1.9 1.0 35
4 —4.4 0.7 0.8 0.6 0.2 —-1.1 0.1 2.4 1.0 3.1
5 —8.4 0.4 0.9 0.7 —0.1 —-1.2 0.1 -2.8 0.7 2.1
6 —15.5 —-0.4 0.8 0.9 —0.1 -1.7 —0.6 —4.1 —0.4 -0.9
7 —22.8 -13 0.9 0.9 0.1 -2.5 —-1.6 —5.1 —-0.8 —6.3
8 —31.3 22 0.8 1.3 0.1 -3.5 2.7 —5.8 —14 —14.4
9 —42.3 -33 0.6 1.6 0.2 —4.8 —4.7 —6.9 -3.5 —26.3
10 —52.1 —4.7 0.1 1.3 —0.5 —5.7 —6.8 —8.7 —6.3 —37.1

Table 2. The inter-quartile range of the solar wind speed differences between the equator and other latitudes, i.e. Vo—V), as a function of solar

cycle phase and latitude. All values are given in km s~

Latitude (degrees)

Solar cycle phase (bin centre)

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 19.2 11.2 7.3 6.1 6.9 9.4 10.3 11.5 19.3 24.0
2 37.8 223 14.6 12.2 13.9 18.7 20.8 23.0 385 48.2
3 55.0 333 22.0 18.6 21.1 27.5 30.9 339 58.1 73.5
4 73.2 43.8 29.3 25.1 28.2 36.1 41.6 452 774 100.2
5 92.0 54.0 36.4 319 352 44.1 51.7 57.0 95.1 128.0
6 109.8 63.1 42.7 38.7 41.6 52.8 62.5 68.7 112.7 155.5
7 126.5 72.1 48.3 45.1 48.3 61.2 72.3 82.0 130.1 185.6
8 144.4 80.4 54.7 51.5 542 71.0 81.7 95.5 144.9 216.7
9 162.5 89.2 60.8 58.2 59.6 79.5 93.1 108.2 160.5 245.6
10 181.7 98.1 66.8 63.8 65.2 88.4 104.8 120.7 176.2 269.7

Figures 9—13 show that other solar wind parameters follow
the same general pattern of behaviour as solar wind speed. That
is, the error in assuming a measurement at latitude 0 is represen-
tative of the helioequator, Xo—Xy, grows far more rapidly with

0 during solar minimum than during solar maximum. Accord-
ingly, 4, the range of latitudes over which an observation
is representative to within some error tolerance, also increases
toward solar maxmimum and is minimum at solar minimum.
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Table 3. The 5-to-95-percentile range of the solar wind speed differences between the equator and other latitudes, i.e. Vo—Vj, as a function of

solar cycle phase and latitude. All values are given in km s~

Latitude (degrees)

Solar cycle phase (bin centre)

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 65.7 46.8 36.4 30.1 30.9 389 45.0 47.2 62.4 71.0
2 127.8 92.5 71.5 60.1 61.0 76.2 87.9 92.4 121.6 150.8
3 188.4 136.9 106.2 90.9 91.3 113.2 128.3 137.8 180.6 224.3
4 241.0 178.8 139.3 120.3 118.9 148.5 165.9 179.1 230.5 291.4
5 296.0 220.4 169.5 146.6 149.3 184.3 206.0 219.9 281.2 360.6
6 337.8 254.0 198.4 171.2 173.3 213.1 2427 254.0 323.7 415.2
7 381.1 288.7 224.3 194.1 194.9 244.8 277.7 289.2 365.3 467.6
8 421.4 321.2 249.1 212.8 216.3 271.7 311.4 3222 401.2 509.7
9 449.2 347.9 270.3 228.4 233.2 300.3 340.2 359.6 430.2 545.2
10 477.4 373.0 292.6 246.8 248.7 330.5 370.1 395.5 457.3 581.1

-1
V, kms™]

0 45 90

Latitude, 0 [degrees]

-90 -45

0 45 90

Latitude, 6 [degrees]

Fig. 7. Determining the localisation parameter, 4, at a latitude of 14°, the vertical blue line. Top: the distribution of solar wind speeds as a
function of latitude for an interval close to solar maximum (solar cycle phase between 0.4 and 0.5). The red line shows the median, the dark-
pink shaded region spans the 25-75 percentiles of the distribution (i.e., the inter-quartile range), while the light-pink regions spans 5-95
percentiles. Bottom: the distribution of V14—V, speed differences between 14° latitude and 6. The vertical black lines show the latitudes where
either the 5 or 95 percentiles of the V14—V distribution first exceed Vo = 200 km s Vin magnitude.

There is little variation in 4 with the latitude of observation, at
least over the range +10° about the helioequator.

While these qualitative trends are expected to be robust, the
quantitative values are unlikely to be as reliable as the solar
wind speed. The magnetic field intensity, and hence individual
HMF components, is known to be underestimated by coronal
models (Owens et al., 2008; Stevens et al., 2012). There are
similar biases in density and temperature. Thus we expect the
Xo—Xp values to represent an lower bound on the true values,
and the A to be an upper bound.

5 Summary and conclusions

Data assimilation (DA) is the combination of model and
observational information, taking account of the uncertainties
in both. In order to effectively utilize in situ solar wind speed
observations in solar wind models, it is necessary to quantify
the latitudinal range over which measurements are representa-
tive. Available solar wind observations themselves are insuffi-
cient for this purpose. Instead we have utilised 40+ years of
data-driven global solar wind model results. The model
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Fig. 8. The localisation parameter, A, in degrees, as a function of latitude and solar cycle phase. Note the colour bar has been saturated at 10° to
highlight the variations in smaller values. Top: the full latitude range. Bottom: a detail of £10°. Columns, from left to right, show speed error

tolerances of Vrop, = 20, 50, and 100 km s_l, respectively.

Table 4. 4 for solar wind near the in-ecliptic plane (averaged over +7°), in degrees, as a function of solar cycle phase and Vror.

Vror (kms™")

Solar cycle phase (bin centre)

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
10 0.2 0.4 0.5 0.6 0.6 0.4 0.3 0.3 0.2 0.2
20 0.4 0.8 1.1 1.3 1.2 0.9 0.7 0.7 0.5 04
30 0.7 1.2 1.7 2.0 1.9 1.4 1.0 1.0 0.7 0.6
40 0.9 1.6 22 2.6 2.5 1.9 1.4 1.4 1.0 0.8
50 1.1 2.0 2.8 34 32 23 1.7 1.7 1.3 1.0
70 1.6 29 4.0 4.8 4.6 33 24 24 1.8 1.4
100 2.3 4.2 59 7.1 6.6 4.9 35 34 2.6 2.0
150 35 6.7 10.1 11.1 10.3 7.6 53 5.1 39 3.1
200 4.8 9.3 16.2 15.3 13.7 10.5 72 6.8 5.4 4.3

solutions were used to compute two related aspects of solar
wind latitudinal representivity. Firstly, the latitudinal represen-
tivity error introduced by using solar wind speed observations
to represent latitudes away from the point of measurement.
Specifically, we have quantified the latitudinal representivity
error introduced by assuming a measurement at a given latitude
can be used to represent the value at the heliographic equator.
This property would form part of the observational error in
using measurments away from the heliographic equator in a
two-dimensional DA scheme. Secondly, we quantified the
latitudinal range over which the solar wind can be considered
to be similar (to within some given speed error tolerance).
This informs the latitudinal range over which a measurement
should influence the model state in a three-dimensional DA
scheme, known as the measurment localisation.

For the latitudinal representivity error, we compute both the
systematic bias and random error in assuming the solar wind
speed measured at a latitude 6, Vj, is representative of the speed
at the heliographic equator, V. As 0 increases (either towards
the north or south pole), there is increasing systematic bias

that leads to a large overestimate in V. This effect is most
pronounced at solar minimum, particularly above 45° latitude.
For spacecraft in the ecliptic plane, however, the latitudinal
separation from the equator is limited to £7.5°. Within this lim-
ited range, the bias is essentially zero. Thus for data assimilation
of in-ecliptic solar wind observations, only the random latitudi-
nal representivity error need be considered. For in-ecliptic
measurements, the random error increases linearly with 6, but
is also a strong function of solar activity level. We have
provided a look-up table of this representivity error as a function
of latitude and phase of the solar cycle.

The trends are similar in the second measure, A, the
latitudinal range over which solar wind speed can be consid-
ered similar and thus should influence the model state. Near
the ecliptic plane, 4 is only one or two degrees at solar mini-
mum and during the declining phase of the solar cycle, even
when relatively large solar wind speed errors are tolerated.
This is in broad agreement with the findings of Paper 1 regard-
ing the inherent uncertainty in L5 observations for providing a
forecast of near-Earth solar wind via simple corotation.
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distributions as a function of latitude and solar cycle phase. Bottom: Figure 8, but for B. That is, the localisation parameter, /, as a function of
latitude and solar cycle for three B error tolerances of Bror = 1, 2, and 3 nT.
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Fig. 10. Summary plots for the radial HMF component, B,, in the same format as Figure 9.
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Fig. 13. Summary plots for the solar wind temperature, 7, in the same format as Figure 9.

At solar maximum, A rises to approximately 5° for large error
tolerances.

We note that the solar wind model used in this study
assumes that the solar wind is perfectly steady-state over a solar
rotation. It therefore does not routinely capture transient solar
wind structures, such as those resulting from coronal mass
ejections. And it does not capture small-scale structure resulting
from solar wind turbulence. Thus the model variability results
only from large-scale coronal structure and should be regarded
as a lower-limit of real measurements. Hence the respresentivity
error is an lower limit and the latitudinal range of influence is an
upper limit. Furthermore, the results presented here apply to spa-
tial scales greater than the model grid size (~10° km at 1 AU)
and time scales greater than the associated time scale of approx-
imately 1 h.

Looking beyond solar wind speed, we provided estimates of
the representivity error and the latitudinal range of representivity
for the heliospheric magnetic field intensity and individual
components, the plasma density and temperature. The qualita-
tive trends closely follow those found for solar wind speed, as
expected. Given the known systematic biases in the model
estimates of these other solar wind properties, we do not expect
the quantitative values to be as accurate as solar wind speed.
However, they should provide a useful starting point from
which to build.

In future work, we will utilise the values presented here in
the assimilation of in situ solar wind observations with both
two- and three-dimensional solar wind models. But the current
results suggest that in-ecliptic in situ observations have strong
limitations in terms of usefulness for solar wind DA. Thus while

emote sensing observations likely present significantly higher
measurement errors than in situ observations, they may never-
theless be invaluable for providing adequate spatial sampling
for reliable solar wind forecasting.

Supplementary materials

Supplementary material to the below is available at https://
www.swsc-journal.org/10.1051/swsc/2020009/0lm

Each sheet contains information for a different physical
parameter.

Rows 6 to 17 describe the latitudinal respresentivity error.
That is, the error (in units of the physical parameter) introduced
by assuming a measurement at latitude theta is representative of
the value at the heliographic equator.

Values are given for different latitudes and solar cycle
phases. The median, interquartile and 9 to 95 percentile ranges
are given.

Rows 22 to 31 give the latitudinal range of influence of a
measurement (in degrees), for various error tolerance levels.
Values have been averaged over —7 to +7 latitude.
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