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Abstract Predator—prey interaction strengths can be
highly context-dependent. In particular, multiple
predator effects (MPEs), variations in predator sex
and physical habitat characteristics may affect prey
consumption rates and thus the persistence of lower
trophic groups. Ephemeral wetlands are transient
ecosystems in which predatory copepods can be
numerically dominant. We examine the interaction
strengths of a specialist copepod Paradiaptomus
lamellatus towards mosquito prey in the presence of
conspecifics using a functional response approach.
Further, we examine sex variability in predation rates
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of P. lamellatus under circadian and surface area
variations. Then, we assess the influence of a co-
occurring heterospecific predatory copepod, Lovenula
raynerae, on total predation rates. We demonstrate
MPEs on consumption, with antagonism between
conspecific P. lamellatus predatory units evident,
irrespective of prey density. Furthermore, we show
differences between sexes in interaction strengths,
with female P. lamellatus significantly more voracious
than males, irrespective of time of day and experi-
mental arena surface area. Predation rates by P.
lamellatus were significantly lower than the
heterospecific calanoid copepod L. raynerae, whilst
heterospecific copepod groups exhibited the greatest
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predatory impact. Our results provide insights into the
predation dynamics by specialist copepods, wherein
species density, diversity and sex affect interaction
strengths. In turn, this may influence population-level
persistence of lower trophic groups under shifting
copepod predator composition.

Keywords Paradiaptomus lamellatus - Lovenula
raynerae - Calanoid copepod - Multiple predator
effects - Functional response

Introduction

Predation is a fundamental biotic process which
profoundly affects ecosystem structure, stability and
functioning (Brooks and Dodson 1965; Paine 1980;
Wasserman and Froneman 2013). Models applied to
consumer—resource systems classically assumed func-
tional equivalence of predators within populations
(Volterra 1928; Lotka 1956; Rosenzweig and
MacArthur 1963), limiting comprehensive quantifica-
tions of interaction strengths under shifting biotic
contexts (e.g. predator sex or ontogenic stage). Yet,
more recent work has recognised the need to account
for individual consumer variability within populations
(e.g. Hassell 1978; Ebenman and Persson 1988;
Murdoch et al. 2003; Thorp et al. 2018). Moreover,
as the effects of environmental change on species
interactions are challenging to predict with certainty
(Daufresne et al. 2009; Gilbert et al. 2014), quantify-
ing context dependencies for predation is imperative
for inferences of trophic interactions in changing
environments (see Wasserman et al. 2016b).

Given that most ecological communities include
multiple predators which share common resources,
predator—predator exchanges can profoundly alter
interaction strengths (Soluk 1993; Sih et al. 1998;
Bolker et al. 2003; Wasserman et al. 2016¢). An
increasing body of work has examined the implica-
tions of multiple predators for prey risk (Schmitz
2007; Vance-Chalcraft et al. 2007; Griffin et al. 2013),
and understanding combined predator interactions
provides important insights for the implications of
predator species loss for ecosystem function (Duffy
et al. 2007). One classical ecological approach to
quantify consumer—resource (e.g. predator—prey)
interactions under context dependencies is through
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derivation of functional responses (FRs) (Solomon
1949; Holling 1959). Functional responses quantify
how resource intake changes with variations in
resource densities, and FR form and magnitude may
influence stability of lower trophic groups (Murdoch
and Oaten 1975; Dick et al. 2014). Three common FR
types have been categorised: the linear Type I,
inversely density-dependent Type II and sigmoidal
Type III (Hassell 1978). As Type II FRs are charac-
terised by high proportional consumption rates at low
densities, they may be particularly destabilising for
resources, whilst Type III FRs are thought to be more
stabilising through low-density refuge effects (Mur-
doch and Oaten 1975). In Type II FRs, the attack rate
parameter controls the initial slope of the curve whilst
the handling time parameter controls the height of the
FR asymptote (i.e. maximum feeding rate). Empirical
studies show that greater magnitude FRs (i.e. high
attack rates, low handling times, high maximum
feeding rates) produce higher ecological impact on
prey populations (Bollache et al. 2008; Dick et al.
2013; Taylor and Dunn 2018). Importantly, FRs offer
a framework (Dick et al. 2014, 2017; Cuthbert et al.
2018a, b) to compare interaction strengths between
different consumers whilst deciphering context depen-
dencies, such as multiple predator effects (MPEs; see
Sentis and Boukal 2018) and environmental change
(e.g. Wasserman et al. 2016b).

Ephemeral wetlands provide excellent model sys-
tems for testing ecological theory (De Meester et al.
2005), and in arid regions, these systems are partic-
ularly vulnerable to environmental change (see Dalu
et al. 2017a). Their impermanency elicits fundamen-
tally different food web structures to other aquatic
systems due to temporal variability in internal and
external recruitment trends. In the early-mid stages of
hydroperiod, ephemeral ponds are dominated by
internal recruits which hatch from dormant eggs in
the sediment (Greig et al. 2013; O’Neill et al. 2015).
Therefore, for much of the hydroperiod, drought-
adapted zooplankton groups such as calanoid cope-
pods are most prevalent within the species assemblage
in many ephemeral wetlands (e.g. Wasserman et al.
2018). However, despite their high prevalence and
wide distribution (Dussart and Defaye 2001), the
trophic interaction strengths between copepods and
their resources and their susceptibility to environmen-
tal change remain poorly understood in biodiverse
ephemeral systems (though see Wasserman et al.
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2016a; Cuthbert et al. 2018c, d). Sex ratios are known
to differ over the course of the hydroperiod in
ephemeral wetland specialist copepods due to selec-
tive processes such as predation (Wasserman et al.
2018). In turn, this may intensify impacts by predatory
zooplankton on lower trophic groups if sex ratios
become biased, given that females can have higher
predatory impacts (Cuthbert et al. 2019a). However,
these effects may also be dependent on the overall
abundances of zooplankters, as offtake rates (product
of functional and numerical responses) under low
copepod abundances could be reduced. In addition,
physical habitat characteristics may alter interactions
between predatory copepods and their prey. Owing to
periodic wetting and drying cycles, the surface area of
ephemeral wetlands is highly dynamic spatiotempo-
rally, and reductions in surface area may increase
predator encounter rates with prey. Indeed, in an
experimental context, search area has been shown to
substantially alter the nature of consumer—resource
dynamics (Yasar and Ozger 2005; Uiterwaal and
DeLong 2018; Dalal et al. 2019). Day/night cycles
may also modify predatory impacts of species which
rely on visual cues (e.g. Townsend and Risebrow
1982); however, temporary pond specialist copepods
have been suggested to be more reliant on hydrome-
chanical cues for prey detection (Cuthbert et al.
2018d). Nevertheless, little is known about how these
environmental factors interact to influence ephemeral
wetland food webs, where copepods can be top
predators.

Paradiaptomus lamellatus Sars 1895 is a predatory
calanoid copepod which hatches from dormant eggs in
the sediment within arid ephemeral ecosystems (see
Wasserman et al. 2016a; Dalu et al. 2017b). This
species has the potential to influence trophic dynamics
in ephemeral ponds and particularly in the early-mid
stages of hydroperiod when such copepod groups
dominate higher trophic levels (Brendonck and De
Meester 2003; Dalu et al. 2017b). Given the high
densities of predators that hatch from the sediment in
these systems, predator—predator con/heterospecific
interactions, alongside physical habitat characteris-
tics, may have marked effects on interaction strengths
towards focal prey species. Therefore, the present
study examines environmental context dependencies
of consumer impact. Firstly, we use comparative FRs
to quantify conspecific MPEs of P. lamellatus towards
surface-dwelling larval mosquito prey. The previous

research has found additive interactions among other
copepod species (Cuthbert et al. 2019b). We subse-
quently examine how predation rates vary between
sexes of this species and test whether circadian or
surface area variations further influence consumption.
Copepod feeding rates have been shown previously to
be highest in gravid females (Laybourn-Parry et al.
1988; Cuthbert et al. 2019a), and prey detection is
known to be reliant on hydromechanical cues (Hwang
and Strickler 2001). Container dimensions have also
been shown to influence consumer—-resource interac-
tion strength quantifications (Uiterwaal and DeLong
2018). Lastly, we examine P. lamellatus feeding rates
in the presence of the heterospecific calanoid copepod
Lovenula raynerae Suarez-Morales, Wasserman, Dalu
2015 (Suarez-Morales et al. 2015), with which P.
lamellatus commonly coexists. We thus seek to
provide information into how predator—prey interac-
tion strengths in ephemeral aquatic food webs are
modulated by emergent biotic and abiotic contexts.
We thus predict that: (1) conspecifics of P. lamellatus
will interact independently and thus FRs will combine
additively; (2) consumption rates will be higher in
females than males, reduced under higher surface
areas and unaffected by circadian variations and; (3)
overall feeding rates will be heightened in the presence
of an additional heterospecific predatory copepod,
given their tendency to occupy different parts of the
water column.

Materials and methods
Experimental organisms

Adult P. lamellatus (female: 4.23 4+ 0.07 mm; male:
385+ 0.08 mm) and L. raynerae (female:
477 =+ 0.14 mm; male: 4.40 £+ 0.10 mm) were sam-
pled from an ephemeral pond in Makhanda (Graham-
stown), Eastern Cape, South Africa (33°1647.8" S,
26°3539.8" E) during the 2017-2018 austral summer
by towing a 64-um zooplankton net through the upper
portion of the water column. Copepods were trans-
ported in source water to a controlled environment
(CE) room at Rhodes University, Makhanda, main-
tained at 25 £ 2 °C and under a 14:10 light/dark
photoperiod regime. Copepods were housed in 25 L
aquaria and starved in strained (20-pm filter) source
water. The prey, larvae of the Culex pipiens mosquito
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complex, were cultured in the CE room using egg rafts
collected from artificial container-style habitats within
the Rhodes University campus on a diet of crushed
rabbit food pellets ad libitum (Agricol, Port
Elizabeth).

Experiment 1: Functional responses (FRs)
and conspecific multiple predator effects (MPEs)

A factorial design was implemented with respect to
‘predator group’ (2 levels) and ‘prey supply’ (5 levels)
to decipher FRs and MPEs of single and multiple P.
lamellatus. Adult male P. lamellatus were supplied
with C. pipiens larvae (2.51 £ 0.11 mm) at five
densities (2, 4, 8, 16 and 32) in arenas of 5.6 cm
diameter containing 80 mL strained source water
following copepod starvation for 48 h. This range of
prey densities was informed from pilot studies, which
indicated necessary numbers to decipher asymptotic
FR magnitudes. Following a 2-h period to allow larval
prey acclimation within the experimental arenas, P.
lamellatus were introduced either singularly or as a
conspecific unit comprised of two individuals. Cope-
pods were then allowed to feed undisturbed for 10 h
during light conditions, after which the remaining live
prey were counted. Four replicates were conducted
within each treatment group, and controls comprised
three replicates at each density in the absence of
predators. Overall consumption was analysed using
generalised linear models (GLMs) assuming a Poisson
error distribution and log link with respect to the
‘predator group’ and ‘prey supply’ treatments, and
their interaction. We followed Crawley (2007) for all
models and removed insignificant terms and interac-
tions stepwise and performed post hoc tests using
Tukey’s comparisons (Lenth 2018).

Functional response analyses were undertaken
using the frair packages in R v3.4.4 (Pritchard et al.
2017; R Core Development Team 2018). We used
logistic regression to infer FR types, whereby a
significantly negative first-order term indicates a Type
I response. To account for prey depletion during the
experiment, we fit Rogers’ random predator equation
(Rogers 1972; Juliano 2001):

Ne = No(1 — exp(a(Nh — T))) (1)

where N, is the number of prey eaten, NV is the initial
density of prey, a is the attack constant, /& is the
handling time, and T is the total experimental period.
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The Lambert W function was used to fit Eq. 1 (Bolker
2008). A nonparametric bootstrapping procedure
(n = 2000) was followed to generate 95% confidence
intervals (CIs) around FR curves based on the attack
rate and handling time parameters. This process allows
density-dependent visual differences in FRs to be
ascribed on the basis of CI con/divergence (e.g.
Wasserman et al. 2016b).

Using the attack rate and handling time parameter
estimates from single predator treatments (Eq. 1), we
fit a population-dynamic model to predict consump-
tion by multiple predators, following McCoy et al.
(2012) and Sentis and Boukal (2018):

R DIl @)

where N is the prey density, P; (i = 1, 2, ..., n) are the
population densities of predators i and f;(N) is the FR
of predator i. The population-dynamic model has been
shown to be more robust than other approaches, such
as the multiplicative risk model, for inferences of
MPEs (Sentis and Boukal 2018). To generate prey
survival predictions (and thus consumption rates),
initial valuesof Nand P; (i = 1, 2, ..., n) were set at the
experimental prey and predator densities, with prey
survival projected over the total experimental dura-
tion. We used a global sensitivity analysis that
incorporated confidence intervals from single predator
FR parameters via a Latin hypercube sampling
algorithm (Soetaert and Petzoldt 2010).

To deduce emergent MPEs, we used consumption
predictions from the population-dynamic model
(Eq. 2) under each prey density (Sentis et al. 2017).
The predicted interaction strengths were derived as the
simulated proportion of available prey consumed at
each density. Likewise, we calculated experimentally
observed interaction strengths for conspecific predator
pairs. Given that the predicted interaction strengths
from the population-dynamic model are in the absence
of non-trophic interactions, whilst experimentally
observed interaction strengths include these interac-
tions, we calculated non-trophic interaction strengths
by subtracting the predicted estimates from those
experimentally observed. Thus, a negative non-trophic
interaction strength indicates antagonistic MPEs,
whilst positive values indicate synergism. Owing to
assumptions of parametric testing being violated, a
Kruskal-Wallis test was used to derive whether the
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strength of non-trophic interactions was affected by
initial prey density.

Experiment 2: Diurnal predation variabilities
between sexes

We conducted a factorial experiment to evaluate the
effects of ‘sex’ (2 levels), ‘time’ (2 levels) and ‘surface
area’ (2 levels) on the predation efficacy of P.
lamellatus. Adult gravid female and male P. lamella-
tus were starved for 72 h before being added individ-
ually to arenas containing 30 C. pipiens larvae
(2.42 £ 0.07 mm). The numbers of prey were
selected to approximate maximal densities from
Experiment 1. After prey had acclimated for 2 h as
before, male or female copepods were added individ-
ually to arenas containing 25 mL strained source
water of either 3.5 or 5.6 cm diameter, with trials
either conducted during day or night conditions.
Predatory copepods were allowed to feed for 10 h,
after which they were removed and remaining live
mosquito prey counted. This duration aligned with the
current darkness regime of the CE room (see before).
Five replicates were performed within each experi-
mental group. Controls consisted of a replicate in each
treatment group in the absence of predators. Gener-
alised linear models (GLMs) assuming a quasi-Pois-
son error distribution with a log link were used to
analyse consumption with respect to ‘sex’, ‘time’ and
‘surface area’ and their interactions, as residuals were
found to be overdispersed.

Experiment 3: Heterospecific predatory impacts

We examined the predatory impacts of P. lamellatus
in the presence of L. raynerae by quantifying preda-
tion in single (i.e. 1 P. lamellatus or 1 L. raynerae
separately) and mixed groups (i.e. 1 of each species in
combination). Adult males of L. raynerae and P.
lamellatus were starved for 24 h prior to experimen-
tation before being presented to 50 C. pipiens larvae

Table 1 First-order terms derived from logistic regression of
proportional prey consumption as a function of prey density,
alongside functional response parameter estimates and p values

(3.33 £ 0.13 mm) in arenas of 5.6 cm diameter
containing 25 mL strained source water. Again, prey
were allowed to settle for 2 h prior to the addition of
predators. Predators were allowed to feed for 18 h,
after which the remaining live prey were counted to
quantify numbers killed. We conducted five replicates
per experimental group, whilst controls consisted of
three replicates in the absence of predatory copepods.
Generalised linear models (GLMs) assuming a quasi-
Poisson error distribution and with a log link were
used to compare consumption rates between predator
treatments, with Tukey’s comparisons used for mul-
tiple pairwise tests (Lenth 2018).

Results

Experiment 1: Functional responses (FRs)
and conspecific multiple predator effects (MPEs)

All control prey survived, indicating that all experi-
mental deaths were due to copepod predation, which
was also witnessed directly. Overall consumption did
not differ between single and multiple P. lamellatus
predator treatments (12 =0.18,df =1, p = 0.67), yet
increased significantly under greater prey densities
(x* = 2521, df = 4, p < 0.001). There was no signif-
icant ‘predator group X prey supply’ interaction
(x> = 0.80, df = 4, p = 0.94).

Type II FRs were inferred under both single and
multiple predator treatments, as evidenced by signif-
icantly negative first-order terms (Table 1). Confi-
dence intervals overlapped for single and multiple
predator treatments, indicating a lack of significant
difference in FRs across prey densities (Fig. 1).

Non-trophic interaction strengths were always
negative (Fig. 2) and were not significantly affected
by prey densities (y*=5.57, df=4, p=0.23).
Accordingly, antagonistic multiple predator effects
were evidenced by interacting conspecific P. lamella-
tus irrespective of prey density.

arising from Rogers’ random predatory equation for single and
multiple Paradiaptomus lamellatus feeding on Culex pipiens
larvae

Attack rate, p Handling time, p

Treatment First-order term, p
P. lamellatus x 1 — 0.04, 0.02
P. lamellatus x 2 — 0.05, 0.001

0.47, 0.01
0.74, 0.04

0.16, 0.01
0.26, < 0.001

@ Springer
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Fig. 1 Functional responses of Paradiaptomus lamellatus (Pl)
feeding on Culex pipiens larvae individually and in predatory
units of two individuals. Shaded areas are bootstrapped 95%
confidence intervals

-0.25

Non-trophic interaction strength (+ SE)
o
8
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2 4 8 16 32
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Fig. 2 Non-trophic interaction strengths of conspecific pairs of
Paradiaptomus lamellatus feeding on Culex pipiens larvae
across prey densities. The solid black line indicates neutral non-
trophic interactions, whilst negative values indicate antagonistic
interactions. Means are £+ SE (n = 4 per experimental group)

Experiment 2: Diurnal predation variabilities
between sexes

Control survival in predator-free treatments was

100%, and so experimental deaths were assumed to
be due to predation by copepods. Significantly more

@ Springer

prey were killed by female P. lamellatus than by males
overall (F 33 = 48.71, p < 0.001; Fig. 3). There was
no significant difference in consumption rates during
day or night (Fj36=0.49, p =0.49) or between
different arena surface area treatments (F 37 = 3.62,
p = 0.07). Further, the higher predation rates dis-
played by females were robust to both diurnal and
arena surface area variations, with all interaction terms
in the model found to be non-significant (all p > 0.05)
(Fig. 3).

Experiment 3: Heterospecific predatory impacts

All control prey survived in predator-free treatments,
and thus, experimental deaths were attributed to
predation by copepods. Predation was significantly
affected by the predator treatment group overall
(F1.12 = 27.01, p < 0.001; Fig. 4). Lovenula raynerae
consumed significantly more prey than P. lamellatus
individually (z =3.96, p < 0.001). There was no
significant difference between L. raynerae individual
predation and mixed multiple predator predation
(z = 2.21, p = 0.07), whilst, conversely, predation by
single P. lamellatus was significantly lower than that
of mixed copepod species groups (z = 4.88,
p < 0.001). Nevertheless, predatory impact tended to
be highest under heterospecific treatment groups
(Fig. 4).

Discussion

The integration of biotic context is imperative for
robust quantifications of predatory impact within
ecosystems. In particular, prey species seldom expe-
rience single predators in nature, and so thus under-
standing predator—predator interactions is pertinent to
decipher overall interaction strengths towards lower
trophic groups (Sih et al. 1998; Schmitz 2007; Vance-
Chalcraft et al. 2007; Griffin et al. 2013; Wasserman
et al. 2016¢). The present study demonstrates context-
dependent interaction strengths by copepods in
ephemeral wetlands. Specifically, using FRs, we
demonstrate that MPEs arising from conspecific
copepod predatory units of P. lamellatus are antago-
nistic, resulting in risk reductions for basal prey
compared to predictions in the absence of non-trophic
interactions. Further, our results display differences in
predatory impact based on sex, with female P.
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Fig. 3 Effect of Paradiaptomus lamellatus sex, diurnal regime and experimental arena surface area on consumption of Culex pipiens

larvae. Means are &+ SE (n = 5 per experimental group)

50
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No. prey eaten (+ SE)
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Predator

Fig. 4 Individual and multiple predator consumption by
Paradiaptomus lamellatus (P1) and Lovenula raynerae (Lr)
towards larval Culex pipiens. Means are = SE (n =5 per
treatment group)

lamellatus exerting significantly higher predation
pressure on lower trophic groups than smaller-sized
males. These effects were robust to abiotic effects
surrounding diurnal cycling and aquatic surface area,
which are both highly variable spatiotemporally in
ephemeral aquatic habitats. Moreover, when P. lamel-
latus were within a heterospecific predatory unit
alongside the controphic calanoid copepod L. rayn-
erae, predation pressure tended to be heightened. This
suggests that increasing predator diversity may
increase ecological impacts on basal prey; however,
whether other conspecific antagonisms balance this
effect requires further investigation.

The outcomes of predator—predator interactions can
manifest in a variety of ways for basal resources.
Broadly, interactions can elicit either additive, antag-
onistic or synergistic outcomes (Soluk 1993; Losey
and Denno 1998; Sih et al. 1998; Vance-Chalcraft and
Soluk 2005; Barrios-O’Neill et al. 2014a; Wasserman
et al. 2016c¢). Our results demonstrate that per capita
prey risk reductions may result when multiple P.
lamellatus are present. Such antagonism has

@ Springer
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additionally been displayed in other study systems in
respect to both heterospecific (e.g. Soluk 1993;
Barrios-O’Neill et al. 2014a) and conspecific (e.g.
Wasserman et al. 2016¢) predator groups. Yet, there
has been a lack of work considering predatory
zooplankters (Cuthbert et al. 2019b). Multiple P.
lamellatus were shown to interact antagonistically in
the present study, thus alleviating prey risk. Non-
trophic interactions were always negative here, irre-
spective of prey density, in contrast to other studies
where a unimodal relationship has been demonstrated
(Sentis et al. 2017). Moreover, there were no signif-
icant differences in single and multiple predator
consumption rates by P. lamellatus in the present
study, and there were no differences in FR form
exhibited between predator treatments towards culicid
prey. Whilst attack rates tended to be higher in
conspecific as compared to single copepod treatments,
handling times were longer and thus maximum
feeding rates were generally reduced. This corrobo-
rates our finding of negative non-trophic interactions,
with multiple predators tending to reduce rather than
increase feeding rates. Nevertheless, as Type II FRs
are characterised by high per capita rates of resource
acquisition at low prey densities, both single and
multiple predator treatments could be destabilising to
mosquito prey populations. Conversely, towards
daphniid prey, Wasserman et al. (2016a) demonstrated
that P. lamellatus displays a more sigmoidal FR,
which may impart greater stability to this prey type.
Therefore, the FR form of ephemeral wetland spe-
cialist copepod species appears to be variable depend-
ing on species-level compositional differences within
lower trophic groups. In turn, these interspecific
differences may contribute to prey species extirpations
within temporary aquatic systems, with the FR type
known to directly influence population stability (Dick
et al. 2014). Here, this may indicate that larval
mosquitoes are impacted to a greater degree than
daphniids by P. lamellatus.

In the present study, interaction strengths of female
P. lamellatus were shown to be significantly greater
than male conspecifics. Many copepod species display
marked sexual dimorphism (e.g. Oktsuka and Huys
2001) alongside behavioural variation (e.g. Wasser-
man et al. 2018), and this in turn can manifest in
variable feeding rates (see Cuthbert et al. 2019a).
Feeding rates of gravid female copepods are often
elevated due to heightened energetic demands
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associated with their larger size coupled with require-
ments for progeny development (e.g. Laybourn-Parry
et al. 1988; Cuthbert et al. 2019a). Paradiaptomus
lamellatus was shown here to be able to handle larval
culicid prey at consistent levels across diurnal and
surface area variations, with the higher predation rates
of females in comparison with males robust to these
abiotic differences. These intraspecific differences in
predation rate may be driven by body size or
reproductive energy demands. However, the effects
of surface area for other abiotic factors that may
influence predation rates, such as temperature, require
further elucidation given the observed effects of
warming for interaction strengths in temporary ponds
(Wasserman et al. 2016b; Cuthbert et al. 2019c). The
lack of response to day/night differences suggests a
reliance on hydromechanical cues to capture prey in P.
lamellatus, as with other copepods (Hwang and
Strickler 2001; Cuthbert et al. 2018d). Contrastingly,
other studies have demonstrated species-specific
responses to diurnal regime which affect feeding rates
(e.g. Barrios-O’Neill et al. 2014b) and shown search
area implications for FR parameterisation (e.g. Uiter-
waal and DeLong 2018). Therefore, in ephemeral
wetlands, predation pressures by calanoid copepods
likely remain high across daily photoperiod undula-
tions and throughout the various spatial stages of
hydroperiod. Empirically, this may corroborate with
the temporal constraints which characterise ephemeral
systems and necessitate sustained resource intake rates
in the ‘race against time’ to reproduce in zooplankters
in these systems (De Meester et al. 2005).

In contrast to the antagonism displayed by con-
specific units of P. lamellatus, the present study shows
that predatory interactions can be enhanced when this
species is in the presence of heterospecifics. Combined
feeding rates were significantly elevated in the pres-
ence of the controphic calanoid copepod L. raynerae.
This seeming lack of predator—predator interference
may be driven by differences in spatial occupancy
between the species, with P. lamellatus mainly
benthic, whilst L. raynerae occupies the water column.
Given that these calanoids often coexist in ephemeral
wetlands, with both species recruited internally from
dormant, drought-resistant eggs (Wasserman et al.
2016a), our results suggest that variations in predator
diversity will have implications for basal prey,
wherein higher densities of L. raynerae may intensify
predation pressure. Indeed, L. raynerae has also been
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shown to demonstrate a destabilising Type II FR
towards various basal prey types (Wasserman et al.
2016a; Cuthbert et al. 2018¢).

Overall, we show that biotic context relating to
predator—predator interactions and predator sexes can
have marked, species-specific implications for inter-
action strengths in ephemeral wetlands, whilst abiotic
effects were negligible. The ephemeral pond specialist
copepod P. lamellatus interacted antagonistically with
conspecifics, yet positive multiple predator interac-
tions were indicated in the presence of the heterospeci-
fic specialist copepod L. raynerae. Copepod predation
was robust to variations in experimental surface area,
and predatory efficiencies were not altered by shifting
day/night regimes. Accordingly, predatory impact by
these copepods is likely unaffected by habitat hetero-
geneity over the hydroperiod in ephemeral wetlands,
yet is affected by predator—predator exchanges and
heightened in female copepods. Whilst little is known
about trophic interactions driven by specialist cope-
pods in ephemeral wetlands within arid regions, this
study provides important insights into such interaction
strengths under key environmental contexts.
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