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Abstract

Multi-gas climate agreements rely on a methodology (widely referred to as ‘metrics’) to place

emissions of different gases on a CO,-equivalent scale. There has been an ongoing debate on the extent
to which existing metrics serve current climate policy. Endpoint metrics (such as global temperature
change potential GTP) are the most closely related to policy goals based on temperature limits (such as
Article 2 of the Paris Agreement). However, for short-lived climate forcers (SLCFs), endpoint metrics
vary strongly with time horizon making them difficult to apply in practical situations. We show how
combining endpoint metrics for a step change in SLCF emissions with a pulse emission of CO, leads to

an endpoint metric that only varies slowly over time horizons of interest. We therefore suggest that
these combined step-pulse metrics (denoted combined global warming potential CGWP and
combined global temperature change potential CGTP) can be a useful way to include short and long-
lived species in the same basket in policy applications—this assumes a single basket approach is
preferred by policy makers. The advantage of a combined step-pulse metric for SLCFs is that for
species with a lifetime less than 20 years a single time horizon of around 75 years can cover the range of
timescales appropriate to the Paris Agreement. These metrics build on recent work using the
traditional global warming potential (GWP) metric in a new way, called GWP*. We show how the
GWP” relates to CGWP and CGTP and that it systematically underestimates the temperature effects of
SLCFs by up to 20%. These step-pulse metrics are all more appropriate than the conventional GWP
for comparing the relative contributions of different species to future temperature targets and for
SLCFs they are much less dependent on time horizon than GTP.

1. Introduction

Climate metrics are often criticised for over- or under-
stating the importance of different species on climate,
particularly for short-lived climate forcers (SLCFs) e.g.
(Pierrehumbert 2014). The IPCC 4th Assessment
Report (AR4) (Forster et al 2007) noted the many
shortcomings in the Global Warming Potential GWP
(100), but recommended its use (at least for long-lived
greenhouse gases LLGHGs) as a multi-gas strategy is
preferable to a CO,-only mitigation strategy. The
IPCC 5th Assessment Report (AR5) presents global

warming potentials (GWP) and global temperature
change potentials (GTP) for 20-year and 100 year time
horizons leading to a range of values (for methane
these ranged from 4 to 84) with no recommendation
as to which should be used (Myhre et al 2013). Hence,
for methane, policymakers have at least a scalar factor
of 20 in the value of the metric they can choose; the
situation is similar for all other SLCFs. This range is
due both to the choice of the types of metric, chosen
impact parameter (forcing, temperature, etc), end-
point (GTP) or integrated (GWP), and to the choice of
time horizon. Endpoint metrics compare the relative

© 2020 The Author(s). Published by IOP Publishing Ltd
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impacts at a particular time horizon after the emission
of a species; integrated metrics compare the relative
impacts integrated from the time of emission up to the
chosen time horizon.

The UNFCCC’s Ad Hoc Working Group on the
Paris Agreement is proposing (https://unfccc.int/
documents/184956) that National Inventory Reports
for the Paris climate agreement will use the GWP(100)
from ARS5 to report aggregate emissions and removals
of greenhouse gases (GHGs), although other metrics
such as the GTP may be used additionally. However
the IPCC Expert Meeting on Short-Lived Climate For-
cers (IPCC 2018) concluded that SLCF inventories
should not be converted to CO, equivalents using
GWP(100), but rather reported separately until fur-
ther assessment on the use of metrics was provided by
IPCC ARG6. The range in possible choices of metric
value causes significant problems when making policy
decisions. It has been argued that the metric value that
is recommended in the UNFCCC guidance (GWP
(100)) is inappropriate for the goals of the Paris Agree-
ment (Allen et al 2016, Allen et al 2018, Fuglestvedt
et al 2018) , although it has been suggested (Schleuss-
ner et al 2019) that overstating the impacts of non-CO,
forcers (for instance by use of GWP(100)) will encou-
rage even stronger CO, mitigation to compensate.

The Paris Agreement specifies two clear scientific
goals: to limit temperature increases (Article 2), and to
achieve balance between sources and sinks of green-
house gases (Article 4); Fuglestvedt et al (2018) discuss
various interpretations of the balance concept in the
agreement. One interpretation of ‘balance’ could be
evaluated in terms of the GHG emissions that stabilize
radiative forcing (RF) at some level. Both goals are
related to the impact at some later time (whether the
end of the century or at the time of maximum temper-
ature rise). For such targets endpoint metrics such as
the GTP are more appropriate than integrated metrics
(Shine et al 2005, Shine et al 2007). These endpoints
can be fixed to a particular date such that the time hor-
izon decreases as the date is approached (Shine et al
2007). Conversely, metrics that integrate from present
to a future date (GWP or integrated GTP) give an equal
weighting to climate impacts that occur now as to cli-
mate impacts that will occur when a target is about to
be met or exceeded (Pierrehumbert 2014); therefore
they do not directly address the Paris goals. Indeed
many studies have shown that an integrated climate
metric such as GWP is not useful for comparing long-
term temperature effects (Allen et al 2016, Allen ef al
2018, Fuglestvedt et al 2018). Thus the metrics most
closely aligned with the Paris Agreement are endpoint
metrics (either temperature or radiative forcing),
although the time horizon of the specific endpoint is
not clear. It could be the time of peak warming, or if
temperatures are expected to overshoot a target, then
some future time by which temperature would be
required to come back below the target.
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Integrated metrics would be more appropriate in
economic analyses (Kandlikar 1995, Kandlikar 1996)
which often look to minimise an integrated damage
measure; however there is no internationally agreed
damage measure due to the structural uncertainty in
their underlying functional form (Weitzman 2012).
Endpoint sea-level rise metrics do have mathemati-
cally similar constructions to integrated radiative for-
cing or integrated temperature metrics (Sterner et al
2014). These would be appropriate if there were a spe-
cified sea-level rise threshold below which we agreed
to attempt to stay.

In this paper we use the concepts of relating the
impacts of a step change in SLCF emissions with a
pulse emission of CO, that was first introduced in
Smith et al (2012). Allen et al (2016) took this con-
siderably further, devising a metric (subsequently
labelled GWP™ in Allen et al (2018)) based on a scaling
of GWP that approximated the relative temperature
impacts of a step change in SLCF emission with a pulse
emission of CO,. Allen et al (2018) deliberately chose
to retain the use of the familiar GWP (and the reported
values of the GWP) in framing the GWP", to maintain
a level of continuity with existing policy and make it
easy to apply. However, they recognised that by doing
this, the step/pulse equivalence would only be approx-
imate. Here we develop further the ideas of Allen et al
(2016, 2018) to demonstrate that a more formal
approach (less constrained by consideration for con-
tinuity and application) to providing step/pulse
equivalence leads to a metric that captures the equiva-
lence more accurately. It retains an important policy
benefit of the GWP*, which is the relative lack of sensi-
tivity to the time horizon, but still retains an explicit
time dependence.

2. Metric design

The two most common metrics GWP and GTP differ
both in the impacts they represent (radiative forcing or
temperature) and in whether they are integrated or
endpoint based. Following Myhre et al (2013) these
metrics are defined as the absolute impact measure for
a pulse emission of species X divided by that for CO,,
ie. GWPy = AGWPy /AGWPco,, and
GTPx = AGTPx/AGTPco,, where these absolute

H
metrics are defined as AGWPyx(H) = f AFx (t)dt,

and AGTPx(H) = ATx(H), where OAFx(t) and
ATx(t) are the radiative forcing and temperature
changes at time t following a unit pulse emission of
species X, and H the chosen time horizon. An
integrated version of the AGTP can be also con-

H
structed iAGTPy(H) = f ATy (t)dt (Gillett and
0

Matthews 2010, Peters et al 2011, Azar and Johans-
son 2012, Olivié and Peters 2013). For completeness
here we also define an endpoint version of the AGWP
which we call AGFPx(H) = AFx(H) where AGFP is
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Table 1. Climate metrics for methane (using CO, asa
reference) for 20, 50 and 100 year time horizons. The
radiative efficiencies for CH, and CO, are 4.40 x 10~ *W
m 2ppb 'and 1.30 x 10 >Wm ™ *ppb ' respectively
(based on Etminan et al (2016)), CO, response function is
from Joos et al (2013) and temperature response function
from Geoffroy et al (2013). The methane perturbation
lifetime is 12.4 years. The ozone and stratospheric water
vapour contributions are from Myhre et al (2013)
Additional carbon cycle responses to temperature (Gasser
etal2017) are excluded here.

Time horizon (years) 20 50 75 100
GFP 48 5 0.8 0.1
GWP 99 57 42 34
GTP 67 14 8 7
iGTP 107 52 46 37

the absolute global forcing potential. See appendix
A.1, available online at stacks.iop.org/ERL/15/
024018/mmedia, for derivations of these formulae. As
before, the relative metrics can be derived by dividing
by the corresponding absolute values for CO, (see
table 1 for values for methane). For simplicity we do
not incorporate carbon cycle-temperature responses
for the non-CO, species (equivalent to ‘no cc fb’ in
Myhre et al (2013)).

The indirect effects of methane on ozone and stra-
tospheric water vapour are included following Myhre
etal (2013) as 1.82 x 10 *and 0.54 x 10 *Wm™>
ppb(CH,) ' respectively. They are added to the Etmi-
nan et al (2016) CH, radiative efficiency, rather than
scaling it by 1.65 as in Myhre et al (2013). The indirect
effects of N,O on methane follow Myhre et al (2013).
No effects of N,O or halocarbons on stratospheric
ozone destruction are included. Table 1 and appendix
A.1 shows that the iGTP and GWP are very similar,
indicating that the main difference between the
metrics is whether one wishes to compare an inte-
grated impact or an endpoint impact, rather than whe-
ther a radiative forcing or temperature impact is
preferred. The endpoint metrics (GFP and GTP) vary
much more strongly with time horizon than the inte-
grated metrics, and differ significantly because the
thermal inertia of the climate system means that the
temperature response is felt for longer than the forcing
itself. Thus although physically they correspond more
closely with the Paris targets, for short-lived species
they vary so strongly with time horizon as to be diffi-
cult to implement in policy applications where this
time horizon decreases as date is approached (Shine
etal2007).

One way out of the above impasse was proposed by
Smith et al (2012). Instead of trying to equate impacts
of pulses, i.e. 1 kg emission of X with 1 kg emission of
CO,, they suggested it was more useful to compare
rates of emission (in kg yr~') of short-lived species
with cumulative emissions (in kg) of CO,. This con-
cept was introduced into metrics in Allen et al (2016)
where they used a single number (GWP(100)x 100)
to equate permanent step changes in SLCF emissions
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to a one-off pulse emission of CO,. Collins et al (2018)
calculated the impact of methane mitigation on allow-
able carbon budgets. Using a simple climate model
coupled to a carbon cycle model, they showed that for
a fixed temperature target, a step reduction in methane
emissions of 1 Gt(CH,) yr ' was approximately
equivalent to an increase in allowed cumulative CO,
emissions of 2900-3300 Gt(CO,). In this paper we
expand on the central step-pulse distinction in Allen
et al (2016) to show how combined step/pulse metrics
can be derived from first principles; and we extend this
logic to include an explicit time dependence.

Although metrics have generally been defined in
terms of a pulse emission of 1 kg of a species, they can
equivalently be defined in terms of a step change in
emission of 1 kg per year as described in Fuglestvedt
eral (2003) and Shine e al (2005). We will use the ¥ or
> superscripts to denote metrics based on pulse or
step emissions. These metrics have physically equiva-
lent outputs (so that AGTP® and AGTP® both describe
the change in endpoint temperature and AGFP® and
AGFP® both describe the change in endpoint forcing),
it is only the form of the input (i.e. whether a pulse or
step change is considered) that changes. So for a given
goal (such as a temperature threshold) the AGTP?
applied to pulse emission change or the AGTP®
applied to a step emissions change are both equally
valid choices of metric to assess progress towards the
limit. The inputs do not even need to be the same for
each species; because they both measure progress
towards the same limit, it is entirely physically con-
sistent to compare the temperature response to a step
input in one species with that to a pulse input in
another. We can therefore define combined metrics
‘combined GWP’ (CGWPy) and ‘combined GTP’
(CGTPy) as the ratio of step responses to X to pulse
responses to CO,: CGWPx = AGFPY/AGFPY, and
CGTPyx = AGTPY/ AGTPPq,. These metrics are no
longer dimensionless, but have units of time reflecting
the need to compare rates (kgyr ') with pulses (kg).

In terms of the more usual metrics, an endpoint
metric for a step change in emissions is equivalent to
an integrated metric for a pulse emission, i.e. AGFP%is
equivalent to AGWP’, and AGTP® is equivalent to
iAGTPY (see section A.1 for derivations). However, in
order to emphasise the preference for endpoint
metrics we will not use the integrated metric notation.

3. Results

Figures 1(a), (e) show the radiative forcing and
temperature responses as function of time to step
changes in emissions (AGFP® and AGTP®) for four
species HFC-32, CH,, CFC-11 and N,O chosen to
have a range of lifetimes: 5.4, 12.4, 52 and 121 years
respectively. For HFC-32 and CH, the step responses
asymptote quite quickly, whereas for CFC-11 and
N,O they are still increasing after 100 years. The

3
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Figure 1. Climate metrics for four gases (HFC-32, CH,, CFC-11, N,O) with lifetimes of 5.4, 12.4, 52 and 121 years. Left hand side are
radiative forcing based, right hand side are global temperature change based. (a), (e), step change metrics for four gases. (b), (f) pulse
metrics for CO,. (¢), (g) ratios of step change metrics for the four gases with pulse metrics for CO,. (d), (h) pulse/pulse metrics for the
four gases. Note AGFP® is equivalent to AGWP.




10P Publishing

Environ. Res. Lett. 15 (2020) 024018

P Letters

methane, relative to CO,.
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Figure 2. Comparison of the radiative forcing and temperate-change combined metrics (AGFP®/AGFP' and AGTP®/AGTPY) for

years

Table 2. Comparison of pulse metrics with combined metrics for the 4 gases, relative to CO,. To 2 significant

figures.
Pulse
GFP(50) GFP(75) GFP(100) GTP(50) GTP(75) GTP(100)
CH,4 5.2 0.8 0.1 14 8 6.7
HEC-32 1.4 0.02 2x 107 160 150 140
CFC-11 5000 3400 2300 5500 4100 3100
N,O 280 250 220 280 260 230
Combined
CGWP(50) CGWP(75) CGWP(100) CGTP(50) CGTP(75) CGTP(100)
(yn) (\29] (yr) (yr) (yn) (yo)
CH,4 3600 4000 4300 3300 3700 4000
HFC-32 79 000 88 000 94 000 74 000 83 000 88 000
CFC-11 420 000 580 000 690 000 370 000 510 000 610 000
N,O 17 000 26 000 34 000 15 000 22 000 29 000

combined metrics are derived by dividing these
responses by those for a pulse of CO, (b, f). These
CGWPy and CGTPy ratios are moderately flat for
HFC-32 and CH, but rise steadily for CFC-11 and
N,O (figures 1(c), (g)). Conversely, the more usual
pulse/pulse metrics of GFP* and GTP” (figures 1(d),
(h)) decrease significantly with time for HFC-32 and
CH,, but are steadier for N,O. Metrics that vary
strongly with time make them less useful for policy
purposes; the choice of 100 years for the GWP as
applied in the Kyoto Protocol was in essence an
arbitrary (or convenient) one, and not one based on
scientific reasoning (Shine 2009). Figure 1 suggests
that for shorter-lived species the combined metrics, (
i.e. ratio of a step response with the equivalent pulse
response for CO,), vary less with time horizon. For
species with a lifetime greater than the timescale of
interest (e.g. N,O) the standard pulse metrics are more
useful. For species of intermediate lifetime such as
CFC-11 both combined and standard metrics have a
time dependence. This is a very similar conclusion to
Smith et al (2012) but phrased in terms of metrics.

For the combined metrics the difference between
the radiative forcing and temperature approaches is
not large, the CGTPcy, is around 7% smaller than the
CGWPcypy on the longer time horizons (figure 2). The
extra timescales introduced through the temperature
response has more effect on the CO, pulse than the
methane step: in figure 1 the curves in panels (a) and
(e) have similar shapes, whereas the curve in (f) pla-
teaus more quickly than (b). Fuglestvedt et al (2018)
argue that the long-term climate balance goal in the
Paris agreement could imply a zero net radiative for-
cing, for which the CGWP (for short-lived species)
and GFP (for long-lived) would be appropriate.

The time variation in the combined metrics for
short-lived species is mostly due to the decrease in
CO, concentration following a pulse. The difference
between the 20 year metric and the 100 year metric is
still large (roughly a factor of 1.5 for methane com-
pared to the factor of 10 for GTP(20) versus GTP
(100)), but the differences between 50 years and 100
years are much smaller (table 2)—factors of 1.2-1.3 for
the combined metrics for SLCFs with a lifetime of
around 20 years or less rather than the factors up to 2
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for the pulse metrics (see also table 1 and appendix
A.3). This means that a metric with a 75 year time hor-
izon would be equally applicable for a climate target
between (say) 2070 and 2120 within a less than 15%
difference. For species with a lifetime of between 20
and 50 years, the time horizon needs to be chosen to
reflect the timescale of the climate target. Even for
these species the time dependence of the CGTP metric
is still less than that for the GTP.

4. Discussion

4.1. Relation to climate goals

The choice of metric depends on the climate goal. In
this paper we explicitly focus on the Paris goals,
however other choices of climate goals (such as rate of
warming or sea-level rise) would require different
metrics to CGTP. Integrated climate metrics (GWP or
IAGTP) effectively parameterise climate damage as
approximately linear with temperature change, i.e.
that a small increase in temperature in the next few
years is equally damaging as the same increase in
temperature at the end of the century. This does not fit
into the framework of long-term climate targets (such
as the Paris agreement) which are, strictly speaking,
implicitly framed as damage only occurring above a
threshold temperature, so these integrated climate
metrics are not suitable for comparing contributions
to achieving the Paris goals. The metrics most closely
aligned with the Paris goals are therefore endpoint
metrics with a time horizon chosen either around the
time of peak warming (if no overshoots are allowed),
or at some future time by which we need to have
stabilised temperatures. For any temperature-based
target CO, emissions need to fall to zero, while SLCFs
need to stabilise (Tanaka and O’Neill 2018).

When comparing endpoint metrics of pulse emis-
sions of short-lived species with pulse emissions of
CO,, the ratio is very sensitive to the choice of this time
horizon making these metrics more difficult to apply
in a policy situation. We have shown this sensitivity is
very considerably reduced if instead the endpoint
metric for a step change in a short-lived species is com-
pared to the endpoint metric for a pulse change in
CO,. For instance, a metric designed to achieve radia-
tive forcing or temperature balance by say late this
century (H = 75 yr) would also be applicable (within
a variation of 10%) 25 years either side. This stability
has great advantages for policy in that it reduces the
error caused by choosing an arbitrary time horizon,
and it means that a metric used to determine Nation-
ally Determined Contributions (NDCs) under the
Paris Agreement will be approximately applicable for
several iterations of the global stocktake cycle.

An issue with the GWP is that a time horizon of
100 years has been adopted without a specific scientific
justification as described in section 3. Now that spe-
cific climate goals have been stated in the Paris
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Agreement, we can conclude that the appropriate
timescales are between approximately 50 and 100
years (depending on whether the Paris Agreement is
taken to relate to peak temperatures or early next cen-
tury temperatures). With the weaker time sensitivity of
the CGTP, we can suggest the CGTP(75) as a single
metric that spans the appropriate timescales of interest
within a variation of 10%.

4.2. Use of the metrics

4.2.1. Nationally determined contributions

The step change metrics are most easily applied to
country-scale aggregated emissions, as these tend to be
reported in Gt yr ' and emissions pledges tend to be
phrased as permanent step changes relative to the
current emissions. For instance, a pledge by a country
in their NDC to reduce methane emissions perma-
nently by x Gtyr ' (compared to the current emission
rate) by 2030 would be equivalent to a one-off CO,
reduction of ~3700 x Gt CO, (using the CGTP(75)
(table 2)). The challenge comes from interpreting the
step change CO, emission pledges as pulses. Note that
pulse emissions are directly related to the cumulative
emissions as they add a fixed amount to the total.
Determining the cumulative emissions is required
following the approximation that the temperature
change scales with cumulative carbon emissions
(which forms the basis for the widely used transient
climate response to cumulative carbon emissions
(TCRE) concept (Gregory et al (2009))). Therefore, a
pledge to mitigate CO, emission rates by y Gt yr ' by
2030 does not provide enough information; ideally
instead the reduction in cumulative CO, emitted in Gt
between the start date and 2030 should be reported
(and similarly for other LLGHGs). Hence, as is
approximately the case with GWP*, SLCF emissions
reported as a change in emission rate can be converted
to cumulative CO, emission equivalents using the
combined metric CGTP, and changes in cumulative
emissions of LLGHGs can be converted to cumulative
CO, emission equivalents using pulse GTP, thus
putting all emissions on a common scale.

4.2.2. Individual emissions sources

As well as country-scale emissions, the step metrics
can also be easily applied to permanent structural
emission changes, such as a shift from gas-fired power
to renewables. However, they are not readily applic-
able to individual emission sources that have a finite
lifetime. For example, methane emissions of ecpy Tg
yr~! from a gas-fired power plant with an operating
life of 20 years would cause a cumulative CO,
equivalent emission of CGTP xecyy Tg when turned
on, but an approximately equal negative cumulative
CO; equivalent emission when turned off. The time
dependence of CGTP means the negative cumulative
CO, equivalent emission from decommissioning is
slightly smaller than the initial positive CGTP, i.e.

6
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there is a small overall net positive cumulative CO,
equivalence. This example realistically represents the
point that the impact of a relatively short-duration
source of methane has only a small effect on long-term
temperatures.

4.3. Comparison with GWP*

The CGTP metric compares the endpoint tempera-
tures of a step change in SLCF emissions with a pulse
emission of CO,. Allen et al (2016, 2018) show that an
approximation to this metric can be derived by simply
scaling the GWP by the time horizon H:
GWP* = AGWPy/(AGWPco,/H). They use the
standard assumption of fixed TCRE (i.e. the temper-
ature change is only dependent on the total CO,
emitted) to make the approximation that a step change
in CO, emissions for H years is equivalent to H one-
year pulses (AGTPSco, (H) ~ H x AGTP’cq,(H)).
They also make the approximation that GWP and
GTP® are equal
(AGTP%/AGTPYo, = GTP® ~ GWP). From this the
metric CGTPx(H) = AGTPX/AGTP?co, approxi-
mates to HxAGTP%/AGTPSco, ~ H x GWPx(H).
Figure 3 shows the effect of these approximations;
panel (a) shows that GWP underestimates GTP® by
11% at 100 years; panel (b) shows that assumption of
constant TCRE leads to an overestimate of AGTPP o,
by 8% at 100 years; and panel (c) shows that GWP”
therefore underestimates CGTP by up to 20%. An

analogue of GWP*, GTP* (=H"*GTP®), would be a
closer approximation to CGTP, within 8% for
50 < H < 100. Note that numerically
GWP* ¢y, (100) ~ CGTPcy,(60) so the 100 year
GWP”* used in figure 2 of Allen et al (2016) gives good
agreement with the expected temperature at t = 60
years in their panel (b). Therefore relaxing the
constraint of trying to keep the GWP and its values for
the various gases improves the physical fidelity of the
step-pulse metrics from the results of Allen et al
(2016, 2018). It is important to note that although the
GWP”" approach and the CGWP and CGTP developed
here differ in their precise values, they are structurally
and conceptually similar. This should be contrasted
with GWP which is structurally inconsistent with the
policies being addressed, giving the wrong sign of
warming from a SLCF scenario in which emissions
were falling (Allen et al 2018).

5. Conclusion

We conclude that combined step-pulse metrics
(CGWP and CGTP) provide a useful way to compare
changes in emission rates of SLCFs (lifetimes less than
around 50 years—appendix A3) with cumulative
emission changes in LLGHGs so that they may be
included within common baskets in climate agree-
ments. These are endpoint climate metrics which are
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closely tied to long-term climate goals such as the Paris
Agreement. Integrated metrics such as GWP have been
shown to be structurally unsuitable for such goals
(both for SLCFs and LLGHGs). The standard pulse-
based endpoint metrics for SLCFs vary strongly with
time making them difficult to apply in a policy
situation, whereas the combined metrics we propose
are reasonably stable to within around 10% over the
time horizons of current policy interest (around the
end of the 21st century). Thus a single time horizon
CGTP(75) can be used as a suitable metric for SLCFs
covering the timescales relevant to the goals of the
Paris Agreement. It has been suggested (Schleussner
et al 2019) that because the step-pulse metrics are
designed to stablise temperatures they do not encou-
rage further temperature reductions, however such
temperature reductions are not part of any for-
mal goal.

Combined step-pulse metrics were first intro-
duced in the GWP* approach (Allen et al 2016, 2018,
Fuglestvedt et al 2018). GWP" was designed to retain
the use of values of the standard GWP, for purposes of
continuity, but we show that approximations inherent
in doing so mean that the GWP* underestimates the
contribution of SLCFs to temperature change by up to
20%, compared to a more explicit calculation of the
effect of step changes in SLCF emissions relative to a
pulse emission of CO,. We emphasize that the calcul-
ation of the combined metrics proposed here need no
additional inputs, or assumptions, than are already
used to generate the GWP and GTP values in Myhre
et al (2013); hence tabulated values can be easily con-
structed. Examples for halogenated species are shown
in appendix A.4 table A.1.

For treaties involving multi-species baskets such as
the Kyoto Protocol and as used by many countries
under their NDCs for the Paris Agreement, climate
metrics can be used to convert emissions of all species
to a common unit. The application of CGTPs to rates
of SLCF emissions and GTPs to total LLGHG emis-
sions allows a conversion to cumulative CO, equiva-
lent units which is more relevant to climate polices,
such as the Paris Agreement, that are framed in terms
of long-term temperature targets. This unit is the fun-
damental quantity in many climate pathways (Millar
et al 2017, Forster et al 2018) and is approximately
related to temperature rise through the TCRE.

There is evidence that these insights can inform
national targets and national policies: New Zealand’s
recent Zero Carbon Act (New Zealand 2019) contains
a split-gas target: a decrease for methane, and a net
zero target for long-lived gases. This indicates that pol-
icymakers are able to respond and adapt to the insights
that emerge from considering different metrics, such
as those presented here and in in Allen et al (2018).

Scientifically, the main insight from this paper and
Allen et al (2016, 2018) is that the step-pulse approach
(such as CGTP or GWP") represents a vital and sig-
nificant improvement in the comparison of emissions

P Letters

of SLCFs with long-lived greenhouse gases with regard
to long-term temperature goals. Although there is no
perfect, universal way of comparing forcing agents
across all variables and time horizons, these papers
show that the conventional use of GWP is clearly not
suitable for comparing the contributions of short and
long-lived climate agents towards the Paris temper-
ature goals.
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