University of
< Reading

Why does Arakawa and Schubert's
convective quasi-equilibrium closure not
work? Mathematical analysis and
Implications

Article

Accepted Version

Yano, J.-l. and Plant, B. ORCID: https://orcid.org/0000-0001-
8808-0022 (2020) Why does Arakawa and Schubert's
convective quasi-equilibrium closure not work? Mathematical
analysis and implications. Journal of the Atmospheric
Sciences, 77 (4). pp. 1371-1385. ISSN 1520-0469 doi:
10.1175/jas-d-19-0165.1 Available at
https://centaur.reading.ac.uk/87845/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1175/jas-d-19-0165.1

Publisher: American Meteorological Society

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.



http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence

University of
< Reading

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online


http://www.reading.ac.uk/centaur

LaTeX File (.tex, .sty, .cls, .bst, .bib) Click here to access/download;LaTeX File (.tex, .sty, .cls, 4
.bst, .bib);ms.tex

| Why Does

2 Arakawa and Schubert’s Convective Quasi-Equilibrium Closure
s Not Work?

. Mathematical Analysis and Implications

5 Jun-Ichi Yano*

6 CNRM, Météo-France and CNRS, UMR 3589, 31057 Toulouse Cedex, France

7 Robert S. Plant

8 Department of Meteorology, University of Reading, UK.

o *Corresponding author address: CNRM, Météo-France, 42 av Coriolis, 31057 Toulouse Cedex,
o France.

i E-mail: jiy.gfder @gmail.com

Generated using v4.3.2 of the AMS IXTgX template 1



12

20

21

22

23

24

25

26

27

28

29

30

ABSTRACT

Arakawa and Schubert (1974) proposed convective quasi-equilibrium as a
guiding principle for the closure of convection parameterization. However,
empirical experiences from operational implementation efforts suggest that
its strict application does not work well. The purpose of the present paper
is to explain mathematically why this closure does not work in practice, and
to suggest that problems stem from physically unrealistic assumptions. For
this purpose, the closure hypothesis is examined in its original form, and
without imposing a condition of a positiveness to the convective mass fluxes.
The Jordan sounding with idealized large-scale forcing is used for diagno-
sis purposes. The question is addressed from several perspectives including
the completeness of the entraining plume spectrum, and a singular vector de-
composition of the interaction kernel matrix. The main problems with the
quasi—equilibrium closure are traced to: (i) the relatively slow response of
shallower convective modes to large-scale forcing; and, (ii) detrainment at
convection top producing strong cooling and moistening. A strict application
of the convective quasi-equilibrium principle leads to a singular response of
shallow convection. An explicit coupling of convection with stratiform clouds
would be crucial for preventing this unrealistic behavior, recognizing that the

re-evaporation of detrained cloudy-air is a relatively slow process.
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1. Introduction

Closure is a key issue in the convection parameterization problem (cf., Yano et al. 2013). Con-
vective quasi-equilibrium, as originally proposed by Arakawa and Schubert (1974: see Yano and
Plant 2012a as a review), remains an important guiding principle for the convective closure even
today (e.g., Zhang 2002, 2003, Donner and Phillips 2003, Bechtold et al. 2014), in spite of various
criticisms (e.g., Houze and Betts 1981, Mapes 1997).

The quasi—equilibrium closure may be formallly stated for a spectral form of mass—flux convec-

tion parameterization as:

KM +F = 0. (1.1)

Here, K is an interaction matrix (kernel in Arakawa and Schubert, 1974) that describes the feed-
back from the mass—flux vector (spectrum), M, onto the large—scale tendency of an instability
measure known as the cloud work function; F is the spectrum of large—scale forcing for the cloud
work function, which is also defined as a vector. The vector components correspond to convective
plume types that represent a spectrum of convective towers. The cloud work function corresponds
to the rate at which available potential energy is converted into convective kinetic energy, as nor-
malized by the mass flux at the convection base (cf., Yano et al. 2005a). Here, the equilibrium
assumption states that the total tendency vanishes. Generalizations of the quasi—equilibrium ideas
are discussed by Yano and Plant (2016).

Eq. (1.1) states that the convective response (1st term) is always in balance with the large—scale
forcing (2nd term). This closure is, intuitively speaking, physically sound, because the convective
process is much faster than the large—scale processes. However, in spite of a series of subsequent

efforts, this original form of the closure has never become fully operational, but only in variant
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forms (e.g., Moorthi and Suarez 1992). This study will explain why the formulation given by
Eq. (1.1) is structurally difficult to implement as a closure from a mathematical point of view.

The original implementation (Lord and Arakawa 1980, Lord 1982, Lord et al. 1982) devoted
much attention to maintaining positiveness of the convective mass fluxes, because only convective
updrafts were considered. Unfortunately, in our opinion and as we will discuss below, a rather
elaborate iteration procedure introduced for this purpose may have obscured some more basic
issues with a strict convective quasi—equilibrium closure.

The present study focuses on the closure problem exactly as given by Eq. (1.1) without any
further restrictions. This strategy may be partially justified by considering negative mass—fluxes
as detraining downdrafts (i.e., time-reversed updrafts). Importantly, regardless of whether this
reinterpretation stands or not, this simplification enables us to elucidate more clearly and cleanly
some basic problems with Arakawa and Schubert’s (1974) original convective quasi—equilibrium
closure.

For the same reason, the original assumption of a spectrum of purely entraining plumes is main-
tained in the present study, because we believe it is important to establish a baseline. In the lit-
erature, the problems with the oversimplified entraining—plume hypothesis have been extensively
discussed, and various alternative formulations have been proposed, as reviewed in e.g., de Rooy
et al. (2013), Yano (2014a). Analysis with a more elaborate plume model would be considered a
future work.

A simple formulation for the terms in Eq. (1.1) is provided in the next section, and some basic
demonstrations of the problems are made in Sec. 3. The identified problems are investigated in
Sec. 4 by examining the completeness of the entraining-plume spectrum as well as the mathemat-

ical structure of the interaction (kernel) matrix.
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The present paper focuses on a rather narrow question of mathematical difficulties with the orig-
inal closure formulation by Arakawa and Schubert (1974). Various physical issues associated with
this closure hypothesis as well as with the mass—flux formulation itself are extensively discussed
in the literature. Some of these may be found in a review of uasi-equilibrum by Yano and Plant
(2012), and more general issues associated with the mass—flux parameterization are covered by
Plant and Yano (2015). In concluding, in Sec. 5, the paper also turns to the physical implications
from the present findings, also referring to background issues.

2. Formulation
a. Data

A tropical climatology based on the Jordan sounding (Jordan 1958) is adopted for specifying
vertical profiles of temperature and moisture. The vertical resolution used for the profile data is
50 hPa from 1000 to 200 hPa, and with a surface value at 1015 hPa being separately given. Data
is also available further above at 175, 150, 125, 100, 80, 60, 50, 40, and 30 hPa levels.

We introduce idealized large—scale advective forcings defined by

T\ db
_dq,
FLlgy] = —w Iz (2.1b)

for temperature and moisture, respectively. Here, T, 0, §, are the vertical profiles for the tem-
perature, the potential temperature, and the moisture as provided by the Jordan sounding. The

large—scale vertical velocity, w, in Eq. (2.1) is prescribed by

o | PE =P
Ww(z) = o s po—P(ZT)] for po > p(e) 2 plar) (2.2)

0 for p(zr) > p(z)

as a function of the pressure, p(z), with wg = 1072 ms~!, and pg = 1015 hPa the surface pressure.

Three types of large—scale forcing are considered: deep (z7 = 15 km), shallow (zz = 5 km), and
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very shallow (z7 = 1.5 km). The purpose of this idealization is to examine the convective response
to large—scale forcing strictly confined to a certain vertical range. These forcing profiles are shown
in Fig. 1(a). Here, as a drastic simplification, potential contributions to the forcing from boundary—
layer processes are neglected, despite their possible importance. Consistent with that assumption,
contributions from boundary—layer processes to the interaction matrix, K, will also be neglected
in the analysis below.

The large—scale forcing on the cloud work function, F from Eq. (1.1), is obtained by vertically
integrating a linear combination of two large—scale forcings, as explicitly given by Eq. (B33) in
Arakawa and Schubert (1974). The integration is defined with a weighting that is a function
of the fractional entrainment rate, € (see next subsection), and the resulting integrated forcing
is presented in Fig. 1(b). We remark that the forcing has a relatively weak dependence on a
microphysical parameter, cg, which is defined by Eq. (2.5) below in Sec. 2.c. The vertical profile
of the large—scale forcing as defined by Eqgs. (2.1a,b) and (2.2) has a well-defined vertical scale
but its projection onto the plume components in Fig. 1(b), presents a very broad distribution of
forcing as a function of the entrainment rate, despite the fact that the entrainment rate determines
the vertical scale of each plume mode. Moreover, the main difference from changing the vertical
scale of large—scale forcing is a change of the spectrum amplitude rather than a change of the
spectrum shape.

We diagnose the convective quasi-equilibrium closure of Eq. (1.1) by closely following the
mass-flux spectrum formulation introduced by Arakawa and Schubert (1974), and for formula-
tion details we refer to the original paper. In the following two subsections, we describe two major
assumptions for which some additional specifications are required: the entraining-plume spectrum
(Sec. 2.b) and the precipitation formulation (Sec. 2.c).

b. Entraining—Plume Spectrum
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Arakawa and Schubert’s (1974) entraining-plume spectrum is characterized by a set of constant

fractional entrainment rates, €;, which are defined in this study by:

i—1/2
&= —/8m3X7 (23)
n
where the vector index, i, spans for i = 1,...,n with n = 20 plume types considered, and €nax =

10~* m~! is the maximum fractional entrainment rate considered. The i-th entraining plume has
a normalized mass—flux profile of

exp[—&i(z—zp)] for zp <z<zp
miz) = 4

0 otherwise
where zp and z7; are the bottom and top levels of the plume. The base level, zp, is taken to be
950 hPa (583 m), approximately corresponding to the top of the convectively well-mixed boundary
layer. The top, z7j, is defined by the level of neutral buoyancy, at which all of the plume air
detrains into the environment. The top height, z7;, is diagnosed as a continuous function by taking
a linear interpolation of values between the data height levels and we assume that the plume-top
detrainment happens over a vertical layer spanning between these two levels.

For a larger fractional entrainment rate, €, the in-plume air is more diluted by the environmental
air, and so becomes less buoyant. As a result, the plume top height, z7;, decreases with increasing
€. In essence, the fractional entrainment rate, €, becomes a reverse measure of the convection
depth, zr. Some examples of vertical profiles of entraining plumes for the Jordan sounding are
shown in Fig. 2. A full mass—flux profile for the i-th plume is defined by M;n;(z), where M; is the
mass flux at the plume base for the plume type and is the i-th component of the mass—flux vector
M in Eq. (1.1).

c. Precipitation efficiency
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A very simple cloud microphysics is used, in which the precipitation rate, R;, within the i-th
plume at each vertical level is assumed to be proportional to the cloud—water vertical flux, w¢;q.;,

with a proportionality constant, cq, called the precipitation efficiency:
R; = cowciqci-

Here, w.; = M;n;/po; and q.; are respectively the in-cloud vertical velocity and the cloud-water
mixing ratio of the i-th plume type, and p is the air density. The precipitation rate, R;, is defined
in such a manner that the fractional area, o;, occupied by the i-th plume type does not appear in
actual calculations of the total-water for a given plume type (cf., Eq. 6.2b of Yano 2015).

The precipitation efficiency, cp, is chosen by following a curve shown in Hack et al. (1984: their

Fig. 3). Specifically, we take

2A £—§&
co= —70 arctan ( c 0) ~+ coo, (2.5)

C

where cop = (Cmax + Cmin)/2 and Ac = (cmax — Cmin)/2. Note that ¢ — ¢max and co — Cmin as
€ — 0 and € — oo, respectively; € marks a transition from a weakly—precipitating shallow (with
large €) to a heavily—precipitating deep (with small €) regime. Here, the parameters are set as
g=5x10"m ", cpax =45x 107 m™ !, cpin=5x10" m~!, and &, = 107 m~!. Figure 3
plots the precipitation efficiency, cg, as a function of the fractional entrainment rate, €.
3. Basic Analyses
a. Interaction matrix

The interaction matrix (kernel), K, is defined by Eq. (B32) and Egs. (B35)—(B38) of Arakawa
and Schubert (1974). Its evaluation using Eq. (2.5) for the precipitation efficiency is shown
in Fig. 4(a). An element, K;;, of the interation matrix defines the rate at which a unit of the
convection-base mass flux for the j-th plume type, M;, changes the cloud-work function for the

i-th plume type.
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By referring to Eq. (144) and Fig. 11 of Arakawa and Schubert (1974), we find that the large—
scale thermodynamic profiles are modified by convection in two major ways: (i) detrainment at
the plume top, which cools and moistens the large—scale environment due to evaporation of the
detrained cloudy air; and, (i1) a compensating descent in the large—scale environment, which leads
to adiabatic heating and drying by downward transport of drier air from aloft. These two major
processes modify the cloud—work function, and the interaction matrix can be separated into two
dominant contributions:

K=K, +K,, (3.1)

where K; and K, represent the effects of detrainment and environmental descent, respectively. A
third part, Ky, as defined by Eq. (B32) of Arakawa and Schubert (1974), is neglected because of
our assumptions above about boundary layer processes.

The evaporative cooling associated with detrainment leads to a further destabilization of the
atmosphere, and thus K is positive definite (Fig. 4(b)). This tendency is stronger when a plume
is less—strongly precipitating, and hence for the shallower plumes with larger €. Moreover, the
detrainment effect is felt only by the plume types that extend higher than the detrainment level of
the plume in question (i.e., € < €’), and so Ky is triangular. On the other hand, adiabatic heating
by environmental descent leads to a stabilization, and thus K, is negative definite (Fig. 4(c)). The
descent effect is stronger for deeper plumes with smaller €', and affects plume types of all depths.
b. Response due to a single plume

Once a value of M;, as a component of the mass-flux vector, 1\7[, is specified [see also Eq. (3.2)
below], the tendencies of temperature and moisture produced by each convective plume type,
i, can be calculated respectively from Eqgs. (3.6a) and (3.6b) of Yano (2015). Examples of the
convective response from individual plume types are shown in Fig. 5. Here, we rather arbitrary

assume M; = 1072 kg m~2 s~!. For the cases of € =6 x 107 and 8 x 107> m~!, the resulting
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plumes are relatively shallow, with relatively weak precipitation. This leads to strong cooling and
moistening at the detrainment level associated with cloud evaporation. The effects are much less
pronounced for the deep—plume example, because a high precipitation does not leave much cloud—
water for detrainment at the plume top. The values obtained for the strong cooling and moistening
associated with the detrained—air re-evaporation are shown in the Appendix to be consistent with
a simple scale analysis.

The strongly-peaked character of the thermodynamic tendencies from individual plume types
raises potential issues for construction of the total convective response, obtained by taking a linear
sum of these individual tendencies weighted by the convection—base mass—flux values, M;. The
total response is considered next.

c. Total Convective response

The convective—base mass—flux vector, M = (M;), is obtained from Eq. (1.1) by multipying the
inverted matrix, K~!, on the large—scale forcing, F. The obtained M, shown in Fig. 6(a) as a
function of the fractional entrainment rate, €, is marked by relatively large contributions from both
small and large € with modest contributions from intermediate values. This basic structure is not
dependent on the depth of the large—scale forcing.

The resulting vertical profile of the total mass flux, M(z), is given by

M(z) = ) ()M (3:2)

and is shown in Fig. 6(b), where 1;(z) is the vertical profile of the i-th plume type, as defined by
Eq. (2.4).

The most noticeable feature is a strong downdraft below the 4—km level, which is the lowest
height achieved by plumes with largest fractional entrainment rates, €, under the given mean ther-

mal profile. Above this level, a substantial updraft reaches the 14—km level under deep large—scale

10
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forcing (solid curve), consistent with the depth of forcing in Fig. 1(a). It is replaced by an updraft
that decreases linearly with height between 4 and 14-km under shallow large—scale forcing (long
dash). This response is rather unintuitive considering the fact that shallow large—scale forcing only
reaches the 5-km level (cf., Fig. 1). Only when very shallow large—scale forcing is considered
does the convective response above the 4—km level becomes negligible (short dash).

Figure 7 shows the corresponding convective tendency profiles for temperature (a) and moisture
(b). Clearly these do not match well with the forcings in Fig. 1, even though the cloud work
functions for each mode are in equilibrium by construction (cf., Sec. 5.a). The sudden increase
of mass flux at the 4—km level (Fig. 6(b)) is associated with unrealistically strong heating and
drying, with magnitudes c.a., 60 Kday~! for temperature and —120 Kday~' for moisture. The
peaks are manifestations of those seen for individual plume types in Fig. 5, but with the signs
reversed: entrainment (i.e., negative cloud—top detrainment) at the top of detraining—downdraft
plumes causes this tendency. On the other hand, tendencies with more reasonable magnitudes are
found at the other vertical levels.

4. Further Analyses
a. Completeness of the spectrum of plumes

The basic idea of the spectrum model is to be able to represent every possible convective profile
using a sum of profiles from the individual plumes. Thus, we now ask whether the ensemble of
entraining plumes has such a capacity? The question may be more formally posed as the possibility
of decomposing any given arbitrary mass—flux profile, M(z), by a plume spectrum given by the set

of functions {n;} (i=1,....n) as:

M=

M(z) =) mini(z), (4.1)

1

~.

where 71; are the expansion coefficients. Unfortunately, performing such a decomposition is not

straightforward, because the exponential entraining plume profiles of Eq. (2.4) do not constitute

11
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an orthogonal set. Nevertheless, it is instructive to consider the issues further by assessing decom-
positions of both 1; and M using a complete orthonormal set. For this purpose, it is convenient to
use the vertical normal modes, W;(z), for the vertical velocity defined for the hydrostatic primitive

equation system (Kasahara and Puri 1981, Fulton and Schubert 1985). Thus, we set:

(4.2a)

=
~

I

M-

;;)
~
=
&

<
I
I
3
=
D

(4.2b)

with expansion coefficients f);; and 7#2; for n); and M, respectively. By substituting Eq. (4.2a) into

Eq. (4.1), and by comparing this result with Eq. (4.2b), we find
n
m; = Z mjfij (4.3)
j=1

and so the expansion coefficients, 771, are determined by inverting the matrix 7);;. In order for the
inverse to exist, the determinant of this matrix must be non—zero.

To investigate the structure of the matrix, we perform a singular vector decomposition:
n
flij =Y, hewiig;, (4.4)
k=1

with eigenvalues, 4, and eigenvectors, w;; and Wy, the subscript k designating the index for the

eigenmode. These are defined by linear eigenvalue problems:

Y 7w ik = Mowi (4.5a)
sy

-

Wiiflij = Aowi;- (4.5b)

i=1

These two vector sets are called the right— and the left—vectors, which satisfy the orthonormality
n
Y Wiowi; = 6ij. (4.6)
k=1

12
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As a result, the determinant and the inverse matrix are defined by

det(ﬁij) = szl)tk, (4.7a)
n
=Y & wai, (4.7b)
k=1

respectively. The eigenvalue spectrum, {4}, characterizes a singularity of a given matrix. If any
of the eigenvalues, Ay, are too small, the determinant becomes very small, and the inverse matrix
becomes singular.

Figure 8(a) and (b) shows the plume spectrum, {7n;(z)}, and the plume matrix, (7);;), respec-
tively. To ensure that we retain sufficient vertical modes for the decomposition, and henceforth for
the dimension of the matrix, ();;), we re—set n =40 in Eq. (2.3) only for the analysis of the present
subsection. The eigenvalues, A;, obtained by the singular vector decomposition of Eq. (4.4) are

plotted in Fig. 9: note that we have chosen to label the eigenvectors in order of decreasing mag-

nitude of the corresponding eigenvalues, |A;|. The eigenvalues fall to very small values above
k > 20, suggesting that the entraining plume decomposition is highly redundant, and as a result
the determinant of the matrix, (f);;), practically vanishes.

However, the singular vector decomposition can be used to regularize a matrix by removing all

the small eigenvalues, A;, with, say, k > n. (with n. < n) from the summations in Egs. (4.4) and

(4.7b). Thus, we obtain

Mij =~ Y Mewig, (4.8a)
=1
¢

A~ Y A waob. (4.8b)
=1

Setting n. = 16 yields a regularized matrix (7);;) shown in Fig. 10(a), and its transformation back
to real space leads to Fig. 10(b). The reconstruction is noisier than the original spectrum shown in

Fig. 8(a); nevertheless, the overall structure remains surprisingly similar.

13
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In summary, the completeness analysis demonstrates the entraining—plume decomposition to be
highly redundant, so that it does not directly permit a decomposition of any vertical mass flux
profile under the formulae (4.1) and (4.3) due to a singularity of the matrix, (f);;). However, the
singularity can easily be removed under a singular—vector decomposition, and the reconstructed
nonsingular plume spectrum remains fairly close to the original entraining—plume spectrum. Thus,
the redundancy of the entraining—plume decomposition is not a practical issue in applying the
convective quasi—equilibrium closure.

b. Eigenvalues and eigenvectors of the interaction matrix, K

The basic structure of the interaction matrix, K, can also be elucidated by performing a singular—
vector decomposion. Here, the right— and the left—eigenvectors, M, and M, respectively, are
defined by solving linear eignevalue problems:

KM, = KM, (4.9a)
MK = KM, (4.9b)
with the eigenvalues, k; (I = 1,...,n). Recall the orthonormality:

MM, = 5. (4.10)

The large—scale forcing vector, F, may then be represented in terms of the interaction matrix
decomposition by

F=Y FM, 4.11)

F =M, F. (4.12)
Similarly, the cloud-base mass—flux vector, M, may be represented as

M=) uM,. (4.13)
l

14
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Substitution of Egs. (4.11) and (4.13) into Eq. (1.1) shows that the expansion coefficients are
related by
w=FE/x. (4.14)

The interaction—matrix eigenvalues, kj, are plotted in Fig. 11 in decreasing order of their absolute
values. From Eq. (4.14), if the large—scale forcing were to contribute with the same order to all
of the eigenmodes [cf., Fig. 1(b)], then the higher—order modes (say, /[ > 14) would dominate the
convective response.

Considering the eigenmodes themsleves, the spectra of the first eight right— and left—
eigenvectors, 1\711 and 1\711, are shown in Figs. 12 and 13, respectively. The most striking feature
is that the right eigenvectors, M;, are dominated by the high—entrainment (i.e., high mode index)
shallower modes, whereas the left—eigenvectors, M;, encompass relatively low—entrainment deep
modes (from the 8th to the 14th mode index).

These features have significant consequences in defining the response of convection, M, against
a given large—scale forcing, F. First, the expansion coefficients, F;, for the large—scale forcing
are defined by projecting the large—scale forcing, F, onto the left—eigenvectors, M; by Eq. (4.12).
Since M; reflects the deeper modes, there is a tendency that the deeper the structure of the large—
scale forcing, the stronger the projection onto the expansion coefficients, F;, and hence onto L,
through Eq. (4.14). However, the right—eigenvectors, 1\7[1, are dominated by the shallow modes,
and thus, the convective response, M, as defined by Eq. (4.13) is also dominated by shallow modes.
Due to these different characteristics of the left— and the right—eigenvectors, we therefore find that
convection responds most effectively to deeper modes of large—scale forcing, but that it manifests
as a response primarily through the shallower modes. Note that this “twisted” relation stems from
a strong asymmetry of the interaction matrix, as is demonstrated more explicitly using a simple

idealized example matrix in the next subsection.

15



3.

@

1

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349
350

c. Analysis of an idealized, highly—truncated interaction matrix
It is also informative to take an analytical perspective on the singularities in strict convective
quasi—equilibrium closure by examining an idealized interaction matrix, which captures its basic

characteristics. Specifically, we consider a 3 x 3 interaction matrix, K, of the form:

k —kg —kg
K=k k -k (4.15a)
ks kg —1

The quasi—equilibrium closure of Eq. (1.1) reduces to:

M; F;
K|m|+|r|=0 (4.15b)
M, Fi

Here, the order of the vector indices for M and K is reversed from a standard convention so that
the matrix form defined by Eq. (4.15a) closely follows the matrix—element distributions shown
in Fig. 4: the given distribution can directly be compared with the definition (4.15a) by flipping
the horizontal direction in the figures. The idealized matrix is normalized by setting the right—
lowest element to —1; k, kg, and k; are expected to be small values, where k and kg represent
destabilization tendencies of shallow convection modes acting on themselves and on the deeper
modes, respectively, whereas —k,; represents the stabilization from the deeper modes to shallower
modes.

The solution to the matrix problem (4.15b) is:

M3 = [(2k — kg + kg — 1)kskg — k2] 7V [(k — kskg)F3 + (1 + ko) kgF> — (k+kg)kaF] (4.16a)
My = [(2k — ks + kg — 1)kskg — k2] 7 [(kg — 1)ksF3 + (k — kskg) P> — (k — kg kg Fi] (4.16b)

My = [(2k — kg + kg — 1)kskg — k*] 72[(k — k) kgF3 + (k4 kg )ksF> — (k* + kekg)Fi].  (4.16¢c)
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s A further simplification is to set all the small parameters to the same value, k; = k; = k, so that

= the solution in Eq. (4.16) becomes:

1
353 M3 = ———[(1 —k)F 1+ k)F, —2kF 4.17
B—-F
a5 M, = 4.17b
2 % ( )
—Fy+ F]
355 M1 = % (417C)

7 When the limit of k — 0 is taken, the above solution reduces to

F+F
358 Mz — —
3 2k
F—F
359 M>, —
2 2k
360 M1—>—F2—|—F1,

361

3

=3}

. retaining only the leading terms with respect to k, and assuming all forcing components, F; (j =
w 1,2,3),tobeof O(1). Thus, the two shallowest convective modes, M3 and M,, respectively, diverge
s« 1n the limit of kK — 0. Also note that the signs of M, and M sensitively depend on differences
ws between F3 and F;, and that between F, and Fj, respectively.

ws  In this manner, the idealized matrix (4.15a) provides a very simple demonstration for the origin
«7 Of the singular behaviors of the quasi—equilibrium closure that were seen in previous sections.

ws d. Perturbation Analysis

ws Lheidealized matrix problem may be further developed by considering a perturbation expansion.

s Noting that many of the matrix elements are small in K, we can write:

Q

K =K® 4+ sk (4.18a)

M=MO+smM" + ... (4.18b)
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where § is a small expansion parameter, and where the idealized matrix of Eq. (4.15a) can be

decomposed as:

To O(1), we obtain:

-

KOMO +F=0

(4.19a)

(4.19b)

with det(K(®) = 0, because of the fact that large elements are localized, and hence there is no

solution available for M(®). To avoid this problem, we need to re-formulate the expansion of

Eq. (4.18b) as:

M:lM“”HWm+W

0

so that we obtain to O(1/9):

which, with the matrix (4.15a), leads to

(4.20)

4.21)

and leaves the other two components, Méfl) and M3(71), as undetermined. At O(1) we have,

KOMO© + KM +F =0,

(4.22)

which makes the problem solvable. Specifically for the case with Eq. (4.15a), this O(1) relation

defines Mé_l), Mg_l), and Ml(o).
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Thus, the perturbation analysis here more explicitly demonstrates how a strict application of the
convective quasi-equilibrium condition tends to lead to an abnormally strong response of shallow
convection to large—scale forcing.

5. Physical Implications

The present paper has focused on a rather narrow question of mathematical difficulties with
the original closure formulation of Arakawa and Schubert (1974). In concluding, we turn to the
physical implications from the present findings, also referring to background issues.

a. Free—ride principle

The convective quasi—equilibirum closure of Eq. (1.1) is based on stationarity of the cloud work
function, which is a vertically—integrated quantity (cf., Eq. 133 of Arakawa and Schubert 1974).
Thus, the closure is also formulated in terms of vertically—integrated quantities. However, we
might intuitively expect that a certain quasi—equilibrium state (i.e., a balance condition) is achieved
at each vertical level, at least to a good approximation, if a large enough number of convective
modes is considered. The different modes provide different weighting functions and upper limits
for the integrals in question.

It 1s observationally known that the large-scale tropical atmosphere satisfies a free-ride state
(Fraedrich and McBride 1989: later Sobel ef al. 2001 term it alternatively as “weak temperature
gradient”), with a close balance between the large—scale tendency and the convective response in

both the heat and moisture equations:

do
w ~ Q1 + Ok, (S.12)
dz
dg, Cp
— ~——L0. 5.1b
v dz L 2 ( )

Here, O and Q) are tendencies due to non—advective processes, apart from radiative heating,

Or, in the context of large—scale modeling (i.e., convective—scale advections are not explicitly
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considered). See Fig. 1 of Yano (2001: also reproduced as Fig. 4.2 in Ch. 4 of Plant and Yano
2015) for a graphical demonstration. Although the literature tends to refer only to the balance
(5.1a), here, it is seen that the second balance (5.1b) is equally valid. In the large-scale tropical
atmosphere, Q1 and O, are mostly due to convection (i.e., Q.). On the other hand, the vertical
advection and the radiation terms may be combined to define the total large-scale forcing, Fy.

Thus, the free-ride state may be equivalently expressed in the form

Op +Fp~0 (5.2)

for both variables. Eq. (5.2) may be considered as a statement of convective quasi-equilibrium,
but defined separately on each vertical level, rather than as an integral constraint.

Hence, we are led to ask whether, given enough plume modes in Eq. (1.1), we obtain a free-
ride state corresponding to Eq. (5.2): will this be actually accomplished in practice by the quasi-
equilibrium closure?

b. Completeness of the plume spectrum

Equivalence between Eqgs. (1.1) and (5.2) could be established if the mass—flux spectrum were
able to represent any possible convective response that may be required to satisfy the free-ride
state. Thus, a first consideration i1s whether the mass—flux spectrum is flexible enough to represent
any possible vertical profile. This has been examined using normal-mode and singular—vector de-
compositions in Sec. 4.a. The entraining—plume decomposition is shown to be highly redundant,
as expected from the individual plume profiles (cf"., Fig. 2), and so a decomposition of the entrain-
ing plumes into normal modes does not provide well-defined expansion coefficients. However,
this ill-posedness of the decomposition can be resolved by removing all the singular vectors with
almost—vanishing eigenvalues from the expansion. A reconstructed plume spectrum still remains

fairly close to the original entraining—plume spectrum, but practically removing the redundancy.
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Here, the mathematical question of the completeness of a plume spectrum addresses its capacity
and flexiblity to represent any physically—feasible vertical structure of convection. As we have
seen, the conclusion obtained is rather mixed, and further investigations from a more practical
perspective could be warranted.

c. Convective response under the spectrum mass flux

The next consideration is how an individual plume mode modifies the large—scale thermody-
namic state (i.e., convective response: Sec. 3.b). The effect of an individual entraining plume
is comprised of two main parts: (i) detrainment that cools and moistens the large—scale by re-
evaporation of the detrained cloudy air; and, (ii) compensating environmental descent, in response
to the convective updraft, that induces adiabatic heating and drying. A major difference between
these two effects is that the detrainment effect is found only at a single level at the plume top,
whereas the environmental descent is felt at all of the vertical levels spanned by the plume. As a
result, the detrainment effect focused on a single vertical level tends to be abnormally strong, with

cooling and moistening rates far exceeding 10 Kday !

and so strongly dominant at that level over
the environmental—descent effect.

The consequence is that a straightforward inversion of the interaction matrix in the closure con-
dition of Eq. (1.1) produces a full convective response against a given large—scale forcing that be-
comes very singular (Sec. 3.c). For idealized large—scale forcing profiles with a half—sine shaped
large—scale uplifting, we find that the convective response is dominated by singularly strong warm-
ing and cooling induced at the top of the detraining—plume downdrafts (i.e., entraining—plume
updraft modes with a negative amplitude). Due to the tendency of entraining—plume modes to pro-

duce a singular response, the convective quasi—equilibrium closure condition does not achieve a

thermodynamic state close to the free ride balances. Thus, the mathematical analysis herein points
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out in an explicit manner how and why a physically unrealistic feature of the entraining—plume
model causes a problem.

A very simple way of removing these singular cooling—moistening effects would be to neglect
all of the detrainment effects from the interaction matrix, K, by setting K; = 0 in Eq. (3.1) so
that the interaction matrix, K, is replaced by K,. However, totally removing this effect from the
convective equilibrium problem would not be very realistic for reasons discussed in Sec. 4.e.

d. Interaction matrix analysis

Another important aspect of the convective response under the convective quasi—equilibrium
closure is the dominance of shallow plumes regardless of the vertical extent of large—scale forcing.
This is rather unintuitive. However, one must remember that as a matter of principle, large—scale
forcing is projected to all the plume modes by design, as explicitly shown by Fig. 1(a). The
resulting spectrum of the convective response is rather nontrivial, mathematically taking the form
of a matrix inversion. This character of the problem means that we need to pay attention to the
mathematical behaviour of the inversion calculation in order to better understand the structural
issues involved.

First, a singular—vector decomposition is performed on the interaction matrix in Sec. 4.b. The
left—eigenvector spectra are dominated by middle—height plume modes, with maximum heights
of 8-10 km, thus relatively deep components of large—scale forcing lead to a strong response by
convection. On the other hand, the right—eignevector spectra are dominated by shallow plume
modes, and thus relatively—deep large—scale forcing modes are strongly projected onto shallow
convective modes.

This rather strong asymmetry between the left and the right eigenvectors stems from a strong
asymmetry in the interaction matrix itself. In turn, the asymmetry of the interaction matrix stems

from the nature of the detrainment effect of a plume mode onto other plume modes: only the
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deeper plume modes are affected by detrainment from a given plume mode, and this gives rise to
the triangular structure apparent within the interaction matrix (cf., Fig. 4(b)).

With increasing precipitating efficiency, the detrainment effect becomes weaker as less cloudy
air is available to detrain at plume top. In a fully—precipitating limit for all of the plume modes,
then the asymmetry of the interaction matrix would disappear, and the singular response to the
large—scale forcing would be removed. However, additional calculations (not shown) indicate that
even a weak asymmetry of the interaction matrix can lead to a singular response. A relatively
strong sensitivity of the convective response to the transition scale, &, in precipitation—efficiency
[Eq. (2.5)] has also been found because this parameter controls the relative contribution of detrain-
ment effects to the interaction matrix.

An idealized 3 x 3 interaction matrix (Sec. 4.c—d) is able to reproduce the character of these
results. A singular perturbation expansion is required for describing the convective quasi—
equilibrium closure due the fact that the matrix elements related to shallow convection tend to
be substantially smaller than those for the interactions between deep convection. As a result,
shallow convection tends to respond to large—scale forcing in a singular manner.

e. Further Physical Implications

An important feature throughout the present analysis is the strong cooling and moistening in-
duced by re-evaporation of the detrained cloudy air. When this contribution is suppressed, the con-
vective response under the quasi-equilibrium closure becomes much more reasonable. It is worth
noting that some alternative formulations of mixing, beyond the simple entrainment formulation
of pure Arakawa and Schubert (1974), may help to alleviate the problem (de Rooy et al. 2013,
Yano 2015). Another legitimate way of suppressing this effect is to couple the convection param-
eterization with a stratiform cloud representation, and to transfer the detrained cloudy convective

air to form part of a stratiform cloud rather than immediately re-evaporating it into the environ-
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ment. The importance of this procedure would probably be needless to emphasize, because such a
coupling of convection with stratiform clouds is already accomplished in most of the operational
global models already. However, its significance, to the extent revealed here, appears to be not
widely appreciated.

At the same time, completely suppressing the evaporative cooling of the detrained cloudy air
would likely not be wise. Yano and Plant (2012b) suggest that the resulting destabilization ten-
dency of shallow convection can be a key mechanism driving transformations from shallow to
deep convection. Two solutions may be considered for this remedy. The first is to retain the ten-
dency explicitly for shallow convection, rather than imposing a strict equilibrium constraint. In
this case, a singular response of shallow convection to large—scale forcing associated with evap-
orative cooling must be tamed in a different manner. The second is to transfer the role of this
destabilization tendency to the stratiform cloud scheme: the mechanism may be represented by
the cloud-top entrainment process (cf., Deardorff 1980, Randall 1980) under this reformulation,
which is also expected to lead to an equivalent destabilization.

Another important implication from the present study is a much slower response time scale
for the shallower convective modes than for the deep convection, as indicated by the relatively
small elements in the interaction matrix. This implication can be seen directly from the prognostic
equation for the cloud work function spectrum, K, from which the quasi—equilibrium closure (1.1)

is derived:

—

)
5, =KM+F. (5.3)

The quasi—equilibrium closure has been justified based on an argument that an overall time scale
for the response of convection to large—scale forcing is so short that we can drop the time tendency
of the cloud work function on the left hand side, which is expected to evolve by following a slow

large—scale time scale.
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However, more precisely, the response time scale is short only for deep convection, but not
for shallow convection. As a result, Eq. (5.3) may be approximated by Eq. (1.1) for the deep
convection part only. In other words, the full convective ensemble does not immediately respond
to any slow large—scale forcing, as originally envisioned by Arakawa and Schubert (1974). Rather,
a finite time-scale for the convective response to large—scale forcing should explicitly be taken into
account by retaining the temporal tendency of the cloud work function on the left hand side of
Eq. (5.3), so that the closure becomes fully prognostic. Suitable formulations are already in place
(e.g., Pan and Randall 1998, Yano and Plant 2012c). Here, we point out a solid reason for moving
towards this direction.

The issues appear to be further involved, because observational analyses by Zhang (2002, 2003),
Donner and Phillips (2003) suggest that the boundary—layer processes controlling the evolution of
the convective available potential energy (CAPE), and thus also likely of the cloud work functions,
are of a much shorter time scale than those found in the free atmosphere. Thus, boundary—layer
processes, neglected in the analysis herein, may further contribute to break down a strict applica-
tion of convective quasi-equilibrium closure. Those implications warrant further investigations.

The present study further suggests needs for re—considering the mass—flux convection param-
eterization formulation from more general perspectives. Such investigations are already under
way (e.g., Yano et al. 2005b, Yano 2014b, 2016). These developments should more seriously be
considered in operational contexts.

Appendix: Scale Analysis
The purpose of this Appendix is to estimate the order of magnitude of cooling and moistening

associated with re-evaporation of the detrained cloudy air.
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We begin with the simple point that latent heating due to the condensation of a unit of water

vapor, ¢ = 1 gkg~!, leads to an increase of temperature by
gL/C,=25K

using the latent heating, L = 2.5 x 10% T kg~!, and the specific heat capacity, C = 10 Tkg ! K1
for air at constant pressure. A typical mass flux value under convective quasi—equilibrium is
M~ 1072 kgm2s~!, or M /p ~wy= 102 ms~! in units of vertical velocity. At the convective
cloud top, all of the mass flux detrains under the entraining—plume hypothesis. The associated

heat flux is thus
(M/p)(q:L/Cp) ~25x 1072 x g, Kms™ ! ~2.5x10* x g. K m day ™ (A.1)

where the detrained cloud—water mixing ratio, g, 1s expressed in units of [g/kg]. If the detrainment

occurs over a layer of, say, 1 km in depth, it will amount to a cooling rate of 2.5 K day~! for

ge=1gkg L.

The last piece of estimate is the amount of cloud water, g, expected at the convective cloud
top at the height of, say, H ~ 10 km. To obtain this, we note that within a convective updraft,
condensative heating is well balanced by adiabatic cooling (a local realization of free-ride state:

cf., Eq. 5.1). Thus,
L dq;
Cp dz dz

This relation leads to an estimate for the rate of decrease of saturated water—vapor with height,

Thus, neglecting fall out due to precipitation, the accumulation of condensed water in lifting
through a height H ~ 10 km is estimated as:

dqy;
Z

g =—H—Y ~10°m ' x10*m~102kgkg ' ~ 10 gkg . (A.2)

26



= Substitution of Eq. (A.2) into Eq. (A.1) leads to an estimate of the cooling rate of 25 K day~' for

1 a 1 km—deep detrainment layer.
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Fig.

1.

10.

The three types of the large—scale forcing profile considered; deep (solid, chain—dash), shal-
low (long—dash, double dotted—dash), and very shallow (short—dash, triple dotted—dash). In
(a), the forcings are shown as a function of height for both the thermal (negative curves) and
the moisture (positive curves) terms. In (b), the forcings are shown in terms of the gener-
ation rate of cloud-work function (as found in Eq. (1.1) across the spectrum of fractional
entrainment rates.

Normalized mass—flux profiles, n = M(z)/M(zp), for selected entraining plumes under the
microphysical formulation given by Eq. (2.5). In order from the deepest (solid) to the
shallowest profiles (double—dot chain), the plots are for values of € = 1 x 107>, 2 x 1073,
4%x107°,6x107°,and 8 x 10> m~ 1.

Dependence of the precipitation efficiency, cg, on the fractional entrainment rate, €, as de-
fined by Eq. (2.5).

The interaction matrix, K;;, is plotted with the index i shown vertically and j horizontally for
corresponding fractional entrainment rates € and €’ respectively, as defined by Eq. 2.3. The
full matrix is shown in (a), and the two components due to detrainment and environmental
descent are shown in (b) and (c) respectively. The evaluation uses the deep large—scale
forcing (solid and chain—dash curves in Fig. 1).

Profiles of the tendencies of (a) the temperature and (b) the moisture (mixing ratio) produced
by convective plumes for given, selected entrainment rates: € =2 x 107> (solid), 4 x 107>
(long dash), 6 x 107 (short dash), 8 x 107> m~! (chain dash). Plotted in unit of K/day, also
assuming the convective mass-flux amplitude of M; = 1072 kg m 2 s~ e

(a) The spectrum of convective—base mass—flux as a function of the fractional entrainment
rate, as obtained from inverting the matrix, K, in Eq. (1.1). Results are presented for the
deep (solid), shallow (long—dashed), and very shallow (short—dashed) forcings, as shown in
Fig. 1. (b) The corresponding vertical profiles of the total mass flux.

Vertical profiles of the convective tendencies for (a) temperature and (b) moisture (the mix-
ing ratio) for the three large—scale forcing profiles given in Fig. 1: deep (solid), shallow
(long—dashed), and very shallow (short—dashed).

(a) The vertical profiles for the plume spectrum, {1;(z)}, shown as a function of height
(horizontal axis) and the plume index (vertical axis). (b) The plume matrix (i.e., the spectrum
of plumes decomposed by the vertical-velocity normal modes), 7;;, shown as a function of
the normal mode index i (horizontal axis) and the plume-type index j (vertical axis). See
Eq. (4.2a) for its definition.

The eigenvalues, Ay, for the plume matrix, 7); j» plotted as a function of the index, k, in
decreasing order of their absolute value. Both the real (solid) and imaginary (long—dash)
parts are shown.

(a) The plume matrix, #);;, as in Fig. 8(b), but here following a regularization by retaining
only the first n, = 16 modes in Eq. (4.4). (b) The vertical profiles for the plume spectrum,
{n;(z)}, as in Fig. 8(a), but reconstructed after the matrix regularization as in (a). Although
both spectra contain complex values, only the real components are shown, the imaginary
components being numerically negligible.
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Fig. 11.

Fig. 12.

Fig. 13.

The eigenvalues, kj, for the interaction matrix, K, plotted as a function of the index, /, in de-
creasing order of their absolute value. Both the real (solid) and imaginary (long—dash) parts
are shown. An exceptionally large magnitude for the real component of the first eigenvalue
(Iess than —25) is beyond the range of this plot and is not presented. The 2nd to the 9th
eigenvalues constitute a series of complex conjugate pairs, as well as the 11th and the 12th,
and from the 15th to the 18th.

The first eight right—eigenvectors, Ml (I=1,...,8), of the interaction matrix, as defined by
Eq. 4.9a. (a) Real and (b) imaginary components. The first four vectors are shown by solid,
long—dashed, short—dashed, and dot—dashed curves. They are followed by four other varying
types of the curves. Note that chnage of scale in the horizontal axis. .

The first eight left—eigenvectors, M; (I = 1,...,8), of the interaction matrix, as defined by
Eq. 4.9b. Plotted in the same format as for the right—eigenvectors in Fig. 12.
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693 FIG. 1. The three types of the large—scale forcing profile considered; deep (solid, chain—dash), shallow (long—
e« dash, double dotted—dash), and very shallow (short—dash, triple dotted—dash). In (a), the forcings are shown
ss as a function of height for both the thermal (negative curves) and the moisture (positive curves) terms. In (b),
s the forcings are shown in terms of the generation rate of cloud-work function (as found in Eq. (1.1) across the

o7 spectrum of fractional entrainment rates.
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701 F1G. 3. Dependence of the precipitation efficiency, cg, on the fractional entrainment rate, €, as defined by

702 Eq. (2.5).
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FIG. 4. The interaction matrix, K;;, is plotted with the index i shown vertically and j horizontally for corre-

sponding fractional entrainment rates € and €’ respectively, as defined by Eq. 2.3. The full matrix is shown in

(a), and the two components due to detrainment and environmental descent are shown in (b) and (c) respectively.

The evaluation uses the deep large—scale forcing (solid and chain—dash curves in Fig. 1).
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711 FI1G. 6. (a) The spectrum of convective—base mass—flux as a function of the fractional entrainment rate, as

» obtained from inverting the matrix, K, in Eq. (1.1). Results are presented for the deep (solid), shallow (long—

7

7

s dashed), and very shallow (short—dashed) forcings, as shown in Fig. 1. (b) The corresponding vertical profiles

74 Of the total mass flux.
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715 FIG. 7. Vertical profiles of the convective tendencies for (a) temperature and (b) moisture (the mixing ratio)
7e for the three large—scale forcing profiles given in Fig. 1: deep (solid), shallow (long—dashed), and very shallow

77 (short—dashed).
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79 axis) and the plume index (vertical axis). (b) The plume matrix (i.e., the spectrum of plumes decomposed by the
720 vertical-velocity normal modes), f);;, shown as a function of the normal mode index i (horizontal axis) and the

72o plume-type index j (vertical axis). See Eq. (4.2a) for its definition.
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722 FIG. 9. The eigenvalues, A, for the plume matrix, f};;, plotted as a function of the index, k, in decreasing

723 order of their absolute value. Both the real (solid) and imaginary (long—dash) parts are shown.
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724 FIG. 10. (a) The plume matrix, 7);;, as in Fig. 8(b), but here following a regularization by retaining only the
725 first n, = 16 modes in Eq. (4.4). (b) The vertical profiles for the plume spectrum, {n;(z)}, as in Fig. 8(a), but
76 reconstructed after the matrix regularization as in (a). Although both spectra contain complex values, only the

7.

N

; real components are shown, the imaginary components being numerically negligible.
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FIG. 11. The eigenvalues, kj, for the interaction matrix, K, plotted as a function of the index, /, in decreasing
order of their absolute value. Both the real (solid) and imaginary (long—dash) parts are shown. An exceptionally
large magnitude for the real component of the first eigenvalue (less than —25) is beyond the range of this plot
and is not presented. The 2nd to the 9th eigenvalues constitute a series of complex conjugate pairs, as well as

the 11th and the 12th, and from the 15th to the 18th.
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733 FIG. 12. The first eight right—eigenvectors, 1\711 (I=1,...,8), of the interaction matrix, as defined by Eq. 4.9a.
74 (a) Real and (b) imaginary components. The first four vectors are shown by solid, long—dashed, short—dashed,
75 and dot—dashed curves. They are followed by four other varying types of the curves. Note that chnage of scale

736 1n the horizontal axis.
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737 FIG. 13. The first eight left—eigenvectors, M; (I = 1,...,8), of the interaction matrix, as defined by Eq. 4.9b.

7s  Plotted in the same format as for the right—eigenvectors in Fig. 12.
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