

Wintertime North American weather regimes and the Arctic stratospheric polar vortex

Article

Accepted Version

Lee, S. H., Furtado, J. C. and Charlton-Perez, A. J. ORCID: <https://orcid.org/0000-0001-8179-6220> (2020) Wintertime North American weather regimes and the Arctic stratospheric polar vortex. *Geophysical Research Letters*, 46 (24). pp. 14892-14900. ISSN 0094-8276 doi: [10.1029/2019GL085592](https://doi.org/10.1029/2019GL085592)
Available at <https://centaur.reading.ac.uk/87746/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1029/2019GL085592>

Publisher: American Geophysical Union

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading's research outputs online

1 Wintertime North American weather regimes and the 2 Arctic stratospheric polar vortex

3 **S. H. Lee¹, J. C. Furtado², and A. J. Charlton-Perez¹**

4 ¹Department of Meteorology, University of Reading, Reading, U.K.

5 ²School of Meteorology, University of Oklahoma, Norman, Oklahoma, U.S.A.

6 **Key Points:**

- 7 The behavior of three of four regimes over North America is significantly linked
8 to the strength of the lower-stratospheric polar vortex.
- 9 A regime associated with Greenland blocking shows the strongest relationship with
10 the stratospheric polar vortex strength.
- 11 The regime most strongly associated with widespread severe North American cold
12 does not show a dependency on stratospheric vortex strength.

13 **Abstract**

14 The impact of the Arctic stratospheric polar vortex on persistent weather regimes over
 15 North America is so far under-explored. Here we show the relationship between four win-
 16 tertime North American weather regimes and the stratospheric vortex strength using re-
 17 analysis data. We find that the strength of the vortex significantly affects the behavior
 18 of the regimes. Whilst a regime associated with Greenland blocking is strongly favored
 19 following weak vortex events, it is not the primary regime associated with a widespread,
 20 elevated risk of extreme cold in North America. Instead, we find that the regime most
 21 strongly associated with widespread extremely cold weather does not show a strong de-
 22 pendency on the strength of the lower-stratospheric zonal-mean zonal winds. We also
 23 suggest that stratospheric vortex morphology may be particularly important for cold air
 24 outbreaks during this regime.

25 **Plain Language Summary**

26 During winter, the strength of the winds 10-50 km above the Arctic can affect the
 27 weather patterns at the surface. Generally, this influence is strongest over the North At-
 28 lantic and Europe. However, we show that the strength of stratospheric winds has a sig-
 29 nificant impact on weather patterns across North America. Our results indicate that knowl-
 30 edge of the stratospheric winds can provide a greater understanding of the evolution of
 31 likely weather in this region on longer time periods, including both severely cold weather
 32 (and its associated impacts on energy consumption, transport, and human health) or an
 33 unusual absence of severe cold.

34 **1 Introduction**

35 The behavior of the stratospheric polar vortex (SPV) is known to influence win-
 36 tertime tropospheric weather patterns on subseasonal-to-seasonal (S2S) timescales (\sim 15-
 37 60 days ahead) and provide a source of predictability (e.g. Kodera & Chiba, 1995; Kol-
 38 stad et al., 2010; Sigmond et al., 2013; Tripathi et al., 2015a). The variability of the SPV
 39 includes strong vortex events (Tripathi et al., 2015b) and weak vortex events, including
 40 major sudden stratospheric warmings (SSWs) (e.g. Charlton & Polvani, 2007). Whilst
 41 the mean response to an SSW or weakened SPV is a negative phase of the tropospheric
 42 Northern Annular Mode (NAM) and equatorward shift of the eddy-driven jets in the tro-
 43 posphere in the weeks-to-months after (Baldwin & Dunkerton, 2001; Kidston et al., 2015),
 44 there is a large amount of case-by-case and regional variability (Karpechko et al., 2017;
 45 Kretschmer et al., 2018). Weather regimes provide a helpful framework for examining
 46 stratosphere-troposphere coupling. Regimes describe the large-scale atmospheric con-
 47 figuration on any given day and are based on recurrent and persistent patterns in the
 48 large-scale circulation (Michelangeli et al., 1995). Because regimes exist on longer timescales
 49 than synoptic weather patterns, they provide an opportunity for longer-range prediction,
 50 useful for the energy sector (Beerli et al., 2017; Grams et al., 2017) and for the predic-
 51 tion of cold weather extremes in winter (Ferranti et al., 2018). Charlton-Perez et al. (2018)
 52 described the influence of the strength of the SPV on weather regimes in the North At-
 53 lantic, where the tropospheric response to changes in the stratospheric circulation is typ-
 54 ically largest. Using four Atlantic wintertime regimes (following Cassou (2008)), they
 55 show the SPV strength significantly affects the occurrence and persistence of each regime,
 56 and the transition between regimes. This approach helps illuminate some of the reasons
 57 behind different tropospheric responses to stratospheric changes (including, but not lim-
 58 ited to, SSWs) in a statistical sense.

59 Whilst the tropospheric response to changes in the SPV is more variable across North
 60 America than in the Euro-Atlantic sector, it has been implicated in driving recent ex-
 61 treme cold weather outbreaks in this region (so-called “polar vortex outbreaks” (Waugh
 62 et al., 2017)). These are among recent billion-dollar weather and climate disasters in the

United States (NOAA, 2019). The North American sector is also partly influenced by Atlantic weather patterns and the NAM, which typically respond strongly to changes in the stratosphere. Kretschmer et al. (2018) used cluster analysis in the lower stratosphere to elucidate the influence of the SPV on cold extremes in both North America and Eurasia, finding that a pattern associated with planetary wave reflection was important for anomalous cold over North America. This follows earlier work by Kodera et al. (2016), who found a Pacific blocking response to SSWs dominated by planetary wave reflection, with a downstream trough over North America. In addition, the Pacific sector tropospheric response to stratospheric perturbations is not necessarily of the same sign as in the Euro-Atlantic sector (Ambaum et al., 2001).

Although some prior work has described regimes across North America in a similar sense to the Atlantic regimes (Amini & Straus, 2019; Riddle et al., 2013; Robertson & Ghil, 1999; Straus et al., 2007; Vigaud et al., 2018), the use of regimes is not as common in this region. The number of regimes and the westward and eastward extent of the region used to define the regimes varies between studies, capturing different aspects of Pacific and Atlantic variability. Moreover, the relationship between these regimes and changes in the stratospheric vortex has not yet been quantified.

In this article, we define four tropospheric wintertime regimes across the North American sector and describe the relationship between the regimes and the SPV. We also investigate the link between these regimes and the occurrence of extremely cold weather across North America.

2 Data and Methods

We use 00Z data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al., 2011) for all days in December–March in the period January 1979 to December 2017 (a total of 4729 days). December to March is chosen as it encompasses the period of largest SPV variability (e.g. all observed major SSWs have occurred in these months (Butler et al., 2017)). The data are re-gridded to 2.5° horizontal resolution for computational efficiency and since we are considering only large-scale features. We perform an empirical orthogonal function (EOF) decomposition of linearly de-trended 500 hPa geopotential height anomalies (with respect to the daily January 1979–December 2017 climatology) in the sector $180\text{--}30^\circ\text{W}$, $20\text{--}80^\circ\text{N}$ (Figure S1). This region is chosen to include the Pacific jet exit region and include relevant North Atlantic variability. De-trending is performed to account for the climate change signal, although it does not notably alter the results (not shown). Data are weighted by the square-root of the cosine of latitude to give equal-area weighting in the covariance matrix. We retain the leading 12 modes of variability, which represent 80% of the total variance in the 500 hPa geopotential height anomaly field. We then perform k -means clustering with $k=4$ using the Python package *scikit-learn* (Pedregosa et al., 2011). All days are then assigned to a regime based on their minimum Euclidean distance to the cluster centroids; we do not employ “no-regime” days (Grams et al., 2017). The resultant regimes are very similar to those found in Vigaud et al. (2018); they show these regimes are a significant representation based on the classifiability index of Michelangeli et al. (1995), so we do not repeat that calculation here. Our four regimes remain largely unchanged as a subset when five or six clusters are used, further indicating they are dominant patterns and form a concise characterization with reasonably large individual sample sizes.

The probability of regime occurrence (p), which we term the occupation frequency, is given by ratio of the number of days in a given regime (n) to the total number of days (N) in the sample:

$$p = \frac{n}{N} \quad (1)$$

113 We use 95% confidence intervals with a normal approximation to a binomial proportion
 114 confidence interval, given by:

$$115 \quad p \pm Z \sqrt{\frac{p(1-p)}{N'}} \quad (2)$$

116 where $Z = 1.96$ from the standard normal distribution. To account for the persistence
 117 of the regimes, we employ an effective sample size N' , found by using the 1-day persis-
 118 tence probability r_1 (e.g. Wilks, 2011) for each regime in each vortex state,

$$119 \quad N' = N \frac{1 - r_1}{1 + r_1} \quad (3)$$

120 We do not scale N for confidence intervals on the transition probabilities, since these are
 121 independent of the preceding regime. We define the strength of the SPV to be the ter-
 122 cile categories of daily zonal-mean zonal wind at 100 hPa and 60°N, following Charlton-
 123 Perez et al. (2018). The 100 hPa level is chosen to represent the coupling layer between
 124 the stratosphere and troposphere and include only the effects of stratospheric pertur-
 125 bations which propagate into the lower stratosphere. The results are not qualitatively
 126 sensitive to the choice of lower-stratospheric level (not shown).

127 Statistical significance of the composite maps is determined by bootstrap re-sampling
 128 with replacement. We construct 95% confidence intervals using 50,000 re-samples per
 129 regime over all December to March days in the period 1979–2017. Random days are se-
 130 lected in blocks corresponding to the observed regime ‘events’, to test the null hypoth-
 131 esis that the composites are the result of random sub-sampling of winter days. Further
 132 detail on the bootstrapping method is provided in the Supporting Information.

133 3 Results

134 3.1 Circulation regimes

135 Composites of mean 500 hPa geopotential height anomalies for each of the four regimes
 136 are shown in Figure 1. The regimes are very similar to those defined in Straus et al. (2007)
 137 (despite a slightly different domain and analysis period) so we follow their naming con-
 138 convention. The least frequent regime (with an occupation frequency of 20%), is the Arctic
 139 High (ArH) regime (Figure 1a). It is associated with anomalously high geopotential
 140 heights over Greenland and the Canadian archipelago (Greenland blocking), and lower
 141 than normal geopotential heights over the Atlantic east of the United States but no sig-
 142 nificant height anomalies in the Pacific sector. The regime resembles the negative phase
 143 of the North Atlantic Oscillation (NAO–), and its occupation frequency is equivalent to
 144 the NAO– regime in Charlton-Perez et al. (2018). It is also similar to the tropospheric
 145 anomalies associated with cluster 5 in Kretschmer et al. (2018), which they associate with
 146 stratospheric planetary wave absorption. The Arctic Low (ArL) regime (Figure 1b) is
 147 not a direct counterpart of the ArH regime and is slightly more frequent (25%). Whilst
 148 the ArL regime is associated with opposite height anomalies to the ArH regime in the
 149 vicinity of Greenland and is somewhat similar to the positive NAO (NAO+), the main
 150 signature is a ridge-trough-ridge pattern extending from the Pacific across North Amer-
 151 ica, which resembles the negative phase of the Pacific–North American (PNA–) pattern.
 152 The ridge anomaly in the northeast Pacific indicates this regime is associated with a weak-
 153 ened Aleutian low and resembles a negative North Pacific Oscillation (NPO–) (Linkin
 154 & Nigam, 2008; Rogers, 1981). The Alaskan Ridge (AkR) regime (Figure 1c), occurring
 155 on 26% of days, strongly resembles the Tropical–Northern Hemisphere (TNH) pattern
 156 (Mo & Livezey, 1986) and the North American dipole (Wang et al., 2015), the latter of
 157 which was linked to the extremely cold North American winter of 2013-14. This regime
 158 is also similar to the tropospheric response to cluster 4 in Kretschmer et al. (2018), which
 159 they associate with the reflection of planetary waves by the stratosphere. We note that
 160 the AkR and ArL regimes are closest to the patterns during “polar vortex outbreaks”

161 over North America. The most frequent regime (29%) is the Pacific Trough (PT) (Figure 1d), which consists of an anomalous trough centred near Alaska, and an anomalous
 162 ridge over continental North America. The trough is consistent with a positive phase of
 163 the NPO (NPO+) and the enhancement of the Aleutian Low associated with El Niño,
 164 whilst the pattern across North America resembles the positive PNA (PNA+).

166 3.2 Relationship with the stratosphere

167 To quantify the relationship between the stratospheric state and each regime, and
 168 by considering the long persistence of lower-stratospheric anomalies during winter (Figure
 169 S2), we calculate the time-lagged difference in the probability of each regime between
 170 weak and strong SPV states. We calculate this difference for the 30 days before and af-
 171 ter each day in each regime, conditional on the SPV state at a zero-day lag (day 0) (Figure
 172 2). All but the AkR regime exhibit probability changes greater in magnitude than
 173 0.1, which generally peak around day 0, supporting a stratospheric influence (since this
 174 is the given state on which we condition the probability, and we would expect a near-
 175 contemporaneous regime response). The ArH regime displays the greatest difference. Its
 176 occurrence probability is 0.3–0.4 greater in a contemporaneously weak vortex versus a
 177 strong vortex; this difference exceeds 0.1 for all negative lags, which is likely influenced
 178 by the long persistence of weak SPV states (and the persistence of this regime in those
 179 conditions, c.f. Figure 3b). Moreover, for almost 20 days following a weak SPV, the prob-
 180 ability of the ArH regime is more than 0.1 greater than following a strong SPV. Con-
 181 versely, the probability of the ArL regime is around 0.1 less in the 30 days preceding a
 182 weak SPV, but this difference rapidly decays for positive lags. The PT regime becomes
 183 0.1–0.2 less likely following a weak SPV versus a strong SPV for up to 25 days; it does
 184 not display a large change in likelihood for negative lags beyond \sim 5 days.

185 Motivated by the preceding analysis, we next compute the probability of each regime
 186 given the SPV strength on the preceding day (Figure 3a). Although this is near-instantaneous,
 187 it provides a potentially useful framework for extended-range forecasting owing to the
 188 persistence and predictability of SPV strength anomalies, and the intrinsic persistence
 189 of regimes themselves. The ArH regime demonstrates the largest sensitivity to the strato-
 190 spheric state, consistent with its negative NAO-like characteristics, with an approximately
 191 linear relationship with the tercile SPV strength categories. This regime is seven times
 192 more likely following weak SPV states than strong SPV states and is the most likely regime
 193 following a weak SPV. The likelihood of the ArL regime increases with increasing SPV
 194 strength; it is approximately twice as likely following a strong versus a weak SPV. For
 195 the AkR regime, the dependency on the antecedent SPV strength is statistically insignif-
 196 icant. The PT regime is most likely following neutral and strong SPV conditions, and
 197 its behavior is generally similar to the ArL regime.

198 To further understand vortex-dependent changes in the occurrence probabilities,
 199 we compute the probability of persisting in a given regime the following day given the
 200 SPV strength on the current day (Figure 3b). The persistence of the ArH regime is most
 201 strongly dependent on the antecedent SPV strength. Its persistence decreases markedly
 202 from 0.86 following a weak SPV to 0.68 following a strong SPV, the lowest persistence
 203 probability of any of the regimes for any stratospheric state. This behavior is consistent
 204 with its similarity to NAO– (c.f. Figure 3 in Charlton-Perez et al. (2018)). None of the
 205 other three regimes exhibit significant changes in persistence probability depending on
 206 the SPV strength. Similar results are found when the total duration of each regime is
 207 stratified by the SPV strength on the day of transition into the regime (Figure S3), though
 208 this metric suggests enhanced duration of the PT regime during strong SPV conditions.

209 We also consider changes in the transitions between regimes. In Figure 3c we show
 210 the probability of transitioning from any other regime into a given regime the following
 211 day, given the SPV strength on the current day. Transitioning into the ArH regime is

212 2.5 times more likely during a weak SPV versus a strong SPV. The opposite is true for
 213 the ArL and PT regimes, but the relationship is slightly weaker, with the transitions ap-
 214 proximately 50% more likely following a strong SPV versus a weak SPV. We also show
 215 the difference in specific regime transitions between a weak and a strong SPV in Table
 216 S1, but emphasize that the sample sizes are much smaller for individual transitions (n
 217 = 38–90, and even smaller when categorized by SPV strength), making a robust anal-
 218 ysis difficult.

219 In order to discern the association between these regimes and the middle-stratospheric
 220 polar vortex (where major SSWs are commonly defined), we show the composite-mean
 221 contemporaneous 10 hPa geopotential height anomalies in Figure 4. The pattern dur-
 222 ing the ArH regime resembles a weak or displaced SPV with an anomalous wavenumber-
 223 1 configuration, consisting of anomalously high (low) geopotential heights over the cen-
 224 tral Arctic (southwest North America and northwest Europe). The anomaly pattern at
 225 10 hPa is similar to that at 500 hPa indicating an equivalent barotropic anomaly struc-
 226 ture. The ArL pattern is mostly opposite to ArH, with a strengthened SPV indicated
 227 by anomalously low geopotential heights over the central Arctic. The Pacific ridge anomaly
 228 present in this regime at 500 hPa does not extend to 10 hPa. The AkR regime features
 229 an anomalous wavenumber-2 splitting-type pattern with ridge anomalies in the Atlantic
 230 and Pacific, and an anomalous trough over North America. The ridge anomaly over Alaska
 231 and trough anomaly over central North America are also present at 500 hPa. The trough
 232 anomaly centred near the Hudson Bay is consistent with the similarity of this regime to
 233 the “polar vortex” outbreaks driven by a distortion to the vortex. Whilst the AkR regime
 234 does not have occurrence, persistence or transition preferences dependent on the antecedent
 235 zonal-mean zonal winds, the contemporaneous 10 hPa anomalies indicate significant dis-
 236 ruption to the mid-stratospheric vortex. Therefore, this aspect of vortex variability may
 237 not be captured in the 100 hPa 60°N zonal-mean zonal wind; instead, the AkR regime
 238 may be more influenced by the morphology of the SPV. Additionally, the similarity of
 239 this regime to both the response to reflecting major SSWs described in Kodera et al. (2016)
 240 and the patterns found during SPV intensification in Limpasuvan et al. (2005) indicates
 241 a potential relationship with stratospheric variability. The PT regime is associated with
 242 a wavenumber-1 anomaly pattern consisting of a barotropic anomalous ridge over North
 243 America and a strengthened SPV.

244 3.3 Relationship with cold air outbreaks

245 We next assess the relationship between these regimes and the occurrence of po-
 246 tentially dangerous cold weather outbreaks. To do this, we calculate the probability of
 247 severe cold for each regime as the number of days in each regime with normalized 2 m
 248 temperature anomalies more than 1.5 standard deviations below the daily mean (sim-
 249 ilar to the criterion of Thompson & Wallace (2001)). This calculation is performed at
 250 each grid-point, and the result is shown in Figure 5. Corresponding maps of composite
 251 mean 2 m temperature anomalies for each regime are shown in Figure S4. Despite the
 252 large differences between the likelihood, location and extent of cold weather outbreaks
 253 in these regimes, we emphasize that all four can bring cold-weather impacts to parts of
 254 the Northern Hemisphere.

255 Whilst the ArH regime (Figure 5a) is the most sensitive to the stratospheric state
 256 (c.f. Figures 2 and 3), we find that it is not the most important for widespread winter-
 257 time cold weather outbreaks across North America (though there is a significant risk of
 258 severe cold (5–10%) for all but northeastern North America during this regime). More-
 259 over, the magnitude of the mean temperature anomalies during this regime are relatively
 260 small (Figure S4a). The ArH regime is instead associated with the highest risk (>20%)
 261 of severe cold only across northwest Europe, consistent with its NAO– characteristics.
 262 We find that severe cold weather outbreaks across the continental interior of North Amer-
 263 ica are most likely during the AkR regime (Figure 5c), with chances of severe cold ex-

264 ceding 20%, and mean temperature anomalies widely 5°C below normal (Figure S4c).
 265 The ArL regime (Figure 5b) is associated with a 10-15% chance of extreme cold across
 266 western North America, including Alaska, whilst in the central and east of the United
 267 States there is an absence of extreme cold during this regime. The PT regime (Figure
 268 5d) features an absence of extreme cold across most of North America, with mean tem-
 269 peratures widely more than 5°C above normal (Figure S4d). Extreme cold during this
 270 regime is typically confined to western Alaska and the Aleutian Islands, consistent with
 271 the western periphery of the anomalous trough. The PT regime also has the lowest over-
 272 all risk of cold weather outbreaks across the Northern Hemisphere.

273 4 Summary and Conclusions

274 In this study we have shown that the behavior of three of four wintertime North
 275 American weather regimes is significantly linked to the antecedent strength of the SPV.
 276 We find that whilst the ArH regime is most sensitive to the SPV strength, it is not the
 277 most important for *widespread* extreme cold outbreaks in North America – particularly
 278 in central and northern areas where such extremes correspond to the coldest absolute
 279 temperatures. Instead, we find that the AkR regime – which does not display a signif-
 280 icant dependence on the lower-stratospheric zonal-mean zonal wind – is associated with
 281 the greatest risk of extreme cold across most of North America. Though Figure 4c sug-
 282 gests a possible link exists with the state of the SPV, the similarity of this regime to the
 283 TNH pattern suggests that tropical forcing may also exhibit a large control on its be-
 284 havior (e.g. Hartmann, 2015).

285 Further work should address the ability of sub-seasonal forecast models to correctly
 286 capture the downward coupling of stratospheric anomalies onto these regimes, as well
 287 as illuminating the dynamics involved, such as Rossby wave breaking (e.g. Michel & Rivière,
 288 2011), and the impact of model biases. It should also be investigated whether Pacific phe-
 289 nomena on intra-seasonal (such as the Madden-Julian Oscillation (MJO)) to seasonal
 290 (e.g. the El Niño-Southern Oscillation (ENSO)) and decadal scales (e.g. the Pacific Decadal
 291 Oscillation (PDO)) interact constructively or destructively with the stratospheric influ-
 292 ence.

293 Acknowledgments

294 S.H.L. was funded by the Natural Environment Research Council (NERC) via the SCE-
 295 NARIO Doctoral Training Partnership (NE/L002566/1). J.C.F. acknowledges funding
 296 via the National Science Foundation (NSF) Atmospheric and Geospace Sciences Program
 297 (award #AGS-1657905). The ERA-Interim reanalysis dataset is available at <https://apps.ecmwf.int/datasets/>.
 298 We acknowledge two anonymous reviewers for their detailed comments which helped im-
 299 prove the paper.

300 References

301 Ambaum, M. H., Hoskins, B. J., & Stephenson, D. B. (2001). Arctic Oscillation or
 302 North Atlantic Oscillation? *Journal of Climate*, 14(16), 3495–3507. doi: 10.1175/
 303 1520-0442(2001)014<3495:AOONAO>2.0.CO;2

304 Amini, S., & Straus, D. M. (2019). Control of storminess over the Pacific and North
 305 America by circulation regimes. *Climate Dynamics*, 52(7-8), 4749–4770. doi: 10
 306 .1007/s00382-018-4409-7

307 Baldwin, M. P., & Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous
 308 weather regimes. *Science*, 294(5542), 581–584.

309 Beerli, R., Wernli, H., & Grams, C. M. (2017). Does the lower stratosphere provide
 310 predictability for month-ahead wind electricity generation in Europe? *Quarterly
 311 Journal of the Royal Meteorological Society*, 143(709), 3025–3036. doi: 10.1002/qj

312 .3158

313 Butler, A. H., Sjoberg, J. P., Seidel, D. J., & Rosenlof, K. H. (2017). A sudden
314 stratospheric warming compendium. *Earth System Science Data*, 9(1), 63–76. doi:
315 10.5194/essd-9-63-2017

316 Cassou, C. (2008). Intraseasonal interaction between the Madden-Julian Oscillation
317 and the North Atlantic Oscillation. *Nature*, 455(7212), 523–527. doi: 10.1038/
318 nature07286

319 Charlton, A. J., & Polvani, L. M. (2007). A new look at stratospheric sudden warm-
320 ings. Part I: climatology and modelling benchmarks. *Journal of Climate*, 20(3),
321 449–469. doi: 10.1175/JCLI3996.1

322 Charlton-Perez, A. J., Ferranti, L., & Lee, R. W. (2018). The influence of the strato-
323 spheric state on North Atlantic weather regimes. *Quarterly Journal of the Royal
324 Meteorological Society*, 144(713), 1140–1151. doi: 10.1002/qj.3280

325 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., ...
326 Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance
327 of the data assimilation system. *Quarterly Journal of the Royal Meteorological
328 Society*, 137(656), 553–597. doi: 10.1002/qj.828

329 Ferranti, L., Magnusson, L., Vitart, F., & Richardson, D. S. (2018). How far in ad-
330 vance can we predict changes in large-scale flow leading to severe cold conditions
331 over Europe? *Quarterly Journal of the Royal Meteorological Society*, 144(715),
332 1788–1802. doi: 10.1002/qj.3341

333 Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I., & Wernli, H. (2017). Balancing
334 Europe's wind-power output through spatial deployment informed by weather
335 regimes. *Nature Climate Change*, 7(8), 557–562. doi: 10.1038/NCLIMATE3338

336 Hartmann, D. L. (2015). Pacific sea surface temperature and the winter of 2014.
337 *Geophysical Research Letters*, 42(6), 1894–1902. doi: 10.1002/2015GL063083

338 Karpechko, A. Y., Hitchcock, P., Peters, D. H. W., & Schneidereit, A. (2017). Pre-
339 dictability of downward propagation of major sudden stratospheric warmings.
340 *Quarterly Journal of the Royal Meteorological Society*, 143(704), 1459–1470. doi:
341 10.1002/qj.3017

342 Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N., Bald-
343 win, M. P., & Gray, L. J. (2015). Stratospheric influence on tropospheric jet
344 streams, storm tracks and surface weather. *Nature Geoscience*, 8(6), 433–440. doi:
345 10.1038/NGEO2424

346 Kodera, K., & Chiba, M. (1995). Tropospheric circulation changes associated with
347 stratospheric sudden warmings: A case study. *Journal of Geophysical Research*,
348 100(D6), 11055. doi: 10.1029/95JD00771

349 Kodera, K., Mukougawa, H., Maury, P., Ueda, M., & Claud, C. (2016). Absorbing
350 and reflecting sudden stratospheric warming events and their relationship with
351 tropospheric circulation. *Journal of Geophysical Research: Atmospheres*, 121(1),
352 80–94. doi: 10.1002/2015JD023359

353 Kolstad, E. W., Breiteig, T., & Scaife, A. A. (2010). The association between
354 stratospheric weak polar vortex events and cold air outbreaks in the Northern
355 Hemisphere. *Quarterly Journal of the Royal Meteorological Society*, 136(649),
356 886–893. doi: 10.1002/qj.620

357 Kretschmer, M., Cohen, J., Matthias, V., Runge, J., & Coumou, D. (2018). The dif-
358 ferent stratospheric influence on cold-extremes in Eurasia and North America. *npj
359 Climate and Atmospheric Science*, 1(1), 44. doi: 10.1038/s41612-018-0054-4

360 Limpasuvan, V., Hartmann, D. L., Thompson, D. W., Jeev, K., & Yung, Y. L.
361 (2005). Stratosphere-troposphere evolution during polar vortex intensification.
362 *Journal of Geophysical Research*, 110(24), 1–15. doi: 10.1029/2005JD006302

363 Linkin, M. E., & Nigam, S. (2008). The North Pacific Oscillation-West Pacific tele-
364 connection pattern: Mature-phase structure and winter impacts. *Journal of Cli-
365 mate*, 21(9), 1979–1997. doi: 10.1175/2007JCLI2048.1

366 Michel, C., & Rivière, G. (2011). The Link between Rossby wave breakings and
 367 weather regime transitions. *Journal of the Atmospheric Sciences*, 68(8), 1730–
 368 1748. doi: 10.1175/2011jas3635.1

369 Michelangeli, P.-A., Vautard, R., & Legras, B. (1995). Weather regimes: Recur-
 370 rence and quasi stationarity. *Journal of the Atmospheric Sciences*, 52(8), 1237–
 371 1256. doi: 10.1175/1520-0469(1995)052<1237:wrqaqs>2.0.co;2

372 Mo, K. C., & Livezey, R. E. (1986). Tropical-extratropical geopotential height tele-
 373 connections during the Northern Hemisphere winter. *Monthly Weather Review*,
 374 114(12), 2488–2515. doi: 10.1175/1520-0493(1986)114<2488:tegtd>2.0.co;2

375 NOAA. (2019). *NOAA National Centers for Environmental Information (NCEI)*
 376 *U.S. Billion-Dollar Weather and Climate Disasters*. Retrieved 2019-08-01, from
 377 <https://www.ncdc.noaa.gov/billions/>

378 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
 379 ... Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. *Journal of*
 380 *Machine Learning Research*, 12, 2825–2830.

381 Riddle, E. E., Stoner, M. B., Johnson, N. C., L'Heureux, M. L., Collins, D. C., &
 382 Feldstein, S. B. (2013). The impact of the MJO on clusters of wintertime circu-
 383 lation anomalies over the North American region. *Climate Dynamics*, 40(7–8),
 384 1749–1766. doi: 10.1007/s00382-012-1493-y

385 Robertson, A. W., & Ghil, M. (1999). Large-scale weather regimes and local climate
 386 over the western United States. *Journal of Climate*, 12(6), 1796–1813. doi: 10
 387 .1175/1520-0442(1999)012<1796:LSWRAL>2.0.CO;2

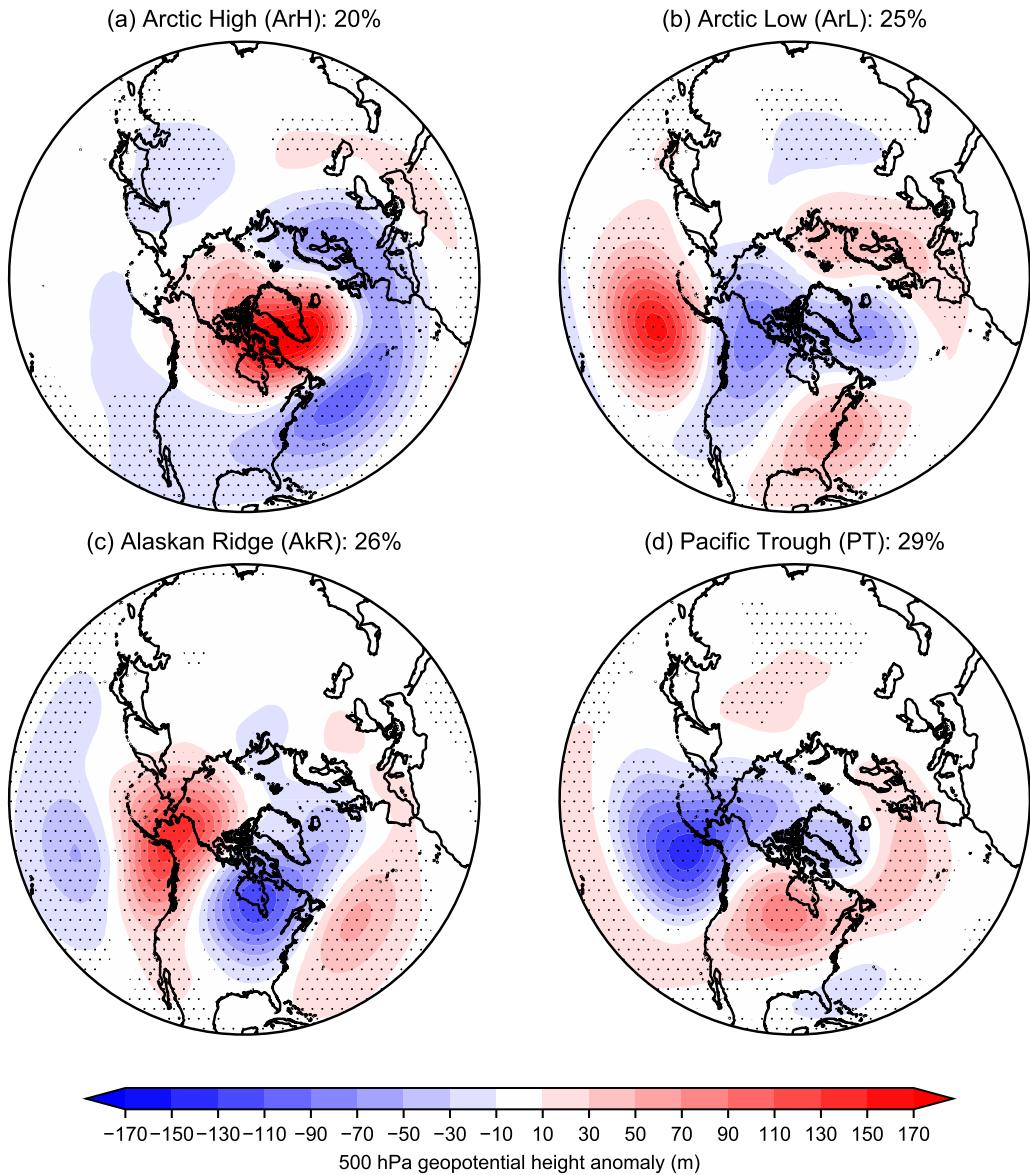
388 Rogers, J. C. (1981). The North Pacific oscillation. *Journal of Climatology*, 1(1),
 389 39–57. doi: 10.1002/joc.3370010106

390 Sigmond, M., Scinocca, J. F., Kharin, V. V., & Shepherd, T. G. (2013). Enhanced
 391 seasonal forecast skill following stratospheric sudden warmings. *Nature Geo-
 392 science*, 6(2), 98–102. doi: 10.1038/ngeo1698

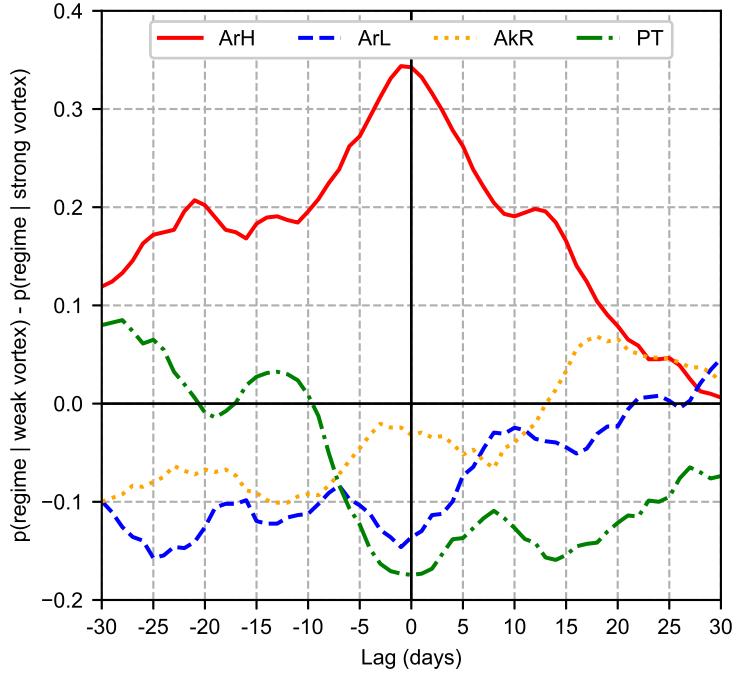
393 Straus, D. M., Corti, S., & Molteni, F. (2007). Circulation regimes: Chaotic variabil-
 394 ity versus SST-forced predictability. *Journal of Climate*, 20(10), 2251–2272. doi:
 395 10.1175/JCLI4070.1

396 Thompson, D. W., & Wallace, J. M. (2001). Regional climate impacts of the
 397 Northern Hemisphere annular mode. *Science*, 293, 85–89. doi: 10.1126/
 398 science.1058958

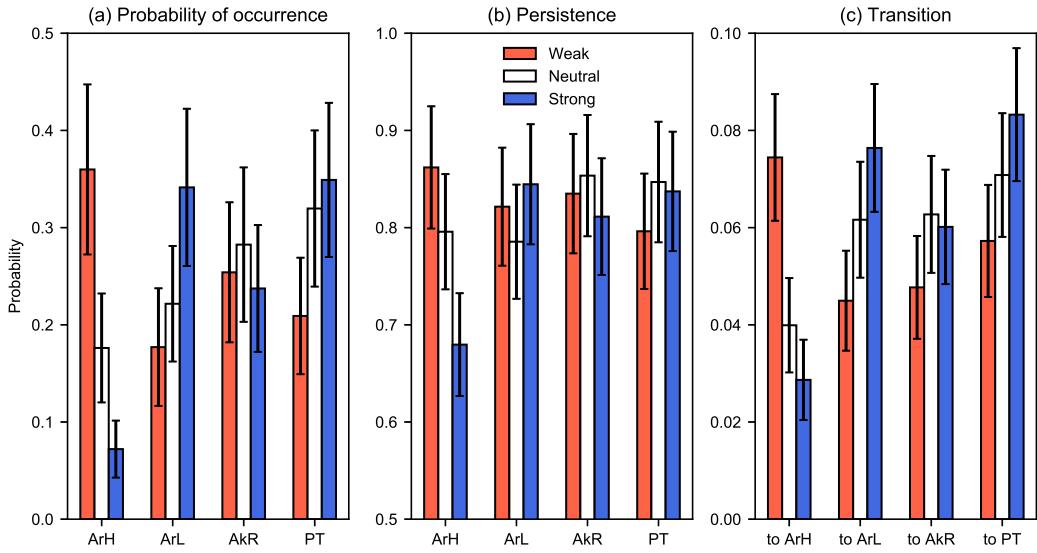
399 Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Eckermann, S. D.,
 400 Gerber, E., ... Son, S. W. (2015a). The predictability of the extratropical strato-
 401 sphere on monthly time-scales and its impact on the skill of tropospheric forecasts.
 402 *Quarterly Journal of the Royal Meteorological Society*, 141(689), 987–1003. doi:
 403 10.1002/qj.2432

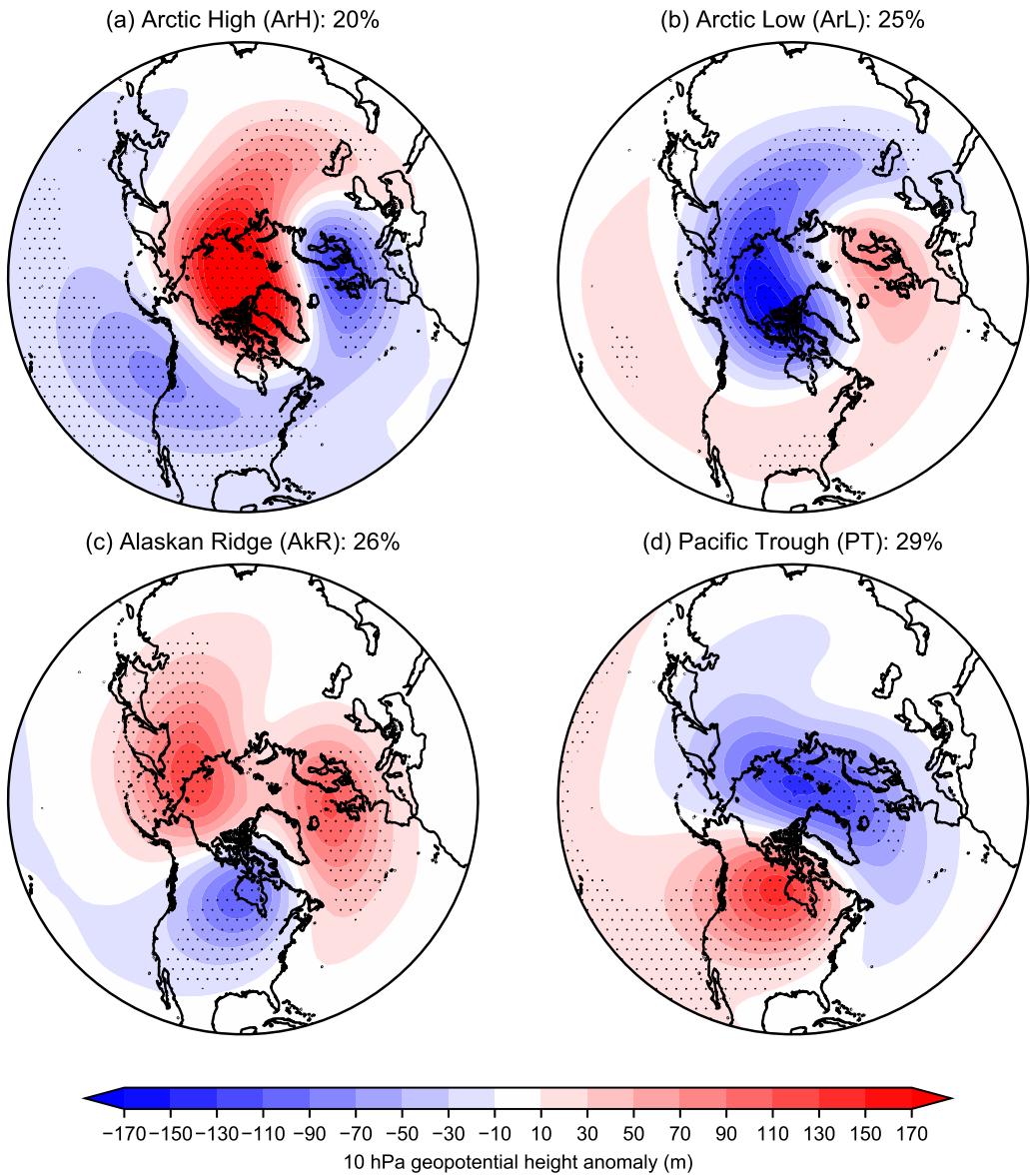

404 Tripathi, O. P., Charlton-Perez, A., Sigmond, M., & Vitart, F. (2015b). En-
 405 hanced long-range forecast skill in boreal winter following stratospheric strong
 406 vortex conditions. *Environmental Research Letters*, 10(10), 104007. doi:
 407 10.1088/1748-9326/10/10/104007

408 Vigaud, N., Robertson, A., & Tippett, M. (2018). Predictability of recurrent
 409 weather regimes over North America during winter from submonthly reforecasts.
 410 *Monthly Weather Review*, 146(8), 2559–2577. doi: 10.1175/mwr-d-18-0058.1


411 Wang, S. Y. S., Huang, W. R., & Yoon, J. H. (2015). The North American win-
 412 ter 'dipole' and extremes activity: A CMIP5 assessment. *Atmospheric Science Let-
 413 ters*, 16(3), 338–345. doi: 10.1002/asl2.565

414 Waugh, D. W., Sobel, A. H., & Polvani, L. M. (2017). What is the polar vortex
 415 and how does it influence weather? *Bulletin of the American Meteorological Soci-
 416 ety*, 98(1), 37–44. doi: 10.1175/BAMS-D-15-00212.1


417 Wilks, D. (2011). *Statistical methods in the atmospheric sciences*. Academic Press.


Figure 1. Composite mean 500 hPa geopotential height anomalies (meters) for each of the four regimes. Anomalies are expressed with respect to the de-trended daily January 1979–December 2017 mean. Percentages indicate the occupation frequency of the regime (the percentage of days assigned to the regime in the November–March period). Stippling indicates significance at the 95% confidence level according to a two-sided bootstrap re-sampling test.

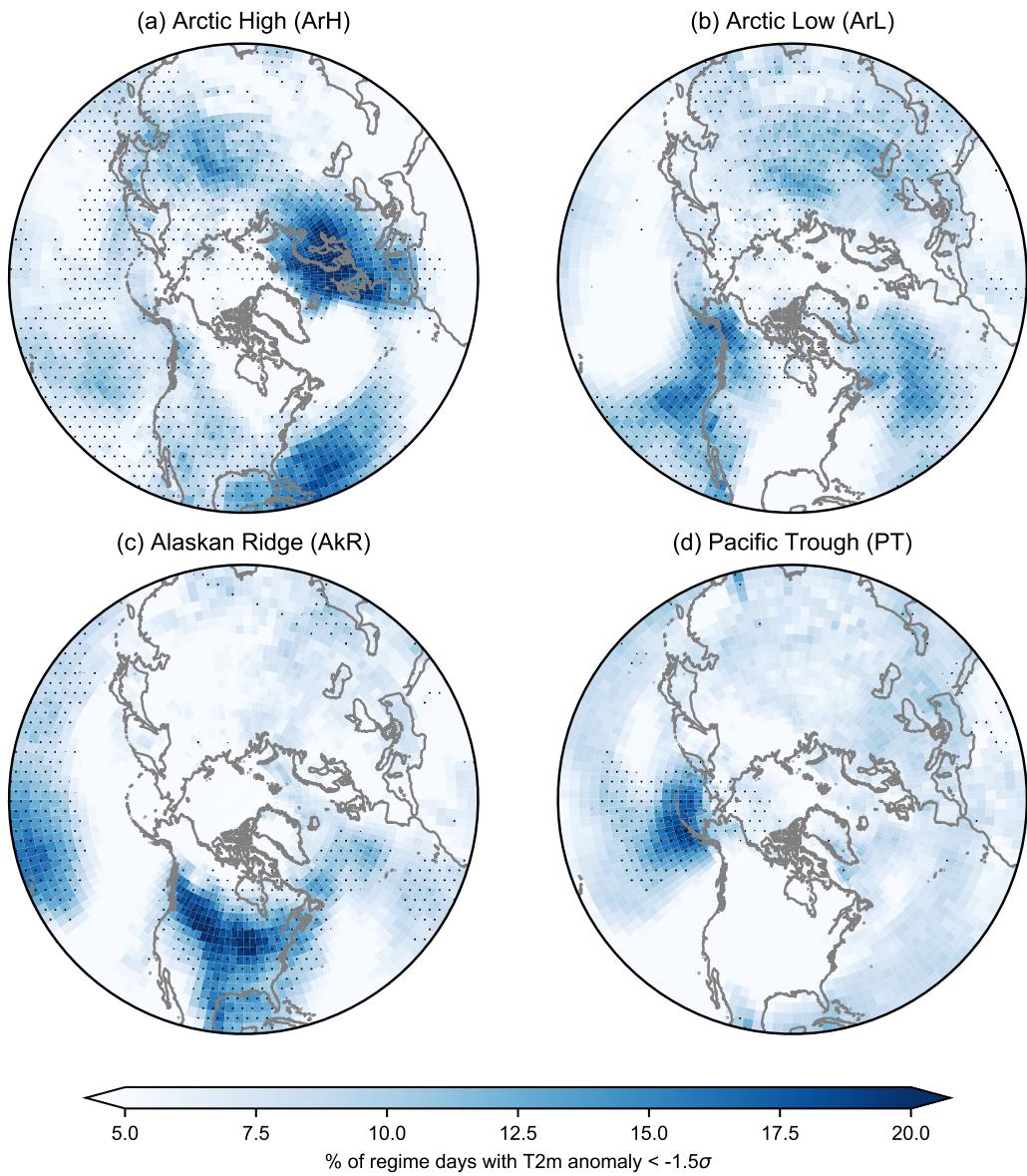

Figure 2. Difference in the occurrence probability of each regime between weak and strong stratospheric polar vortex states for -30 to +30 day lags, conditional on the vortex state at day 0.

Figure 3. (a) Probability of occurrence, (b) persistence, and (c) transition of each regime given the tercile category of the stratospheric polar vortex strength on the preceding day. Error bars indicate 95% binomial proportion confidence intervals using a normal approximation (see text for details). Colors indicate the tercile category of the 100 hPa 60°N zonal-mean zonal wind based on daily January 1979–December 2017 climatology.

Figure 4. Composite mean 10 hPa geopotential height anomalies (meters) for days classified in each of the four regimes. Anomalies are expressed with respect to the de-trended January 1979–December 2017 mean. Stippling indicates significance at the 95% confidence level according to a two-sided bootstrap re-sampling test.

Figure 5. Percent of all days in each regime with daily standardized 2 m temperature anomalies $< -1.5\sigma$ (with respect to the linearly de-trended daily January 1979–December 2017 mean). Stippling indicates significance at the 95% confidence level according to a one-sided bootstrap re-sampling test.