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Abstract 

Factor (F)XIII is a tranglutaminase enzyme that catalyses the formation of -(-

glutamyl)lysyl isopeptide bonds into protein substrates.  The plasma form, FXIIIA2B2 has an 

established function in hemostasis, where its primary substrate is fibrin.  A deficiency in 

FXIII manifests as a severe bleeding diathesis underscoring its importance in this pathway.  

The cellular form of the enzyme, a homodimer of the A subunits, denoted FXIII-A, has not 

been studied in as extensive detail.  FXIII-A was generally perceived to remain intracellular, 

due to the lack of a classical signal peptide for its release.  In the last decade emerging 

evidence has revealed that this diverse transglutaminase can be externalised from cells, by 

an as yet unknown mechanism, and can cross-link extracellular substrates and participate 

in a number of diverse pathways.  The FXIII-A gene (F13A1) is expressed in cells of bone 

marrow and mesenchymal lineage, notably megakaryocytes, monocytes/macrophages, 

dendritic cells, chrondrocytes, osteoblasts and preadipocytes.  The biological processes 

that FXIII-A is coupled with reflect its expression in these cell types, such as wound healing, 

phagocytosis and bone and matrix remodelling.  This review describes the mounting 

evidence that this cellular transglutaminase can be externalised, usually in response to 

stimuli, and participate in extracellular cross-linking reactions.  A corollary of being involved 

in these biological pathways is the participation of FXIII-A in pathological processes.  In 

conclusion, the functions of this transglutaminase extend far beyond its role in hemostasis 

and our understanding of this enzyme in terms of its secretion, regulation and substrates is 

in its infancy.   
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Introduction 

In 1948 Laki and Lorand characterised a labile component of blood that when combined 

with Ca2+ rendered a clot insoluble [1]. The protein was later isolated and named fibrin 

stabilising protein [2].  Duckert et al [3] then reported that deficiency of fibrin stabilizing 

factor manifests as a severe bleeding diathesis.  Subsequently in 1963, the International 

Committee on Blood Clotting Factors acknowledged this protein as a clotting factor and 

termed it factor XIII (FXIII).  Our knowledge of FXIII has progressed significantly since these 

early informative observations.  It is now clear that in addition to the essential role of FXIII in 

hemostasis it functions in a variety of other systems ranging from wound healing and 

angiogenesis [4] to stabilisation of the bone matrix [5]. Once activated FXIII (FXIIIa) elicits 

transamidase activity that introduces -(-glutamyl)lysyl isopeptide cross-links into protein 

substrates. It can incorporate cross-links into single protein substrates, such as fibrin, or 

can cross-link different proteins to each other, which can impact on their biological function 

[6].   

 

In plasma, FXIII exists as a zymogen heterotetramer (FXIII-A2B2) [7] with two catalytic A 

subunits and two inhibitory carrier B subunits. [8].  FXIII-B is synthesised and secreted by 

hepatocytes [9, 10], however the source of plasma FXIII-A subunit has been debated for 

some years.  The gene, F13A1, is largely expressed in cell of bone marrow origin, but it 

lacks an identifiable endoplasmic reticulum (ER) signal sequence and is excluded from the 

classical ER-Golgi pathway in nucleated cells [11].  Platelets were projected to be the 

source of the FXIII-A subunit in plasma [12, 13], but this was ruled out, as levels were 

unchanged in thrombocytopenic mice [14].  Recent observations, in tissue specific mouse 

knockouts of FXIII-A, now pinpoint resident tissue macrophages as the cellular source of 

plasma FXIII-A [15].  Plasma FXIII-A2B2 requires the concerted action of thrombin and 

calcium to be activated [16, 17]. The activation peptides which flank each of the FXIII-A 

subunits are initially cleaved by thrombin, which destabilizes the interaction between the 

FXIII-A and FXIII-B subunits [18]. The subsequent binding of calcium ions to defined sites 

on the FXIII-A subunits instigates dissociation of the FXIII-B subunits and activation 

peptides [19]. 

 

The cellular form of FXIII is a homodimer of the A-subunits, termed FXIII-A throughout this 

review [20].  Cellular FXIII-A is non-proteolytically activated by modest increases in 

intracellular Ca2+ concentrations [21, 22].  FXIII-A has been localized in a wide variety of 

different cells including platelets [23-25], megakaryocytes [26] monocytes [27, 28], 

circulating [27, 29], and tissue macrophages [29], dendritic cells [30], chondrocytes [31-33] 

osteoblasts [5] and preadipocytes [34].  The mechanism of FXIII-A release from these cells 

remains an enigma, due to the lack of signal sequence as stated, and it is also absent from 
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the ER-Golgi secretory pathway in nucleated cells [11]. However, FXIII-A in monocyte-

macrophages is reportedly directed to the plasma membrane in association with Golgi 

vesicles [14] indicating that it is secreted via an alternative pathway. This review will focus 

on the multifarious actions of cellular FXIII-A and discuss whether it is capable of mediating 

extracellular cross-linking as well as intracellular functions despite its clear lack of a signal 

peptide for secretion. 

 

FXIII-A in Platelets  

Platelets harbour remarkably high concentrations of FXIII-A within their cytoplasm [35, 36], 

with a single platelet accruing 60 ± 10 fg, corresponding to 3% of total platelet protein [37].  

-granules reportedly contain a minor pool of FXIII in the A2B2 form which is endocytosed 

from plasma alongside fibrinogen [35, 38], however the concentrations are so low  it is often 

not detectable in the platelet secretome [39, 40].  Early studies on platelet FXIII-A 

concluded that it was not involved in haemostasis, as it did not form part of the platelet 

secretome [39], but our recent observations indicate that FXIII-A is translocated from the 

cytoplasm to the surface of activated platelets where is actively retained [40].      

 

Platelet FXIII-A in hemostasis 

The role of plasma FXIIIA2B2 in haemostasis is well-established; it confers mechanical 

stability to thrombi by cross-linking the - and -chains of fibrin, and provides protection 

against fibrinolytic breakdown by cross-linking inhibitors of fibrinolysis to fibrin [41-43]. Our 

laboratory has shown that flow is required to visualize the impact of FXIIIA2B2 on fibrinolysis 

[44] and that the antifibrinolytic action of this transglutaminase is mediated exclusively by 

cross-linking 2-antiplasmin (2AP) to fibrin [45].  Rijken and colleagues subsequently 

reported that compaction or retraction of fibrin clots reveals the strong antifibrinolytic effect 

of FXIIIA2B2 [46].  The authors also confirm our observations that cross-linking of 2AP is 

required for the antifibrinolytic effect of FXIII to be visualised rather than by fibrin-fibrin 

cross-links [46]. Plasma FXIIIA2B2, but not platelet FXIII-A, also aids in the retention of red 

blood cells in clots through fibrin -chain cross-linking which has a direct impact on the 

overall size of clots [47-49].  

 

Platelet FXIII-A was previously shown to stabilize clots, by inducing the formation of high 

molecular weight -dimer and -polymer [50-54] and cross-linking 2AP to fibrin [50, 53]. 

The conundrum is that FXIII-A was not found within the secretome of platelets.  Our 

laboratory has now shown that strong agonist stimulation of platelets induces translocation 

of FXIII-A from the cytoplasm to the platelet membrane where it is actively retained and can 

participate in extracellular cross-linking reactions [40]. The intensity of FXIII-A staining on 

the surface of activated platelets increases as a function of time, particularly in those 
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platelets directly associated with collagen fibres (Figure 1A).  Our work clearly highlights a 

role for FXIII-A, externalised during platelet activation, in stabilizing thrombi via cross-linking 

of 2AP to fibrin [40].  The relative contribution of plasma FXIIIA2B2 versus platelet-derived 

FXIII-A to thrombus stability requires clarification, but it is unlikely to be uniform throughout 

the thrombus, with the balance tipping toward FXIII-A in platelet-rich areas of the 

hemostatic plug, where solute transport of plasma FXIIIA2B2 is low.  

 

Distribution of FXIII-A on the activated platelet surface is dependent on the subpopulation of 

platelets (Figure 1B), with PS-negative or spread platelets exhibiting diffuse staining across 

the membrane with a high concentration over the granulomere [40].  In PS-positive 

procoagulant platelets, FXIII-A was present only in the protruding ‘cap’ [40]. These ‘caps’ 

bind a number of other hemostatic proteins including fibrinogen [55], plasminogen and PAI-

1 [56]. The ‘caps’ of platelets have recently been described as the ‘platelet body’ which the 

authors speculate is the remnant of organelles following ballooning of the platelet following 

strong agonist stimulation [57].  Ballooning transpires due to expansion of the platelet 

membrane, as a result of rapid influx of water and Na+ and Cl- ions. These platelets bind 

both procoagulant factor Xa and factor Va to the ballooned area and the platelet body 

thereby augmenting thrombin generation [58]. The collection of both procoagulant and pro- 

and anti-fibrinolytic proteins in these PS-positive platelets suggests they participate not only 

thrombus formation, but also the stability and breakdown of the thrombus.  FXIII-A also 

functions in the formation of PS-positive platelets [59], by acting in concert with calpain to 

reduce the adhesive function of IIbβ3, in a process that appears to be a prerequisite for 

their formation.  

 

The method of externalization of platelet FXIII-A remains to be elucidated, but clearly 

occurs in response to external stimuli [40]. Reduced levels of FXIII-A were detected on 

stimulation of platelets with TRAP-6, compared to thrombin, and when platelets were 

treated with the Gly-Pro-Arg-Pro peptide, which inhibits fibrin polymerisation. The 

connection between platelet-associated fibrin and FXIII-A exposure suggests that IIbβ3 

may serve as a ‘bridge’ for FXIII-A to traverse to access the fibrin network [40].  Fibrin 

associated directly with the platelet surface is exceptionally resilient to fibrinolysis [56, 60-

63], suggesting that platelet-derived FXIII-A and other anti-fibrinolytic proteins contribute to 

this heightened resistance at least in the early stages of thrombus formation.  

 

Platelet FXIII-A in clot retraction 

Clot retraction is the process by which fully-formed clots are compacted to limit vessel 

blockage and prevent leakage from the wound site. Platelets operate contractile machinery 

to reel in the surrounding fibrin network, expedited by bi-directional IIbβ3 signalling [64]. 
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The integrin IIbβ3 acts as a molecular bridge between extracellular fibrinogen and the 

intracellular actin cytoskeleton via sphingomyelin-rich lipid rafts [65]. The cytoskeleton 

interacts with the 3 subunit tails via the adapter proteins talin and vinculin [66]. During clot 

retraction, fibrin bound to IIbβ3 triggers outside-in signalling [67], resulting in the 

contraction of the actin cytoskeleton.  FXIIIA2B2 contributes to the strength and rigidity of 

the condensed clot by cross-linking fibrin, and by enhancing platelet spreading [68]. 

Conflicting evidence exists on the effects of platelet FXIII-A on clot retraction. Early reports 

found that clot retraction was normal in FXIII-deficient patients [69-71]. More recently, 

Kasahara et al., [65, 72], have demonstrated that clot retraction was significantly impaired 

in the absence of platelet FXIII-A transglutaminase activity in PRP from FXIII-A knockout 

mice [65, 72]. In contrast, Kattula et al., [49] found that platelet FXIII-A did not contribute to 

the weight of clots formed from reconstituted FXIII-depleted plasma reconstituted with red 

blood cells compared with those containing FXIII-deficient platelets. Methodological 

differences in the two studies may account for these reported discrepancies, however, it is 

evident that further studies are required to confirm the role of platelet FXIII-A functions in 

clot retraction in vivo.   

 

Other roles of platelet FXIII-A 

The adhesive ability of IIbβ3 is thought to be negatively regulated by FXIII-A and calpain, 

which limits platelet aggregate formation and thrombus growth [59].  These observations 

were made primarily in collagen-adherent platelets with prolonged elevations in cytosolic 

calcium, leading to a specific reduction in IIbβ3 adhesive function.  During thrombus 

formation, a number of phenotypically different platelet populations arise [59, 73-75]. These 

populations play different roles in the regulation of the thrombus microenvironment. 

Adherent platelets, with activated IIbβ3, bind other platelets and fibrin and ensure 

thrombus stability [76], while procoagulant platelets lack functional IIbβ3.  Platelet FXIII-A 

also drives formation of a specific subtype of procoagulant platelets that retain an alpha-

granule protein ‘coat’ on their surface [77-79].  Transglutaminase activity cross-links -

granule proteins to serotonin where they can then be retained on the platelet surface by 

binding to low affinity serotonin binding sites on fibrinogen or thrombospondin [77, 79].  It 

has been proposed that platelet FXIII-A is not a requirement for generation of coated 

platelets, due to their formation in FXIII deficient mice [80].  However, this could be due to a 

compensatory upregulation of other transglutaminases in FXIII-A deficient platelets [80].  In 

line with this FXIII-A deficient platelets have also been found to accelerate cross-linking 

[53].  

 

Under low shear conditions fibrin formation on platelets forms a ‘star-like’ pattern on the 

platelet surface [81].  FXIII-A and IIbβ3 play synergistic roles in aiding formation of these 
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fibrin protrusions. In the absence of FXIII-A and IIbβ3, fibrin formation still occurs on the 

platelet surface, however fibres are orientated in the direction of flow [78], suggesting that 

early cross-links facilitate fibrin polymerisation against the direction of flow. 

 

It has been suggested that FXIII-A functions in formation of protrusions such as filopodia 

and lammelipodia which aid in platelet adhesion, spreading and clot retraction [82]. A 

number of proteins involved in cytoskeletal remodelling are cross-linked by FXIII-A, 

including; actin [83, 84], GPIIb, GPIII, myosin, tropomyosin [84], talin, vinculin, filamin [82], 

and Thymosin beta4 [85].  FXIII-A associates with the cytoskeleton upon platelet activation, 

however, this is dependent on actin polymerisation, as the phallotoxin cytochalasin D 

inhibited this translocation [82].  Interestingly, cross-linking of vinculin was dependent on 

aggregation.  Vinculin cannot be cross-linked to itself, but is cross-linked to a number of 

other cytoskeletal proteins [82], suggesting FXIII-A may localise key cytoskeletal proteins 

during remodelling.  FXIII-A directly associates with HSP27 in activated platelets [86].  

HSP27 functions as a molecular chaperone and rapidly interacts with the actin cytoskeleton 

upon platelet stimulation.  It is plausible that HSP27 acts as a chaperone for translocation of 

FXIII-A from the platelet cytoplasm to the outer membrane via the actin cytoskeleton.  

 

FXIII-A in leukocytes 

FXIII-A is located in the cytoplasm of macrophages and monocytes [87], Leukocyte FXIII-A 

has been implicated in a number of intra-and extracellular processes, but as yet there is no 

defined route of externalisation  

 

FXIII-A is expressed on the cell surface of monocytes and macrophages [88] in response to 

stimulation with certain immune modulators, which is akin to the situation in platelets [40]. 

The expression of FXIII-A in macrophages is dynamic in nature and can be altered in 

response to the external stimulus and the phenotype of the activated macrophage.  

Macrophages can be ‘alternatively’ or ‘classically’ activated depending on the activating 

stimulus. ‘Classically activated’ or M1 macrophages are generated in response to 

stimulation with the immune mediators, IFN-, LPS or TNF [89].  These pro-inflammatory 

‘type 1’ macrophages [90] tend to exhibit down-regulation of FXIII-A [91, 92]. ‘Alternatively 

activated’, or M2 macrophages are stimulated in response to anti-inflammatory mediators, 

such as IL-4 and IL-13 [90].  M2 macrophages are reported to function in matrix 

remodelling, wound healing, allergy and parasite killing [89] and it is this subtype of 

macrophages that reveal upregulation of FXIII-A [92-94]. The selective expression of FXIII-

A in M2 macrophages is in line with the capacity of this transglutaminase to act as an anti-

inflammatory and pro- wound healing molecule. 
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Phagocytosis is the active ingestion and breakdown of microbes or other foreign particles 

by cells such as monocytes and macrophages.  Phagocytic processes are driven by a finely 

controlled rearrangement of the actin cytoskeleton [95].  Considering the key role of FXIII-A 

in regulating cytoskeletal proteins it is perhaps not surprising that it is directly linked to this 

process [82-84]. Studies have indicated that FXIII-A activity may play a role in increasing 

the amount of phagocytosis in monocytes and macrophages [96].  

 

Phagocytosis is positively correlated with FXIII-A expression in myelomonocytic cells [97].  

In accordance with this Fc and complement receptor mediated phagocytosis is impaired in 

monocytes and macrophages following inhibition of FXIII-A and in FXIII-A-deficient mice 

[96]. FXIII-A is known to be upregulated during the maturation of monocyte-derived 

dendritic cells and actively assists migration of these cells [98].  Together these data 

implicate FXIII-A in the phagocytic and/or migration capacity of these cells, however there 

may be a degree of redundancy in the system, as phagocytosis is only slightly impaired in 

the absence of FXIII-A [96].  

 

The role of cellular FXIII-A in lymphocytes in haemostasis has not been widely explored, 

however macrophages and monocytes are able to cross-link fibrin- and -chains [88, 99], 

suggesting a potential role in thrombus stabilisation. Interestingly, thrombin treatment of 

monocytes does not augment exposure of FXIII-A [88], suggesting these cells may 

contribute to haemostasis in a situation where there is also an increase in the type 2 

immune response, for example in a wound healing capacity. 

 

FXIII-A in bone 

Bone is a dynamic mineralized tissue which undergoes continuous remodelling in the form 

of bone resorption by osteoclasts and formation by osteoblasts. The processes of bone 

formation and resorption are influenced by many chemical and mechanical factors and an 

imbalance can severely impact on bone quality [100].  FXIII-A is present in a number of cell 

types in mineralized tissues including chondrocytes [31-33], osteocytes [101] and 

osteoblasts [5, 101] where it is both expressed on the cell surface and secreted into the 

extracellular matrix.  FXIII-A contributes to the formation and stabilisation of connective 

tissue in bone by cross-linking a number of different substrates. Secreted osteoblast FXIII-A 

aids in the incorporation of fibronectin into the bone matrix [102, 103] thereby promoting 

formation of an insoluble matrix.  This matrix forms a scaffold for other proteins to adhere 

to, including type 1 collagen [104].  Surface-associated osteoblast FXIII-A is involved in 

stabilizing the interaction between microtubules and the plasma membrane, which in turn 

enhances the secretion of collagen [102, 105-107].  Collagen is the principal component of 

bone matrix and it appears that both FXIII-A activity and fibronectin are essential for normal 
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collagen deposition [102, 103].  Extracellular collagen is a prerequisite for secretion of FXIII-

A from osteoblasts and in line with this observation, increased levels of collagen enhance 

expression of FXIII-A mRNA [106].  Osteoblast FXIII-A also contributes to bone quality 

where its absence has a negative effect on alkaline phosphatase activity, lysyl oxidase 

levels and bone mineralisation. On an intracellular level, a regulatory role for FXIII-A and 

other transglutaminase enzymes has been identified in the different stages of 

osteoclastogenesis, including differentiation, migration and osteoclast fusion. FXIII-A 

contributed to these processes through its ability to influence actin dynamics [108], 

suggesting it may also be involved in cytoskeletal-mediated processes in other cell types.  

Evidence of FXIII-A involvement at the intracellular signalling level in osteoblast calveolae 

has also been identified in mineralised tissues. Calveolae are lipid raft plasma membrane 

invaginations involved in the regulation of endocytosis and intracellular signal transduction, 

via the clustering of receptors and signalling molecules. In differentiating osteoblasts FXIII-

A colocalises intracellularly with caveolin-1 on the inner leaflet of calveolae, where it is 

involved in intracellular signalling by regulating interactions between Cav-1 and c-SRC 

kinase [109]. This regulatory signalling role in osteoblasts suggests that FXIII-A may also 

be involved in signalling pathways in other cells.   

 

There are divergent reports on the size of FXIII-A in various cell types including those of 

mineralized tissue and adipocytes. In preadipocytes two bands of FXIII-A have been 

identified, one at the expected size of 80 kDa and another of 50-75 kDa [34].  FXIII-A has 

also been detected as a 37 kDa fragment in chondrocytes [110], cultured MC3T3-E1 

osteoblast cells [101, 102] primary mouse osteoblast cells, mouse macrophage and 

chondrocyte extracts and in rat bone [101]. The 37 kDa fragment, postulated to arise from 

proteolytic cleavage of the full-length form, has a different subcellular localisation to full 

length FXIII-A in osteoblasts [101]. However, Cordell and colleagues [111] suggest that the 

mAb-AC-1A1 antibody used in these studies cross-reacts with transaldolase-1 (37 kDA) 

and other off-target antigens in cultured cells. Furthermore, this 37 kDa band is present in a 

number of cell types that lack FXIII-A protein and mRNA [111] and in bone and heart tissue 

from FXIII-A deficient mice [111]. FXIII-A and TG2 deficient mice also appear to exhibit 

normal bone deposition [111], suggesting that transglutaminase activity is not required for 

these processes in vivo.  It is evident from the tangled literature that further work is 

necessary to define the forms of FXIII-A in bone and confirm its role in the formation, 

maintenance and repair of mineralized tissues in vivo. 

 

Cellular FXIII-A in disease 
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The vast number of functions carried out by cellular FXIII-A has inevitably resulted in its 

contribution to a number of different disease states, where it has been found to play 

beneficial and detrimental roles.  

 

FXIII-A in lung disease 

Cellular FXIII-A and plasma FXIIIA2B2 have been implicated in the pathogenesis of lung 

diseases. In many forms of acute and chronic lung inflammation, fibrin deposition occurs as 

a result of increased vascular permeability eventually leading to fibrosis [112].  Cellular 

FXIII-A from injured alveolar macrophages and plasma FXIIIA2B2 from leaky capillaries 

have been detected in the bronchoalveolar lavage fluid of children with chronic 

bronchoalveolar inflammatory conditions, along with D-dimer [113].  These data suggest 

that FXIII is involved in stabilising fibrin deposits in the extravascular compartment of the 

lung tissues in these diseases. Increased FXIII-A release from dendritic cells is also 

detectable in bronchiolar lavage fluid following allergen challenge in asthmatic patients.  

This suggests a potential role for FXIII-A in airway obstruction in this disease [114], perhaps 

through the reinforcement of fibronectin deposits, which are involved in pathogenic airway 

remodelling in asthma [115].  

 

FXIII-A in vascular disease 

Long-term alterations in blood flow ultimately give rise to vascular remodelling [116], a 

process in which FXIII-A has been implicated [117]. Blood vessel widening occurs in 

response to increased blood flow, decreased blood flow results in vessel narrowing [118, 

119] and vessel walls thicken in response to high blood pressure [120]. Macrophage FXIII-A 

may participate in flow-induced remodelling of vessels [121].  Zhou et al., [121] 

demonstrated that expression of the CXCR3 receptor is necessary for inward perivascular 

remodelling induced by alterations in blood flow. This CXCR3-dependant accumulation of 

macrophages during perivascular remodelling enhanced expression of FXIII-A mRNA [121], 

suggesting that the transglutaminase may function by stabilizing the remodelled vascular 

wall. 

 

Hypertension is characterized as long term elevation in blood pressure and is a significant 

risk factor for the development of atherosclerosis.  Infiltration of the arterial wall by 

monocytes, macrophages and T-cells leads to formation of new connective tissue, which 

together with the infiltrating leukocytes, forms an atherosclerotic lesion [122]. The 

angiotensin II (ATII) signalling system is involved in multiple regulatory processes, including 

the control of blood pressure through vasoconstriction.  ATII signalling is also implicated in 

a number of pathological diseases, such as hypertension and atherosclerosis [123]. 

Monocyte FXIII-A plays a pathogenic role in hypertensive disease due to its ability to 



11 
 

increase the signalling capacity of the angiotensin receptor (ATI) [124].  ATI receptor 

dimerization occurs in the presence of ATII, and FXIII-A subsequently facilitates covalent 

cross-linking of the ATI monomers, resulting in increased receptor capacity for signalling 

and desensitization [124]. Hypertensive patients display an increase in both monocyte 

FXIII-A and angiotensin-converting-enzyme (ACE)-dependant ATII production and storage 

[124]. Increased cross-linked AT1 dimers have been found in an ApoE-/- model of 

atherosclerotic mice and inhibition of ACE and cellular FXIII-A reduced atherosclerotic 

lesion area and attenuated the recruitment of leukocytes into the aorta [124].  Platelet-

derived FXIII-A has also been identified in atherosclerotic plaques [125], suggesting that the 

function of platelet FXIII-A is not confined to hemostasis and may function in pathogenic 

situations, such as stabilization of atherosclerotic lesions. 

 

FXIII-A in cardiac disease 

Plasma FXIIIA2B2 and platelet FXIII-A have been found to contribute to the integrity of the 

cardiac vessel wall. A number of cardiac pathologies are observed in FXIII deficient mice, 

most of which are exacerbated by the combined absence of both cellular and plasma FXIII 

[126].  In these cases, hemorrhage and fibrosis resulting from lack of plasma FXIIIA2B2 

induce initial damage to cardiac tissue, this is followed by delayed wound healing, due to 

the absence of cellular FXIII-A in leukocytes in these tissues [126].  FXIII-A is present in 

resident monocytes and macrophages in normal cardiac tissue, and following coronary 

ligation [127].  FXIII deficient mice exhibit an increased incidence of cardiac rupture, which 

can be circumvented by infusion of FXIIIA2B2, although ventricular remodelling in these 

mice remained diminished [127]. High levels of FXIII transglutaminase activity was 

observed in healing infarct tissue, suggesting its active participation in the wound healing 

response.  A reduction in leukocytes has been documented in cardiac tissue in FXIII-A 

deficient mice [128], which could be attributed to the role of FXIII-A in cell migration, thus 

exacerbate the impaired wound healing observed.     

 

FXIII-A in inflammatory disease  

 

The expression of FXIII-A in a number of inflammatory cells also implicates it in the 

pathogenesis of certain inflammatory disorders.  In ulcerative colitis, reduced expression of 

both cellular FXIII-A and plasma FXIIIA2B2 is evident due to upregulation of the M1 immune 

response. The reduction of FXIII levels in this case will affect its capacity to aid in 

phagocytosis and cell migration and may contribute to the prolongation and severity of the 

disease [129]. The contribution of FXIII-A to inflammatory arthritis is also evident in 

collagen-induced arthritis models FXIII-A deficient mice.  There was a significant reduction 

in osteoclast differentiation in FXIII-A deficient mice which limited disease progression. 
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FXIII-A deficient mice also displayed reduced deposition of fibrin in the extracellular spaces 

within the knee joints leading to a reduction in the retention of inflammatory macrophages 

[130].  These results clearly show that eliminating FXIII-A limits inflammatory arthritis and 

protects from cartilage and bone destruction, thus suggesting that inhibition of this 

transglutaminase is a potential therapeutic strategy in arthropathies and other degenerative 

bone diseases.  

 

FXIII-A in diabetes and obesity 

Pancreatic islet  cells harbours FXIII-A which exerts transglutaminase activity in response 

to prolonged spikes in cytosolic Ca2+ [131].  Glucose-stimulated insulin secretion in -cells 

is inhibited upon treatment with a transglutaminase inhibitor, suggesting that FXIII-A activity 

is involved in insulin regulation [131].  Interestingly, a recent study has identified a possible 

connection between FXIII-A and type 2 diabetes in a mouse model of obesity-induced 

chronic low-grade inflammation, mimicking that found in type 2 diabetes [132].  Mice treated 

with low dose pro-inflammatory cytokines exhibited reduced glucose-stimulated insulin 

secretion and increased basal Ca2+ levels, resulting in reduced expression of the FXIII-A 

gene (F13A1) [132].  Identification of F13A1 as a novel stress-inhibited gene in islets 

provides a promising lead to pursue in the dysfunction that occurs in these cells during the 

development of type 2 diabetes. 

 

Single nucleotide polymorphisms SNPs in F13A1 correlate with increased body mass index 

and an increased incidence of type 2 diabetes [133].  A recent study performed by Myneni 

et al., [34] suggests that FXIII-A may contribute to obesity and weight gain.  FXIII-A is 

expressed in adipose tissue where it is enhances proliferation of preadipocytes and 

stabilises the fibronectin matrix. [34].  In line with these observations, FXIII-A deficient mice 

are protected against insulin resistance, they show signs of metabolically healthy obesity 

[134].  Further work is urgently required to clarify the direct role of FXIII-A in attenuating 

type 2 diabetes and obesity. 

 

FXIII-A in cancer 

FXIII-A has been identified in a number of leukemic cell types including megakaryoblasts, 

promyeloblasts, monoblasts and lymphoblasts[135, 136] and FXIII-A expression in 

leukemic cells is associated with reduced patient survival in acute promyelocytic leukemia 

[137]. In contrast, a recent study has shown that FXIII-A expression in children with B-cell 

precursor acute lymphoblastic leukemia was associated with patient survival [138]. Further 

studies in this area are essential to delineate the role of FXIII-A in leukemic cells in 

contributing towards disease progression.   
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Summary and future perspectives 

Plasma FXIIIA2B2 was classified as a coagulation factor in the 1960’s and is largely found in 

complex with the precursor of its principal target protein, fibrinogen.  The clear bleeding 

phenotype of individuals deficient in FXIII is testimony to its essential function in 

hemostasis.  However, there has been ambiguity surrounding the true function of the 

cellular form of FXIII-A.  This can in part be ascribed to the fact that while FXIII-A is 

expressed by numerous cell types, mainly those of hematopoietic origin, it does not contain 

a classical endoplasmic reticulum signal peptide for secretion in nucleated cells [11].  This 

has hampered research into FXIII-A, but accumulating evidence now indicates that it is a 

diverse cellular enzyme that cross-links numerous substrates within the intracellular and 

extracellular environment.  Recent observations accrediting the cellular source of the 

plasma FXIII-A subunit to resident tissue macrophages [15] has significantly advanced our 

knowledge, but as yet the mechanism involved in its secretion remain an enigma.  Given 

the nature of this enzyme, and the fact that isopeptide bonds can be formed between 

glutamine donors and lysine acceptor residues in a wide range of proteins, it is perhaps not 

surprising that FXIII-A functions in such an array of biological processes.  Nonetheless, the 

absence of an inhibitor of FXIII-A suggests that the environment and kinetics of this 

transamidase enzyme must regulate its function, but direct evidence on this is scant.  In 

conclusion, it is evident that FXIII-A is a broad spectrum enzyme that is largely 

indiscriminate in its ability to cross-link protein substrates, but there is still much to be 

uncovered in relation the mechanism of secretion from cells of bone marrow lineage and 

direction of its function in different biological and pathophysiological processes.   
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Legends 

Figure 1:  Platelets externalise FXIII-A during activation.  (A) Washed platelets (5 x 

107/ml) were left unstimulated or activated with 20 g/ml collagen/ 20 M TRAP-6 and 

stained using FITC-labelled anti-FXIII-A antibody (green) and Alexa-fluor®647 Annexin-V to 

detect phosphatidylserine (red).  A time course of activation is shown.  Scale bar represents 

10 M. (B) Platelets were stimulated and FXIII-A and annexin detected as described in (A).  

Images focus on phosphatidylserine (PS)-positive and PS-negative staining.  Scale bar 

represents 5 M. Representative images of n=4 separate experiments.  (C) Three 

dimensional reconstructions of platelets stimulated as above showing PS-positive platelets 

(red) with FXIII-A (green) concentrated in the ‘cap’.  PS-negative platelets that stain only for 

FXIII-A can also be visualised.  Images were recorded on a Zeiss LSM70 confocal 

microscope with 63x 1.40 oil immersion objective and analyzed using Zen 2012 software. 

Figure 2:  Extracellular functions of cellular FXIIII-A.  FXIII-A is expressed primarily in 

cells of bone marrow lineage and is now appreciated to function in many extracellular 

processes from phagocytosis to stabilization of bone.  The range of its extracellular 

functions intimately aligns with the expression of the FXIII-A gene (F13A1) in hematopoietic 

stem cells.      

 

 

 

 


