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Quantification of personal thermal comfort with localized airflow system

based on sensitivity analysis and classification tree model

Abstract

Although local air movement acts as a critical factor to enhance human thermal
comfort and energy efficiency, the various factors influencing such movement have led
to inconsistent publications on how to evaluate and design localised airflow systems in
practice. This study aims to identify the main impacting factors for a localised airflow
system and predict a cooling performance based on machine learning algorithms. Three
typical localised airflow forms, i.e. an isothermal air supply (IASN), non-isothermal air
supply (NIASN), and floor fan (FF), were deployed. The experiments were conducted
under a variety of temperature/humidity/air velocity conditions in a well-controlled
climate chamber, and a database including 1305 original samples was built. The
primary results indicated that a classification tree C5.0 model showed a better
prediction performance (83.99%) for a localised airflow system, with 17 input
parameters in the model. Through a sensitivity analysis, 8 feature variables were
quantified as having significant main effect responses on subjects’ thermal sensation
votes (TSV), and three environmental factors (temperature, air velocity, and relative
humidity) were identified as having the most significant effects. Using the 8 sensitive
factors, the C5.0 model was modified with 82.30% accuracy for subject TSV prediction.
A tree model demonstrating the decision rules in the C5.0 model was obtained, with air

velocity (=0 m/s,>0 m/s) as the first feature variable, and root node and temperature



(<28 °C,>28 °C) as the second feature variable and leaf node, respectively. The
outcomes that provide the most influential variables and a machine learning model are
beneficial for evaluating personal thermal comfort at individual levels and for guiding

the application of a localised airflow system in buildings.
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Nomenclature

PCS personalised comfort system TSVoveranl | Overall thermal sensation

HVAC | heating, ventilation and air- | TSVhead | thermal sensation for head
conditioning

IASN | isothermal air supply nozzle TSVenest | thermal sensation for chest

NIASN | non-isothermal air supply nozzle | TSVuack | thermal sensation for back

FF floor fan TSVhand | thermal sensation for hand

T Air temperature in the chamber TSViower | thermal sensation for lower

body part

RH Relative humidity in the chamber | Thead head skin temperature

\ Air velocity for the localised | Tchest chest skin temperature
airflow system

SA sensitivity analysis Thack back skin temperature

AD body surface area Tupper upper arm skin temperature

BMI body mass index Tiower lower arm skin temperature

SVM | support vector machine Thand hand skin temperature




ANN | artificial neural network Tthigh thigh skin temperature
SD Standard deviation Tealf calf skin temperature
Toverall Mean skin temperature




1. Introduction

The personalised comfort system (PCS), which was designed to respond to the
energy crisis in the 1970s[1, 2] and to locally change an indoor environment
independently from a heating, ventilation, and air-conditioning (HVAC) system, has
been acknowledged to benefit both thermal comfort and energy efficiency[3, 4]. The
local means of a PCS are targeted to affect the most sensitive body parts to achieve
overall comfort, and thus push the boundaries of conventional comfort zones. An
extended comfort zone can be achieved from 16 °C to 20 °C with personalised warming,
and from 27 °C to 30 °C or more with air velocity adjustments[5]. Most importantly, it
consumes a relatively smaller amount of energy. A field study found that through
applying personal devices and adjusting HVAC supply air set-points, the occupants’
satisfaction increased from 56% to over 80%, while lowering HVAC energy
consumption by 60% in heating and 40% in cooling [6]. It is generally estimated that
using a PCS can potentially achieve approximately 15%-30% energy savings, with
great user satisfaction [7, 8].

A localised airflow system, as a crucial type of PCS, has attracted considerable
focus from researchers in both field surveys and lab experiments. Employing a fan to
increase airflow indoors is the most frequent behaviour by occupants in buildings to
extend their comfort zones in the summer [9, 10]. One on-site observation by Mustapa
et al. [11] showed that the use percentage of floor fans was 5.1% in air-conditioned

buildings, but up to 19.4% in naturally-ventilated buildings. A higher fan use proportion



of 64% was obtained in a long-term case study, and increased in summer with the upper
limit of the comfort temperature, up to 28 °C [12]. In-depth research regarding the
relationships between air movement and thermal comfort with localised airflow
systems has been performed via lab experiments. A variety of operating parameters,
such as environmental contexts[13, 14], airflow velocity and turbulence [15-17], the
temperature of supplied air [18], the types of different air supply structures [19-21],
and locally-exposed body parts [22] were examined as having effects on user comfort,
to varying degrees. Additionally, studies [23, 24] that focused on occupant behaviours
regarding the local air supply systems further addressed the significant influence of
personal controls: the upper acceptable temperature limit was increased when the air
supply was accessibly regulated at individual levels. Later, Zhang et al. [7] summarised
five typical PCS models reviewed in current studies, and defined a term “corrective
powder” to quantify the cooling efficiency of the different PCS models. It was
concluded that the offset temperatures ranged from 1 °C to 6 °C for cooling, and from
2 °Cto 10 °C for heating. However, these findings are hardly comparable to one another,
as variant factors and conditions exist in different experimental designs, all of which
remarkably affect the performance of localised airflow systems. As such, no consistent
results are available for how to evaluate and design a localised airflow system in
building environments[7], which thwarts its real practical application and wider energy
saving potential.

A machine learning methodology for problem solving has received increased



attention in many research fields, thanks to its abilities to improve model prediction
performance through continuous learning, and to handle complex and high-dimensional
data [25]. Driven by the building technology improvement and wireless sensor-rich
environments, researchers have shifted their paradigms to a variety of machine learning
algorithms to obtain relationships between human thermal comfort and a number of
factors, aiming to achieve better predictions/evaluations on human thermal comfort and
applications in buildings. Kim et al. [26] integrated field data of environmental
conditions and mechanical system settings as well as occupants’ control behaviours on
a PCS, and predicted the individuals’ thermal comfort responses using six machine
learning algorithms. The results indicated that employing a machine learning technique
enabled a median prediction accuracy of 0.73, as compared to conventional models
(predicted mean vote (PMV), adaptive model) that produced a median accuracy of 0.51.
Similarly, Jiang [27] adopted a C-Support Vector Classification (C-SVC) algorithm to
predict a personal thermal sensation in a PCS; the results showed a higher predictive
accuracy (89.82%) as compared to the PMV model (49.71%), which was beneficial for
optimisation control for the PCS. Further, Kim [28] emphasised the new paradigm of
using machine learning methods for personal comfort models; such models enable
predictions at individual levels instead of the average responses of a large population,
and significantly improve the prediction accuracy by approximately 17%-40%,
reinforcing the potential of a PCS in real-world applications. Based on real-time

feedback and automatic regulation, employing extreme learning machines and neural



networks results in a predicted maximum energy saving rate of 30% for air-conditioning
and mechanical ventilation systems, while maintaining a pre-defined comfort [29].
However, though these works provide valuable insights for using machine learning
techniques to improve the prediction performance with a PCS, there is still a paucity of
research for gaining a holistic understanding of the various driving factors for a
localised airflow system, and identifying an appropriate machine learning model to
evaluate personal thermal comfort. Moreover, there has been insufficient examination
of how to determine which factors should be considered for localised airflow systems,
to what degree the model inputs affect the target variable, and how to guide the
evaluation and designs of such localised airflow systems in real-life buildings.

With new devices and technologies of localised airflow systems being increasingly
accessible for indoor building environments, identifying the most significant factors
and an appropriate evaluation model covering all these factors is of great importance,
before such systems are applied in buildings to achieve building energy savings. As a
result, this study is based on a collective database of several lab experiments for
localised airflow systems and conducts a rigorous process to explore the influencing
factors and evaluate models for local airflow conditions. The aims of this study are to
quantify the relative significance of factors by referring to sensitivity analysis and
identify a prediction model of personal comfort based on the advantages of machine
learning algorithms. This work is expected to provide an in-depth understanding of

factor interactions in a localised airflow system and enable a more informed appraisal



of localised airflow system design in practice. The outcomes can aid in guiding data
monitoring and collection efforts when a localised airflow system is applied in
buildings in the future to improve personal thermal comfort prediction and energy
efficiency in buildings.
2. Methods

We conducted multiple laboratory experiments to examine the relationships
between local air supply and human thermal comfort in warm and hot environments
and built a database. For personalised ventilation, it has been found that airflow is
preferred by people when it is directed against the upper parts of the body (e.g. face,
head, chest)[30, 31] and that a transverse flow improves thermal comfort. Therefore,
we selected three typical localised airflow systems, i.e. isothermal air supply nozzle
(IASN), non-isothermal air supply nozzle (NIASN), and floor fan (FF). The difference
between the IASN and NIASN systems is the temperature difference of the supplied air.
The FF was considered as a common local airflow device in buildings to increase air
movement, wherein the air supply type differed from the IASN system. All experiments
were performed during the summer season in different periods from 2014 to 2017 and
covered the main factors we aimed to explore for a localised airflow system. An
introduction is briefly presented as follows, to support an improved understanding of
the experiments and the database used.
2.1 Climate chamber

All three series of experiments were performed in a climate chamber with a size



of 4 m x 3 m x 3 m (LxWxH). The air temperature (T) and relative humidity (RH) in
the chamber were managed by an automatic control system with a temperature range
of 10 °C—40 °C (accuracy: £0.3 °C) and RH range of 10%-90% (accuracy: +5%). The
handled air was sent to the chamber using a perforated ceiling, such that the ambient
air velocity in the chambers not generated by the local airflow system did not exceed
0.1 m/s during experiments. This ensured a uniform surrounding environment and a
lack of disturbances of the airflow during experiments. A special insulation construction
of the chamber ensured conditions such that the mean radiant temperature was equal to
the room air temperature. In addition, the climate chamber was connected to an air-
conditioned room that was controlled at a neutral thermal environment (26 °C/50% RH)
for preparation work before each test.
2.2 Subjects

The subjects in experiments were recruited from college students. Before the
experiments, a priori power analysis in G*Power 3 [32] was conducted to determine
the sample capacity, according to the designs in each series of experiments. All
participants were volunteers between 20 and 25 years of age, with healthy conditions,
e.g. no colds or fever. They were paid to participate in all of the design conditions in
each series of experiments. Before enrolment in the tests, each subject received verbal
and written explanations of the study. Written informed consent was obtained from the
subjects. The basic information of participants was collected at the first time they

attended the test, as summarised in Table 1. In addition, uniform summer clothes (cotton
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short-sleeved T-shirt, thin trousers, and slippers, with clothing insulation of 0.4 clo[33])

were provided to subjects in the experiments, to minimise the effect of clothing

insulation on subjective thermal perceptions.

Table 1 Basic anthropometric data of subjects(mean+SD)

Conditions ~ Number Sex Age(years) Height(cm) Weight(kg)
Isothermal
air supply
18 male 24.5+1.2 174.245.2 62.6+£5.5
nozzle
(IASN)
Non- 8 male 23.6x1.4 175.1+6.1 70.0+£10.5
isothermal
air supply
8 female 23.4+1.2 161.5+6.4 51.3+4.8
nozzle
(NIASN)
Floor Fan 8 male 23.7+0.9 174.2+6.1 63.3+5.9
(FF) 8 female 23.7+0.7 162.2+1.3 49.8+4.6

2.3 Experimental designs

Among all three types of localised airflow systems, local air was directly supplied

in front of the subjects. As shown in Figure 1, the IASN and NIASN systems were made

of a ventilation duct with plastic batches (d=150 mm) and equipped with a nozzle

(d=100 mm)[34]. Variable nozzle types and sizes were exclusively considered in this

study. The supply-air outlet was placed 30-40 cm from the subjects, with an adjustable

angle to aim at a subject’s face and head horizontally, or to aim in a slightly downward

slope, e.g. to aim at the neck and chest. The FF was located 1.5 m horizontally in front

of the subjects and was placed approximately 0.9 m above the floor level, and it directed

a forced airflow to the head and chest region. A general view of the local airflow system

used in the experiments is shown in Figure 1.

11



0.3-0.4m 0.3-0.4m 1.5m

Subjects

isothermal/
cooled air |pe——

isothermal/
cooled air

S SO SESIISESESIiETSssss=sSsSsssSsSsihsEE s

Figure 1 Schematic of the three localised airflow systems

Considering that local airflows given to upper body parts were more sensitive
and efficient for cooling[35, 36], we mainly focused on three factors for airflow, i.e. the
V at locations where subjects were exposed, temperature of the supplied air, and body
parts exposed to the airflow. In addition, as air velocity has been acknowledged to offset
temperature increases in warm settings, all of the experiments were designed in
warm/hot environments, with T ranging from 26 °C to 32 °C, and RH from 50% to 90%.

The design conditions in the three series of experiments are summarised in Table 2.
For the NIASN system, the temperature of the supplied air shown in Table 2 was
controlled by a constant temperature-humidity air-conditioned system in an adjacent
room, and the cooled air at the designed levels was supplied to the chamber through

plastic ducts; for the IASN system, the supplied air was circulated by fans from ambient
12



air in the chamber. The designed V in Table 2 for the NIASN system was slightly lower

than that for the IASN system, in accordance with the cooling effect of the low

temperature of the air supplied in IASN system. The different body parts exposed to

airflow were achieved by regulating the angles of the supply air outlet (see Figure 1) in

these two systems. It should be noted that the V given in Table 1 for all three localised

airflow systems are designed values referring to places where subjects were located,

rather than at the outlets (see the lower part of Figure 1). This was to determine a

comfortable V for subjects. The V under each condition was regulated and measured

during preparation work, with no subjects. The regulations were recorded, and before

each test, the V would be preset at the designed level.

Table 2 Design conditions of the three series of experiments

. Supply Air Local Body
Conditions T*(°C) RH(%)* V(m/s)* .
Temperature(°C)** Parts
28 head
28 0/1.4
28 chest
30 head
30 0/1.8
30 chest
IASN 55 32 head
32 0/2.2
32 chest
28 28 head+chest
30 0/1/1.4/1.8 30 head+chest
32 32 head+chest
25
26 0/0.6/0.8/1.0/1.2
26
25
NIASN 28 75 0/0.6/0.8/1.0/1.2 ” head
25
30 0/0.8/1.0/1.2/1.4
22
50 0/1.1/1.3/1.9
70 0/1.1/1.3/1.9
28 28
90 0/1.1/1.9/12.4
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50 0/1.1/1.9/2.4

FF 30 70 0/1.1/1.9/2.4 30 head+chest
90 0/1.3/1.9/2.4
50 0/1.3/1.9/2.4
32 70 0/1.9/2.4/2.8 32
90 0/1.9/2.4/2.8
Note:

* the T and RH are the designed ambient temperature and humidity in the climate chamber, which
are controlled by the chamber automatic control system; the V is the designed air velocity at subject
location, with the equal height to the jet axis in localised airflow system.

** the supply air temperature is the measured temperature at the air outlet.

Table 3 shows the measured thermal environments during tests, using the average

values of all samples in each condition in each series of experiments in Table 2. It is

observed that the measured environmental T and RH met the designed conditions (Table

2) well. The V fluctuated around the designed levels, with small standard deviations.

The strictly controlled environment minimised the errors caused by the designs and

ensured the quality of the experimental data.

Table 3 Measured thermal environment parameters during experiments (mean+SD)

. Temperature RH Air Velocity Supply Air
Conditions
°C) (%) (m/s) Temperature(°C)*
28.0£0.1  56.2+0.4 0/1.40+0.02 28.510.2
29.940.2  55.7+0.9 0/1.81+0.02 30.540.2
IASN 32.140.2  56.2+1.3 0/2.20+0.09 32.5+0.5
28.0£0.1  56.1+0.5 0/1.02+0.06/1.41+0.02/1.81+0.02 28.41+0.1
29.9+0.1  56.4+0.4 0/1.04+0.06/1.40+0.03/1.81+0.02 30.3+0.3
32.140.1  56.1+1.0 0/1.00+0.04/1.41+0.01/1.80+0.05 32.540.2
25.940.2  74.2+1.5 0/0.61+0.05/0.79+0.03/1.01+0.05/1.21+0.03 24.940.3
26.1+0.1  75.4+1.2 0/0.57+0.08/0.81+0.05/0.98+0.07/1.20+0.02 26.1+0.2
NIASN 28.140.1  75.1+0.8 0/0.60+0.07/0.81+0.05/1.0+0.03/1.22+0.04 25.240.3
27.940.2  75.5+0.4 0/0.62+0.03/0.79+0.06/0.99+0.04/1.18+0.05 22.1+0.4
30.0£0.2  75.3£0.6 0/0.81+0.08/1.02+0.02/1.21+0.05/1.42+0.06 24.940.5
39.9+0.2  74.8£1.0 0/0.80+0.04/1.01+0.05/1.23+0.02/1.39+0.04 22.240.4
- 28.0£0.2  50.5%1.0 0/1.13+0.07/1.32+0.05/1.90+0.09 28.010.2
27.940.2  69.6+0.8 0/1.1+0.1/1.29+0.08/1.91+0.08 27.940.2
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28.1+0.2 89.5+1.2 0/1.08+0.1/1.90+0.08/2.42+0.05 28.1+0.2

30.2+0.1  49.8+1.0 0/1.11+0.1/1.88+0.07/2.4+0.10 30.2+0.1
29.9+0.2 70.4+0.9 0/1.12+0.07/1.93+0.05/2.39+0.1 29.9+0.2
30.1+0.2 89.5+1.1 0/1.31+0.06/1.91+0.04/2.43+0.05 30.1+0.2
27.9+0.2 51.2+0.8 0/1.29+0.13/1.85+0.11/2.41+0.08 27.9+0.2
27.9+0.1 70.5+1.2 0/1.92+0.08/2.38+0.11/2.82+0.1 27.9+0.1
28.1+0.2 91.2+0.9 0/1.88+0.1/2.4+0.13/2.82+0.1 28.1+0.2

Note:

* the temperature of the supplied air in IASN and NIASN systems was measured at outlets using
thermocouples (range: -20 °C-+85 °C, accuracy: + 0.1 °C, PyroButton-T, Opulus, US); the
temperature of the supplied air in FF system was defaulted to ambient air temperature.

2.4 Variables and measurements

Many factors influence the cooling effect of local airflow on human thermal
comfort. With the aim of identifying significant variables, we classified possible factors
into four categories, namely environmental, individual, physiological, and
psychological, and selected representative parameters in each category for further
analysis.

A thermal comfort monitoring station instrument was used to measure the real-
time T and RH in the chamber (M16401, Germany, Accuracy: T £0.2 °C, RH +2%), to
ensure that the experimental environments met the designed demands. The instrument
was placed in the central chamber, at a height of 0.6 m above the floor and 0.5 m away
from subjects. Before each test, when no subject was present, the V at the subject
exposing location was pre-regulated and measured to reach the designed level in Table
2, using an Air Distribution Measuring System (AirDistSys 5000, Sensor Electronic,
Poland, range: 0.05 m/s—5 m/s, accuracy: £0.02 m/s £ 1% reading data). To evaluate an
environmental air velocity for thermal comfort, a weighted average of the indoor air

15



velocity was calculated. The weighted average was calculated based on measurements
performed at levels representing heights of ankles, abdomen, and neck (0.1, 0.6 and 1.1
m for seated occupants, respectively) during tests, and according to the American
Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
Standard 55 [33]and European standards [37, 38]. A portable hot wire anemometer
(VT110, France, 0.15 m/s—30 m/s, £3% reading data with £0.05 m/s) was used every 5
min repeatedly, to verify whether the actual VV met the designed level in Table 2. The
values at the three levels were then averaged to represent the mean air velocity in the
room when necessary.

The parameters that were considered influential for individuals were sex, body
surface area (AD), and body fat ratio, which were believed to affect body heat
generation and heat loss and thus affect the sensation of airflow. As shown in Table 1,
the first time subjects attended the tests, each subject’s weight and height were
measured. The AD values for each subject were calculated by Equation (1)[39]. The
body fat ratio was indirectly calculated using body mass index(BMI), referring to
Equation (2).

Ap=0.202W, "4 H, 7> (1)
BMI=W,/H3 )
Where Hy is the body height, m; Wi is the body weight, kg.
In warm/hot environments, body heat dissipation commonly occurs through two

major mechanisms, namely cutaneous vasodilation and sweating, which affect skin

16



temperatures and convective and evaporative heat transfer from the core to the skin[40].
During experiments, the local skin temperatures from eight parts of the body (i.e.
forehead, left chest, left back, left upper arm, left lower arm, left hand, right anterior
thigh, and anterior calf), were measured by thermocouples (TSD202B, BIOPAC, US,
temperature range: 0—70 °C, accuracy: £0.1 °C), while using surgical, water permeable,
adhesive tapes. The data were recorded at 0.5/s and logged by a multi-channel
physiological acquisition system (MP150-SKT100C, BIOPAC, US). The mean skin
temperature (Tovera) Was calculated using an area-weighted eight-point method
(Equation (3) ) [41].

Toverat=0-07Theaq0.175 Tepest H0.175 Taet+0.07 Typpert 0.07Tioryer+0.05 Thng 0.2 Tiign+0. 19T i

upper

®3)
where the Toveranl is the mean skin temperatures, °C; Ti is the local skin temperature of
the head, chest, back, upper arm, lower arm, hand, thigh, and calf, °C.

Studies had previously suggested that a whole body thermal sensation was a result
of the integrated effect of whole and local thermal responses, where the local body parts
took significant proportions in affecting the whole body thermal sensation under local
airflow environments [35, 36, 42, 43]. Therefore, we considered the interactions of
subjects’ whole and local thermal perceptions and designed questionnaires for both
whole and local thermal evaluation. The most common thermal sensation vote (TSV)
scale was used: -3 cold, -2 cool, -1 slightly cool, 0 neutral, +1 slightly warm, +2 warm,

and +3 hot, as described in the ASHRAE 7-point scale[33]. Subjects were asked to
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evaluate a thermal sensation on the whole body, head, chest, back, hand, and lower body,
under local airflow conditions. In some situations, when the subjects had difficulties in
expressing judgements, he/she was allowed to use middle votes between the above
values (e.g. +1.5 between +1 and +2). Additional questions were also involved in the
questionnaire to evaluate subjects’ sensation to humidity, air velocity, environmental
expectations, environmental acceptability, and so on. Considering this study concerns
the offset of a local airflow on acceptable temperature limits, the main dependent
variable being focused on is the thermal sensation. Therefore, these indices were
exclusively analysed in the following parts.

2.5 Experimental protocols

The experiments complied with the guidelines in the Declaration of Helsinki[44].
Participants were counselled to withdraw from the experiments at any point in time if
they were not comfortable during the tests.

For each test, subjects were asked to arrive at the adjacent room 30 min in advance,
to change into uniform clothes, attach thermocouples, and stabilise their metabolic rates.
During this period, the details of experimental process and questionnaires were
explained to them.

The formal experiment began after the subjects entered the chamber and were
seated at desks. For each test, they experienced different conditions, with and without
a local air supply. Blind to the experimental settings, the subjects were exposed to two

or three levels of V for 20 min, and intermittent recovery for 15-20 min (without air
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supply) during each test. The different air velocities in each condition were regulated
by experimenters according to the preset measurements, and were supplied in a random
way during the whole experimental process. The T and RH in the chamber were kept
constant, at the designed levels. Over the period of testing, the local skin temperatures
of each subject were measured continuously; meanwhile, they were asked to fill in
identical questionnaires every 5 min to report their thermal perceptions. During the
whole experiment, the subjects performed standardised office work while avoiding
walking, talking, and other intensive activities.

2.6 Statistical analysis
2.6.1 Data collection

The experiments adopted 17 variables to comprehensively identify the significant
influencing factors. They included 3 individual factors (i.e. sex, AD, BMI), 5
environmental factors (i.e. T, RH, V, supplied air temperature, and local exposed body
parts), 9 physiological factors (i.€. Thead, Tchest, Tback, Tupper, Tiower, Thand, Tthigh, Tcaif, and
Toverant). In addition, 6 subjective indices (TSVoverall, TSVhead, TSVchest, TSVback, TSVhand,
and TSViower body) Were also investigated using questionnaires. The original
experimental data were collected and saved in SPSS 22.0 software. As the study mainly
focused on subjects’ stable thermal responses to local airflow, a repeated measure of
analysis of variance (ANOVA) was firstly performed for subjects’ skin temperatures, to
determine the stable time of subjects’ thermal responses during tests under each
condition. The stable time was determined as that having no significant difference

between subject’ skin temperatures at one-time point and thereafter. The results showed
19



that majority of subjects’ skin temperatures stabilised quickly, during the initial 10 min
when they were exposed to airflow. Then, all of the data for each subject were averaged
(mean+SD) for the last 10 min at each stage during the tests, either with airflow or
without airflow. The new database included 1305 sample cases, which were built and
used for the following analysis. To explore the correlation and interaction between
variables, a Pearson correlation coefficient analysis was employed for continuous
variables, and Spearman correlation coefficients were employed for categorical

variables. A p-value below 0.05 indicated statistical significance during the analysis.
2.6.2 Machine learning models

Research has provided robust evidence for the application of a variety of machine
learning algorithms, to better predict human thermal comfort[28] at individual levels.
These algorithms include the adaptive stochastic model[45], classification tree [46, 47],
Bayesian network [48], Gaussian process [49], support vector machine (SVM) [27, 50],
and artificial neural network(ANN) [51]. These models enable using a variety of factors
to solve the complexity of variant variables in models, and concentrate exclusively on
the target output. This is an advantage in PCS studies, which have a large number of
confounding factors.

One objective of this study is to deploy the advantages of the machine learning
methods to explore an appropriate model to predict the personal comfort for a localised
airflow system. The SPSS Modeler 20.0, as a data mining tool, offers multiple machine
learning techniques and supports a variety of classification and regression models[52].

Given many algorithms exist in machine learning[25], this study first employed the
20



SPSS Modeler 20.0 to select the well-matched generative and deterministic machine
learning models according to the experimental database. One benefit of the SPSS
Modeler is that it can provide an intuitive graphical interface to help visualise each step
in the data mining process as part of a stream. Figure 2 shows the primary analysis
processing in SPSS Modeler, including experimental data processing and model
screening. After those steps, 11 models are further examined in the following parts:
logistic regression, discriminative model, Bayesian network, ANN, Lagrangian SVM
(LSVM), C5.0, Tree-AS, chi-squared automatic interaction detection (CHAID),

classification and regression tree (C&RT), Quest, and Random Tree.
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Figure 2 Analysis process in SPSS Modeler using experimental data
2.6.3 Sensitivity analysis (SA)

As nearly 20 impacting factors were considered in this study for a localised airflow
system, it is impractical to cover all of these data in models for a building application.
Therefore, it is necessary to first identify significant variables, e.g. those with better

explanations of human thermal comfort under local airflow conditions. A sensitivity
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analysis (SA) is a targeted method that enables determination of how the variation of
the output in a model can be apportioned among the inputs[53]. The SA has been widely
applied in academic research, and has been used in practical application in a variety of
fields [54]. The method has also been considered as a powerful tool for building
optimisation in building design, and for exploring influencing variables on a specific
target in a building energy simulation[55, 56]. However, as there are several methods
to perform the SA, less attention has been paid to explore the application in multiclass
classification, and in particular with the various categorical and numerical features in a
thermal comfort evaluation for a PCS. In this study, we referred to a variance-based SA
methodology based on a Bayesian treed Gaussian process model in the “tgp” package,
[57] and conducted the analysis via R software (ver. 3.3.2). The outcomes enable us to
understand and quantify the main effects of variables on a dependent variable, as well
as the first order and total sensitivity indices among the input variables. The

significance level was set at 95% (p < 0.05).

3. Results analysis

Based on the dataset of 1305 original samples from the three series of experiments,
the following section aims to explore which models are superior for thermal comfort
evaluation in a localised airflow system at individual levels, as well as the
representative factors that have the most significant effects on personal thermal comfort.
3.1 Machine learning models identification for localised airflow system

Although both local and whole thermal sensations of subjects were measured
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during the experiments, an interactive effect exists among these indices. Therefore, we
employed the typical whole body (overall) thermal sensation TSVoveran as the target
dependent variable to examine its relation to the variant independent variables and build
models.

After determining the 17 input variables (see Section 2.4) and the target output,
the dataset was randomly split into training and testing sets (80% and 20%), and all of
the 11 machine learning models mentioned in Section 2.6.2 were tested using the SPSS
Modeler 20.0. Figure 2 depicts the conducting process in the SPSS Modeler. In that
regard, this study does not discuss the detailed process of data training and parameter
tuning in these algorithms. Instead, we focused on comparing the prediction
performance among these models to identify the appropriate model. Table 4
summarises the preferred five models from the set of 11 models and lists their prediction
performances. From Table 4, it can be seen that the C5.0 model displays the highest
prediction performance of 83.99% when all 17 variables are included, followed by
59.69% for the CHAID model, and 57.47% for the C&RT model. The Quest and ANN
models were worse than the first three classification tree models, with their predictive
performances at 53.56% and 44.9%, respectively. As the C5.0 model takes the
information gain as a standard to optimise the partition process and favours outcomes
with a higher information gain, the results indicate that the C5.0 model is superior for
predicting subjects’ thermal sensations under local airflow conditions. Therefore, we

give priority to the C5.0 model in the following analysis to profile the relationship
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between subjects’ thermal sensations and variant input features in localised airflow

systems.

Table 4 Preferred machine learning models

Models Prediction Performance  Number of Input Variables
C5.0 83.99% 17

CHAID 59.69% 9

C&RT 57.47% 14

Quest 53.56% 10

ANN 44.91% 17

3.2 SA for impacting factors in localised airflow system
3.2.1 Feature variable screening

From Table 4, it is not surprising that the C5.0 model possesses a better prediction
performance, as too many variables are involved in the model. Practically speaking,
owing to the difficulties and expenses of monitoring all influential variables, choosing
a good model is not only based on accuracy, but also on the validity and explanatory
ability of the selected data [26]. Therefore, it may be difficult to capture all the relevant
information for the C5.0 model to develop a comfort prediction; otherwise, it is
necessary to correlate the comfort prediction with highly representative variables. In
fact, some variables in the dataset interact with each other to influence subjects’ thermal
sensations, and some are negligible for model prediction. Therefore, we first conducted
a correlation analysis to examine the 17 variables in the C5.0 model, to possibly reduce
the number of input variables.
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First of all, because of the limited distance (30—40 cm) between the supplied air
outlet and the subjects in the IASN system, both the head and chest of subjects were
exposed to air movement in the experiments, which made the boundaries fuzzy in
distinguishing the body areas exposed to airflow. In that case, the factors of different
exposed parts for the body are exclusively considered. Moreover, some previous
studies[58, 59] confirmed that the temperature difference between the supplied air from
a nozzle and the surroundings was negligible when the air reached the subjects,
resulting from the diffusing effect of the supplied air. The measurements of the air flow
field during pre-experiments had also found that the temperature of the cooled air
attenuated quickly in a NIASN system, being equal to the ambient temperatures in
warm and hot conditions. Thus, the temperature variable of supplied air is also removed
when evaluating the cooling effect of local air movement. After that, the environmental
parameters were reduced to three: T, RH, and V.

As for physiological variables, Dai et al. [50]discussed that the curse of
dimensionality may occur with additional local body skin temperatures as inputs for
thermal demand predictions, based on a SVM classifier. Therefore, a Pearson
correlation analysis was performed first, and the correlation metrics of these
physiological indices are illustrated in Table 5. From Table 5, it can be seen that there
were no significant correlations between the skin temperatures of the chest and other
parts. During experiments, the thermocouples were placed at the upper left part of the

chest, and were directly exposed to the air and V. Therefore, it was reasonable that the
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subjects’ chest skin temperatures were more sensitive to local airflow than other body
parts (see Figure 1). In addition, the correlation coefficients in Table 5 (marked in grey
colour) show that the Toveran Was significantly related to local skin temperatures. As a
result, the mean skin temperature Toverann Can be a feature selected to represent the local
skin temperatures. After analysis, the physiological variables can be reduced to two:

Toverall and Tehest.

Table 5 Correlation analysis of subjects’ physiological indices

Variances  Thead Tchest  Thack Tupperarm ~ Tiowerarm  Thand Tthigh Teart Toverall
Thead 1.00 0.008 0.253** 0.097**  0.017 0.023**  0.445** 0.173** 0.283**
Tchest 1.00 0.012 0.013 -0.001 0.000 0.033 0.001 0.023
Thoack 1.00 0.086**  -0.014 0.048 0.329*  0.001 0.246**
Tupperarm 1.00 0.017 0.012 0.108** 0.001 0.147**
Tiowerarm 1.00 -0.001 0.000 -0.006 0.51*
Thand 1.00 0.032 0.010 0.871**
Tinigh 1.00 0.134**  0.319**
Tear 1.00 0.283**
Toverall 1.00

(Note: ** p< 0.01; * p<0.05, (two-tailed)

In summary, we identified the featured variables, and reduced the number of
variables from 17 to 8, i.e. sex, AD, BMI, T, RH, V, Tchest, and Toverail. These 8 variables
are examined for sensitivity.

3.2.2 SA of the feature variables

Although the correlation analysis allows us to simplify the features in the C5.0
model, there is still a need to examine the degree to which these factors affect thermal
sensation, and how to quantify their effects. To correctly interpret the results in the right

perspective, we divided the 8 variables into three categories (i.e. environmental,
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individual, and physiological), and conducted a global SA to evaluate their effects.
Figures 3-5 plot the main effects of the 8 features, respectively. The slopes of different
inputs in Figures 3-5 give the information on whether the output of TSV is an
increasing or decreasing function of the corresponding inputs; the solid lines are the
mean values, and the dotted lines are the 95% intervals.

(D Individual features

It was observed that the TSV showed linear change trends with the 8 variables
increasing, as can be seen from Figures 3-5. Specifically, in Figure 3, the main effect
differed in sex, with 1 being defaulted as female and 2 as male. In addition, with the
increase of body AD and BMI, the main effects caused by increasing AD and BMI
decreased slightly, suggesting the effects of individual differences of AD and BMI on
subjects’ TSV changes were attenuated under such conditions.

Main effect response: mean and 95% CI
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Figure 3 Sensitivity analysis (SA) results for three individual factors

(2) Environmental features
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The main effects of environmental parameters of T, RH, and V on TSV are plotted
in Figure 4. From Figure 4, larger main effects of T and RH were observed on the TSV
responses. Especially for T, it revealed that with T increasing, the effect of increasing
1 °C on the TSV would be more significant. In addition, an in-depth observation on
Figure 4 showed that the main effect responses tended to be stable when the T and RH
were approximately 26 °C/50% RH, and above 31 °C/80% RH. This allows us to infer
that when the T and RH are in a moderate zone, the thermal environment is neutral,
such that the changes of T and RH have slight effects on subject thermal sensation. As
the thermal sensation is limited to seven scale values with a maximum of +3 for hot,
when the T and RH are high, subjects’ TSV may stabilise at +3, and can be higher for
longer. As a result, the effect caused by T and RH changes on TSV responses is slight.
Conversely, the V in Figure 4 displays an opposite trend of the main effect response,
i.e. increasing V has positive effects on a subject’s thermal sensation, and produces a
decrease in TSV. Moreover, the values of the main effect responses for VV were much
higher in Figure 4, indicating that the elevated V in a localised airflow system has a

significant cooling effect on subjects’ TSV.
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Main effect response: mean and 95% CI
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Figure 4 SA results for physical factors

(3 Physiological features

As compared to the environmental factors shown in Figure 4, the main effects of
Tovera aNd Tchest Changes on the TSV responses in Figure 5 were slight in cases where
skin temperatures were lower than approximately 32 °C. However, the main effects
increased remarkably when the skin temperatures increased above 32 °C. Considering
the comfort limits for skin temperatures, this indicates that when the skin temperatures
of subjects are lower than the thresholds (e.g. 32 °C in this study), the TSV is in a
comfortable range, and is slightly affected by skin temperatures. When the skin
temperatures increase beyond the comfort zones, the TSV of subjects tends to increase

significantly.
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Main effect response: mean and 95% CI
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Figure 5 SA results on physiological factors

(4) Global effects

To display the main effects for all parameters using a single plot, Figure 6 further
summarises the first-order sensitivity and the total effect sensitivity of the 8 indices. In
Figure 6, the first-order sensitivity indices quantify the changes of output variables
respectively caused by individual input variables, and the total effect sensitivity indices
reflect the interactive effects of all of the input variables on the output variable. From
Figure 6, it is clearly observed that T is a major contributor, leading to the most sensitive
TSV responses with increasing T. The V and RH are ranked as the second and third
contributors to the TSV changes, respectively. This is to some degree different from the
individual effects depicted in Figure 5, which may be explained by the coupled effects
of T, RH, and V. By contrast, the individual and physiological features are roughly the

same, sharing the small values of sensitivity responses to TSV. However, for the total
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sensitivity, a remarkable change is found in Figure 6. Although the overall distribution
trend of the 8 variables remains, the total effects increase when considering the
interactions among 8 variables, especially for T. That the sensitivity indices do not sum
to one indicates that the interactive effects between two or more variables are important
for individual thermal sensation evaluation under local airflow conditions. Overall,
Figure 6 gives a visual impression of the effects of the selected 8 feature variables on
the variation of TSV, and quantifies their individual and coupled effects, which are

believed to be beneficial for the evaluation and design of localised airflow systems in

buildings.
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Figure 6 Full SA results for all feature variables

3.3 Model verification

Here, further discussion is provided as to whether and to what degree the reduction
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of input variables might compromise the prediction performance of the obtained C5.0
model, as compared to the iteration using e.g. 17 variables. A new database with 8
feature variables and 1 output variable is created via inputs filtering, as shown in Figure
2 in solid red lines. Using the same settings as in Section 3.1, the data are also divided
into training and testing sets, and the predictive performance of the obtained C 5.0
model is examined and verified. The result shows that the new C5.0 model using 8
inputs has a high predictive performance of 82.30%, even though it is slightly lower
than the aforementioned performance of 83.99% using 17 variables as shown in Table
4. This indicates that the C5.0 model is better for predicting human thermal comfort in
a local airflow system with as few as 8 variables, which is expected to simplify the C5.0
model to facilitate its use in applications.

One additional advantage of choosing the C5.0 model is that it can generate a
interpretable model to understand how the model implements rules and can run faster
with a large database, as compared with some complex models such as Random forest
and SVM[26]. Therefore, we demonstrate the decision rules in the C5.0 model and
simplify the process using the first four layers as example, as shown in Figure 7.
Consistent with the sensitivity analysis, the model in Figure 7 adopts the environmental
parameters as the prior feature nodes, to divide different categories and layers. With or
without a local air velocity, the C5.0 model first takes V as the root node of the tree, as
seen in Figure 7. In particular, the C5.0 model only follows a rule of binary

classification for features, from the root node to leaf node. Therefore, the original
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division splits V into two categories of <0 m/s and >0 m/s. However, it is
unreasonable in reality for V to be under 0 m/s. Therefore, we fine-tune the
classification tree in Figure 7 with V=0 m/s. Starting from root node, the data are split
into two categories, using a T baseline of 28 °C in the second layer. The third layer
introduces RH as the feature, and divides according to the baselines of 75% and 55%
for T<28 °C and T>28 °C, respectively. The fourth layer further adopts RH and BMI
as leaf nodes. By contrast, the classification rule is slightly different from that when V
is above 0 m/s. That is, with V>0 m/s, the T and RH are adopted as feature variables
in the third layer for classification. When T is equal to or under 28 °C, T is introduced
for the third layer (T<<26 °C(neutral) and T>26 °C(warm)). When T is above 28 °C,
the RH is adopted in the third layer, with RH<75% and RH>75%. This suggests that
the effect of RH on human thermal comfort is coupled with T, and plays a dominant

role under higher T values and humidity.
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Figure 7 Classification Tree C5.0 model for localised airflow evaluation

4. Discussion and limitations

The above analysis (depicted in Figure 7) identifies the most significant features
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affecting TSV at each layer of the tree with different discriminative approaches, and is
superior to some other models. Kim[26] compared the performance of six typical
machine learning algorithms used to develop personal comfort models; he argued that
although algorithms with capabilities to control high dimensions and noise in the data
(e.g. Random forest, regularised logistic regression, kernel SVM (kSVM)) could
produce higher accuracy, they were more computationally expensive. In light of this,
the C5.0 model in the current study significantly reduces the numbers of feature
variables; meanwhile, it still predicts the individual thermal sensations well (higher than
80%). Most important, the machine learning models are superior at continuously and
automatically improving themselves through repeated learning and training [26]. It is
thus believed that by performing an incremental restoration of data, the prediction
performance of the C5.0 model for predicting personal thermal comfort with 8 input
variables could be improved, i.e. more in-depth. In this way, this work can be referred
to for comfort evaluation for a localised airflow system and guide application of such a
system, in parallel with reduced dependence on HVAC systems and more energy-saving
potential.

However, although this study identifies the significant influencing variables in
localised airflow systems and builds an appropriate classification tree model based on
C5.0, some limitations should be discussed for the current study, to make better
interpretation of the results and inspire further studies. The results in this study are

based on a database including three local air supply forms, where subjects were exposed
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to airflow for 20 min, and recovered for 15-20 min between two different V levels. As
under warm/hot conditions, the inner body heat storage of subjects would increase over
the periods without airflow, the study may exaggerate the subjects’ real thermal
sensation on the cooling effect of air velocity, when the airflow is subsequently given.
This would have effects on the obtained database. However, some experiments
designed without recovery periods, or with a short recovery time [60-63], could cause
the inclusion of subjects’ thermal memories from a previous thermal experience,
potentially resulting in deviations for the subjective evaluations. Therefore, balancing
the variant factors in a localised airflow system and the contradictions between time,
cost, and experimental designs for different purposes should be considered for future
studies.

The preferred air velocity of occupants is believed to have a “time and fatigue”
effect, as the demand for air velocity for people would differ from short-term exposure
to long-term exposure[64, 65]. The lab experiments used in this study were designed to
explore the cooling effect of air movement for a localised airflow system and the
exposure durations were limited, with the time-dependent variations of subject thermal
sensations being thus exclusively considered. The term “alliesthesia” has been paid
increasing attention in the dynamic thermal comfort field, and describes a sensation of
pleasantness that occurs only with dynamic thermal stimuli on a human skin surface[66,
67]. As for long-term exposure to airflow in real building environments, the annoyance

caused by a constant air velocity may increase over time[64]. An air velocity over 1 m/s
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may exert extra pressure on the human body surface[68]and cause eye irritation [69];
moreover, the high air velocity may cause thermal draught for occupants in hot
environments [15, 65]. In that case, a new database including a time variable should be
built, to retrain the current C5.0 model for long-term comfort evaluation.

In addition, to achieve such ‘temporal alliesthesia’ for people, the local air supply
system should be regulatory for occupants. According to some studies exploring the
personal control of localised air supply systems[23, 70], the expected air velocity
decreases and the acceptable temperature limits increase when providing personal
control to occupants. However, considering that occupants’ demands and regulations
on air velocity as integrated with a time factor remain incompletely understood, subjects
in these three series of experiments were restricted from regulating the local airflow
system. Therefore, some deviations may exist when the C5.0 model is applied to a
personally-controlled system. As the occupant behaviours play dominant roles for
thermal comfort and energy consumption in buildings, in-depth research should be
conducted for the effects of personal control on localised air supply systems and the
corresponding demands.

From a practical perspective, the challenges ahead model application would
depend upon some factors[71]: (1) the quality and importance of the monitored
parameters; (2) the availability of devices to monitor these parameters; and (3) the
operation and cost for long term measurements. The current study identifies 8 features

for C5.0 model prediction, but some individual parameters and physiological indices
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may be difficult for data monitoring and collection in buildings. Future studies for
application of the localised airflow system in buildings should select more accessible
variables, or alternative indices, without compromising the prediction performance of
the C5.0 model.

5. Conclusions

This work, based on three series of experiments with localised airflow systems, i.e.
IASN, NIASN, and FF, identifies the appropriate machine learning model - the
classification tree C5.0 model, which has the highest prediction performance of 83.99%
with 17 original variables.

The sensitivity analysis quantifies the main effects of 8 major variables in a
localised airflow system. T is the major contributor leading to the most sensitive
response of TSV, followed by V and RH. The total effects increase using global
sensitivity analysis, indicating significant interactive effects.

The C5.0 model is then modified with the 8 sensitive features, and displays a better
prediction performance (82.3%). A tree model is obtained to demonstrate the decision
rules in the C5.0 model. The model employs V (=0 m/s,>0 m/s) as the first feature
variable and root node, and T (<28 °C,>28 °C) as the second feature variable and leaf
node. This is highly interpretable, and responds to the sensitivity analysis. With the
lowered cost of sensors and ubiquitous wireless connectivity, it is believed that the C5.0
model will be further improved, thanks to its continuous learning and ability to

automatically train itself.
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