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ABSTRACT

We present a model intercomparison project, LongRunMIP, the first collec-
tion of millennial-length (1000+ year) simulations of complex coupled cli-
mate models with a representation of ocean, atmosphere, sea ice, and land
surface, and their interactions. Standard model simulations are generally only
a few hundred years long. However, modeling the long-term equilibration
in response to radiative forcing perturbation is important for understanding
many climate phenomena, such as the evolution of ocean circulation, time-
and temperature-dependent feedbacks, and the differentiation of forced signal
and internal variability. The aim of LongRunMIP is to facilitate research into
these questions by serving as an archive for simulations that capture as much
of this equilibration as possible. The only requirement to participate in Lon-
gRunMIP is to contribute a simulation with elevated, constant CO, forcing
that lasts at least 1000 years. LongRunMIP is a MIP of opportunity in that
the simulations were mostly performed prior to the conception of the archive
without an agreed-upon set of experiments. For most models, the archive
contains a preindustrial control simulation and simulations with an idealized
(typically abrupt) CO;, forcing. We collect 2D surface and top-of-atmosphere
fields, and 3D ocean temperature and salinity fields. Here, we document the
collection of simulations and discuss initial results, including the evolution of
surface and deep ocean temperature and cloud radiative effects. As of sum-
mer 2019, the collection includes 50 simulations of 15 models by 10 modeling
centers. The data of LongRunMIP are publicly available. We encourage sub-

mission of more simulations in the future.
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(Capsule Summary) LongRunMIP is the first collection of millennial-length simulations of com-
plex coupled climate models and enables investigations of how these models equilibrate in re-

sponse to radiative perturbations.

1. Motivation and objectives

Millennial-length climate simulations are necessary to understand the equilibrium states that oc-
cur in response to external forcings, as well as the relationship between transient and equilibrated
behavior. Unforced millennial-length simulations are useful as well, as they allow us to consider
long-term internal variability and to analyze shorter-term variability with increased statistical cer-

tainty. Reasons to study these long time scales include:

e To better understand long-term climate dynamics. Outstanding issues include the time scales
of ocean circulation response (e.g., Jansen et al. 2018; Rind et al. 2018), continental drying
trends (e.g., Sniderman et al. 2019), or sea level rise (e.g., Bilbao et al. 2015; Rugenstein et al.

2016c¢).

e To help predict the impacts of 20th and 21st century emissions on century timescales, such as
ice sheet stability, deep ocean warming, or polar amplification (e.g., Frolicher and Joos 2010;
Clark et al. 2016; Mauritsen and Pincus 2017), which are rarely explicitly simulated using a

fully-coupled climate model.

e To more accurately estimate Equilibrium Climate Sensitivity (ECS), which is the equilibrium
response of the surface air temperature to a doubling of CO; due to the “fast” feedbacks water
vapor, lapse rate, clouds, and sea ice but excluding Earth system feedbacks such as changes

in the carbon cycle, ice sheets, or vegetation. While ECS has long been a focus of scientific
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inquiry, substantial uncertainty remains as to its value (e.g., Charney et al. 1979; Knutti et al.

2017).

To understand the relationship between the transient response of the climate and its equilibra-
tion. Since radiative feedbacks can depend on the evolution of the spatial pattern of warming
(e.g., Senior and Mitchell 2000; Winton et al. 2010; Armour et al. 2013; Andrews et al. 2015;
Andrews and Webb 2018) and on the background temperature (e.g., Colman and McAvaney
2009; Caballero and Huber 2013; Block and Mauritsen 2013; Meraner et al. 2013; Bloch-
Johnson et al. 2015), a constant effective sensitivity of the climate is an inadequate assump-
tion. Several methods have been proposed to predict the equilibrium response from transient
simulations given a changing global feedback (Held et al. 2010; Winton et al. 2010; Armour
et al. 2013; Geoffroy et al. 2013b,a; Frolicher et al. 2014; Proistosescu and Huybers 2017,
Saint-Martin et al. 2019), but only fully equilibrated climate model simulations can serve to

test how well these methods predict equilibrium conditions.

To test theories for the relationship between feedbacks at different time-scales (Gregory et al.
2015, 2016; Zhou et al. 2016; Rugenstein et al. 2016a; Armour 2017; Proistosescu and Huy-
bers 2017; Ceppi and Gregory 2017; Andrews and Webb 2018; Andrews et al. 2018), and
to quantify the influence of slow, centennial-scale modes on the temperature evolution of the

last century (Armour 2017; Proistosescu and Huybers 2017).

To understand the relevance, time scales, and magnitude of the energy imbalances and drifts
exhibited by climate models (e.g., Hobbs et al. 2016), with the potential application of de-

creasing the spin-up time needed to run these models.

To understand the relationship between the forced response and internal variability. This re-

lationship is currently studied using the time frame of one or two centuries, which is not



129 enough to robustly quantify the internal variability under consideration (e.g., Maher et al.

130 2018; Lutsko and Takahashi 2018; Bloch-Johnson et al. in revision), millennial time scales
181 with varying forcings (e.g., Kohler et al. 2017; Khon et al. 2018; Rehfeld et al. 2018) or by
162 using expensive large ensemble simulations on decadal to centennial time scales (e.g., Deser
138 et al. 2012; Maher et al. 2019; Rodgers et al. 2015). Millennial long simulations allow us to
14 differentiate the transient response from the equilibrated forced response, even for quantities
165 with large internal variability, such as precipitation, droughts, or the El Nifio-Southern Os-
136 cillation (ENSO), and also the significance of a change in internal variability in a transient
137 simulation relative to the control simulation (e.g., Brown et al. 2017).

138 e To compare climate model responses and paleo proxies, e.g. of surface or deep ocean temper-
169 atures or hydrological conditions on land in order to provide an independent way of testing

140 climate models (Gebbie and Huybers 2019; Burls and Fedorov 2017; Scheff et al. 2017).

w With LongRunMIP, we aim to advance knowledge in the above mentioned areas, fill a gap in the
w2 CMIP protocols (Taylor et al. 2011; Eyring et al. 2016), and collect published data in one location
s for easy public access.

ws  The goals of LongRunMIP are

ws  a) to continuously gather existing millennial-length simulations (both published and unpub-
146 lished)

w  b) to standardize the collected data (e.g., using the same units and sign conventions)

ws  C) to make the data publicly available and easily accessible

w d) to foster an interdisciplinary community of users working on millennial-length problems,
150 with experts on oceanography, atmospheric dynamics, energy balance modeling, ice sheet

151 modeling, and paleoclimatology
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The objectives of this paper are to

a) motivate the data collection strategy (Section 2)

b) specify the requirements for LongRunMIP contributors (Section 2 and b)

c) give an overview of currently submitted simulations and models (Section 2a, b, and Table 1)
d) give a sample of some initial analysis on these simulations (Section 3)

e) show how LongRunMIP relates to the existing literature on millennial-length simulations

(Section 4a)

f) discuss the limitations and opportunities of LongRunMIP (Section 4b and c).

2. Experimental design and data collection strategy

LongRunMIP is the first and largest compilation of millennial-length simulations of complex cli-
mate models to date, where a “complex climate model” is understood to include an atmospheric,
sea ice, land, and full depth ocean component, i.e. Atmosphere-Ocean General Circulation Mod-
els (AO-GCMs) with a dynamic atmosphere and ocean, as opposed to Models of Intermediate
Complexity (EMICs), which are often used to study millennial-length questions in climate science
(e.g., Zickfeld et al. 2013; Levermann et al. 2013). These model simulations include the “fast”
feedbacks, such as changes in water vapor, lapse rate, sea ice, and clouds (Charney et al. 1979),
but no “slow” feedbacks, such as changes in the ice-sheets. Vegetation is treated differently in the
models (see Section 2b). In Section 4 we discuss the implications and limitations of our approach.
Our goal is to collect as many simulations from as many independent models as possible, while
keeping the archive and data sharing manageable. Consequently, we keep our requirements for

contributions low.
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a. Simulations and variables

A step-increase in atmospheric CO, concentrations (in the following called “step-forcing”) is
one of the simplest experiments for studying a model’s response to forcing and is used as a bench-
mark simulation in CMIP3, CMIP5, and CMIP6 (Meehl et al. 2007; Taylor et al. 2011; Eyring
et al. 2016). More realistic, gradual forcing scenarios have been shown to be representable by the
step-forcing scenarios and exhibit feedbacks that correlate with those computed from step-forcing
simulations (Good et al. 2013, 2015; Geoffroy and Saint-Martin 2014; Colman and Hanson 2016).
The CMIP3 protocol required a step-forcing of doubling atmospheric CO; (here referred to as
abrupt2x) above pre-industrial levels in a slab (i.e. non-dynamical) ocean, which for decades has
been used to define ECS (e.g., Charney et al. 1979; Boer and Yu 2003c; Danabasoglu and Gent
2009). The integration time scale of these model setups are a couple of decades. However, a
quadrupling of CO;, (here referred to as abrupt4x) above pre-industrial levels has a better ratio of
forced signal to internal variability. Because the forced response was assumed to scale linearly
with increased forcing, the CMIPS5 protocol requested an abrupt quadrupling of CO;, now in a
fully coupled model with a dynamical ocean, requiring longer integration time scales. The CMIP6
protocol again requests abrupt CO, quadrupling experiments, but encourages also the submission
of abrupt CO, doublings, to study the relation between different forcing levels (Eyring et al. 2016;
Good et al. 2016). CMIP5 and 6 protocols require the submission of 150 years of model output.
A representative response of surface temperature anomalies and top of the atmosphere (TOA) ra-
diative imbalance to an abrupt4x scenario is shown in Fig. 1. All anomalies mentioned in this
paper are computed as the difference of the experiment from the average of the control simulation.
After the 150 years of CMIP protocol length (blue shading) and after 1000 years (the minimum

contribution to LongRunMIP, light red shading), the surface temperature response of the exem-
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plary model shown here has reached 75 % and 88 % of its final value respectively, while the TOA
radiation has equilibrated 85 % and 93 % of the forcing respectively (7.6 W m~2 for this model).
Thus, the final equilibration is a CPU-intensive exercise; the model shown here needs 4000 years
to balance the final 0.5 W m~2 (dark red shading).

The set of variables we collect is motivated by the interest of the LongRunMIP contributors and
organizers in ECS, temperature and time dependent feedbacks, and deep ocean warming. Table
1 lists the variable names, units, and temporal and spatial resolution of the requested variables.
The naming and sign conventions follow the CMIP5 protocol!. Given the large amount of data
involved, we have kept our requested variable list low to allow as many groups as possible to
participate. For the same reason, we do not request the data to be “CMORized”?, i.e. written in
conformance with the CMIP standards. However, we do homogenize signs, variable long names,

and units, and also provide a regridded version of the fields, as well as global means.

b. Minimal, optimal, and current contributions

The minimal requirement to contribute to LongRunMIP are annual fields of a single simulation
of any CO; forcing scenario that has at least 1000 years of constant forcing, along with a control
simulation of any length. The complexity of the model should be CMIP5-class and include dy-
namic atmosphere, ocean, and sea ice components. An optimal contribution comprises monthly
fields of fully equilibrated abrupt2x, 4x, and 8x simulations and a control simulation of several
millennia.

Table 2 lists the model characteristics of the current contributions. Because the archive is assem-
bled from experiments initiated independently for research purposes by multiple modeling groups,

there is no pre-defined protocol like for the CMIP simulations. The models are diverse in origin

"http://cmip-pcmdi.1llnl.gov/cmip5/data_description.html
’nttps://pemdi.1lnl.gov/CMIP6/Guide/dataUsers . html
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and sample the CMIP5 range of models well (see discussion on model genealogy in Knutti 2010).
Table 2 lists references for each model and publications using (parts of) the model output. Most
of the current contributions to LongRunMIP are extensions of CMIP5 simulations, sometimes
with updated model versions, while one model is an extension of a CMIP3 and another model an
extension of a CMIP6 contributions (CCSM3 and CNRM-CM6-1 respectively).

Many of our current contributions fall short of the optimal expectation for equilibrium, because
even several millennia are insufficient for the deep ocean to equilibrate (see discussion around
Fig.4). However, a few millennia appear to be enough for the surface temperature and TOA
radiative imbalance to reach a new steady state in most models (see Section 3), and many questions
can be adequately addressed with the current contributions. Our approach is to be inclusive, and
to leave it to the user to determine the degree of equilibration needed for their research and to
develop criteria for model selection.

Most contributions are step-forcing simulations, generally to 2x or 4x pre-industrial CO, con-
centrations (in Fig.2 abrupt2x in colored in yellow, abrupt4x in orange, abrupt8x in dark red;
abrupt2.4x and abrupt4.8x in dark and light pink). There are currently three exceptions: 1) some
model simulations have gradual increases in CO; at 1% per year until doubled or quadrupled con-
centrations are reached, after which the concentration is kept constant (/pct2x and Ipct4x, light
and medium red in Fig.2). 2) One model simulates the 1850-2010 period, after which CO; in-
creases either piecewise linearly for 90 years until reaching 2.4x pre-industrial values (CCSM3II).
3) Finally, one model simulates the historical period and then the CMIP5 extended representative
concentration pathway 8.5 (including CHy4, N,O, CFC11, and CFC12 in addition to CO;) until
year 2300 after which all forcing agents are kept constant (RCP8.5+, violet in Fig.2) For the
models that did not contribute a a millennial-long step-forcing simulation, we collect short (typ-

ically 150 year) step-forcing simulations, generally from the CMIP5 archive. These simulations

12



242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

can be used to estimate the effective climate sensitivity and to relate transient and equilibrium
responses. They are not mentioned in Table 2 and Fig. 2.

Most contributors were able to submit all requested variables. Some models only stored annual
output, while for a few models the entire model output (including many more variables than listed
in Table 1) is available. In principle, but with considerable effort, additional variables not listed in
Table 1 could be requested from some or all contributors.

Some models are outliers in some sense. For example, the simulation abrupt4x of FAMOUS
warms anomalously strong (Fig. 2 and 7) due to a shortwave cloud effect which is positive through-
out the simulation and longwave clear-sky effect, which increases anomalously strongly (not
shown, see Rugenstein et al. (2019)). In principle though, such extreme behavior could represent
possible characteristics of the real world (e.g., Bloch-Johnson et al. 2015; Schneider et al. 2019).
Another atypical model is EC-Earth-PISM, which is the only model with an interactive Greenland
ice sheet. This additional component and its historical and RCP8.5+ forcing scenario makes it
harder to compare the simulation to other models and attribute changes to one forcing component.
This model also does not equilibrate but finally produces a negative TOA imbalance, which prob-
ably would increase if the simulation was integrated further. We encourage similar “problematic”
submissions, since our focus is on understanding model behavior and the large range of model
responses (discussed in Section 3).

In nine models, the vegetation is fixed to pre-industrial conditions (ECHAMS, CCSM3,
CCSM3II, HadCM3L, FAMOUS, MIROC32, ECEARTH, GISSE2R, CNRMCM61), while the
other seven models have dynamic vegetation schemes (MPIESM11, MPIESM12, CESM104,

HadGEM2, GFDLESM2M, GFDLCM3, IPSLCMS5A).
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3. Sample of model output

a. Imbalances in the control simulation and drift

In principle, the TOA radiative imbalance should be zero in a control simulation. Most models
contributing to LongRunMIP do not loose or gain energy (Fig. 3). However, some models that are
equilibrated in the sense that they show no substantial drift, still have a constant energy leakage.
For CMIPS5 models, imbalances of the same order of magnitude (and larger) have been shown to be
uncorrelated with the forced response (Hobbs et al. 2016). If computing atmospheric anomalies,
we suggest users to take the difference of each time step to the time-averaged control simulation
imbalance, except for CCSM3II and GFDL-CM3 for which the difference to a polynomial fit to
the control simulation time series seems appropriate (see Fig. 3).

The deep ocean (defined here as depth level around 2km) has an astonishingly small drift in
the global average in most models (Fig.4, lowest panel). While the surface ocean time scales
closely follows the global mean surface air temperature anomaly, the deep ocean takes centuries
to equilibrate. Panel a and b of Fig. 4 display the surface and deep ocean temperature anomalies,
computed as the difference of the forced and control simulations, while the lowest panel shows the
absolute temperatures of the deep ocean in the control simulations to indicate the model spread in
the base state. Previous work on long-term trends in deep ocean temperature and salinity shows
that these trends may reflect ongoing changes in stratification and the strength and depth of the
Atlantic Meridional Overturning Circulation (AMOC; e.g., Stouffer and Manabe 2003; Rugenstein
et al. 2016a; Marzocchi and Jansen 2017; Jansen et al. 2018). Even if the energy flux imbalance
at the TOA or the ocean surface are close to a new steady state this does not necessarily indicate
that the deep ocean is equilibrated as well (Zhang et al. 2013; Hobbs et al. 2016; Marzocchi and

Jansen 2017). Reaching deep ocean equilibration may not be necessary for studies concerned with

14
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surface properties only. However, for interpretation of paleo proxies and comparison with model
simulations, distinguishing between the transient and equilibrium response in the intermediate or
deep ocean is necessary (Zhang et al. 2013; Marzocchi and Jansen 2017; Rind et al. 2018; Jansen

et al. 2018).

b. Evolution of surface temperature and cloud radiative effect

The evolution of large scale surface air temperature patterns on decadal to millennial time scales
(Fig. 5) are robust among models and different forcing levels. The simulations show a strong land-
sea warming contrast on short time scales and little warming over the Southern Ocean on decadal
to centennial time scales (e.g., Manabe et al. 1991; Gregory 2000; Joshi and Gregory 2008; Geof-
froy and Saint-Martin 2014; Armour et al. 2016). A warming pattern reminiscent of the positive
phase of ENSO and the Interdecadal Pacific Oscillation occurs throughout the Pacific basin (panel
b; Held et al. 2010; Song and Zhang 2014; Andrews et al. 2015; Luo et al. 2017) but decays on
centennial to millennial time scales (panel ¢ and d), with a large model spread in time scales (not
shown). As it approaches equilibrium, the temperature pattern becomes more homogeneous, the
land-sea warming contrast reduces (e.g., Held et al. 2010; Geoffroy and Saint-Martin 2014), and
the Southern Hemisphere high latitudes keep warming beyond year 1000. As in previous studies,
the AMOC first declines (Gregory et al. 2005; Zhu et al. 2014; Kostov et al. 2014; Trossman et al.
2016) and then recovers (Stouffer and Manabe 2003; Li et al. 2013; Zickfeld et al. 2013; Rugen-
stein et al. 2016a; Rind et al. 2018), resulting in a delayed warming in the North Atlantic. Panel
a, b, and e correspond to the blue shading in Fig. 1, and are known from CMIPS5 simulations (e.g.,
Andrews et al. 2015), while panel c, d, f, and g highlight that the simulations still warm substan-
tially on centennial to millennial time scales, mainly in areas with more sensitive — i.e. positive

or small negative — feedbacks (Rugenstein et al. 2019). Normalizing the zonal-mean temperature
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anomaly by the global mean warming reveals the relative zonal-mean warming (Fig. 6). Arctic am-
plification begins very early in the simulations and warming throughout the Southern Hemisphere
is lower than the global average in almost all models for the first centuries. Between year 100 and
1000 the Southern Hemisphere warms more than the Northern Hemisphere in all latitudes pole-
ward from 30°, in some regions by more than 4 K. Antarctic warming slowly increases, but is still
substantially less than Arctic amplification (e.g., Salzmann 2017). In a couple of models, the am-
plitude of Antarctic and Arctic amplification is the same after 4000 years of model integration time
(GISSE2R and ECHAMS; Li et al. 2013), while in other models the Antarctic amplification stays
substantially smaller and still increasing after a couple of thousand years. LongRunMIP shows
that there is no reduction in model spread in the polar regions through time and that although all
models follow a similar large scale pattern evolution (Fig. 5), the local response time scales, e.g.
in the North Atlantic, Southern Ocean, or equatorial Pacific differ by hundreds to thousands years.

While the large scale temperature response is rather robust between models and simulations,
the cloud radiative effect (CRE) differs strongly in magnitude and time evolution, both between
models and between forcing levels for the same model (Fig7). We show the shortwave CRE —
computed as the difference between “all sky” and “clear sky” shortwave radiative fluxes (e.g.,
Ramanathan et al. 1989; Ceppi et al. 2017) — as a function of surface air temperature anomaly.
The models disagree in the overall sign, as expected from CMIPS5 models on shorter time scales
(e.g., Vial et al. 2013; Caldwell et al. 2015), but can even change sign within a single simulation
(e.g., ECEARTH or CESM abrupt8x). The strength of variation in time within one simulation
can depend strongly on the forcing level (e.g. MIROC32 Ipct2x vs. Ipct4x) and the time scales
of change differ between the models (e.g. IPSLCM5R vs. MPIESM12 abrupt4x). For some
simulations, cloud response barely changes with temperature, contributing negligibly to the overall

feedback (e.g. MPIESM12 abrupt16x, CESM104 abrupt4x, and MIROC32 Ipct2x).
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4. Discussion and Outlook

a. Published millennial-length simulations

Models of intermediate complexity are the most common tools used to study century to millen-
nium time scales in the climate system (e.g., Zickfeld et al. 2013; Eby et al. 2013; Levermann et al.
2013; Rugenstein et al. 2016c; Jansen et al. 2018). However, they usually have a poorly resolved
atmosphere and little or no representation of cloud processes. In contrast, the publications in Table
3 feature millennium-length AO-GCM simulations. Asterisks mark contributions to LongRunMIP.
These papers provide a solid body of work on millennial-length climate simulations, but rarely use
the same forcing levels and simulation length and focus on different aspects of the climate sys-
tem. Three papers compare model formulation and processes of two AO-GCMs each (Frolicher
et al. 2014; Paynter et al. 2018; Krasting et al. 2018), but otherwise models have not been sys-
tematically compared against each other. Fig. 4 and 7 show that AO-GCMs can strongly differ in
their behavior. Spatial patterns of e.g., precipitation and surface heat fluxes also vary strongly be-
tween models and between different forcing scenarios for the same model (not shown), suggesting
that some mechanisms and processes discussed in the published literature are not generalizable
across models. For example, there is disagreement about which regions are thought to dominate
the changing feedback parameter (Senior and Mitchell 2000; Andrews et al. 2015; Meraner et al.
2013; Caballero and Huber 2013) or whether or not, and on which time scales, the AMOC recovers
from its initial reduction (Voss and Mikolajewicz 2001; Stouffer and Manabe 2003; Li et al. 2013;
Rind et al. 2018; Thomas and Fedorov 2019). Paleo climate simulations are often several thou-
sand years long, however, they usually include boundary conditions such as ice sheets or changing
continental configurations, which differ from the ones used here. However, paleo climate studies

often discuss equilibration time scales and deep ocean temperature trends relevant to the types
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of models included in LongRunMIP (e.g., Brandefelt and Otto-Bliesner 2009; Zhang et al. 2013;

Klockmann et al. 2016; Marzocchi and Jansen 2017; Gottschalk et al. 2019).

b. Limitations

LongRunMIP analyses are currently limited mainly by the collected variables (Table 1). In-
cluding cloud fields and 3D atmospheric temperature and humidity fields, for example, would
allow users to study atmospheric dynamics and radiative feedbacks in more detail. The differ-
ent forcing scenarios of model contributions to LongRunMIP are both a strength and weakness.
Minimal requirements have encouraged a large number of contributions so far. However, study-
ing a single forcing scenario requires model selection or scaling between different forcing levels.
Slab ocean simulations, which replace a model’s dynamical ocean with a much shallower non-
dynamical mixed-layer, are a computationally cheap tool to compare fast and slow time scales and
the relevance of surface warming patterns (Boer and Yu 2003c; Danabasoglu and Gent 2009; Li
et al. 2013). We hope to receive submissions of these simulations in the future, to allow analysis of
their utility. Century to millennial-time scales in the real world include more processes and Earth
System Feedbacks than are included in LongRunMIP simulations, such as the carbon cycle, vege-
tation feedbacks, forcing agents other than CO; (such as other greenhouse gases or aerosols), ice
sheets, glacial rebound effects, changes to continental configuration, and orbital variation. Further,
the real climate system is never in equilibrium or steady state, because the forcing continuously
changes (e.g., Kohler et al. 2017). These Earth system feedbacks and additional forcings must be
taken into account when comparing the LongRunMIP models with paleo proxies or when project-

ing or predicting changes in future centuries or millennia.
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c. Summary and expected impact

LongRunMIP is the first archive of millennial-length simulations of complex climate models,
featuring 50 simulations of 15 models by 10 modeling centers under various forcing scenarios (Ta-
ble 2). The archive provides an unprecedented opportunity to study the equilibrium response of a
large number of models to forcing. The variables included allow study of a range of phenomena
associated with the atmosphere, ocean, land, and sea ice (Table 1), and we expect LongRunMIP to
contribute to current discussions laid out in Section 1. This includes ocean heat uptake, sea level
rise, ocean circulation response to warming, large scale modes of variability, sea ice reduction,
polar amplification, precipitation variability, atmospheric dynamics, long-term memory in time
series, spatial warming patterns, ocean - atmosphere interactions, model spin-up techniques, the
relation of internal variability and forced response under different forcing levels, committed cli-
mate response, and the relation of time and state dependence of fast feedbacks and Earth System
Feedbacks and processes.

LongRunMIP is a MIP of opportunity, without an argeed upon protocol, and is a result of the
willingness of individual research groups to provide model output from simulations often con-
ducted over years of real-world time. As a result, the experiments are not standardized, but most
models provided a millennial-length simulation that begins with an abrupt quadrupling of CO;
concentration. In addition to collecting simulations, we provide output with standardized formats
and variable names, and include versions regridded to a common grid, as well as global averages.

LongRunMIP builds upon a body of pioneering studies that looked at the behavior of models be-
yond the centennial scale (Table 3), LongRunMIP allows this sort of analysis to be applied across

a diverse group of models that exhibit strikingly different behavior (Fig. 7), and hopefully encour-
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age others to look beyond the limitations and assumptions normally imposed by computational

constraints, to directly study the equilibration of the fully coupled atmosphere-ocean system.

Data access and sharing

LongRunMIP currently consists of 15TB of data and available for download at
https://data.iac.ethz.ch/longrunmip/. Fields shown in this paper can be accessed on
https://data.iac.ethz.ch/longrunmip/BAMS/.

See www.longrunmip.org for more details on available variables, contact information, sample
figures and videos, and links to join a discussion community. We will be collecting more

simulations over the next couple of years.
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TABLE 1. Description of collected variables. 2D means spatial resolution of latitude and longitude, except for
msftmyz where it means latitude and depth. 3D means latitude, longitude, and depth. msftmyz is the sum of the

eularian, eddybolus, and submeso component. For so and thetao there are also February and September values

available for most models.

Shortname Longname Unit Resolution
hfls Surface Upward Latent Heat Flux Wm? monthly, 2D
hfss Surface Upward Sensible Heat Flux Wm? monthly, 2D

pr Precipitation on atmospheric grid kgm~2s~!  monthly, 2D
psl Sea Level Pressure Pa monthly, 2D
rlds Surface Downwelling Longwave Radiation Wm2 monthly, 2D
rlus Surface Upwelling Longwave Radiation Wm—2 monthly, 2D
rlut TOA Outgoing Longwave Radiation Wm2 monthly, 2D
rlutcs TOA Outgoing Clear-Sky Longwave Radiation Wm? monthly, 2D
rsds Surface Downwelling Shortwave Radiation Wm—?2 monthly, 2D
rsdt TOA Incident Shortwave Radiation Wm2 monthly, 2D
rsus Surface Upwelling Shortwave Radiation Wm—2 monthly, 2D
rsut TOA Outgoing Shortwave Radiation Wm~? monthly, 2D
rsutcs TOA Outgoing Clear-Sky Shortwave Radiation Wm 2 monthly, 2D
tas Near-Surface Air Temperature K monthly, 2D
ts Atmospheric surface temperature K monthly, 2D
sic Sea Ice Area Fraction % monthly, 2D
msftmyz Meridional Overturning Circulation m3s~! annual, 2D
tos Sea surface temperature K annual, 2D
S0S Sea surface salinity psu annual, 2D
wfo Net water flux into sea water kgm~2s~! annual, 2D
evs Water evaporation kgm 25! annual, 2D
pr-ocn Precipitation (rain and snow) on ocean grid kgm~2s~! annual, 2D
tauuo Surface downward wind stress in x direction Nm2 annual, 2D
tauvo Surface downward wind stress in y direction Nm2 annual, 2D
SO Sea Water Salinity psu annual, 3D
thetao Sea Water Potential Temperature K annual, 3D
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TABLE 2. Overview of models and contributed simulations. The resolution of atmosphere and ocean is given
in # of grid points per latitude x longitude, and latitude x longitude x depth, respectively. Models are referred
to by their shortnames throughout the manuscript. Section 2b describes the forcing levels. References in the
last column describe the models and simulations. Some simulations are published in their full length, some
simulations contributed to LongRunMIP are the extensions of simulations discussed in the references, and some

simulations are unpublished.

Model Forcing level Length Atmosphere Ocean Control sim Model and
(shortname) shortname (yrs) resolution resolution (yrs) simulation documentation
CCSM3 abrupt2x 3000 Yeager et al. (2006)
CCSM3 abrupt4x 2120 48 x 96 100x 116 x25 1530 Danabasoglu and Gent (2009)
abrupt8x 1450
CCSM3 abrupt2.4 3701 Yeager et al. (2006)
CCSM3II abrupt4.8 3132 48 x 96 100x 116 x25 3805 Castruccio et al. (2014)
lin2.4 3990
CESM 1.0.4 abrupt2x 2500 Gent et al. (2011)
CESMlﬁ 4 abruptdx 5900 96 x 144 384 x 20 x 60 1320 Danabasoglu et al. (2012)
abrupt8x 5100 Rugenstein et al. (2016¢)
CNRM-CM6-1 abrupt2x 750 Voldoire et al. (2019)
CNRMCM61 abruptdx 1850 128 x256 180x360x75 2000 Saint-Martin et al. (2019)
Egﬁgfﬁl}‘gSM *ﬁ‘é‘gg?j 1270 160 x 320 202x362x42 508 ?jjsziir;t ;1'((22811 52))
ECHAMS5/MPIOM  abrupt4x 1000 Jungclaus et al. (2006)
ECHAMS Ipetdx 6080 48x96 101x 120 x40 100 Lietal. (2013)
T
GFDL-CM3 Donner et al. (2011)
GFDLCM3 Ipct2x 5000 90 x 144 200 x 360 x 50 5200 Paynter et al. (2018)
GFDL-ESM2M Dunne et al. (2012)
GFDLESM2M 1pct2x 4500 90 x 144 200 x 360 x 50 1340 Paynter et al. (2018)
GISS-E2-R abrupt4x 5000 Schmidt et al. (2014); Miller et al.
GISSE2R 0 x 144 180 x 288 x 32 5225 (2014); Nazarenko et al. (2015)
1pctdx 5000 Rind et al. (2018)
abrupt2x 1000 Cox et al. (2000)
HadCM3L abrupt4x 1000 Cao et al. (2016)
Had CM3L abrupt6x 1000 73 x 96 73 x 96 x 20 1000
abrupt8x 1000
HadGEM2-ES . Collins et al. (2011)
HadGEM2 abrupt4x 1328 145x 192 216 x 360 x40 239 Andrews et al. (2015)
e CMaalR abruptdx 1000 96 x 96 149x 182x 31 1000 Dufresne et al. (2013)
MIROC 3.2 1pct2x 2000 Hasumi and Emori (2004)
MIROC32 1pctdx 2000 64x 128 192x256 x 44 681 Yamamoto et al. (2015); Yoshimori
etal. (2016)
2 1 Mauri 1. (201
MPIESMLLD R Rotrschmeider e . 019)
MPIESM12 abrugtSX 1000 96 x 192 220x256 x40 1237 ’
abrupt16x 1000
L abruptdx 4459 96 x 192 220x256 x40 2000 Mauritsen et al. (2018)
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forcing of quadrupling CO; as simulated by the CESM104 model. For the Coupled Model
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Global annual mean surface air temperature for all control (black) and forced (color, listed
in the top right of each panel) simulations. abrupt2x, 4x, 6x, 8x means that the CO, concen-
tration is doubled, quadrupled, sextupled, octupcliated, as a step-forcing branched off the
control simulation. /pct2x and Ipct4x means the CO, concentration is linearly increased
1 % per year until the concentration is doubled or quadrupled, respectively. The simula-
tions of ECEARTH and CCSM3II are described in Section b. Note the different axis ranges
for each model. GFDLCM3 and CCSM3II are not branched off directly from the control
simulation. e

Top of the atmosphere (TOA) annual and global mean radiative imbalance of all control
simulations. Note the different lengths of the horizontal axes. The gray line indicates the
average, the red line the linear trend, except for CCSM3II and GFDLCM3 for which both
colors depict a fourth-order-polynomial fit. . e

Global and annual mean temperature anomalies (experiment minus average of the control
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(dashed) simulations. “Deep ocean” means around 2000 m depth (closest level). Note that
the time scale in c) is shorter than in a) and b).

Time evolution of the surface air temperature anomaly in the abrupt4x simulations. The
model mean of CCSM3, CESM104, CNRMCM61, ECHAMS, GISSE2R, HadCM3L,
HadGEM2, IPSLCMS5A, MPIESM11, and MPIESM12 is shown in panel a, b, c, e, and
f, while the model mean of only CESM 104, GISSE2R, and MPIESM11 is shown in panel d
and g, due to the length of these contributions. See Table 2 for details of the length of each
simulation.

Time evolution of the zonal mean surface air temperature response normalized by the global
mean temperature anomaly. Above (below) 1 means that warming is amplified (reduced)
relative to the globally mean warming (a-d). Panel e-g show the differences (note the differ-
ence scale). Panel a, b, e, and f contain only abrupt4x simulations, while panel c, d, and g
also contain the /pct2x and RCP8.5+ simulations with integration lengths above 4000 years.
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Simulated shortwave cloud radiative effects SW CRE for different levels of global surface
air temperature changes. Each point is a ten-year running average. Note the different axes
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FIG. 1. Global and annual mean surface air temperature (tas in Table 1) anomaly and top of the atmosphere
(TOA) radiative imbalance (computed as rsdt - rlut - rsut, see Table 1) to a step-forcing of quadrupling CO,
as simulated by the CESM104 model. For the Coupled Model Intercomparison Project Phase 5 and 6, this
simulation is part of the standard protocol, but only 150 simulated years are requested (blue shading). We
collect simulations that extended this experiment for at least 850 years (light red shading), ideally until they are

equilibrated (end of dark red shading).
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FIG. 2. Global annual mean surface air temperature for all control (black) and forced (color, listed in the top
right of each panel) simulations. abrupt2x, 4x, 6x, 8x means that the CO, concentration is doubled, quadrupled,
sextupled, octupcliated, as a step-forcing branched off the control simulation. /pct2x and Ipct4x means the CO,
concentration is linearly increased 1 % per year until the concentration is doubled or quadrupled, respectively.
The simulations of ECEARTH and CCSM3II are described in Section b. Note the different axis ranges for each
model. GFDLCM3 and CCSM3II are not branched off directly from the control simulation.
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sss  Note the different lengths of the horizontal axes. The gray line indicates the average, the red line the linear trend,
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so1  Of the surface ocean (a, first layer) and deep ocean (b), as well as absolute values of deep ocean temperature in
sz the control simulations (c), for abrup4x (solid) and Ipct4x (dashed) simulations. “Deep ocean” means around

sa 2000 m depth (closest level). Note that the time scale in c) is shorter than in a) and b).
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s length of each simulation.
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F1G. 6. Time evolution of the zonal mean surface air temperature response normalized by the global mean
temperature anomaly. Above (below) 1 means that warming is amplified (reduced) relative to the globally mean
warming (a-d). Panel e-g show the differences (note the difference scale). Panel a, b, e, and f contain only

abrupt4x simulations, while panel c, d, and g also contain the /pct2x and RCP8.5+ simulations with integration
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lengths above 4000 years. Table 2 lists all simulations and model long names.
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904 FI1G. 7. Simulated shortwave cloud radiative effects SW CRE for different levels of global surface air tem-
ws perature changes. Each point is a ten-year running average. Note the different axes labels, which cover a large

ws range in TOA imbalance and surface temperature. Table 2 lists all simulations and model long names.
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