

# *LongRunMIP - motivation and design for a large collection of millennial-length AO-GCM simulations*

Article

Accepted Version

Rugenstein, M., Bloch-Johnson, J. ORCID: <https://orcid.org/0000-0002-8465-5383>, Abe-Ouchi, A., Andrews, T., Beyerle, U., Cao, L., Chadha, T., Danabasoglu, G., Dufresne, J.-L., Duan, L., Foujols, M.-A., Frolicher, T., Geoffroy, O., Gregory, J. ORCID: <https://orcid.org/0000-0003-1296-8644>, Knutti, R., Li, C., Marzocchi, A., Mauritzen, T., Menary, M., Moyer, E., Nazarenko, L., Paynter, D., Saint-Martin, D., Schmidt, G. A., Yamamoto, A. and Yang, S. (2020) LongRunMIP - motivation and design for a large collection of millennial-length AO-GCM simulations. *Bulletin of the American Meteorological Society*, 100 (12). pp. 2551-2569. ISSN 1520-0477 doi: 10.1175/BAMS-D-19-0068.1 Available at <https://centaur.reading.ac.uk/85458/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1175/BAMS-D-19-0068.1>

Publisher: American Meteorological Society

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

[www.reading.ac.uk/centaur](http://www.reading.ac.uk/centaur)

**CentAUR**

Central Archive at the University of Reading

Reading's research outputs online

1

# LongRunMIP – motivation and design for a large collection of 2 millennial-length AO-GCM simulations

3 Maria Rugenstein\*

4 *Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich, Switzerland*

5 *Max-Planck-Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany*

6 Jonah Bloch-Johnson

7 *NCAS, University of Reading, Reading*

8 Ayako Abe-Ouchi

9 *Atmosphere and Ocean Research Institute, The University of Tokyo*

10 Timothy Andrews

11 *Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB*

12 Urs Beyerle

13 *Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich, Switzerland*

14 Long Cao

15 *School of Earth Sciences, Zhejiang University, Hang Zhou, Zhejiang Province, 310027, China*

16 Tarun Chadha

17 *ITS Research Informatics, ETH Zurich, Switzerland*

18

Gokhan Danabasoglu

19

*National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307*

20

Jean-Louis Dufresne

21

*Centre National de la Recherche Scientifique, Universit Pierre et Marie Curie, ENS, Ecole*

22

*Polytechnique, Paris, France*

23

Lei Duan

24

*School of Earth Sciences, Zhejiang University, Hang Zhou, Zhejiang Province, 310027, China*

25

Marie-Alice Foujols

26

*Institut Pierre-Simon-Laplace, Sorbonne Universit / CNRS, Paris, France*

27

Thomas Frölicher

28

*Climate and Environmental Physics, Physics Institute, University of Bern, Switzerland,*

29

*Oeschger Centre for Climate Change Research, University of Bern, Switzerland*

30

Olivier Geoffroy

31

*CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France*

32

Jonathan Gregory

33

*NCAS, University of Reading, Reading,*

34

*Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB*

35

Reto Knutti

36

*Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich, Switzerland*

37

Chao Li

38

*Max-Planck-Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany*

39

Alice Marzocchi

40

*National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK*

41

Thorsten Mauritsen

42

*Stockholm University, SE-106 91 Stockholm, Sweden*

43

Matthew Menary

44

*LOCEAN, Sorbonne Universit, Paris, France*

45

Elisabeth Moyer

46

*Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA*

47

Larissa Nazarenko

48

*NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025*

49

David Paynter

50

*Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA*

51

David Saint-Martin

52

*CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France*

53

Gavin A. Schmidt

54

*NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025*

55

Akitomo Yamamoto

56 *Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan*

57 Shuting Yang

58 *Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen, Denmark*

59 \*Corresponding author address: Maria Rugenstein, Max-Planck-Institute for Meteorology, Bun-  
60 desstrasse 53, 20146 Hamburg, Germany

61 E-mail: maria.rugenstein@mpimet.mpg.de

## ABSTRACT

We present a model intercomparison project, LongRunMIP, the first collection of millennial-length (1000+ year) simulations of complex coupled climate models with a representation of ocean, atmosphere, sea ice, and land surface, and their interactions. Standard model simulations are generally only a few hundred years long. However, modeling the long-term equilibration in response to radiative forcing perturbation is important for understanding many climate phenomena, such as the evolution of ocean circulation, time- and temperature-dependent feedbacks, and the differentiation of forced signal and internal variability. The aim of LongRunMIP is to facilitate research into these questions by serving as an archive for simulations that capture as much of this equilibration as possible. The only requirement to participate in LongRunMIP is to contribute a simulation with elevated, constant CO<sub>2</sub> forcing that lasts at least 1000 years. LongRunMIP is a MIP of opportunity in that the simulations were mostly performed prior to the conception of the archive without an agreed-upon set of experiments. For most models, the archive contains a preindustrial control simulation and simulations with an idealized (typically abrupt) CO<sub>2</sub> forcing. We collect 2D surface and top-of-atmosphere fields, and 3D ocean temperature and salinity fields. Here, we document the collection of simulations and discuss initial results, including the evolution of surface and deep ocean temperature and cloud radiative effects. As of summer 2019, the collection includes 50 simulations of 15 models by 10 modeling centers. The data of LongRunMIP are publicly available. We encourage submission of more simulations in the future.

85 (Capsule Summary) LongRunMIP is the first collection of millennial-length simulations of com-  
86 plex coupled climate models and enables investigations of how these models equilibrate in re-  
87 sponse to radiative perturbations.

## 88 **1. Motivation and objectives**

89 Millennial-length climate simulations are necessary to understand the equilibrium states that oc-  
90 cur in response to external forcings, as well as the relationship between transient and equilibrated  
91 behavior. Unforced millennial-length simulations are useful as well, as they allow us to consider  
92 long-term internal variability and to analyze shorter-term variability with increased statistical cer-  
93 tainty. Reasons to study these long time scales include:

94 • To better understand long-term climate dynamics. Outstanding issues include the time scales  
95 of ocean circulation response (e.g., Jansen et al. 2018; Rind et al. 2018), continental drying  
96 trends (e.g., Sniderman et al. 2019), or sea level rise (e.g., Bilbao et al. 2015; Rugenstein et al.  
97 2016c).

98 • To help predict the impacts of 20th and 21st century emissions on century timescales, such as  
99 ice sheet stability, deep ocean warming, or polar amplification (e.g., Frölicher and Joos 2010;  
100 Clark et al. 2016; Mauritzen and Pincus 2017), which are rarely explicitly simulated using a  
101 fully-coupled climate model.

102 • To more accurately estimate Equilibrium Climate Sensitivity (ECS), which is the equilibrium  
103 response of the surface air temperature to a doubling of CO<sub>2</sub> due to the “fast” feedbacks water  
104 vapor, lapse rate, clouds, and sea ice but excluding Earth system feedbacks such as changes  
105 in the carbon cycle, ice sheets, or vegetation. While ECS has long been a focus of scientific

106 inquiry, substantial uncertainty remains as to its value (e.g., Charney et al. 1979; Knutti et al.  
107 2017).

108

- 109 • To understand the relationship between the transient response of the climate and its equilibra-  
110 tion. Since radiative feedbacks can depend on the evolution of the spatial pattern of warming  
111 (e.g., Senior and Mitchell 2000; Winton et al. 2010; Armour et al. 2013; Andrews et al. 2015;  
112 Andrews and Webb 2018) and on the background temperature (e.g., Colman and McAvaney  
113 2009; Caballero and Huber 2013; Block and Mauritzen 2013; Meraner et al. 2013; Bloch-  
114 Johnson et al. 2015), a **constant** effective sensitivity of the climate is an **inadequate assumption**.  
115 Several methods have been proposed to predict the equilibrium response from transient  
116 simulations given a changing global feedback (Held et al. 2010; Winton et al. 2010; Armour  
117 et al. 2013; Geoffroy et al. 2013b,a; Frölicher et al. 2014; Proistosescu and Huybers 2017;  
118 Saint-Martin et al. 2019), but only fully equilibrated climate model simulations can serve to  
test how well these methods predict equilibrium conditions.

119

- 120 • To test theories for the relationship between feedbacks at different time-scales (Gregory et al.  
121 2015, 2016; Zhou et al. 2016; Rugenstein et al. 2016a; Armour 2017; Proistosescu and Huy-  
122 bers 2017; Cepi and Gregory 2017; Andrews and Webb 2018; Andrews et al. 2018), and  
123 to quantify the influence of slow, centennial-scale modes on the temperature evolution of the  
last century (Armour 2017; Proistosescu and Huybers 2017).

124

- 125 • To understand the relevance, time scales, and magnitude of the energy imbalances and drifts  
126 exhibited by climate models (e.g., Hobbs et al. 2016), with the potential application of de-  
creasing the spin-up time needed to run these models.

127

- 128 • To understand the relationship between the forced response and internal variability. This re-  
lationship is **currently** studied using the time frame of one or two centuries, which is not

129 enough to robustly quantify the internal variability under consideration (e.g., Maher et al.  
130 2018; Lutsko and Takahashi 2018; Bloch-Johnson et al. in revision), **millennial time scales**  
131 **with varying forcings** (e.g., Köhler et al. 2017; Khon et al. 2018; Rehfeld et al. 2018) or by  
132 using expensive large ensemble simulations **on decadal to centennial time scales** (e.g., Deser  
133 et al. 2012; Maher et al. 2019; Rodgers et al. 2015). Millennial long simulations allow us to  
134 differentiate the transient response from the equilibrated forced response, even for quantities  
135 with large internal variability, such as precipitation, droughts, or the El Niño-Southern Os-  
136 cillation (ENSO), **and also the significance of a change in internal variability in a transient**  
137 **simulation relative to the control simulation** (e.g., Brown et al. 2017).

138 • To compare climate model responses and paleo proxies, e.g. of surface or deep ocean temper-  
139 atures or hydrological conditions on land in order to provide an independent way of testing  
140 climate models (Gebbie and Huybers 2019; Burls and Fedorov 2017; Scheff et al. 2017).

141 With LongRunMIP, we aim to advance knowledge in the above mentioned areas, fill a gap in the  
142 CMIP protocols (Taylor et al. 2011; Eyring et al. 2016), and collect published data in one location  
143 for easy public access.

144 **The goals of LongRunMIP are**

145 a) to continuously gather existing millennial-length simulations (both published and unpub-  
146 lished)  
147 b) to standardize the collected data (e.g., using the same units and sign conventions)  
148 c) to make the data publicly available and easily accessible  
149 d) to foster an interdisciplinary community of users working on millennial-length problems,  
150 with experts on oceanography, atmospheric dynamics, energy balance modeling, ice sheet  
151 modeling, and paleoclimatology

**The objectives of this paper** are to

- a) motivate the data collection strategy (Section 2)
- b) specify the requirements for LongRunMIP contributors (Section 2 and b)
- c) give an overview of currently submitted simulations and models (Section 2a, b, and Table 1)
- d) give a sample of some initial analysis on these simulations (Section 3)
- e) show how LongRunMIP relates to the existing literature on millennial-length simulations  
(Section 4a)
- f) discuss the limitations and opportunities of LongRunMIP (Section 4b and c).

## 2. Experimental design and data collection strategy

161 LongRunMIP is the first and largest compilation of millennial-length simulations of complex cli-  
162 mate models to date, where a “complex climate model” is understood to include an atmospheric,  
163 sea ice, land, and full depth ocean component, i.e. Atmosphere-Ocean General Circulation Mod-  
164 els (AO-GCMs) with a dynamic atmosphere and ocean, as opposed to Models of Intermediate  
165 Complexity (EMICs), which are often used to study millennial-length questions in climate science  
166 (e.g., Zickfeld et al. 2013; Levermann et al. 2013). These model simulations include the “fast”  
167 feedbacks, such as changes in water vapor, lapse rate, sea ice, and clouds (Charney et al. 1979),  
168 but no “slow” feedbacks, such as changes in the ice-sheets. **Vegetation is treated differently in the**  
169 **models (see Section 2b).** In Section 4 we discuss the implications and limitations of **our** approach.  
170 Our goal is to collect as many simulations from as many independent models as possible, while  
171 keeping the archive and data sharing manageable. Consequently, we keep our requirements for  
172 contributions low.

173 a. *Simulations and variables*

174 A step-increase in atmospheric CO<sub>2</sub> concentrations (in the following called “step-forcing”) is  
175 one of the simplest experiments for studying a model’s response to forcing and is used as a bench-  
176 mark simulation in CMIP3, CMIP5, and CMIP6 (Meehl et al. 2007; Taylor et al. 2011; Eyring  
177 et al. 2016). More realistic, gradual forcing scenarios have been shown to be representable by the  
178 step-forcing scenarios and exhibit feedbacks that correlate with those computed from step-forcing  
179 simulations (Good et al. 2013, 2015; Geoffroy and Saint-Martin 2014; Colman and Hanson 2016).  
180 The CMIP3 protocol required a step-forcing of *doubling* atmospheric CO<sub>2</sub> (here referred to as  
181 *abrupt2x*) above pre-industrial levels in a slab (i.e. non-dynamical) ocean, which for decades has  
182 been used to define ECS (e.g., Charney et al. 1979; Boer and Yu 2003c; Danabasoglu and Gent  
183 2009). The integration time scale of these model setups are a couple of decades. However, a  
184 *quadrupling* of CO<sub>2</sub> (here referred to as *abrupt4x*) above pre-industrial levels has a better ratio of  
185 forced signal to internal variability. Because the forced response was assumed to scale linearly  
186 with increased forcing, the CMIP5 protocol requested an abrupt quadrupling of CO<sub>2</sub>, now in a  
187 fully coupled model with a dynamical ocean, requiring longer integration time scales. The CMIP6  
188 protocol again requests abrupt CO<sub>2</sub> quadrupling experiments, but encourages also the submission  
189 of abrupt CO<sub>2</sub> doublings, to study the relation between different forcing levels (Eyring et al. 2016;  
190 Good et al. 2016). CMIP5 and 6 protocols require the submission of 150 years of model output.  
191 A representative response of surface temperature anomalies and top of the atmosphere (TOA) ra-  
192 diative imbalance to an *abrupt4x* scenario is shown in Fig. 1. All anomalies mentioned in this  
193 paper are computed as the difference of the experiment from the average of the control simulation.  
194 After the 150 years of CMIP protocol length (blue shading) and after 1000 years (the minimum  
195 contribution to LongRunMIP, light red shading), the surface temperature response of the exem-

196 plary model shown here has reached 75 % and 88 % of its final value respectively, while the TOA  
197 radiation has equilibrated 85 % and 93 % of the forcing respectively ( $7.6 \text{ W m}^{-2}$  for this model).  
198 Thus, the final equilibration is a CPU-intensive exercise; the model shown here needs 4000 years  
199 to balance the final  $0.5 \text{ W m}^{-2}$  (dark red shading).

200 The set of variables we collect is motivated by the interest of the LongRunMIP contributors and  
201 organizers in ECS, temperature and time dependent feedbacks, and deep ocean warming. Table  
202 1 lists the variable names, units, and temporal and spatial resolution of the requested variables.  
203 The naming and sign conventions follow the CMIP5 protocol<sup>1</sup>. Given the large amount of data  
204 involved, we have kept our requested variable list low to allow as many groups as possible to  
205 participate. For the same reason, we do not request the data to be “CMORized”<sup>2</sup>, i.e. written in  
206 conformance with the CMIP standards. However, we do homogenize signs, variable long names,  
207 and units, and also provide a regredded version of the fields, as well as global means.

208 *b. Minimal, optimal, and current contributions*

209 The *minimal requirement* to contribute to LongRunMIP are annual fields of a single simulation  
210 of any CO<sub>2</sub> forcing scenario that has at least 1000 years of constant forcing, along with a control  
211 simulation of any length. The complexity of the model should be CMIP5-class and include dy-  
212 namic atmosphere, ocean, and sea ice components. An *optimal contribution* comprises monthly  
213 fields of fully equilibrated *abrupt2x*, *4x*, and *8x* simulations and a control simulation of several  
214 millennia.

215 Table 2 lists the model characteristics of the *current contributions*. Because the archive is assem-  
216 bled from experiments initiated independently for research purposes by multiple modeling groups,  
217 there is no pre-defined protocol like for the CMIP simulations. The models are diverse in origin

---

<sup>1</sup>[http://cmip-pcmdi.llnl.gov/cmip5/data\\_description.html](http://cmip-pcmdi.llnl.gov/cmip5/data_description.html)

<sup>2</sup><https://pcmdi.llnl.gov/CMIP6/Guide/dataUsers.html>

218 and sample the CMIP5 range of models well (see discussion **on model genealogy** in Knutti 2010).  
219 Table 2 lists references for each model and publications using (parts of) the model output. Most  
220 of the current contributions to LongRunMIP are extensions of CMIP5 simulations, sometimes  
221 with updated model versions, while one model is an extension of a CMIP3 and another model an  
222 extension of a CMIP6 contributions (CCSM3 and CNRM-CM6-1 respectively).

223 **Many** of our current contributions fall short of the optimal expectation **for equilibrium**, because  
224 even several millennia are **insufficient** for the deep ocean to equilibrate (see discussion around  
225 Fig. 4). However, a few millennia appear to be enough for the surface temperature and TOA  
226 radiative imbalance to reach a new steady state in most models (see Section 3), and many questions  
227 can be adequately addressed with the current contributions. Our approach is to be inclusive, and  
228 to leave it to **the** user to determine the degree of equilibration needed for their research and to  
229 develop criteria for model selection.

230 Most contributions are step-forcing simulations, **generally to 2x or 4x pre-industrial CO<sub>2</sub> con-**  
231 **centrations (in Fig. 2 *abrupt2x* in colored in yellow, *abrupt4x* in orange, *abrupt8x* in dark red;**  
232 ***abrupt2.4x* and *abrupt4.8x* in dark and light pink).** There are currently **three exceptions:** 1) some  
233 **model simulations have gradual increases in CO<sub>2</sub> at 1% per year until doubled or quadrupled con-**  
234 **centrations are reached, after which the concentration is kept constant (*1pct2x* and *1pct4x*, light**  
235 **and medium red in Fig. 2).** 2) **One model simulates the 1850-2010 period, after which CO<sub>2</sub> in-**  
236 **creases either piecewise linearly for 90 years until reaching 2.4x pre-industrial values (CCSM3II).**  
237 3) **Finally, one model simulates the historical period and then the CMIP5 extended representative**  
238 **concentration pathway 8.5 (including CH<sub>4</sub>, N<sub>2</sub>O, CFC11, and CFC12 in addition to CO<sub>2</sub>) until**  
239 **year 2300 after which all forcing agents are kept constant (*RCP8.5+*, violet in Fig. 2)** For the  
240 **models that did not contribute a a millennial-long step-forcing simulation, we collect short (typ-**  
241 **ically 150 year) step-forcing simulations, generally from the CMIP5 archive. These simulations**

242 can be used to estimate the effective climate sensitivity and to relate transient and equilibrium  
243 responses. They are not mentioned in Table 2 and Fig. 2.

244 Most contributors were able to submit all requested variables. Some models only stored annual  
245 output, while for a few models the entire model output (including many more variables than listed  
246 in Table 1) is available. In principle, but with considerable effort, additional variables not listed in  
247 Table 1 could be requested from some or all contributors.

248 Some models are outliers in some sense. For example, the simulation *abrupt4x* of FAMOUS  
249 warms anomalously strong (Fig. 2 and 7) due to a shortwave cloud effect which is positive throughout  
250 the simulation and longwave clear-sky effect, which increases anomalously strongly (not  
251 shown, see Rugenstein et al. (2019)). In principle though, such extreme behavior could represent  
252 possible characteristics of the real world (e.g., Bloch-Johnson et al. 2015; Schneider et al. 2019).  
253 Another atypical model is EC-Earth-PISM, which is the only model with an interactive Greenland  
254 ice sheet. This additional component and its historical and RCP8.5+ forcing scenario makes it  
255 harder to compare the simulation to other models and attribute changes to one forcing component.  
256 This model also does not equilibrate but finally produces a negative TOA imbalance, which prob-  
257 ably would increase if the simulation was integrated further. We encourage similar “problematic”  
258 submissions, since our focus is on understanding model behavior and the large range of model  
259 responses (discussed in Section 3).

260 In nine models, the vegetation is fixed to pre-industrial conditions (ECHAM5, CCSM3,  
261 CCSM3II, HadCM3L, FAMOUS, MIROC32, ECEARTH, GISSE2R, CNRMCM61), while the  
262 other seven models have dynamic vegetation schemes (MPIESM11, MPIESM12, CESM104,  
263 HadGEM2, GFDLESM2M, GFDLCM3, IPSLCM5A).

264 **3. Sample of model output**

265 *a. Imbalances in the control simulation and drift*

266 In principle, the TOA radiative imbalance should be zero in a control simulation. Most models  
267 contributing to LongRunMIP do not loose or gain energy (Fig. 3). However, some models that are  
268 equilibrated in the sense that they show no substantial drift, still have a constant energy leakage.

269 For CMIP5 models, imbalances of the same order of magnitude (and larger) have been shown to be  
270 uncorrelated with the forced response (Hobbs et al. 2016). If computing atmospheric anomalies,  
271 we suggest **users** to take the difference of each time step to the time-averaged control simulation  
272 imbalance, except for CCSM3II and GFDL-CM3 for which the difference to a polynomial fit to  
273 the control simulation time series seems appropriate (see Fig. 3).

274 The deep ocean (defined here as **depth level around** 2 km) has an astonishingly small drift in  
275 the global average in most models (Fig. 4, lowest panel). While the surface ocean time scales  
276 closely follows the global mean surface air temperature anomaly, the deep ocean takes centuries  
277 to equilibrate. Panel a and b of Fig. 4 display the surface and deep ocean temperature anomalies,  
278 computed as the difference of the forced and control simulations, while the lowest panel shows the  
279 absolute temperatures of the deep ocean in the control simulations to indicate the model spread in  
280 the base state. Previous work on long-term trends in deep ocean temperature and salinity shows  
281 that these trends **may** reflect ongoing changes in stratification and the strength and depth of the  
282 Atlantic Meridional Overturning Circulation (AMOC; e.g., Stouffer and Manabe 2003; Rogenstein  
283 et al. 2016a; Marzocchi and Jansen 2017; Jansen et al. 2018). Even if the energy flux imbalance  
284 at the TOA or the ocean surface are close to a new steady state this does not necessarily indicate  
285 that the deep ocean is equilibrated as well (Zhang et al. 2013; Hobbs et al. 2016; Marzocchi and  
286 Jansen 2017). Reaching deep ocean equilibration may not be necessary for studies concerned with

287 surface properties only. However, for interpretation of paleo proxies and comparison with model  
288 simulations, distinguishing between the transient and equilibrium response in the intermediate or  
289 deep ocean is necessary (Zhang et al. 2013; Marzocchi and Jansen 2017; Rind et al. 2018; Jansen  
290 et al. 2018).

291 *b. Evolution of surface temperature and cloud radiative effect*

292 The evolution of large scale surface air temperature patterns on decadal to millennial time scales  
293 (Fig. 5) are robust among models and different forcing levels. The simulations show a strong land-  
294 sea warming contrast on short time scales and little warming over the Southern Ocean on decadal  
295 to centennial time scales (e.g., Manabe et al. 1991; Gregory 2000; Joshi and Gregory 2008; Geof-  
296 froy and Saint-Martin 2014; Armour et al. 2016). A warming pattern reminiscent of the positive  
297 phase of ENSO and the Interdecadal Pacific Oscillation occurs throughout the Pacific basin (panel  
298 **b**; Held et al. 2010; Song and Zhang 2014; Andrews et al. 2015; Luo et al. 2017) but decays on  
299 centennial to millennial time scales (panel **c and d**), with a large model spread in time scales (not  
300 shown). As it approaches equilibrium, the temperature pattern becomes more homogeneous, the  
301 land-sea warming contrast reduces (e.g., Held et al. 2010; Geoffroy and Saint-Martin 2014), and  
302 the Southern Hemisphere high latitudes keep warming beyond year 1000. As in previous studies,  
303 the AMOC first declines (Gregory et al. 2005; Zhu et al. 2014; Kostov et al. 2014; Trossman et al.  
304 2016) and then recovers (Stouffer and Manabe 2003; Li et al. 2013; Zickfeld et al. 2013; Rugen-  
305 stein et al. 2016a; Rind et al. 2018), resulting in a delayed warming in the North Atlantic. Panel  
306 **a, b, and e** correspond to the blue shading in Fig. 1, and are known from CMIP5 simulations (e.g.,  
307 Andrews et al. 2015), while panel **c, d, f, and g** highlight that the simulations still warm substan-  
308 tially on centennial to millennial time scales, mainly in areas with more sensitive – i.e. positive  
309 or small negative – feedbacks (Rugenstein et al. 2019). Normalizing the zonal-mean temperature

310 anomaly by the global mean warming reveals the relative **zonal-mean** warming (Fig. 6). Arctic am-  
311 plification begins very early in the simulations and warming throughout the Southern Hemisphere  
312 is lower than the global average in almost all models for the first centuries. Between year 100 and  
313 1000 the Southern Hemisphere warms more than the Northern Hemisphere in all latitudes pole-  
314 ward from  $30^{\circ}$ , in some regions by more than 4 K. Antarctic warming slowly increases, but is still  
315 substantially less than Arctic amplification (e.g., Salzmann 2017). In a couple of models, the am-  
316 plitude of Antarctic and Arctic amplification is the same after 4000 years of model integration time  
317 (GISSE2R and ECHAM5; Li et al. 2013), while in other models the Antarctic amplification stays  
318 substantially smaller and still increasing after a couple of thousand years. LongRunMIP shows  
319 that there is no reduction in model spread in the polar regions through time and that although all  
320 models follow a similar large scale pattern evolution (Fig. 5), the local response time scales, e.g.  
321 in the North Atlantic, Southern Ocean, or equatorial Pacific differ by hundreds to thousands years.

322 While the large scale temperature response is rather robust between models and simulations,  
323 the cloud radiative effect (CRE) differs strongly in magnitude and time evolution, both between  
324 models and between forcing levels for the same model (Fig 7). We show the shortwave CRE –  
325 computed as the difference between “all sky” and “clear sky” shortwave radiative fluxes (e.g.,  
326 Ramanathan et al. 1989; Cess et al. 2017) – as a function of surface air temperature anomaly.  
327 The models disagree in the overall sign, as expected from CMIP5 models on shorter time scales  
328 (e.g., Vial et al. 2013; Caldwell et al. 2015), but can even change sign within a single simulation  
329 (e.g., ECEARTH or CESM *abrupt8x*). The strength of variation in time within one simulation  
330 can depend strongly on the forcing level (e.g. MIROC32 *1pct2x* vs. *1pct4x*) and the time scales  
331 of change differ between the models (e.g. IPSLCM5R vs. MPIESM12 *abrupt4x*). For some  
332 simulations, cloud response barely changes with temperature, contributing negligibly to the overall  
333 feedback (e.g. MPIESM12 *abrupt16x*, CESM104 *abrupt4x*, and MIROC32 *1pct2x*).

334 **4. Discussion and Outlook**

335 *a. Published millennial-length simulations*

336 Models of intermediate complexity are the most common tools used to study century to millen-  
337 nium time scales in the climate system (e.g., Zickfeld et al. 2013; Eby et al. 2013; Levermann et al.  
338 2013; Rugenstein et al. 2016c; Jansen et al. 2018). However, they usually have a poorly resolved  
339 atmosphere and little or no representation of cloud processes. In contrast, the publications in Table  
340 3 feature millennium-length AO-GCM simulations. Asterisks mark contributions to LongRunMIP.  
341 These papers provide a solid body of work on millennial-length climate simulations, but rarely use  
342 the same forcing levels and simulation length and focus on different aspects of the climate sys-  
343 tem. Three papers compare model formulation and processes of two AO-GCMs each (Frölicher  
344 et al. 2014; Paynter et al. 2018; Krasting et al. 2018), but otherwise models have not been sys-  
345 tematically compared against each other. Fig. 4 and 7 show that AO-GCMs can strongly differ in  
346 their behavior. Spatial patterns of e.g., precipitation and surface heat fluxes also vary strongly be-  
347 tween models and between different forcing scenarios for the same model (not shown), suggesting  
348 that some mechanisms and processes discussed in the published literature are not generalizable  
349 across models. For example, there is disagreement about which regions are thought to dominate  
350 the changing feedback parameter (Senior and Mitchell 2000; Andrews et al. 2015; Meraner et al.  
351 2013; Caballero and Huber 2013) or whether or not, and on which time scales, the AMOC recovers  
352 from its initial reduction (Voss and Mikolajewicz 2001; Stouffer and Manabe 2003; Li et al. 2013;  
353 Rind et al. 2018; Thomas and Fedorov 2019). Paleo climate simulations are often several thou-  
354 sand years long, however, they usually include boundary conditions such as ice sheets or changing  
355 continental configurations, which differ from the ones used here. However, paleo climate studies  
356 often discuss equilibration time scales and deep ocean temperature trends relevant to the types

357 of models included in LongRunMIP (e.g., Brandefelt and Otto-Bliesner 2009; Zhang et al. 2013;  
358 Klockmann et al. 2016; Marzocchi and Jansen 2017; Gottschalk et al. 2019).

359 *b. Limitations*

360 LongRunMIP analyses are currently limited mainly by the collected *variables* (Table 1). In-  
361 cluding cloud fields and 3D atmospheric temperature and humidity fields, **for example**, would  
362 allow users to study atmospheric dynamics and radiative feedbacks in more detail. The *differ-*  
363 *ent forcing scenarios* of model contributions to LongRunMIP are both a strength and weakness.  
364 Minimal requirements **have** encouraged a large number of contributions so far. However, study-  
365 ing a single forcing scenario requires model selection or scaling between different forcing levels.  
366 *Slab ocean simulations*, which replace a model's dynamical ocean with a much shallower non-  
367 dynamical mixed-layer, are a computationally cheap tool to compare fast and slow time scales and  
368 the relevance of surface warming patterns (Boer and Yu 2003c; Danabasoglu and Gent 2009; Li  
369 et al. 2013). We hope to receive submissions of these simulations in the future, to allow analysis of  
370 their utility. Century to millennial-time scales in the real world include more processes and *Earth*  
371 *System Feedbacks* than are included in LongRunMIP simulations, such as the carbon cycle, vege-  
372 tation feedbacks, forcing agents other than CO<sub>2</sub> (such as other greenhouse gases or aerosols), ice  
373 sheets, glacial rebound effects, changes to continental configuration, and orbital variation. Further,  
374 the real climate system is never in equilibrium or steady state, because the forcing continuously  
375 changes (e.g., Köhler et al. 2017). These Earth system feedbacks and additional forcings must be  
376 taken into account when comparing the LongRunMIP models with paleo proxies or when project-  
377 ing or predicting changes in future centuries or millennia.

378 c. *Summary and expected impact*

379 LongRunMIP is the first archive of millennial-length simulations of complex climate models,  
380 featuring 50 simulations of 15 models by 10 modeling centers under various forcing scenarios (Ta-  
381 ble 2). The archive provides an unprecedented opportunity to study the equilibrium response of a  
382 large number of models to forcing. The variables included allow study of a range of phenomena  
383 associated with the atmosphere, ocean, land, and sea ice (Table 1), and we expect LongRunMIP to  
384 contribute to current discussions laid out in Section 1. This includes ocean heat uptake, sea level  
385 rise, ocean circulation response to warming, large scale modes of variability, sea ice reduction,  
386 polar amplification, precipitation variability, atmospheric dynamics, **long-term memory in time**  
387 **series**, spatial warming patterns, ocean - atmosphere interactions, model spin-up techniques, the  
388 relation of internal variability and forced response under different forcing levels, committed cli-  
389 mate response, and the relation of time and state dependence of fast feedbacks and Earth System  
390 Feedbacks and processes.

391 LongRunMIP is a MIP of opportunity, without an agreed upon protocol, and is a result of the  
392 willingness of individual research groups to provide model output from simulations often con-  
393 ducted over years of real-world time. As a result, the experiments are not standardized, but most  
394 models provided a millennial-length simulation that begins with an abrupt quadrupling of CO<sub>2</sub>  
395 concentration. In addition to collecting simulations, we provide output with standardized formats  
396 and variable names, and include versions regridded to a common grid, as well as global averages.

397 LongRunMIP builds upon a body of pioneering studies that looked at the behavior of models be-  
398 yond the centennial scale (Table 3), LongRunMIP allows this sort of analysis to be applied across  
399 a diverse group of models that exhibit strikingly different behavior (Fig. 7), and hopefully encour-

400 age others to look beyond the limitations and assumptions normally imposed by computational  
401 constraints, to directly study the equilibration of the fully coupled atmosphere-ocean system.

402 *Data access and sharing*

403 LongRunMIP currently consists of 15 TB of data and available for download at  
404 <https://data.iac.ethz.ch/longrunmip/>. Fields shown in this paper can be accessed on  
405 <https://data.iac.ethz.ch/longrunmip/BAMS/>.

406 See [www.longrunmip.org](http://www.longrunmip.org) for more details on available **variables**, contact information, sample  
407 figures and videos, and links to join a discussion community. We will be collecting more  
408 simulations over the next couple of years.

409 *Acknowledgments.* MR is funded by the Alexander von Humboldt Foundation. TA was sup-  
410 ported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101).  
411 NCAR is a major facility sponsored by the US National Science Foundation under Cooperative  
412 Agreement No. 1852977 TLF acknowledges support from the Swiss National Science Foundation  
413 under grant PP00P2\_170687, from the EU-H2020 project CCiCC, and from the Swiss National  
414 Supercomputing Centre (CSCS). CL was supported through the Clusters of Excellence CliSAP  
415 (EXC177) and CLICCS (EXC2037), University Hamburg, funded through the German Research  
416 Foundation (DFG). SY was partly supported by European Research Council under the European  
417 Community's Seventh Framework Programme (FP7/20072013)/ERC grant agreement 610055 as  
418 part of the ice2ice project. This work was made possible for IPSL thanks to the HPC resources  
419 of TGCC and IDRIS made available by GENCI (Grand Equipement National de Calcul Inten-  
420 sif), CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) and CNRS (Centre  
421 National de la Recherche Scientifique) (project 016178).

422 **References**

423 Andrews, T., J. M. Gregory, and M. J. Webb, 2015: The dependence of radiative forcing and  
424 feedback on evolving patterns of surface temperature change in climate models. *Journal of*  
425 *Climate*, **28** (4), 1630–1648, URL <http://dx.doi.org/10.1175/JCLI-D-14-00545.1>.

426 Andrews, T., and M. J. Webb, 2018: The Dependence of Global Cloud and Lapse Rate Feedbacks  
427 on the Spatial Structure of Tropical Pacific Warming. *Journal of Climate*, **31** (2), 641–654,  
428 doi:10.1175/JCLI-D-17-0087.1, URL <https://doi.org/10.1175/JCLI-D-17-0087.1>.

429 Andrews, T., and Coauthors, 2018: Accounting for Changing Temperature Patterns Increases  
430 Historical Estimates of Climate Sensitivity. *Geophysical Research Letters*, **45** (16), 8490–  
431 8499, doi:10.1029/2018GL078887, URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL078887>.

432

433 Armour, K. C., 2017: Energy budget constraints on climate sensitivity in light of inconstant  
434 climate feedbacks. *Nature Climate Change*, **7**, 331 EP –, URL <http://dx.doi.org/10.1038/nclimate3278>.

435

436 Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-Varying Climate Sensitivity from Re-  
437 gional Feedbacks. *Journal of Climate*, **26** (13), 4518–4534, URL <http://dx.doi.org/10.1175/JCLI-D-12-00544.1>.

438

439 Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern ocean  
440 warming delayed by circumpolar upwelling and equatorward transport. *Nature Geosci*, **9** (7),  
441 549–554, URL <http://dx.doi.org/10.1038/ngeo2731>.

442 Bi, D., W. F. Budd, A. C. Hirst, and X. Wu, 2001: Collapse and reorganisation of the Southern  
443 Ocean overturning under global warming in a coupled model. *Geophysical Research Letters*,  
444 **28 (20)**, 3927–3930, URL <http://dx.doi.org/10.1029/2001GL013705>.

445 Bilbao, R. A., J. M. Gregory, and N. Bouttes, 2015: Analysis of the regional pattern of sea  
446 level change due to ocean dynamics and density change for 1993–2099 in observations and  
447 CMIP5 AOGCMs. *Climate Dynamics*, **45 (9-10)**, 2647–2666, URL <http://dx.doi.org/10.1007/s00382-015-2499-z>.

449 Bloch-Johnson, J., R. T. Pierrehumbert, and D. S. Abbot, 2015: Feedback temperature dependence  
450 determines the risk of high warming. *Geophysical Research Letters*, **42 (12)**, 4973– 4980, doi:  
451 [10.1002/2015GL064240](http://dx.doi.org/10.1002/2015GL064240), URL <http://dx.doi.org/10.1002/2015GL064240>, 2015GL064240.

452 Bloch-Johnson, J., M. Rugenstein, and D. S. Abbot, in revision: Spatial radiative feedbacks from  
453 interannual variability using multiple regression. *Journal of Climate*.

454 Block, K., and T. Mauritsen, 2013: Forcing and feedback in the MPI-ESM-LR coupled model  
455 under abruptly quadrupled CO<sub>2</sub>. *Journal of Advances in Modeling Earth Systems*, **5 (4)**, 676–  
456 691, URL <http://dx.doi.org/10.1002/jame.20041>.

457 Boer, G., and B. Yu, 2003a: Climate sensitivity and climate state. *Climate Dynamics*, **21 (2)**,  
458 167–176, URL <http://dx.doi.org/10.1007/s00382-003-0323-7>.

459 Boer, G., and B. Yu, 2003b: Climate sensitivity and response. *Climate Dynamics*, **20 (4)**, 415–429,  
460 URL <http://dx.doi.org/10.1007/s00382-002-0283-3>.

461 Boer, G. J., and B. Yu, 2003c: Dynamical aspects of climate sensitivity. *Geophysical Research  
462 Letters*, **30 (3)**, doi:10.1029/2002GL016549, URL <http://dx.doi.org/10.1029/2002GL016549>.

463 Brandefelt, J., and B. L. Otto-Bliesner, 2009: Equilibration and variability in a last  
464 glacial maximum climate simulation with CCSM3. *Geophysical Research Letters*, **36** (19),  
465 doi:10.1029/2009GL040364, URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009GL040364>.

466

467 Brown, P. T., Y. Ming, W. Li, and S. A. Hill, 2017: Change in the magnitude and mechanisms  
468 of global temperature variability with warming. *Nature Climate Change*, **7**, 743 EP –, URL  
469 <http://dx.doi.org/10.1038/nclimate3381>.

470 Burls, N. J., and A. V. Fedorov, 2017: Wetter subtropics in a warmer world: Contrasting past and  
471 future hydrological cycles. *Proceedings of the National Academy of Sciences*, **114** (49), 12 888–  
472 12 893, doi:10.1073/pnas.1703421114, URL <https://www.pnas.org/content/114/49/12888>.

473 Caballero, R., and M. Huber, 2013: State-dependent climate sensitivity in past warm climates and  
474 its implications for future climate projections. *Proceedings of the National Academy of Sciences  
475 of the United States of America*, **110** (35), 14 162–14 167, URL <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761583/>.

476

477 Caldwell, P. M., M. D. Zelinka, K. E. Taylor, and K. Marvel, 2015: Quantifying the sources  
478 of inter-model spread in equilibrium climate sensitivity. *Journal of Climate*, doi:10.1175/JCLI-D-15-0352.1,  
479 URL <http://dx.doi.org/10.1175/JCLI-D-15-0352.1>.

480 Cao, L., L. Duan, G. Bala, and K. Caldeira, 2016: Simulated long-term climate response to  
481 idealized solar geoengineering. *Geophysical Research Letters*, URL <http://dx.doi.org/10.1002/2016GL068079>.

482

483 Castruccio, S., D. J. McInerney, M. L. Stein, F. Liu Crouch, R. L. Jacob, and E. J. Moyer, 2014:  
484 Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs. *Journal*

485 *of Climate*, **27** (5), 1829–1844, doi:10.1175/JCLI-D-13-00099.1, URL <https://doi.org/10.1175/JCLI-D-13-00099.1>,  
486 <https://doi.org/10.1175/JCLI-D-13-00099.1>.

487 Ceppi, P., F. Brient, M. D. Zelinka, and D. L. Hartmann, 2017: Cloud feedback mechanisms and  
488 their representation in global climate models. *Wiley Interdisciplinary Reviews: Climate Change*,  
489 **8** (4), e465, doi:10.1002/wcc.465, URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/wcc.465>,  
490 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcc.465>.

491 Ceppi, P., and J. M. Gregory, 2017: Relationship of tropospheric stability to climate sensitiv-  
492 ity and earth's observed radiation budget. *Proceedings of the National Academy of Sciences*,  
493 **114** (50), 13 126–13 131, doi:10.1073/pnas.1714308114, URL <https://www.pnas.org/content/114/50/13126>.

495 Charney, J., and Coauthors, 1979: Carbon Dioxide and Climate: A Scientific Assessment. Tech.  
496 rep., National Academy of Science, Washington, DC.

497 Clark, P. U., and Coauthors, 2016: Consequences of twenty-first-century policy for multi-  
498 millennial climate and sea-level change. *Nature Climate Change*, **6**, 360 EP –, URL <http://dx.doi.org/10.1038/nclimate2923>.

500 Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-System model  
501 – HadGEM2. *Geoscientific Model Development*, **4** (4), 1051–1075, URL <https://www.geosci-model-dev.net/4/1051/2011/>.

503 Colman, R., and L. Hanson, 2016: On the relative strength of radiative feedbacks under climate  
504 variability and change. *Climate Dynamics*, 1–15, doi:10.1007/s00382-016-3441-8, URL <http://dx.doi.org/10.1007/s00382-016-3441-8>.

506 Colman, R., and B. McAvaney, 2009: Climate feedbacks under a very broad range of forcing.

507 *Geophysical Research Letters*, **36** (1), n/a–n/a, doi:10.1029/2008GL036268, URL <http://dx.doi.org/10.1029/2008GL036268>.

508

509 Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global

510 warming due to carbon-cycle feedbacks in a coupled climate model. *Nature*, **408**, 184 EP –,

511 URL <http://dx.doi.org/10.1038/35041539>.

512 Danabasoglu, G., and P. R. Gent, 2009: Equilibrium Climate Sensitivity: Is It Accurate to Use

513 a Slab Ocean Model? *Journal of Climate*, **22** (9), 2494–2499, URL <http://dx.doi.org/10.1175/2008JCLI2596.1>.

514

515 Danabasoglu, G., S. G. Yeager, Y.-O. Kwon, J. J. Tribbia, A. S. Phillips, and J. W. Hurrell, 2012:

516 Variability of the Atlantic Meridional Overturning Circulation in CCSM4. *Journal of Climate*,

517 URL <http://dx.doi.org/10.1175/JCLI-D-11-00463.1>.

518

519 Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change pro-

520 jections: the role of internal variability. *Climate Dynamics*, **38** (3), 527–546, doi:10.1007/s00382-010-0977-x, URL <https://doi.org/10.1007/s00382-010-0977-x>.

521

522 Donner, L. J., and Coauthors, 2011: The Dynamical Core, Physical Parameterizations, and

523 Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global

524 Coupled Model CM3. *Journal of Climate*, **24** (13), 3484–3519, URL <https://doi.org/10.1175/2011JCLI3955.1>.

525

526 Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth

527 System Model: from CMIP3 to CMIP5. *Climate Dynamics*, **40** (9), 2123–2165, URL <https://doi.org/10.1007/s00382-012-1636-1>.

528 Dunne, J. P., and Coauthors, 2012: GFDL's ESM2 global coupled climate-carbon Earth System  
529 Models Part I: Physical formulation and baseline simulation characteristics. *Journal of Climate*.  
  
530 Eby, M., and Coauthors, 2013: Historical and idealized climate model experiments: an inter-  
531 comparison of Earth system models of intermediate complexity. *Climate of the Past*, **9** (3),  
532 1111–1140, URL <http://www.clim-past.net/9/1111/2013/>.  
  
533 Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor,  
534 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental  
535 design and organization. *Geoscientific Model Development*, **9** (5), 1937–1958, doi:10.5194/  
536 [gmd-9-1937-2016](https://www.geosci-model-dev.net/9/1937/2016/), URL <https://www.geosci-model-dev.net/9/1937/2016/>.  
  
537 Frölicher, T., and F. Joos, 2010: Reversible and irreversible impacts of greenhouse gas emissions in  
538 multi-century projections with the NCAR global coupled carbon cycle-climate model. *Climate  
539 Dynamics*, **35** (7-8), 1439–1459, doi:10.1007/s00382-009-0727-0, URL [http://dx.doi.org/10.  
540 1007/s00382-009-0727-0](http://dx.doi.org/10.1007/s00382-009-0727-0).  
  
541 Frölicher, T. L., and D. J. Paynter, 2015: Extending the relationship between global warming and  
542 cumulative carbon emissions to multi-millennial timescales. *Environmental Research Letters*,  
543 **10** (7), 075 002, URL <http://stacks.iop.org/1748-9326/10/i=7/a=075002>.  
  
544 Frölicher, T. L., M. Winton, and J. L. Sarmiento, 2014: Continued global warming after  
545 CO<sub>2</sub> emissions stoppage. *Nature Clim. Change*, **4** (1), 40–44, URL [http://dx.doi.org/10.1038/  
546 nclimate2060](http://dx.doi.org/10.1038/nclimate2060).  
  
547 Gebbie, G., and P. Huybers, 2019: The Little Ice Age and 20th-century deep Pacific cooling.  
548 *Science*, **363** (6422), 70–74, doi:10.1126/science.aar8413, URL [http://science.sciencemag.org/content/363/6422/70](http://science.sciencemag.org/<br/>549 content/363/6422/70).

550 Gent, P. R., and Coauthors, 2011: The Community Climate System Model Version 4. *Journal of*  
551 *Climate*, **24** (19), 4973–4991, URL <http://dx.doi.org/10.1175/2011JCLI4083.1>.

552 Geoffroy, O., and D. Saint-Martin, 2014: Pattern decomposition of the transient climate response.  
553 *Tellus A: Dynamic Meteorology and Oceanography*, **66** (1), 23 393, doi:10.3402/tellusa.v66.  
554 23393, URL <https://doi.org/10.3402/tellusa.v66.23393>.

555 Geoffroy, O., D. Saint-Martin, G. Bellon, A. Volodire, D. Olivié, and S. Tytéca, 2013a: Transient  
556 Climate Response in a Two-Layer Energy-Balance Model. Part II: Representation of the Ef-  
557 ficacy of Deep-Ocean Heat Uptake and Validation for CMIP5 AOGCMs. *Journal of Climate*,  
558 **26** (6), 1859–1876, URL <http://dx.doi.org/10.1175/JCLI-D-12-00196.1>.

559 Geoffroy, O., D. Saint-Martin, D. J. L. Olivié, A. Volodire, G. Bellon, and S. Tytéca, 2013b:  
560 Transient Climate Response in a Two-Layer Energy-Balance Model. Part I: Analytical Solution  
561 and Parameter Calibration Using CMIP5 AOGCM Experiments. *Journal of Climate*, **26** (6),  
562 1841–1857, URL <http://dx.doi.org/10.1175/JCLI-D-12-00195.1>.

563 Gillett, N. P., V. K. Arora, K. Zickfeld, S. J. Marshall, and W. J. Merryfield, 2011: Ongoing  
564 climate change following a complete cessation of carbon dioxide emissions. *Nature Geosci*,  
565 **4** (2), 83–87, URL <http://dx.doi.org/10.1038/ngeo1047>.

566 Good, P., T. Andrews, R. Chadwick, J.-L. Dufresne, J. M. Gregory, J. A. Lowe, N. Schaller,  
567 and H. Shiogama, 2016: nonlinMIP contribution to CMIP6: model intercomparison project  
568 for non-linear mechanisms: physical basis, experimental design and analysis principles (v1.0).  
569 *Geoscientific Model Development*, **9** (11), 4019–4028, doi:10.5194/gmd-9-4019-2016, URL  
570 <https://www.geosci-model-dev.net/9/4019/2016/>.

571 Good, P., J. Gregory, J. Lowe, and T. Andrews, 2013: Abrupt CO<sub>2</sub> experiments as tools for pre-  
572 dicting and understanding CMIP5 representative concentration pathway projections. *Climate*  
573 **Dynamics**, **40** (3-4), 1041–1053, URL <http://dx.doi.org/10.1007/s00382-012-1410-4>.

574 Good, P., and Coauthors, 2015: Nonlinear regional warming with increasing co2 concentrations.  
575 *Nature Clim. Change*, **5** (2), 138–142, URL <http://dx.doi.org/10.1038/nclimate2498>.

576 Gottschalk, J., and Coauthors, 2019: Mechanisms of millennial-scale atmospheric co2 change  
577 in numerical model simulations. *Quaternary Science Reviews*, **220**, 30 – 74, doi:<https://doi.org/10.1016/j.quascirev.2019.05.013>, URL <http://www.sciencedirect.com/science/article/pii/S0277379118310473>.

580 Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent cli-  
581 mate change. *Climate Dynamics*, **16**, 501–515, URL <http://dx.doi.org/10.1007/s003820000059>,  
582 10.1007/s003820000059.

583 Gregory, J. M., T. Andrews, and P. Good, 2015: The inconstancy of the transient climate re-  
584 sponse parameter under increasing CO<sub>2</sub>. *Philosophical Transactions of the Royal Society of*  
585 *London A: Mathematical, Physical and Engineering Sciences*, **373** (2054), URL <http://rsta.royalsocietypublishing.org/content/373/2054/20140417>.

587 Gregory, J. M., T. Andrews, P. Good, T. Mauritsen, and P. M. Forster, 2016: Small global-mean  
588 cooling due to volcanic radiative forcing. *Climate Dynamics*, 1–13, URL <http://dx.doi.org/10.1007/s00382-016-3055-1>.

590 Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and  
591 climate sensitivity. *Geophysical Research Letters*, **31** (3), URL <http://dx.doi.org/10.1029/2003GL018747>.

593 Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic ther-  
594 mohaline circulation in response to increasing atmospheric CO<sub>2</sub> concentration. *Geophys. Res.*  
595 *Lett.*, **32** (L12703).

596 Hasumi, H., and S. Emori, 2004: K-1 Coupled GCM (MIROC) Description. Tech. rep., Center  
597 for Climate System Research CCSR, University of Tokyo, National Institute for Envoronmeltal  
598 Studies (NIES), Frontier Research Center for Global Change (FRCGC).

599 Hazeleger, W., and Coauthors, 2012: EC-Earth V2.2: description and validation of a new seamless  
600 earth system prediction model. *Climate Dynamics*, **39** (11), 2611–2629, URL [https://doi.org/10.](https://doi.org/10.1007/s00382-011-1228-5)  
601

602 Held, I., M. Winton, K. Takahashi, T. L. Delworth, F. Zeng, and G. Vallis, 2010: Probing the  
603 Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing.  
604 *Journal of Climate*, **23**, 2418 – 2427.

605 Hobbs, W., M. D. Palmer, and D. Monselesan, 2016: An Energy Conservation Analysis of Ocean  
606 Drift in the CMIP5 Global Coupled Models. *Journal of Climate*, **29** (5), 1639–1653, doi:10.  
607 1175/JCLI-D-15-0477.1, URL <http://dx.doi.org/10.1175/JCLI-D-15-0477.1>.

608 Jansen, M. F., L.-P. Nadeau, and T. M. Merlis, 2018: Transient versus Equilibrium Response  
609 of the Ocean’s Overturning Circulation to Warming. *Journal of Climate*, **31** (13), 5147–5163,  
610 doi:10.1175/JCLI-D-17-0797.1, URL <https://doi.org/10.1175/JCLI-D-17-0797.1>.

611 Jonko, A. K., K. M. Shell, B. M. Sanderson, and G. Danabasoglu, 2013: Climate Feedbacks  
612 in CCSM3 under Changing CO<sub>2</sub> Forcing. Part II: Variation of Climate Feedbacks and Sen-  
613 sitivity with Forcing. *Journal of Climate*, **26** (9), 2784–2795, URL <http://dx.doi.org/10.1175/JCLI-D-12-00479.1>.

615 Joshi, M., and J. Gregory, 2008: Dependence of the land-sea contrast in surface cli-  
616 mate response on the nature of the forcing. *Geophysical Research Letters*, **35** (24),  
617 doi:10.1029/2008GL036234, URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008GL036234>.

618

619 Jungclaus, J. H., and Coauthors, 2006: Ocean Circulation and Tropical Variability in the Coupled  
620 Model ECHAM5/MPI-OM. *Journal of Climate*, **19** (16), 3952–3972, URL <https://doi.org/10.1175/JCLI3827.1>.

621

622 Khon, V. C., B. Schneider, M. Latif, W. Park, and C. Wengel, 2018: Evolution of Eastern Equa-  
623 torial Pacific Seasonal and Interannual Variability in Response to Orbital Forcing During the  
624 Holocene and Eemian From Model Simulations. *Geophysical Research Letters*, **45** (18), 9843–  
625 9851, doi:10.1029/2018GL079337, URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL079337>.

626

627 Klockmann, M., U. Mikolajewicz, and J. Marotzke, 2016: The effect of greenhouse gas concentra-  
628 tions and ice sheets on the glacial AMOC in a coupled climate model. *Climate of the Past*, **12** (9),  
629 1829–1846, doi:10.5194/cp-12-1829-2016, URL <https://www.clim-past.net/12/1829/2016/>.

630

631 Knutti, R., 2010: The end of model democracy? *Climatic Change*, **102**, 395–404.

632

633 Knutti, R., M. A. A. Rugenstein, and G. C. Hegerl, 2017: Beyond equilibrium climate sensitivity.  
634 *Nature Geoscience*, **10**, 727 EP –, URL <http://dx.doi.org/10.1038/ngeo3017>.

635

636 Köhler, P., C. Nehrbass-Ahles, J. Schmitt, T. F. Stocker, and H. Fischer, 2017: A 156 kyr smoothed  
637 history of the atmospheric greenhouse gases CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O and their radiative forcing.  
638 *Earth System Science Data*, **9** (1), 363–387, doi:10.5194/essd-9-363-2017, URL <https://www.earth-syst-sci-data.net/9/363/2017/>.

637 Kostov, Y., K. C. Armour, and J. Marshall, 2014: Impact of the atlantic meridional over-  
638 turning circulation on ocean heat storage and transient climate change. *Geophysical Re-*  
639 *search Letters*, **41** (6), 2108–2116, doi:10.1002/2013GL058998, URL <http://dx.doi.org/10.1002/2013GL058998>.

640

641 Krasting, J. P., R. J. Stouffer, S. M. Griffies, R. W. Hallberg, S. L. Malyshev, B. L. Samuels,  
642 and L. T. Sentman, 2018: Role of Ocean Model Formulation in Climate Response Uncertainty.  
643 *Journal of Climate*, **31** (22), 9313–9333, doi:10.1175/JCLI-D-18-0035.1, URL <https://doi.org/10.1175/JCLI-D-18-0035.1>.

644

645 Levermann, A., P. U. Clark, B. Marzeion, G. A. Milne, D. Pollard, V. Radic, and A. Robinson,  
646 2013: The multimillennial sea-level commitment of global warming. *Proceedings of the Na-*  
647 *tional Academy of Sciences*, **110** (34), 13 745–13 750, URL <http://www.pnas.org/content/110/34/13745.abstract>.

648

649 Li, C., J.-S. Storch, and J. Marotzke, 2013: Deep-ocean heat uptake and equilibrium cli-  
650 mate response. *Climate Dynamics*, **40** (5-6), 1071–1086, URL <http://dx.doi.org/10.1007/s00382-012-1350-z>.

651

652 Luo, Y., J. Lu, F. Liu, and O. Garuba, 2017: The Role of Ocean Dynamical Thermostat in De-  
653 laying the El Niño–Like Response over the Equatorial Pacific to Climate Warming. *Journal*  
654 *of Climate*, **30** (8), 2811–2827, doi:10.1175/JCLI-D-16-0454.1, URL <https://doi.org/10.1175/JCLI-D-16-0454.1>.

655

656 Lutsko, N. J., and K. Takahashi, 2018: What Can the Internal Variability of CMIP5 Models Tell  
657 Us about Their Climate Sensitivity? *Journal of Climate*, **31** (13), 5051–5069, doi:10.1175/JCLI-D-17-0736.1, URL <https://doi.org/10.1175/JCLI-D-17-0736.1>.

658

659 Maher, N., D. Matei, S. Milinski, and J. Marotzke, 2018: Enso change in climate projec-  
660 tions: Forced response or internal variability? *Geophysical Research Letters*, **45** (20), 11,390–  
661 11,398, doi:10.1029/2018GL079764, URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL079764>.

662

663 Maher, N., and Coauthors, 2019: The Max Planck Institute Grand Ensemble: Enabling the  
664 Exploration of Climate System Variability. *Journal of Advances in Modeling Earth Systems*,  
665 **0** (0), doi:10.1029/2019MS001639, URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001639>.

666

667 Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient Responses of a Cou-  
668 pled Ocean Atmosphere Model to Gradual Changes of Atmospheric CO<sub>2</sub>. Part I. Annual Mean  
669 Response. *Journal of Climate*, **4** (8), 785–818.

670

671 Marzocchi, A., and M. F. Jansen, 2017: Connecting antarctic sea ice to deep-ocean circula-  
672 tion in modern and glacial climate simulations. *Geophysical Research Letters*, **44** (12), 6286–  
673 6295, doi:10.1002/2017GL073936, URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073936>.

674

675 Mauritsen, T., and R. Pincus, 2017: Committed warming inferred from observations. *Nature Cli-  
mate Change*, **7**, 652 EP –, URL <https://doi.org/10.1038/nclimate3357>.

676

677 Mauritsen, T., and Coauthors, 2018: Developments in the mpi-m earth system model version 1.2  
678 (mpi-esm 1.2) and its response to increasing co2. *Journal of Advances in Modeling Earth Sys-  
679 tems*, **0** (ja), doi:10.1029/2018MS001400, URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001400>.

680 Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer,  
681 and K. E. Taylor, 2007: THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate  
682 Change Research. *Bulletin of the American Meteorological Society*, **88** (9), 1383–1394, doi:  
683 10.1175/BAMS-88-9-1383, URL <https://doi.org/10.1175/BAMS-88-9-1383>.

684 Meraner, K., T. Mauritsen, and A. Voigt, 2013: Robust increase in equilibrium climate sensitivity  
685 under global warming. *Geophysical Research Letters*, **40** (22), 5944–5948, URL <http://dx.doi.org/>  
686 [10.1002/2013GL058118](https://doi.org/10.1002/2013GL058118).

687 Miller, R. L., and Coauthors, 2014: CMIP5 historical simulations (1850–2012) with GISS Mod-  
688 elE2. *Journal of Advances in Modeling Earth Systems*, **6** (2), 441–478, URL <http://dx.doi.org/>  
689 [10.1002/2013MS000266](https://doi.org/10.1002/2013MS000266).

690 Nazarenko, L., and Coauthors, 2015: Future climate change under RCP emission scenarios with  
691 GISS ModelE2. *Journal of Advances in Modeling Earth Systems*, **7** (1), 244–267, URL <http://dx.doi.org/>  
692 [10.1002/2014MS000403](https://doi.org/10.1002/2014MS000403).

693 Paynter, D., T. L. Frölicher, L. W. Horowitz, and L. G. Silvers, 2018: Equilibrium Climate  
694 Sensitivity Obtained From Multimillennial Runs of Two GFDL Climate Models. *Journal of*  
695 *Geophysical Research: Atmospheres*, **123** (4), 1921–1941, doi:10.1002/2017JD027885, URL  
696 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JD027885>.

697 Proistosescu, C., and P. J. Huybers, 2017: Slow climate mode reconciles historical and model-  
698 based estimates of climate sensitivity. *Science Advances*, **3** (7), doi:10.1126/sciadv.1602821,  
699 URL <http://advances.sciencemag.org/content/3/7/e1602821>.

700 Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad,  
701 and D. Hartmann, 1989: Cloud-Radiative Forcing and Climate: Results from the Earth

702 Radiation Budget Experiment. *Science*, **243** (4887), 57–63, doi:10.1126/science.243.4887.

703 57, URL <https://science.sciencemag.org/content/243/4887/57>, <https://science.sciencemag.org/content/243/4887/57.full.pdf>.

704

705 Rehfeld, K., T. Münch, S. L. Ho, and T. Laepple, 2018: Global patterns of declining temperature

706 variability from the Last Glacial Maximum to the Holocene. *Nature*, **554**, 356 EP –, URL <https://doi.org/10.1038/nature25454>.

707

708 Rind, D., G. A. Schmidt, J. Jonas, R. Miller, L. Nazarenko, M. Kelley, and J. Romanski, 2018:

709 Multicentury Instability of the Atlantic Meridional Circulation in Rapid Warming Simula-

710 tions With GISS ModelE2. *Journal of Geophysical Research: Atmospheres*, **123** (12), 6331–

711 6355, doi:10.1029/2017JD027149, URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017JD027149>.

712

713 Rodgers, K. B., J. Lin, and T. L. Frölicher, 2015: Emergence of multiple ocean ecosystem drivers

714 in a large ensemble suite with an Earth system model. *Biogeosciences*, **12** (11), 3301–3320,

715 doi:10.5194/bg-12-3301-2015, URL <https://www.biogeosciences.net/12/3301/2015/>.

716

717 Rohrschneider, T., B. Stevens, and T. Mauritsen, 2019: On simple representations of the climate

718 response to external radiative forcing. *Climate Dynamics*, doi:10.1007/s00382-019-04686-4.

719

720 Rugenstein, M., and Coauthors, 2019: Equilibrium climate sensitivity estimated by equilibrating

721 climate models. *in revision for GRL*.

722

723 Rugenstein, M. A. A., K. Caldeira, and R. Knutti, 2016a: Dependence of global radiative feed-

724 backs on evolving patterns of surface heat fluxes. *Geophysical Research Letters*, **43** (18), 9877–

725 9885, URL <http://dx.doi.org/10.1002/2016GL070907>.

723 Rugenstein, M. A. A., J. M. Gregory, N. Schaller, J. Sedláček, and R. Knutti, 2016b: Multiannual  
724 Ocean–Atmosphere Adjustments to Radiative Forcing. *Journal of Climate*, **29** (15), 5643–5659,  
725 URL <http://dx.doi.org/10.1175/JCLI-D-16-0312.1>.

726 Rugenstein, M. A. A., J. Sedláček, and R. Knutti, 2016c: Nonlinearities in patterns of long-term  
727 ocean warming. *Geophysical Research Letters*, **43** (7), 3380–3388, URL <http://dx.doi.org/10.1002/2016GL068041>.

728 Saint-Martin, D., and Coauthors, 2019: Fast forward to perturbed equilibrium climate.  
729 *Geophysical Research Letters*, **0** (ja), doi:10.1029/2019GL083031, URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083031>, <https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL083031>.

730 Salzmann, M., 2017: The polar amplification asymmetry: role of Antarctic surface height.  
731 *Earth System Dynamics*, **8** (2), 323–336, doi:10.5194/esd-8-323-2017, URL <https://www.earth-syst-dynam.net/8/323/2017/>.

732 Scheff, J., R. Seager, H. Liu, and S. Coats, 2017: Are Glacials Dry? Consequences for Pa-  
733 leoclimatolgy and for Greenhouse Warming. *Journal of Climate*, **30** (17), 6593–6609, doi:  
734 10.1175/JCLI-D-16-0854.1, URL <https://doi.org/10.1175/JCLI-D-16-0854.1>.

735 Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contri-  
736 butions to the CMIP5 archive. *Journal of Advances in Modeling Earth Systems*, **6** (1), 141–184,  
737 URL <http://dx.doi.org/10.1002/2013MS000265>.

738 Schneider, T., C. M. Kaul, and K. G. Pressel, 2019: Possible climate transitions from breakup  
739 of stratocumulus decks under greenhouse warming. *Nature Geoscience*, **12** (3), 163–167, doi:  
740 10.1038/s41561-019-0310-1, URL <https://doi.org/10.1038/s41561-019-0310-1>.

745 Senior, C. A., and J. F. B. Mitchell, 2000: The time-dependence of climate sensitivity. *Geophysical*  
746 *Research Letters*, **27** (17), 2685–2688, URL <http://dx.doi.org/10.1029/2000GL011373>.

747 Smith, R. S., J. M. Gregory, and A. Osprey, 2008: A description of the FAMOUS (version XD-  
748 BUA) climate model and control run. *Geoscientific Model Development*, **1** (1), 53–68, doi:  
749 [10.5194/gmd-1-53-2008](https://doi.org/10.5194/gmd-1-53-2008), URL <https://www.geosci-model-dev.net/1/53/2008/>.

750 Sniderman, J. M. K., and Coauthors, 2019: Southern Hemisphere subtropical drying as a transient  
751 response to warming. *Nature Climate Change*, doi:10.1038/s41558-019-0397-9, URL <https://doi.org/10.1038/s41558-019-0397-9>.

752

753 Song, X., and G. J. Zhang, 2014: Role of Climate Feedback in El Nino-like SST Response to  
754 Global Warming. *Journal of Climate*, doi:10.1175/JCLI-D-14-00072.1, URL <http://dx.doi.org/10.1175/JCLI-D-14-00072.1>.

755

756 Stouffer, R., and S. Manabe, 2003: Equilibrium response of thermohaline circulation to large  
757 changes in atmospheric CO<sub>2</sub> concentration. *Climate Dynamics*, **20** (7-8), 759–773, URL <http://dx.doi.org/10.1007/s00382-002-0302-4>.

758

759 Stouffer, R. J., and S. Manabe, 1999: Response of a Coupled Ocean–Atmosphere Model to  
760 Increasing Atmospheric Carbon Dioxide: Sensitivity to the Rate of Increase. *Journal of Climate*,  
761 **12** (8), 2224–2237, doi:10.1175/1520-0442(1999)012<2224:ROACOA>2.0.CO;2, URL  
762 [http://dx.doi.org/10.1175/1520-0442\(1999\)012<2224:ROACOA>2.0.CO;2](http://dx.doi.org/10.1175/1520-0442(1999)012<2224:ROACOA>2.0.CO;2).

763

764 Svendsen, S. H., M. S. Madsen, Y. Suting, C. Rodehacke, and G. Adalgeirsdottir, 2015: An Intro-  
duction to the Coupled EC-Earth-PISM Model System. report 15-05, Danish Climate Centre.

765 Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2011: An Overview of CMIP5 and the Ex-  
periment Design. *Bulletin of the American Meteorological Society*, **93** (4), 485–498, doi:  
10.1175/BAMS-D-11-00094.1, URL <http://dx.doi.org/10.1175/BAMS-D-11-00094.1>.

766

767

768 Thomas, M. D., and A. V. Fedorov, 2019: Mechanisms and Impacts of a Partial AMOC  
769 Recovery Under Enhanced Freshwater Forcing. *Geophysical Research Letters*, **0** (0),  
770 doi:10.1029/2018GL080442, URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL080442>.

771

772 Trossman, D. S., J. B. Palter, T. M. Merlis, Y. Huang, and Y. Xia, 2016: Large-scale ocean  
773 circulation-cloud interactions reduce the pace of transient climate change. *Geophysical Re-  
774 search Letters*, **43** (8), 3935–3943, URL <http://dx.doi.org/10.1002/2016GL067931>.

775

776 Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5  
777 climate sensitivity estimates. *Climate Dynamics*, **41** (11-12), 3339–3362, URL <http://dx.doi.org/10.1007/s00382-013-1725-9>.

778

779 Voldoire, A., and Coauthors, 2019: Evaluation of cmip6 deck experiments with cnrm-cm6-  
1. *Journal of Advances in Modeling Earth Systems*, **0** (0), doi:10.1029/2019MS001683,  
780 URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001683>, <https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS001683>.

781

782 Voss, R., and U. Mikolajewicz, 2001: Long-term climate changes due to increased CO<sub>2</sub> con-  
783 centration in the coupled atmosphere-ocean general circulation model ECHAM3/LSG. *Climate  
784 Dynamics*, **17** (1), 45–60, doi:10.1007/PL00007925, URL <https://doi.org/10.1007/PL00007925>.

785

786 Winton, M., K. Takahashi, and I. M. Held, 2010: Importance of Ocean Heat Uptake Efficacy to  
Transient Climate Change. *Journal of Climate*, **23** (9), 2333–2344, doi:10.1175/2009JCLI3139.

787 1, URL <http://dx.doi.org/10.1175/2009JCLI3139.1>.

788 Yamamoto, A., A. Abe-Ouchi, M. Shigemitsu, A. Oka, K. Takahashi, R. Ohgaito, and Y. Ya-  
789 manaka, 2015: Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean  
790 under long-term global warming. *Global Biogeochemical Cycles*, **29** (10), 1801–1815, URL  
791 <http://dx.doi.org/10.1002/2015GB005181>.

792 Yeager, S. G., C. A. Shields, W. G. Large, and J. J. Hack, 2006: The Low-Resolution CCSM3.  
793 *Journal of Climate*, **19** (11), 2545–2566, URL <http://dx.doi.org/10.1175/JCLI3744.1>.

794 Yoshimori, M., M. Watanabe, H. Shiogama, A. Oka, A. Abe-Ouchi, R. Ohgaito, and Y. Kamae,  
795 2016: A review of progress towards understanding the transient global mean surface temper-  
796 ature response to radiative perturbation. *Progress in Earth and Planetary Science*, **3** (1), 21,  
797 doi:10.1186/s40645-016-0096-3, URL <https://doi.org/10.1186/s40645-016-0096-3>.

798 Zhang, X., G. Lohmann, G. Knorr, and X. Xu, 2013: Different ocean states and transient character-  
799 istics in last glacial maximum simulations and implications for deglaciation. *Climate of the Past*,  
800 **9** (5), 2319–2333, doi:10.5194/cp-9-2319-2013, URL <https://www.clim-past.net/9/2319/2013/>.

801 Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal cloud variations on the Earth's  
802 energy budget. *Nature Geosci*, **9** (12), 871–874, URL <http://dx.doi.org/10.1038/ngeo2828>.

803 Zhu, J., Z. Liu, J. Zhang, and W. Liu, 2014: AMOC response to global warming: dependence on  
804 the background climate and response timescale. *Climate Dynamics*, **44** (11), 3449–3468, URL  
805 <http://dx.doi.org/10.1007/s00382-014-2165-x>.

806 Zickfeld, K., and Coauthors, 2013: Long-Term Climate Change Commitment and Reversibility:  
807 An EMIC Intercomparison. *Journal of Climate*, **26** (16), 5782–5809, URL <http://dx.doi.org/10.1175/JCLI-D-12-00584.1>.

809 LIST OF TABLES

|     |                 |                                                                                          |    |
|-----|-----------------|------------------------------------------------------------------------------------------|----|
| 810 | <b>Table 1.</b> | Description of collected variables. 2D means spatial resolution of latitude and          | 39 |
| 811 |                 | longitude, except for <i>msftmyz</i> where it means latitude and depth. 3D means lati-   |    |
| 812 |                 | ture, longitude, and depth. <i>msftmyz</i> is the sum of the eularian, eddybolus, and    |    |
| 813 |                 | submeso component. For <i>so</i> and <i>thetao</i> there are also February and September |    |
| 814 |                 | values available for most models.                                                        |    |
| 815 | <b>Table 2.</b> | Overview of models and contributed simulations. The resolution of atmosphere             |    |
| 816 |                 | and ocean is given in # of grid points per latitude x longitude, and latitude x          |    |
| 817 |                 | longitude x depth, respectively. Models are referred to by their shortnames              |    |
| 818 |                 | throughout the manuscript. <b>Section 2b</b> describes the forcing levels. References    |    |
| 819 |                 | in the last <b>column</b> describe the models and simulations. Some simulations are      |    |
| 820 |                 | published in their full length, some simulations contributed to LongRunMIP are           |    |
| 821 |                 | the extensions of simulations discussed in the references, and some simulations          |    |
| 822 |                 | are unpublished.                                                                         |    |
| 823 | <b>Table 3.</b> | Published millennial-length simulations                                                  | 41 |

824 TABLE 1. Description of collected variables. 2D means spatial resolution of latitude and longitude, except for  
 825 *msftmyz* where it means latitude and depth. 3D means latitude, longitude, and depth. *msftmyz* is the sum of the  
 826 eularian, eddybolus, and submeso component. For *so* and *thetao* there are also February and September values  
 827 available for most models.

| Shortname | Longname                                    | Unit                             | Resolution  |
|-----------|---------------------------------------------|----------------------------------|-------------|
| hfls      | Surface Upward Latent Heat Flux             | $\text{W m}^{-2}$                | monthly, 2D |
| hfss      | Surface Upward Sensible Heat Flux           | $\text{W m}^{-2}$                | monthly, 2D |
| pr        | Precipitation on atmospheric grid           | $\text{kg m}^{-2} \text{s}^{-1}$ | monthly, 2D |
| psl       | Sea Level Pressure                          | Pa                               | monthly, 2D |
| rlds      | Surface Downwelling Longwave Radiation      | $\text{W m}^{-2}$                | monthly, 2D |
| rlus      | Surface Upwelling Longwave Radiation        | $\text{W m}^{-2}$                | monthly, 2D |
| rlut      | TOA Outgoing Longwave Radiation             | $\text{W m}^{-2}$                | monthly, 2D |
| rlutcs    | TOA Outgoing Clear-Sky Longwave Radiation   | $\text{W m}^{-2}$                | monthly, 2D |
| rsds      | Surface Downwelling Shortwave Radiation     | $\text{W m}^{-2}$                | monthly, 2D |
| rsdt      | TOA Incident Shortwave Radiation            | $\text{W m}^{-2}$                | monthly, 2D |
| rsus      | Surface Upwelling Shortwave Radiation       | $\text{W m}^{-2}$                | monthly, 2D |
| rsut      | TOA Outgoing Shortwave Radiation            | $\text{W m}^{-2}$                | monthly, 2D |
| rsutcs    | TOA Outgoing Clear-Sky Shortwave Radiation  | $\text{W m}^{-2}$                | monthly, 2D |
| tas       | Near-Surface Air Temperature                | K                                | monthly, 2D |
| ts        | Atmospheric surface temperature             | K                                | monthly, 2D |
| sic       | Sea Ice Area Fraction                       | %                                | monthly, 2D |
| msftmyz   | Meridional Overturning Circulation          | $\text{m}^3 \text{s}^{-1}$       | annual, 2D  |
| tos       | Sea surface temperature                     | K                                | annual, 2D  |
| sos       | Sea surface salinity                        | psu                              | annual, 2D  |
| wfo       | Net water flux into sea water               | $\text{kg m}^{-2} \text{s}^{-1}$ | annual, 2D  |
| evs       | Water evaporation                           | $\text{kg m}^{-2} \text{s}^{-1}$ | annual, 2D  |
| pr_ocn    | Precipitation (rain and snow) on ocean grid | $\text{kg m}^{-2} \text{s}^{-1}$ | annual, 2D  |
| tauuo     | Surface downward wind stress in x direction | $\text{N m}^{-2}$                | annual, 2D  |
| tauvo     | Surface downward wind stress in y direction | $\text{N m}^{-2}$                | annual, 2D  |
| so        | Sea Water Salinity                          | psu                              | annual, 3D  |
| thetao    | Sea Water Potential Temperature             | K                                | annual, 3D  |

828 TABLE 2. Overview of models and contributed simulations. The resolution of atmosphere and ocean is given  
 829 in # of grid points per latitude x longitude, and latitude x longitude x depth, respectively. Models are referred  
 830 to by their shortnames throughout the manuscript. **Section 2b** describes the forcing levels. References in the  
 831 last **column** describe the models and simulations. Some simulations are published in their full length, some  
 832 simulations contributed to LongRunMIP are the extensions of simulations discussed in the references, and some  
 833 simulations are unpublished.

| Model<br>(shortname)              | Forcing level<br>shortname | Length<br>(yrs) | Atmosphere<br>resolution | Ocean<br>resolution | Control sim<br>(yrs) | Model and<br>simulation documentation                                |
|-----------------------------------|----------------------------|-----------------|--------------------------|---------------------|----------------------|----------------------------------------------------------------------|
| CCSM3<br><b>CCSM3</b>             | abrupt2x                   | 3000            | 48 x 96                  | 100 x 116 x 25      | 1530                 | Yeager et al. (2006)                                                 |
|                                   | abrupt4x                   | 2120            |                          |                     |                      | Danabasoglu and Gent (2009)                                          |
|                                   | abrupt8x                   | 1450            |                          |                     |                      |                                                                      |
| CCSM3<br><b>CCSM3II</b>           | abrupt2.4                  | 3701            | 48 x 96                  | 100 x 116 x 25      | 3805                 | Yeager et al. (2006)                                                 |
|                                   | abrupt4.8                  | 3132            |                          |                     |                      | Castruccio et al. (2014)                                             |
|                                   | lin2.4                     | 3990            |                          |                     |                      |                                                                      |
| CESM 1.0.4<br><b>CESM104</b>      | abrupt2x                   | 2500            | 96 x 144                 | 384 x 20 x 60       | 1320                 | Gent et al. (2011)                                                   |
|                                   | abrupt4x                   | 5900            |                          |                     |                      | Danabasoglu et al. (2012)                                            |
|                                   | abrupt8x                   | 5100            |                          |                     |                      | Rugenstein et al. (2016c)                                            |
| CNRM-CM6-1<br><b>CNRMCM61</b>     | abrupt2x                   | 750             | 128 x 256                | 180 x 360 x 75      | 2000                 | Voldoire et al. (2019)                                               |
|                                   | abrupt4x                   | 1850            |                          |                     |                      | Saint-Martin et al. (2019)                                           |
| EC-Earth-PISM<br><b>ECEARTH</b>   | historical                 | 1270            | 160 x 320                | 292 x 362 x 42      | 508                  | Hazeleger et al. (2012)                                              |
|                                   | RCP8.5+                    |                 |                          |                     |                      | Svendsen et al. (2015)                                               |
| ECHAM5/MPIOM<br><b>ECHAM5</b>     | abrupt4x                   | 1000            | 48 x 96                  | 101 x 120 x 40      | 100                  | Jungclaus et al. (2006)                                              |
|                                   | 1pct4x                     | 6080            |                          |                     |                      | Li et al. (2013)                                                     |
| FAMOUS<br><b>FAMOUS</b>           | abrupt2x                   | 3000            | 37 x 48                  | 73 x 96 x 20        | 3000                 | Smith et al. (2008)                                                  |
|                                   | abrupt4x                   | 3000            |                          |                     |                      |                                                                      |
| GFDL-CM3<br><b>GFDLCM3</b>        | 1pct2x                     | 5000            | 90 x 144                 | 200 x 360 x 50      | 5200                 | Donner et al. (2011)                                                 |
|                                   | 1pct2x                     |                 |                          |                     |                      | Paynter et al. (2018)                                                |
| GFDL-ESM2M<br><b>GFDLESM2M</b>    | 1pct2x                     | 4500            | 90 x 144                 | 200 x 360 x 50      | 1340                 | Dunne et al. (2012)                                                  |
|                                   | 1pct2x                     |                 |                          |                     |                      | Paynter et al. (2018)                                                |
| GISS-E2-R<br><b>GISSE2R</b>       | abrupt4x                   | 5000            | 90 x 144                 | 180 x 288 x 32      | 5225                 | Schmidt et al. (2014); Miller et al. (2014); Nazarenko et al. (2015) |
|                                   | 1pct4x                     | 5000            |                          |                     |                      | Rind et al. (2018)                                                   |
| HadCM3L<br><b>HadCM3L</b>         | abrupt2x                   | 1000            | 73 x 96                  | 73 x 96 x 20        | 1000                 | Cox et al. (2000)                                                    |
|                                   | abrupt4x                   | 1000            |                          |                     |                      | Cao et al. (2016)                                                    |
|                                   | abrupt6x                   | 1000            |                          |                     |                      |                                                                      |
|                                   | abrupt8x                   | 1000            |                          |                     |                      |                                                                      |
| HadGEM2-ES<br><b>HadGEM2</b>      | abrupt4x                   | 1328            | 145 x 192                | 216 x 360 x 40      | 239                  | Collins et al. (2011)                                                |
|                                   | 1pct2x                     | 2000            |                          |                     |                      | Andrews et al. (2015)                                                |
| IPSL-CM5A-LR<br><b>IPSLCM5ALR</b> | abrupt4x                   | 1000            | 96 x 96                  | 149 x 182 x 31      | 1000                 | Dufresne et al. (2013)                                               |
|                                   | 1pct2x                     | 2000            |                          |                     |                      |                                                                      |
| MIROC 3.2<br><b>MIROC32</b>       | 1pct2x                     | 2000            | 64 x 128                 | 192 x 256 x 44      | 681                  | Hasumi and Emori (2004)                                              |
|                                   | 1pct4x                     | 2000            |                          |                     |                      | Yamamoto et al. (2015); Yoshimori et al. (2016)                      |
| MPIESM-1.2<br><b>MPIESM12</b>     | abrupt2x                   | 1000            | 96 x 192                 | 220 x 256 x 40      | 1237                 | Mauritsen et al. (2018)                                              |
|                                   | abrupt4x                   | 1000            |                          |                     |                      | Rohrschneider et al. (2019)                                          |
|                                   | abrupt8x                   | 1000            |                          |                     |                      |                                                                      |
|                                   | abrupt16x                  | 1000            |                          |                     |                      |                                                                      |
| MPIESM-1.1<br><b>MPIESM11</b>     | abrupt4x                   | 4459            | 96 x 192                 | 220 x 256 x 40      | 2000                 | Mauritsen et al. (2018)                                              |
|                                   | 1pct2x                     |                 |                          |                     |                      |                                                                      |

TABLE 3. Published millennial-length simulations

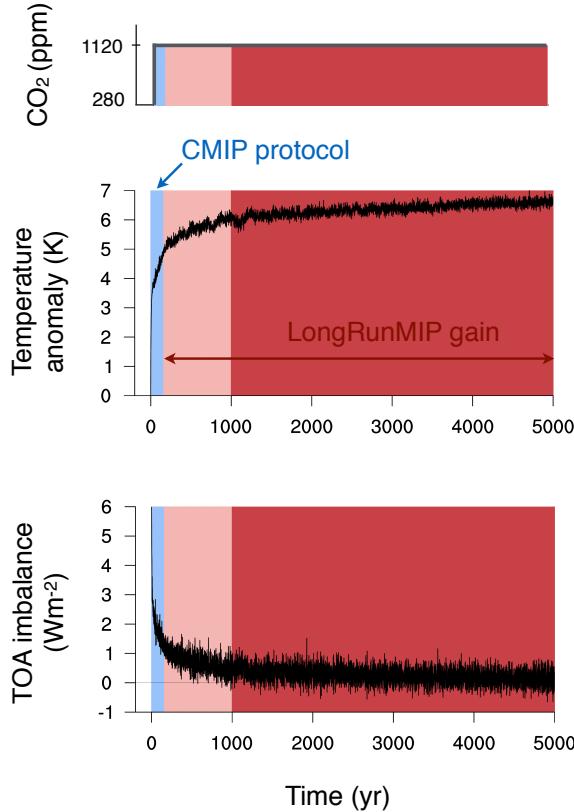
| Paper                                                 | Model                   | Forcing level                                              | Length (yr) | Content/scientific comment                                                                                                                                       |
|-------------------------------------------------------|-------------------------|------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Senior and Mitchell (2000)                            | HadCM2                  | 2xCO <sub>2</sub>                                          | ≈ 800       | Included flux adjustments; effective climate sensitivity increases due to SW CRE due to changes in the inter-hemispheric temperature gradient                    |
| Bi et al. (2001)                                      | CSIRO                   | 3xCO <sub>2</sub>                                          | ≈ 1000      | Cessation and recovery of Antarctic Bottom Water and North Atlantic Deep Water formation                                                                         |
| Voss and Mikolajewicz (2001)                          | ECHAM3                  | 2x and 4xCO <sub>2</sub><br>0.5x, 2x,<br>4xCO <sub>2</sub> | 850         | Adjustment time scales, committed warming, ocean thermohaline circulation                                                                                        |
| Stouffer and Manabe (1999, GFDL 2003)                 |                         |                                                            |             | Thermohaline circulation and paleo-oceanographic implications                                                                                                    |
| Boer and Yu (2003b,a,c)                               | CCCMa                   | 2050 and forcing                                           | 2100 1000   | Radiative feedbacks and surface warming; effective climate sensitivity decreases with time; slab versus fully coupled models                                     |
| Gregory et al. (2004)                                 | HadCM3                  | 2xCO <sub>2</sub>                                          | ≈ 1000      | TOA radiative imbalance and surface temperature are not linearly related; after 1000 yr the model is still 0.7 W m <sup>-2</sup> away from equilibrium           |
| * Danabasoglu and Gent CCSM3 (2009)                   |                         | 2x, 4x, and 8xCO <sub>2</sub>                              | 3000        | Comparing slab and fully coupled models; determining ECS; Jonko et al. (2013) analyzed the contributions of different feedbacks to doublings of CO <sub>2</sub>  |
| Gillett et al. (2011)                                 | CanESM1                 | 21st century                                               | ≈ 1000      | Impact of reduced emissions                                                                                                                                      |
| * Li et al. (2013)                                    | ECHAM5/MPI-OM           | 2xCO <sub>2</sub>                                          | ≈ 6000      | Comparing slab and fully coupled models; determining ECS; adjustment time scales of surface warming patterns, ocean heat uptake, and sea level rise              |
| Frölicher et al. (2014); Frölicher and Paynter (2015) | GFDL-ESM2M, CCSM1       | 4xCO <sub>2</sub> pulse                                    | 1000        | Climate impact of CO <sub>2</sub> emission stoppage; evolving feedbacks; ECS; transient climate response to cumulative carbon emissions                          |
| * Andrews et al. (2015)                               | HadGEM2-ES              | 4xCO <sub>2</sub>                                          | ≈ 1300      | Non-constancy of feedbacks; variations of TOA components cancel each other on the century to millennial time scale                                               |
| * Yamamoto et al. (2015); MIROC 3.2                   |                         | 2x and 4xCO <sub>2</sub>                                   | 2000        | Deep ocean ventilation overall increases oxygenation after a transient decrease; review article on ocean heat uptake in coupled models and energy balance models |
| * Yoshimori et al. (2016)                             |                         |                                                            |             |                                                                                                                                                                  |
| * Cao et al. (2016)                                   | HadCM3L                 | 2x, 4x, 6x, 8xCO <sub>2</sub>                              | 1000        | Comparing CO <sub>2</sub> to other forcing agents and geo-engineering scenarios                                                                                  |
| * Ruggenstein et al. (2016b,a)                        | CESM104                 | 2x, 4x, 8xCO <sub>2</sub>                                  | ≈ 1300      | Dependence of global and regional radiative feedback evolution on surface heat flux patterns; forcing adjustment                                                 |
| * Ruggenstein et al. (2018)                           | GFDL-ESM2M, CM3         | GFDL- 2xCO <sub>2</sub>                                    | ≈ 5000      | Evolution of global and regional radiative feedbacks and the role of atmospheric vertical velocity fields and inversion strengths                                |
| * Paynter et al. (2018)                               | GISS-E2-R               | 4xCO <sub>2</sub>                                          | ≈ 2000      | AMOC reduction and recovery on North Atlantic surface flux conditions                                                                                            |
| * Rind et al. (2018)                                  | GFDL-ESM2Mb, GFDL-ESM2G | 4xCO <sub>2</sub>                                          | 5000        | Ocean heat uptake, model formulation of diapycnal diffusivity and ocean vertical coordinates                                                                     |

## 834 LIST OF FIGURES

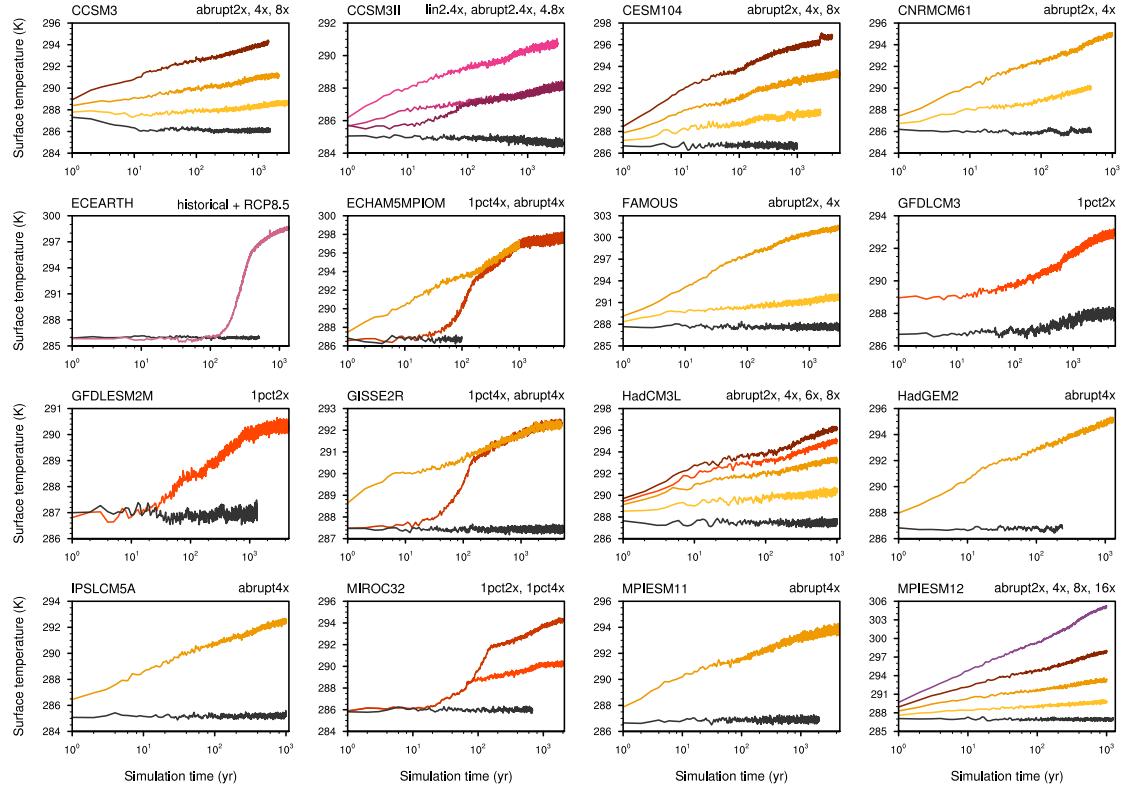
835 **Fig. 1.** Global and annual mean surface air temperature (*tas* in Table 1) anomaly and top of the  
836 atmosphere (TOA) radiative imbalance (computed as *rsdt* - *rlut* - *rsut*, see Table 1) to a step-  
837 forcing of quadrupling CO<sub>2</sub> as simulated by the CESM104 model. For the Coupled Model  
838 Intercomparison Project Phase 5 and 6, this simulation is part of the standard protocol, but  
839 only 150 simulated years are requested (blue shading). We collect simulations that extended  
840 this experiment for at least 850 years (light red shading), ideally until they are equilibrated  
841 (end of dark red shading). . . . . 43

843 **Fig. 2.** Global annual mean surface air temperature for all control (black) and forced (color, listed  
844 in the top right of each panel) simulations. *abrupt2x*, *4x*, *6x*, *8x* means that the CO<sub>2</sub> concen-  
845 tration is doubled, quadrupled, sextupled, octupled, as a step-forcing branched off the  
846 control simulation. *1pct2x* and *1pct4x* means the CO<sub>2</sub> concentration is linearly increased  
847 1 % per year until the concentration is doubled or quadrupled, respectively. The simula-  
848 tions of ECEARTH and CCSM3II are described in Section b. Note the different axis ranges  
849 for each model. GFDL3M and CCSM3II are not branched off directly from the control  
simulation. . . . . 44

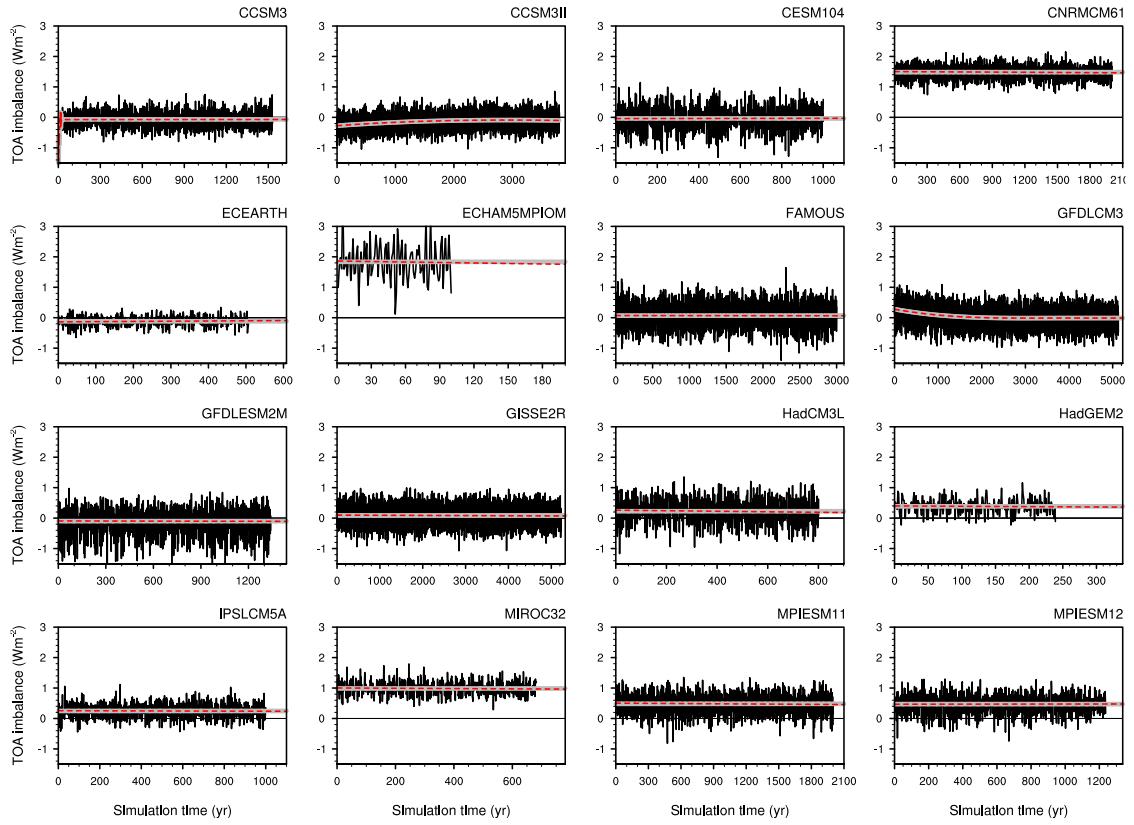
850 **Fig. 3.** Top of the atmosphere (TOA) annual and global mean radiative imbalance of all control  
851 simulations. Note the different lengths of the horizontal axes. The gray line indicates the  
852 average, the red line the linear trend, except for CCSM3II and GFDL3M for which both  
853 colors depict a fourth-order-polynomial fit. . . . . 45


854 **Fig. 4.** Global and annual mean temperature anomalies (experiment minus average of the control  
855 simulation) of the surface ocean (a, first layer) and deep ocean (b), as well as absolute values  
856 of deep ocean temperature in the control simulations (c), for *abrupt4x* (solid) and *1pct4x*  
857 (dashed) simulations. “Deep ocean” means around 2000 m depth (closest level). Note that  
858 the time scale in c) is shorter than in a) and b). . . . . 46

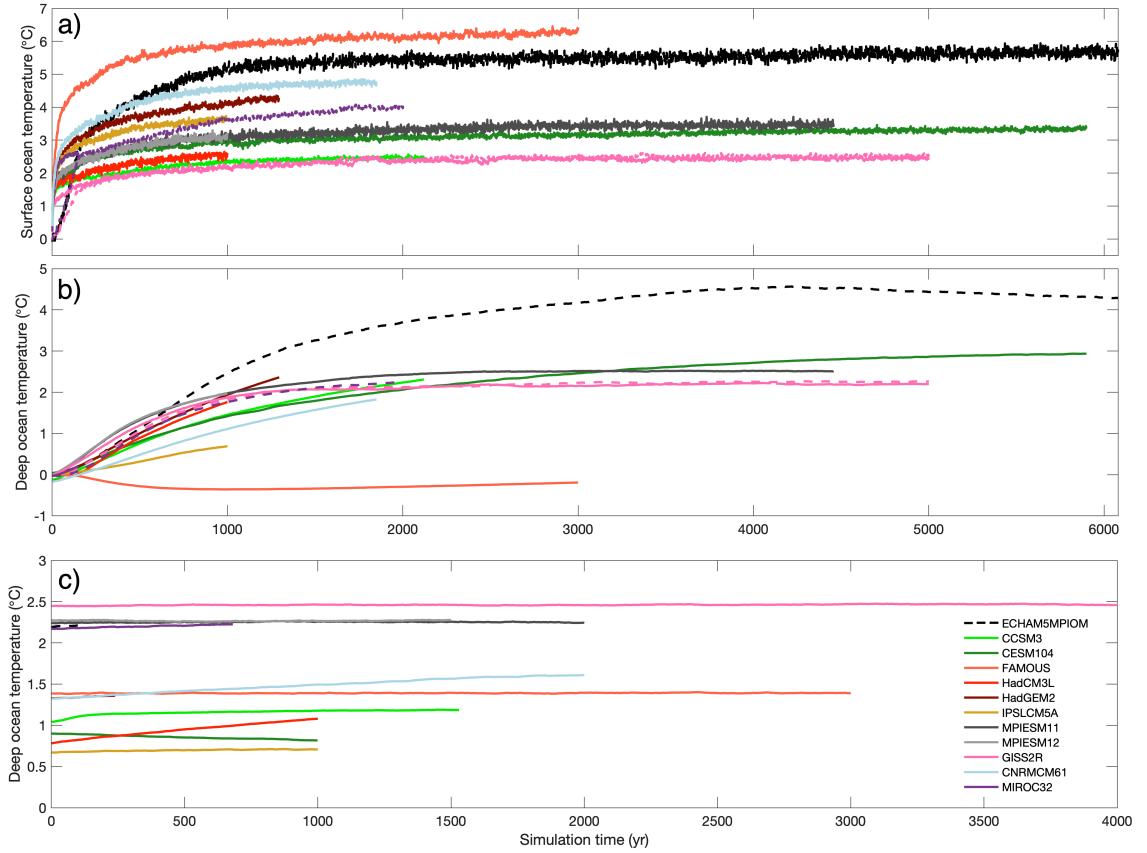
859 **Fig. 5.** Time evolution of the surface air temperature anomaly in the *abrupt4x* simulations. The  
860 model mean of CCSM3, CESM104, CNRMCM6, ECHAM5, GISS2R, HadCM3L,  
861 HadGEM2, IPSLCM5A, MPIESM11, and MPIESM12 is shown in panel a, b, c, e, and  
862 f, while the model mean of only CESM104, GISS2R, and MPIESM11 is shown in panel d  
863 and g, due to the length of these contributions. See Table 2 for details of the length of each  
864 simulation. . . . . 47


865 **Fig. 6.** Time evolution of the zonal mean surface air temperature response normalized by the global  
866 mean temperature anomaly. Above (below) 1 means that warming is amplified (reduced)  
867 relative to the globally mean warming (a-d). Panel e-g show the differences (note the differ-  
868 ence scale). Panel a, b, e, and f contain only *abrupt4x* simulations, while panel c, d, and g  
869 also contain the *1pct2x* and *RCP8.5+* simulations with integration lengths above 4000 years.  
870 Table 2 lists all simulations and model long names. . . . . 48

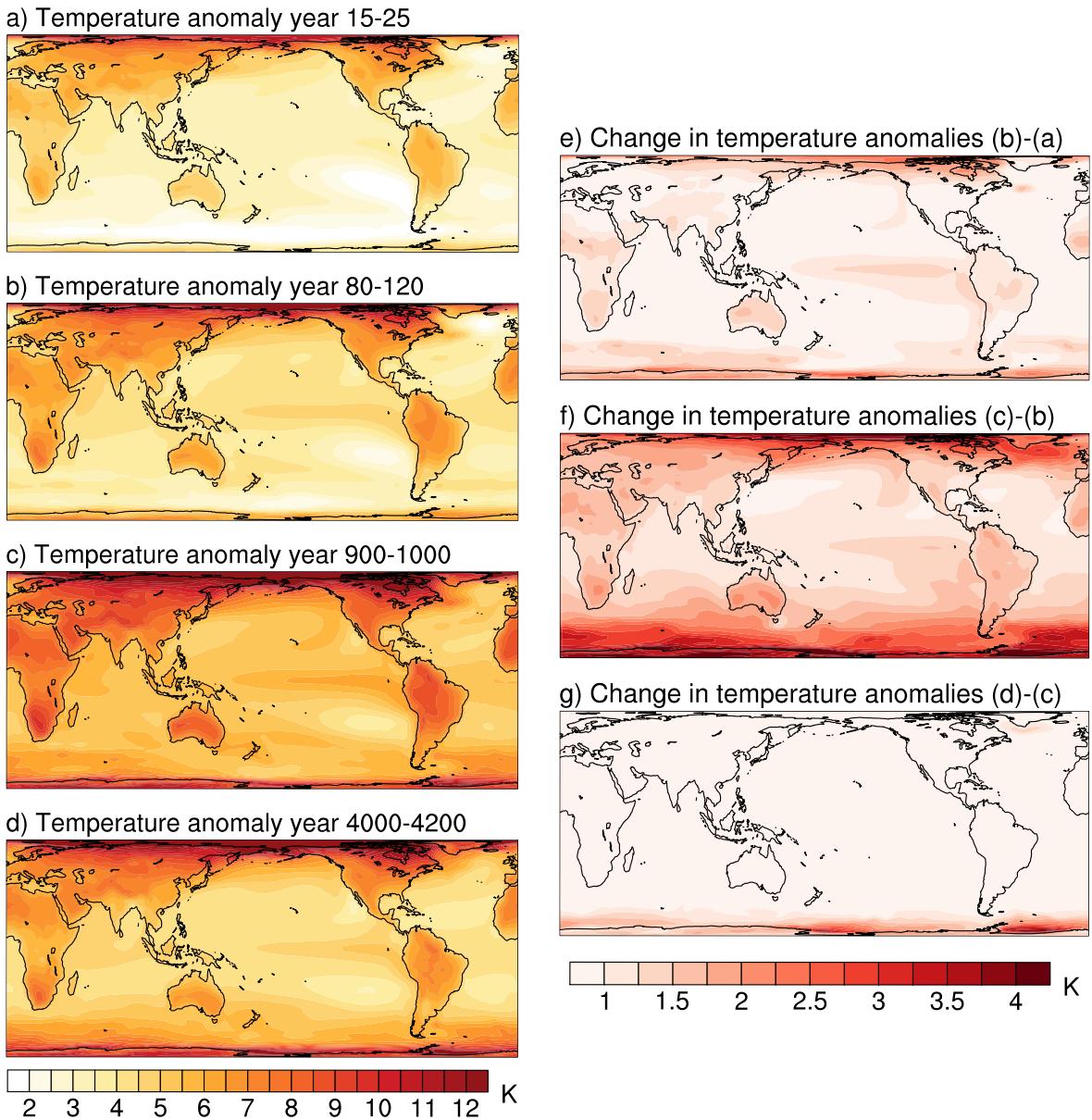
871 **Fig. 7.** Simulated shortwave cloud radiative effects SW CRE for different levels of global surface  
872 air temperature changes. Each point is a ten-year running average. Note the different axes  
873 labels, which cover a large range in TOA imbalance and surface temperature. Table 2 lists  
874 all simulations and model long names. . . . . 49


## Experimental setup

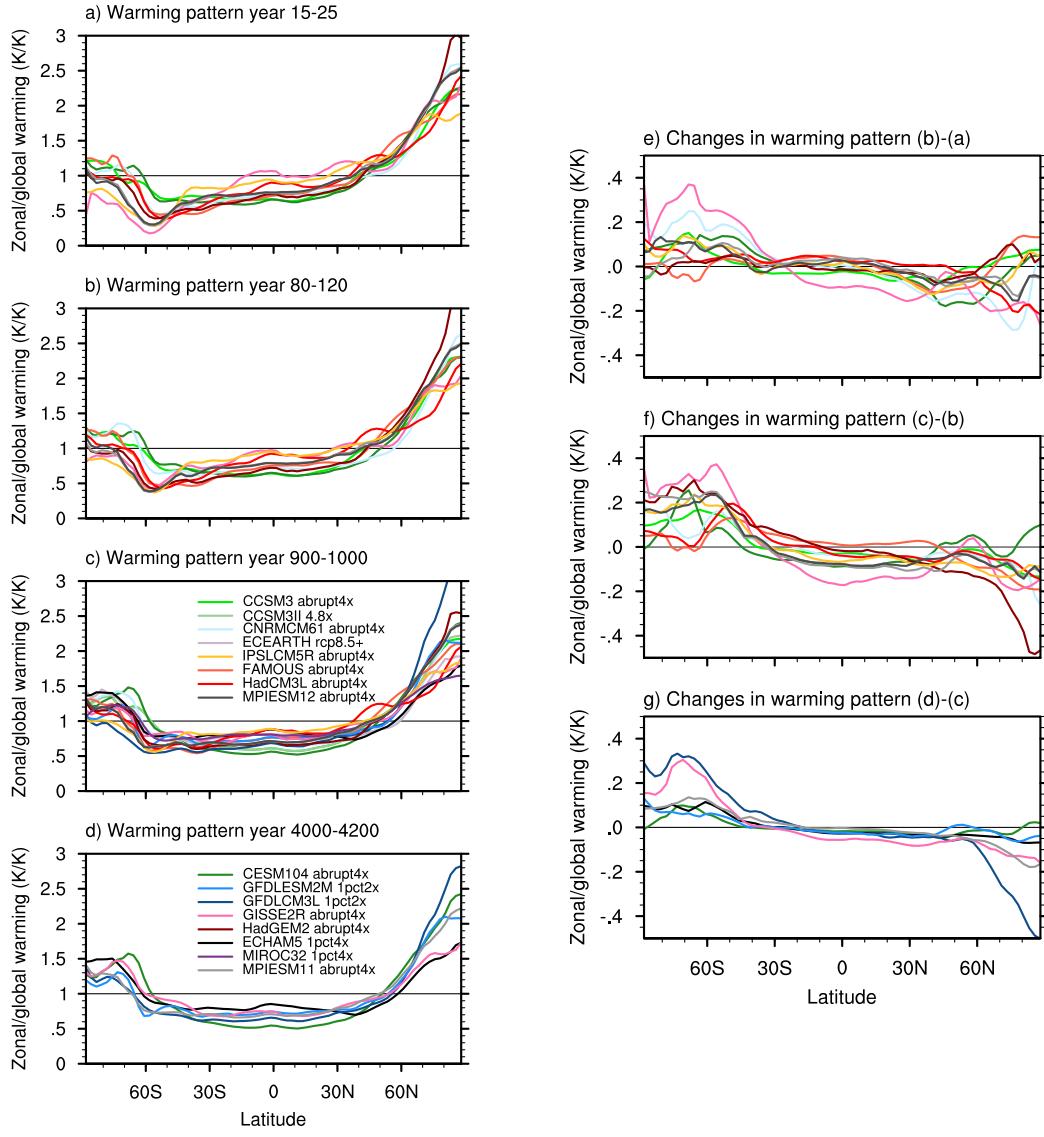



875 FIG. 1. Global and annual mean surface air temperature (*tas* in Table 1) anomaly and top of the atmosphere  
876 (TOA) radiative imbalance (computed as *rsdt* - *rlut* - *rsut*, see Table 1) to a step-forcing of quadrupling CO<sub>2</sub>  
877 as simulated by the CESM104 model. For the Coupled Model Intercomparison Project Phase 5 and 6, this  
878 simulation is part of the standard protocol, but only 150 simulated years are requested (blue shading). We  
879 collect simulations that extended this experiment for at least 850 years (light red shading), ideally until they are  
880 equilibrated (end of dark red shading).

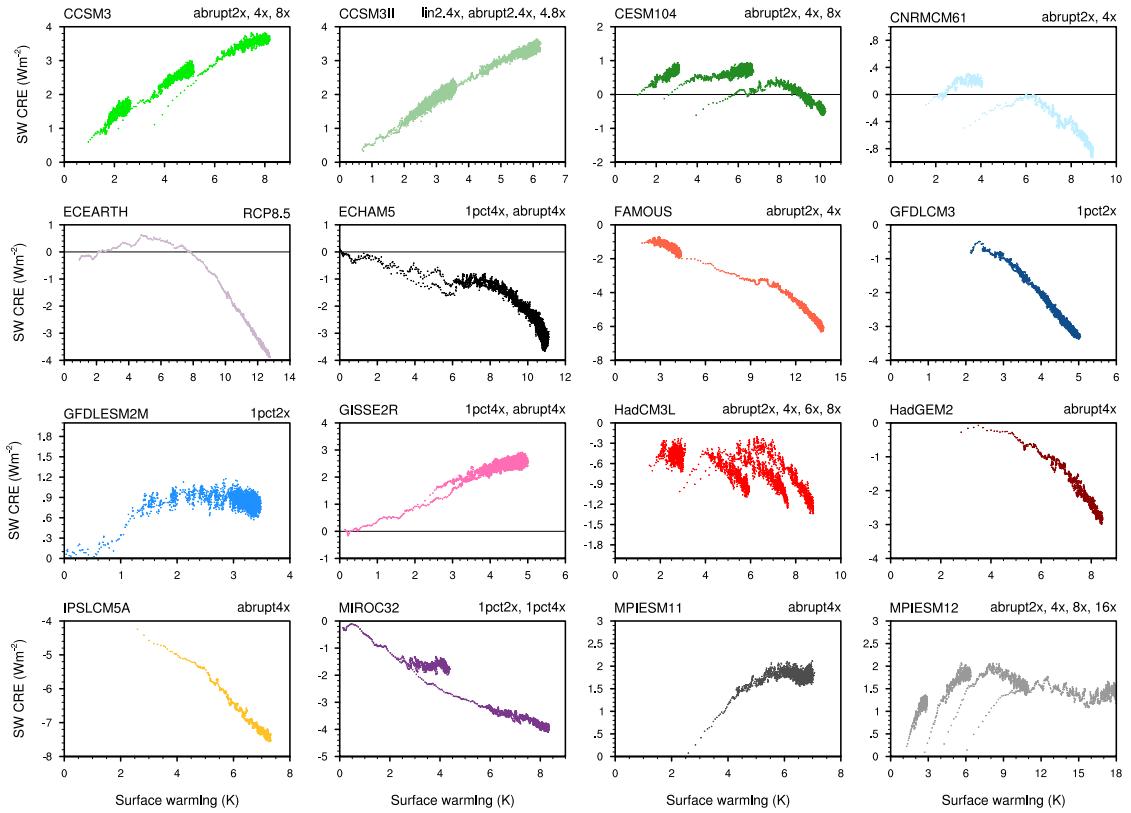



881 FIG. 2. Global annual mean surface air temperature for all control (black) and forced (color, listed in the top  
 882 right of each panel) simulations. *abrupt2x, 4x, 6x, 8x* means that the CO<sub>2</sub> concentration is doubled, quadrupled,  
 883 sextupled, octupled, as a step-forcing branched off the control simulation. *1pct2x* and *1pct4x* means the CO<sub>2</sub>  
 884 concentration is linearly increased 1 % per year until the concentration is doubled or quadrupled, respectively.  
 885 The simulations of ECEARTH and CCSM3II are described in Section b. Note the different axis ranges for each  
 886 model. GFDLCM3 and CCSM3II are not branched off directly from the control simulation.




887 FIG. 3. Top of the atmosphere (TOA) annual and global mean radiative imbalance of all control simulations.  
 888 Note the different lengths of the horizontal axes. The gray line indicates the average, the red line the linear trend,  
 889 except for CCSM3II and GFDL3M for which both colors depict a fourth-order-polynomial fit.




890 FIG. 4. Global and annual mean temperature anomalies (experiment minus average of the control simulation)  
 891 of the surface ocean (a, first layer) and deep ocean (b), as well as absolute values of deep ocean temperature in  
 892 the control simulations (c), for *abrup4x* (solid) and *1pct4x* (dashed) simulations. “Deep ocean” means around  
 893 2000 m depth (closest level). Note that the time scale in c) is shorter than in a) and b).



894 FIG. 5. Time evolution of the surface air temperature anomaly in the *abrupt4x* simulations. The model mean  
 895 of CCSM3, CESM104, CNRMCM61, ECHAM5, GISSE2R, HadCM3L, HadGEM2, IPSLCM5A, MPIESM11,  
 896 and MPIESM12 is shown in panel a, b, c, e, and f, while the model mean of only CESM104, GISSE2R, and  
 897 MPIESM11 is shown in panel d and g, due to the length of these contributions. See Table 2 for details of the  
 898 length of each simulation.



899 FIG. 6. Time evolution of the zonal mean surface air temperature response normalized by the global mean  
900 temperature anomaly. Above (below) 1 means that warming is amplified (reduced) relative to the globally mean  
901 warming (a-d). Panel e-g show the differences (note the difference scale). Panel a, b, e, and f contain only  
902 *abrupt4x* simulations, while panel c, d, and g also contain the *1pct2x* and *RCP8.5+* simulations with integration  
903 lengths above 4000 years. Table 2 lists all simulations and model long names.



904 FIG. 7. Simulated shortwave cloud radiative effects **SW CRE** for different levels of global surface air tem-  
905 perature changes. Each point is a **ten**-year running average. Note the different axes labels, which cover a large  
906 range in TOA imbalance and surface temperature. Table 2 lists all simulations and model long names.