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We prove Nehari's theorem for integral Hankel and Toeplitz operators on simple
convex polytopes in several variables. A special case of the theorem, generalizing the
boundedness criterion of the Hankel and Toeplitz operators on the Paley—-Wiener space,
reads as follows. Let & = (0,1)% be a d-dimensional cube, and for a distribution f on

2E, consider the Hankel operator
I'r(@)x) = /Hf(X+y)g(y) dy, xe€E.

Then Iy extends to a bounded operator on L?(Z) if and only if there is a bounded
function b on R? whose Fourier transform coincides with f on 2E. This special case
has an immediate application in matrix extension theory: every finite multilevel block
Toeplitz matrix can be boundedly extended to an infinite multilevel block Toeplitz
matrix. In particular, block Toeplitz operators with blocks that are themselves Toeplitz

can be extended to bounded infinite block Toeplitz operators with Toeplitz blocks.

1 Introduction
For an open connected set E C RY, d > 1, let

Q=E4+E={x+y:x€E, ye &}
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2 M. Carlsson and K.-M. Perfekt

and consider a distribution f defined on Q. The associated general domain Hankel

operator I'; = I'y 7 is the (densely defined) operator I';: L*(E) — L*(E), given by

@) () = / Fx+ gy dy, xeg,

where dy is the Lebesgue measure on R%.

The case 8 = R, = (0,00) for d = 1 corresponds to the class of usual Hankel
operators; when represented in the appropriate basis of L?(R +), the operator I'rp  is
realized as an infinite Hankel matrix {a, ,}7’,_o [31, Ch. 1.8]. Nehari’s theorem [25]
characterizes the bounded Hankel matrices of this type, but it has an equivalent version
for operators of the type I'y: L*(R,) — L*(R,), which reads as follows (we again refer
to [31, Ch. 1.8], Theorem 8.1). For a function g on R, we let g = Fg denote its Fourier

transform,

(&) = Fg) = /R dg(x)e—z’”’“E dx, &eR<

Theorem. Suppose that f is a distribution in R,, f € D'(R,). Then I'f: LZ(R+) -
L2(R+) is bounded if and only if there exists a function b € L*°(R) such that B|R+ =f.

Moreover, it is possible to choose b so that
IT = 11Dl oo (1.1)

Nehari's theorem is canonical in operator theory. The two most common proofs proceed
either by factorization in the single variable Hardy space or by making use of the
commutant lifting theorem.

For d > 1, the operators FfJRi , B = Ri, correspond to (small) Hankel operators
on the product domain multi-variable Hardy space Hé. In this case, the analogue of
Nehari's theorem remains true, apart from (1.1), but it is significantly more difficult
to prove. It was established by Ferguson and Lacey (d = 2) and Lacey and Terwilleger
(d > 2) [18, 23]. A precise statement is given in Theorem 2.1.

The main purpose of this article is to prove Nehari's theorem when & c R? is a

simple convex polytope. When E is convex note that E + & = 2E.

Theorem 1.1. Let E be a simple convex polytope, and let f € D'(Q2) where Q@ = 2E.
Then I';: L*(E) — L*(E) is bounded if and only if there is a function b € L®(R%) such

that Blg = f. There exists a constant ¢ > 0, depending on E, such that b can be chosen
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Nehari's Theorem in Several Variables 3

to satisfy
Cliblligee < ITfN < 11D oo

-

When d = 1, the only open connected sets E C R are the intervals E = I. In
this case, Theorem 1.1 is due to Rochberg [35], who called the corresponding operators
I'r ; Hankel/Toeplitz operators on the Paley-Wiener space. They have also been called
Wiener—-Hopf operators on a finite interval [30]. These operators have inspired a wealth
of theory in the single variable setting—see Section 2.5, where we shall interpret
Theorem 1.1 in the context of Paley—Wiener spaces.

Even for d = 1, our proof of Theorem 1.1 appears to be new. However, in several
variables our proof relies on the Nehari theorem of Ferguson-Lacey—Terwilleger and can
therefore not be used to give a new proof of their results.

We shall also consider general domain Toeplitz operators ©f = O z: L?(8) —»
L%(E). In this context, f is a distribution defined on Q@ = E— &, and Oy is densely defined

via
0,(9)(x) = / Fx—pgw)dy, xcg.

If E after a translation is invariant under the reflection x — —x, then the
classes of Hankel operators I'y 7 and Toeplitz operators O g are essentially the same,
and Theorem 1.1 immediately yields a boundedness result. This reasoning is applicable

to the cube E = (0, 1)¢, for example.

Corollary 1.2. Let E be a simple convex polytope such that for some z € R? it holds
that E4+z=—-E—2z Letf e D'(Q), Q= E— E = 2E + 2z. Then Oy is bounded if and only
if there exists a function b € L°(R%) such that Blg = f. There exists a constant ¢ > 0,

depending on E, such that b can be chosen to satisfy
Cliblizee < 1Of1l < NIbllgeo-

On the other hand, when E is a proper convex unbounded set, containing an
open cone say, it is clear that the boundedness characterizations of Oz and I'f g
may be completely different; plainly explained by the fact that @ = & — & = R?
in the Toeplitz case, while @ = EZ + 8 = 2E C R? for Hankel operators. In this
setting, identifying the boundedness of ®, carries none of the subtleties of Nehari-

type theorems. In Theorem 6.1 we obtain the expected boundedness result for a class
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4 M. Carlsson and K.-M. Perfekt

—~

of “cone-like” domains E. Rather than giving a precise statement here, let us record the

following corollary of Theorem 6.1.
Corollary 6.2. Let & c R? be any open connected domain such that
(1,00% € E C (0,00)%,

and let f € D'(R%). Then O L?(E) — L?(8) is bounded if and only if f is a tempered

distribution and IIfIILOO(Rd) < 00, and in this case

O£l = IIFll -

In the final part of the paper we shall give an application of Theorem 1.1 to
matrix completion theory, essentially obtained by discretizing Corollary 1.2 when E is
a cube. To avoid introducing further notation, we shall only state the result in words
for now. Recall that a Toeplitz matrix is one whose diagonals are constant. An N x N
d-multilevel block Toeplitz matrix is an N x N Toeplitz matrix whose entries are N x
N (d — 1)-multilevel block Toeplitz matrices. Here N could be finite or infinite. A 1-
multilevel block Toeplitz matrix is simply an ordinary Toeplitz matrix. A 2-multilevel
block Toeplitz matrix is what is usually considered a block Toeplitz matrix where each
block itself is Toeplitz.

Theorem 7.1. Every finite N x N d-multilevel block Toeplitz matrix can be extended to
an infinite d-multilevel block Toeplitz matrix bounded on ¢?, with a constant that only

depends on the dimension d.

For scalar Toeplitz matrices (d = 1) this result is well known [5, 26, 36, 38],
although not as firmly cemented in the literature as the Nehari theorem itself; see
[28, Ch. V.2, V.8] for a proof based on Parrot’'s lemma and a discussion of the result’s
history. For d = 1, the converse deduction of Theorem 1.1 starting from Theorem 7.1
can be found in [13].

The paper is laid out as follows. In Section 2 we will give a more formal
background and introduce necessary notation. We will also discuss the relationship
between I'r z, Paley-Wiener spaces, and co-invariant subspaces of the Hardy spaces.
In Section 3 we will prove approximation results for distribution symbols with respect
to Hankel and Toeplitz operators, allowing us to reduce to smooth symbols. Section 4

briefly outlines what we need to know about convex sets and polytopes. In Section 5
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Nehari's Theorem in Several Variables 5

we prove Theorem 1.1, our Nehari theorem for Hankel operators. We also indicate how
the proof extends to certain unbounded polyhedral domains. In Section 6 our main
result on Toeplitz operators is shown, Theorem 6.1. Finally, Section 7 gives the proof of
Theorem 7.1.

2 Further background and related results
2.1 Hankel operators on multi-variable Hardy spaces

Let us begin by placing Hankel operators 'y into the context of classical Hankel
operators on Hardy spaces. As before, for g € L%(R%), let § = Fg denote its Fourier

transform,
9 =Fg®) = /R Lgme T dx, £ e R

For the inverse transform we write 7~!(g) = g. The product domain Hardy space Hé is
the proper subspace of LZ(R%) of functions whose Fourier transforms are supported in
the cone Rf_, R, = (0,00),

chi = {G € Lz(Rd) : supp GcC RTfr} .

We let P;: L2(R%) — H2 denote the orthogonal projection and let J: L2(R%) — LZ(R?) be
the involution defined by JG(x) = G(—x), x € R.
Consider I'y = I'y  for & = R% with f € L?(R%). For a dense set of g, h € L*(R$)

we have that

(Tpg, M) 2y = (FIG, R (2.1)

It follows that the (possibly unbounded) operator Iy Lz(Ri) - Lz(Ri) is unitarily
equivalent to the small Hankel operator Z;: H, 22— HZ,

Z;G = Py(f-JG).
Note that any b such that BlRS{ = f generates the same Hankel operator as f, Zy = ij'

To justify the above computation easily we assumed that f e L? (Rﬁf). An
approximation argument is needed to consider general symbols f, which may only be
distributions in Ri. We provide this later in Proposition 3.2. We can then read off the
boundedness of I's from the boundedness of the corresponding Hankel operator on chi'

When d = 1 and E = Q = R_, the analogue of Theorem 1.1 is exactly the classical
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6 M. Carlsson and K.-M. Perfekt

Nehari theorem. In higher dimensions the corresponding theorem is due to Ferguson—

Lacey-Terwilleger [18, 23]. In our notation, their results read as follows.

Theorem 2.1. Suppose E =Q = Ri’ and that f is a distribution in Ri,f € D’(R‘fr). Then
Tp: L2 (RY) — L?(RY) is bounded if and only if there exists a function b € L*(R%) such
that b'M = f. Moreover, there exists a constant ¢ > 0, depending on d, such that b can
be chosen to satisfy

clblig < 1Tl < 1Bl zo. (2.2)

For d > 1 it is not possible to take ¢ = 1 in (2.2), see for example [29]. This
result, as stated in [18, 23], requires that f € Lz(Rﬁf). The extension to the more general
situation considered here is a technicality, but for completeness the details are provided

in Section 3.
2.2 Hankel operators on bounded domains

We now discuss bounded domains E, the setting of our main result. The only convex
bounded domains in R are the intervals I c R. Translations, dilations, and reflections
carry the operator © onto Ff, ;» where J C R is any other interval and f arises from
transforming f appropriately. In one variable it thus suffices to consider operators
I'f 0,1y where E = (0,1). Rochberg [35] called these operators Hankel operators on the
Paley-Wiener space and proved Theorem 1.1 in the one-dimensional case.

In the same article [35], it is posed as an open problem to characterize the
bounded Hankel operators I'y z when E is a disc in R2. We are not able to settle this
question, but Theorem 1.1 does provide the answer when E = (0,1)¢ is a cube in R%.
As we will see, the Hankel operators I's  1)a constitute a natural generalization of the
Hankel operators on the Paley-Wiener space. On a technical level, the reason that we are
able to prove Theorem 1.1 when E is a simple convex polytope, but not when E is a ball,
is that we rely on Theorem 2.1. In applying Theorem 2.1 to our situation, the corners
of the boundary of E are actually of help rather than hindrance. We consider the case
of a ball to be an interesting open problem for which we do not dare to make a firm
conjecture. In view of Fefferman's disproof of the disc conjecture [17], Nehari theorems

might turn out to be quite different for balls and polytopes.

2.3 Toeplitz operators

When d = 1 and E = R,, @ = R, the operators ®f are known as Wiener-Hopf

operators [11, Ch. 9]. Analogously with Hankel operators, these can be shown to be
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Nehari's Theorem in Several Variables 7

unitarily equivalent to Toeplitz matrix operators on ¢2(N). In this case the boundedness

characterization is easy to both state and prove
[CHERT (2.3)

In Theorem 6.1 we extend (2.3) to Toeplitz operators O for a class of “cone-like”

domains E c RY, for which Q@ = & — & = R4,
2.4 Truncated correlation operators

For open connected sets E, T c R? it is also convenient to introduce the more general

“truncated correlation operators” Wy y 5: L?(Y) — L*(E), defined by

Wf@)(x)=ﬁf(X+y)g(y) dy, xe€&g,

where f lives on @ = E+ Y. This class of operators includes both general domain Hankel
and Toeplitz operators, by letting Y = E and T = —E, respectively.

For our purposes, general truncated correlation operators will only appear in
intermediate steps toward proving the main results, but they also carry independent
interest. They were introduced in [1], where their finite rank structure was investigated.
In [2] it was shown that they have a fundamental connection with frequency estimation
on general domains, motivating the practical need for understanding such operators,
not only on domains of simple geometrical structure. In [3] it is explained how one
may infer certain results for the integral operators W from their discretized matrix
counterparts. We warn the reader that in naming the operators I'y, O, and Wy we
have slightly departed from previous work, reserving the term (general domain) Hankel

operator for truncated correlation operators of the form Wy g .

2.5 Hankel operators on multi-variable Paley—-Wiener spaces

Another viewpoint is offered through co-invariant subspaces of the Hardy spaces Hé.
For a domain E c R%, let PW denote the subspace of L%(R%) of functions with Fourier

transforms supported in E,
PW; = {G e L*(R%) : supp G C E}.
In the classical case & = (0,1) C R, note that

PWo,,) = Hf ©{G € H : supp G C [1,00)} = H © 6H],
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8 M. Carlsson and K.-M. Perfekt
where
0(x) = %%, xeR.

Hence PW g 1, is the ortho-complement (in H7) of 6HZ, the shift-invariant subspace of H?

with inner factor 0. This space is usually denoted K},
. NI

By a calculation similar to (2.1) we see that I'r ;) is unitarily equivalent to the

compression of the Hankel operator Zf to PWq 1),

P00 = Pew,, Zplewg )0

where Ppy H? - PW ) denotes the orthogonal projection onto PW ;. Such
truncated Toeplitz and Hankel operators are now very well studied on general K-
spaces [6, 7, 9, 10, 14, 20, 27, 30, 36].

In the case of the cube E = (0,1)¢ c RY, d > 1, the Hankel operator Ff'E may, just
as for d = 1, be understood as the compression of a Hankel operator to a co-invariant

subspace of H3. Namely,
PW e ={Ge Hé : supp G c o, 1]d} ={G e Hﬁ . supp GC @\ O, 1)d}l.

2 oo mdy it 3 L L .
IfG e H;NL (R%), it is clear that GPW(O,I)d C PW(O,l)d’ since

F(GH)() = / GWHE —y)dy =0, HePW 4, &el0,1]
R4 '

+

Hence PW(lOI)d - Hg is an invariant subspace (under multiplication by bounded

holomorphic functions), and as before we have that

Trond = Prw  Zrlew

©1d ©ond’

where PPW(O,l)d : H2 — PW g 1)a denotes the orthogonal projection onto PW g ;ya.

Finally, let us briefly discuss the viewpoint of weak factorization. The Hardy
space H)} is defined as the closure of F~!(C3° (R%)) in L' (R%). Similarly, we define PWL as
the closure of F~! (CX(E)) in L'(R%). As is well known, see for example [24, Theorem 6.4],

Theorem 2.1 is equivalent to the fact that Hcli is the projective tensor product of two
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Nehari's Theorem in Several Variables 9
copies of H?,
H)=H20H?, (2.4)

with equivalence of norms. Here the projective tensor product norm on X©X, X a Banach

space of functions, is given by

IGlxex = inf } D IGiIxIHllx : G=D GH,;, G HieXt,
J J

X © X being defined as the completion of finite sums > ; G;H; in this norm.
The reason that Theorem 2.1 is equivalent to (2.4) is the following: by (2.1), Ff,Ri
is bounded if and only if

|(F, GH) a1 < CIIGllgz |1 Hl 2,

which means precisely that f induces a bounded functional on HZOoHS, fe (H3 0 H3)".
On the other hand, the existence of b € L°(R%) such that B|Ri :flRi' so that (f, GH)Hin =
(b, GH)Hé, G,H € H?, means, by the Hahn-Banach theorem, precisely thatf IS (Hcll)*.
Theorem 1.1 yields a similar weak factorization theorem for Paley—-Wiener
spaces. We postpone the proof to Section 5, but mention now that corresponding weak
factorization for K, spaces plays an important role in [6] and [9]. Corollary 5.3 might also
be compared to the results in [37], where weak factorization for multivariate analytic

polynomials is deduced as a consequence of Theorem 2.1.

Corollary 5.3. Let E be a simple convex polytope, and let 2 = 2E. Then
PW{, = PW, © PWy.
The norms of these Banach spaces are equivalent.

2.6 Brief historical overview

Z. Nehari published his famous theorem in 1957 [25], inspiring the search for analogous
statements in other contexts; positive results are themselves often referred to as Nehari
theorems. The most natural inquiries are perhaps those related to Hankel operators on
Hardy spaces of several variables. Nehari's theorem for the Hardy space of the unit ball
was proven by Coifman, Rochberg, and Weiss in 1976 [15, Thm. VII], but this setting is

rather different from the one considered in this paper.
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10 M. Carlsson and K.-M. Perfekt

For the product domain Hardy space H2, Hankel operators can be defined by
either projecting on Hg or on the larger space L%(R%) & Hé. The 1st option leads to the
“small” Hankel operators considered in Section 2.1, while the 2nd type of operator is
commonly referred to as a “big” Hankel operator. In the notation of Section 2.4, a small
Hankel operator is an operator \I'[f,lR‘f_ RrE = Ff,Ril' whereas big Hankel operators are of
the form W £ RERIRE” When transferred to operators on the Hardy space of the polydisc,
small Hankel operators correspond, in the standard basis, to infinite matrices with a
certain block Hankel structure (cf. Section 7).

The big Hankel operators were extensively studied by Cotlar and Sadosky. In
particular, boundedness of the big Hankel operators was characterized in terms of
certain BMO type estimates in [16]. Small Hankel operators were investigated by Janson
and Peetre [22] in 1988. They introduced “generalized Hankel and Toeplitz operators”
as particular cases of a more general class of pseudo-differential operators called
paracommutators. In their terminology, an operator of the form W, ;  is a generalized
Hankel operator if E and Y are open cones and E N (—Y) = {0}, whereas it is called
Toeplitz if EN(—T) # @. Hence the general domain Hankel operators Iy are generalized
Hankel operators a 14 Janson-Peetre whenever E is a cone with mild restrictions, while
©y 5 is a generalized Toeplitz operator a la Janson-Peetre for every open cone E. In the
Toeplitz case, a full boundedness characterization is given in [22, p. 482]. In the Hankel
case, only sufficient conditions for boundedness and Schatten class membership are
provided, in terms of BMO and Besov spaces, respectively.

As previously mentioned, R. Rochberg considered Hankel operators for bounded
domains in 1987 [35], studying the case of a finite interval in one dimension. Further-
more, he posed as an open problem to understand the case when & c R? is a disc. In this
latter setting, L. Peng [32] characterized when I'; z belongs to the Schatten class S,, for
1 < p < 2, in terms of certain Besov spaces adapted to the disc. L. Peng also carried out
a similar study [33] for the case of the multidimensional cube, E = (-1, )¢, describing
membership in S, for all p, 0 < p < oo, as well as giving a sufficient condition for
boundedness.

Since then it seems that the field did not see progress until the results of
Ferguson-Lacey-Terwilleger [18, 23] settled the issue of boundedness of small Hankel

operators.
3 Distribution symbols

Let E,T C R% be any open connected sets and let f € D'(Q) be a distribution on €,

Q = E + Y. We follow the notation of [21] in our use of distributions. We then define
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Nehari's Theorem in Several Variables 11

the truncated correlation operator Wy as an operator Wey g : C(Y) = C*(E) by the

formula

‘ij(QD)(X) = (f! TXQD), X € E/

where (f, ¢) denotes the action of f on ¢ and

Tyo() = (- = X).

We reserve the notation (f, ¢) for scalar products that are anti-linear in the 2nd entry.
Since Ty¢ is compactly supported in € for x € E, it follows that W,(¢) this is

well defined and smooth in E (see, e.g., [21, Theorem 4.1.1]). Since C;°(Y) is dense in

L2(7), W, gives rise to a densely defined operator on the latter space, which extends to

a bounded operator W;: L?(Y) — L?(B) if and only if

IWe(@) 2=
Wl = sup | —L—E 1y e (1), p £ 0} < o0,
lellzzer)

It is clear that Ve(p)(x) = [fx + y)e(y) dy whenever f € LIIOC(Q). By slight abuse of
notation, we write the action of W, in this way even when f is not locally integrable.
The central question in this paper is the following: for which domains Y and
E is the boundedness of e equivalent to the existence of a function b € L™°(R%) such
that bl = f? Some care must be taken in interpreting this question. For example, the

prototypical example of a bounded Hankel operator is the Carleman operator

Fixr, = Yix R R, -

The symbol f(x) = zerR+ (x) is in this case not a tempered distribution on R (so the
meaning of f is unclear)—it is, however, the restriction of the tempered distribution
P v.}{ to R, . An example with a delta function makes it clear that it is not necessary for
f to be locally integrable in Q either.

We first record the answer to our question in the trivial direction.

Proposition 3.1. Consider any connected open domains E, T C R4, with associated
domain Q = Y+E. Let b € L®(R%) be given and suppose f = b|,. Then Wp: L2(T) — L*(E)

is bounded and

el < 1101l oo (3.1)
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12 M. Carlsson and K.-M. Perfekt

Proof. For ¢ € C°(Y) we have that
We(p) = FMuJF gz,

where M, is the operator of multiplication by b. The statement is obvious from here. W

Next we establish two technical results on the approximation of distribution
symbols by smooth compactly supported functions, Propositions 3.2 and 3.3. They will
help us to overcome the technical issues mentioned earlier, in particular allowing us to
deduce Theorem 2.1 from the corresponding statements in [18, 23].

Given open connected domains E, T c R¢, let (Tn):):l be an increasing sequence

of connected open subdomains Y,, C Y such that

dist(Y,,,0T) > 1/n, U, Y

n

=T7.
Note that 2, = T,, + E is also increasing and satisfies
dist(2,,,9Q) > 1/n, U ,Q, = Q.

Let ¥ € C(R%) be a fixed non-negative function with compact support in the
ball B(0, 1/2) such that [pq ¥(x)dx =1.Forn > 1 let

¥, (x) = n%y (nx),

so that (y,,)7°, is an approximation of the identity. Since f € D'(R) and supp ¥,, C

B(0,1/2n), the convolution f v, is well defined as a function in C*(2,,,). Let p,, be a
smooth cut-off function that is 1 in a neighborhood of ©,, but zero in a neighborhood of
i

non-negative function n € C° (R%) with Inll;z =1, let w = n * 7, where 7(x) = n(—x). Then
w € Cgo(Rd) and

and note that p,(f * v,,) then naturally defines a function in C*°(R"). Finally, for a

©(0) = [l = 1.

Let w,,(x) = w(x/n). We introduce
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Nehari's Theorem in Several Variables 13

as an approximant of f, where the role of w,, is to enforce compact support in case Q is
unbounded. By construction, f,, € C(2) and it is straightforward to check that f,, — f

in D'(Q). As for Vg v, 5, we have the following result.

Proposition 3.2. Let E, T be connected open domains, 2 = Y + E, and suppose f €
D'(Q2). Forn > 1, let Q,, = T,, + E and f,, be constructed as above. Then

||“I’fn,'rn,5|| < ||\I/f*ra||

Proof. We can assume that Wr gl < oo, since otherwise there is nothing to prove.
First note that

Wy, (X) = / néoné)e? € gg,
Rd
the integrand on the right having L!-norm equal to &1 (ay- Letting g, = p,, (f * ¥,), we
have for ¢ € C°(T,,) and x € E that
_ dnr 2mi(x+y)-& _ d~ 2 i -x
Ve (@) (x) = n“w(né)e d¢ g, (x+y)e(y)dy = | nwné)e V, (pe)(x) d§,
Jn 1, Jrd Rd gn FtE
where ¢, (y) = e2"7¥¢(y). Since [, ;2 = ¢l it follows by the triangle inequality (for
L?-valued Bochner integrals) that
1V, v, 2l < 1l Y, v, all = 19y, 1, 2]
This reduces our task to proving that the operators
lllgnVTnlE = \pﬂn(f*Wn)ranE = lpf*WnrYnyE

are uniformly bounded in n. We have for ¢ € C2°(T,,) and x € E that

Y@ = [ [ Fecty) - 2@ dze ay
R4 JRA
= / flx+ z)/ V(v — 2)(y) dy dz = W, (1, * 9)(x),
R4 R4
where V/,,(x) = ¥,,(—x). Since

1Yy, * (ﬂ”LZ(T) < W lip ||§0||L2(Tn) =¥l ||€0||L2(Tn) = ”(p”Lz(Tn)’

this completes the proof. |
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14 M. Carlsson and K.-M. Perfekt

Proof of Theorem 2.1.  Suppose that I'; pa = Vg 5 ¢ is bounded, where E =171 = R%. In
RY fiof
this case, we let Y,, = (2/n, 00)4. By Proposition 3.2 we then have that

1T 0, < 19, v, gl < ITpgall, m2 1.

Since 1, = z,, + Rd, z, =(2/n,...,2/n), we have that

Tf 1, @) =T}, e @ (x = 2,),

where fn(x) =f,(x+2z,) and g,,(x) = g(x + z,,). Since fn € Lz(Ri), the computation that
led to (2.1) is justified, and we conclude from [18, 23] that there is b,, € L™ (Rd) such that

bular, =falov,: 16yl < ClITf gall.

By Alaoglu's theorem it follows that there is a weak-star convergent subsequence
(bnk)z‘):1 with limit b € L* having norm less than C||Ff Ri”' It remains to prove that
f= IA)leJr, that is, (f,¢) = (b, ¢) holds for all ¢ € ch(Ri). However, this is clear from the

construction; since ¢ € L' we have that

(b,§) = lim (b, ) = lim (f,,_, ¢) = (. ¢).
k— o0 k— o0
|

In Section 6 we will consider Toeplitz operators ® 5 for which @ = & — E = R4,
In this case f * ,, is a smooth function defined in all of R4, and there is no need to

multiply with p,, or to introduce the subdomains Y,,. In this case we simply let

Clearly, f,, — f in D'(R%) and we have, with the exact same proof as for Proposition 3.2,

the following approximation result.

Proposition 3.3. Let E, Y be connected open domains for which @ = ¥ + & = R?, and

suppose f € D'(R%). Forn > 1, let Sy, be constructed as above. Then

”\I’fn,T,E” < ||‘DfTa||
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Nehari's Theorem in Several Variables 15
4 On convex sets and polytopes

We recall some basic properties of convex sets. Given an unbounded convex set @ ¢ R
which is either open or closed, its characteristic cone, also known as its recession cone,

is the closed set
CCq = {XeRd Q+ xR, C Q).
The support function hg, : R — (—00, 0] is defined by

hg(0) =supx-0.

xeQ

We refer to [21, Sec. 7.4] for the basic properties of hg. The barrier cone of Q is the set

bcg = {0 € R? : hg(6) < oo}. (4.1)

The characteristic cone cc, coincides with the polar cone of the barrier cone bcg,
that is,

ccgz{xeRd :x-y <0, Vy ebcgl.

To give a complete reference for this claim, first note that for closed convex sets €,
ccg, coincides with the asymptotic cone of 2, giving (4.1) by [4, Theorem 2.2.1]. When
Q instead is open and convex we have that Q is equal to its relative interior ri(2), and
since ccyyq) = CCg [8, Proposition 1.4.2], it follows that ccq = ccg in this case.

We next recall some standard terminology and facts of polytopes, referring to

for example [12, Ch. 7-9]. By an open half-space in R? we mean a set
H;:{XeRd XV >r},

where v € R? is a non-zero vector and r € R. A closed half-space is the closure of such a
set. A finite intersection of half-spaces is called a polyhedral set.

A convex polytope is a bounded polyhedral set. A closed convex polytope is the
convex hull of a finite set of points. The minimal set of such points coincides with the
extreme points of the polytope, that is, its vertices. If the minimal number of defining
hyperspaces of a convex polytope is d + 1 (equivalently, if it has precisely d + 1 vertices),
the polytope is called a simplex. For a non-closed polytope we define its vertices (and
its edges and facets) as those of its closure.

The boundary of a polytope set is made up of a finite amount of facets (i.e.
d — 1 dimensional faces), see Corollary 7.4 and Theorem 8.1 of [12]. For a polytope I1
with vertex x;, we denote by Ogar,x, T1 the part of its boundary made up of all facets not
containing x;.
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16 M. Carlsson and K.-M. Perfekt

A vertex of a polytope will be called simple if it is contained in precisely d of its
edges. We say that a polytope is simple if all of its vertices are simple, which coincides
with the standard terminology. Equivalently, this means that each vertex is contained
in precisely d of its facets (cf. [12, Theorem 12.11]).

By an affine linear transformation we mean a map of the form A(x) = x; + L(x)
where L is a linear map, and we call x; the origin of such a map. The following simple

lemma gives a 3rd characterization of simple vertices.

Lemma 4.1. Let {XJ-}JJ:1 be the vertices of a closed polytope Il. Then the vertex x; is
simple if and only if it is the origin of an invertible affine transformation A; such that
IT locally coincides with Aj(Ri) around Xj, in the sense that A]._1 (I’ Ri and the facets

of AJ._I(I'I) containing 0 are precisely those of the form
A_l(l'[)ﬁ{xeRd i x-e,=0}, 1<k<d,

where {ek}g:1 denotes the standard basis of R<.

Proof. We may assume that x; = 0 is simple and that x,,x5,...,x;,, are the other
endpoints of the edges containing 0. Let A: R — R% be the linear map such that Aep) =
Xpy1 1 < k < d. A is invertible [12, Corollary 11.7], so that A~I(ID) is a closed convex
polytope contained in @. Since 0 is a vertex of A~1(IT) with adjacent vertices ey, ..., eg4,
the d facets containing 0 must be precisely those of the form A~ (IT)N{x € R? : x-e;, = 0}.

For the converse, simply note that the property of being a simple vertex is

preserved under affine isomorphisms. |

By compactness it is easy to construct a partition of unity adapted to the vertices
of II.

Lemma 4.2. Given a polytope I1 with vertices {XJ-}J“.’:1 there exist functions {,uj}JJ:1 such
that u; € CPRY), Zle pj(x)=1forxe T, and SUPPLL; M par, 11 = a.

Proof. Fore>O0and1l <j<J,let

Vi={xe R? | dist(x, Ogarx,T1) > & and dist(x, TD) < 1},

Since every x € II is contained in some set V]‘8 there is by compactness a fixed g5 > 0

such that TT UJJ:1 V]‘?O. Let V;,; = R?\TI and choose a smooth partition of unity {Mj}jill

of R% subordinate to Vfo, ., Vjo, V;i1- Then {Hj}le is the required partition of unity. B
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Nehari's Theorem in Several Variables 17
5 General domain Hankel operators

We now consider general domain Hankel operators I'y ; for convex domains E. Observe
that in this case @ = E + E = 2E. We begin with a proposition that links the bounded

Hankel operators with weak factorization.

Proposition 5.1. Let E be an open convex domain. Then

X ={rpz Izl < o0)

is a closed subspace of the space of bounded linear operators on L%(E). As a Banach
space, it is isometrically isomorphic to the dual space (PWg © PWy)*. More precisely,
bounded functionals u on the projective tensor product correspond to distributions f

on Q2 = 2E,
(f,9) =u(F g, geCl ),

for which Tf gl = llull.
Proof. The main fact to be proved is that
FHCP(Q) c PW; 0 PW,.

Since CX(E) is dense in L%(8), it then follows that F~HCX(Q)) is dense in the product
PWz O PWy.

We will actually show a little more than the claim. Namely, every g € C2°(2) can
be written

g= Zsk * by, Sp,tp € L%(&),
k

in such a way that the corresponding map g — > Iskllz2z)lltkliz2(z) is continuous from
CX(2), equipped with the usual test function topology, to R. By employing a partition of
unity in which each member is compactly supported in a cube, it is sufficient to prove
the claim when E = (0, 1/2)<. For this we employ Fourier series. Let A(t) = 1/2—|t—1/2],
t € [0, 1], and let

d
A =[]rx), xe@©D?
i=1

Note that A is in the Wiener algebra A([0, 1]), the space of functions on [0, 1] with

absolutely convergent Fourier series, equipped with pointwise multiplication. Therefore
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18 M. Carlsson and K.-M. Perfekt

A is in the Wiener algebra A([0, 119), since A is a tensor power of . Since g € C°((0,1)%)
and A is non-zero on compact subsets of (0, 1)? it follows by Wiener's lemma [19, Ch. 5]

that g/A € A([0, 1]1%). Expanding g/A in a Fourier series,

G/M@) = D qe?™ D g <o, xel0,11%,
kezd kezd

let t;.(x) = eiznk'xx(o,l/z)d(x), S; = ait. Then a computation shows that
(s * 1) (x) = ™ A(x), x€(0,1)%,

so that

9= skrte D Isllzqo/p Itlzzqo, /29 < oo
kezd kezd
An inspection of the argument shows that the operation g — g/A is continuous from
cx((0, 1)%) to A([0, 119), and therefore g >k Iskllzz 0,172 1tk llz20,1/2)9) is continuous
on C°((0, D)%) as promised.
Suppose now that u € (PWz © PWg)*. We have just demonstrated that (f,g) =
wF1lg), g e CX(R2), defines a distribution on Q. Hence we may consider the Hankel

operator I'y . For g, h € C°(E) we have that
(Trg, hppe = (F.9x ) = w(F'g-F1h). (5.1)
Since u is a bounded functional on PWz; © PWg we conclude that

(s B2z ) < IlIF Gllpw IF  llpyr, = Illlglz2ce) 1Rl @),

that is, Irg is bounded, and in fact ITA = Nl Conversely, if f is a distribution on Q
such that I'fz is bounded, it is clear that f induces a bounded functional 4 on PWz ©
PW by (5.1). This proves that X is isometrically isomorphic to the Banach space (PWz©
PWyg)*, which also entails that X is closed, completing the proof. |

In the remainder of this section we assume that E is a convex polytope. Next
we prove Theorem 1.1 under the additional assumption that f is supported around one

simple vertex of Q.
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Nehari's Theorem in Several Variables 19

Proposition 5.2. Let & c R% be an open convex polytope, x a simple vertex of Q = 28,
and let f € D'(Q) be such that supp f N d¢,, , 2 = 0. If 'y is bounded as an operator on
L%(2), then there exists a b € L*(R%) such that BlQ =f.

Proof. As in Lemma 4.1, let A be an affine transformation with origin x such that
A(Ri) locally coincides with E around x. It is straightforward to verify that it suffices
to prove the proposition for I'fon.a-1(g)- Since A~1(B) is also a convex polytope, we may
hence assume that x = 0 and that Q locally coincides with ]Ri around O. In particular,
QC Ri. Since supp f c Q and supp f N gar,0§2 = 0, we can extend f to a distribution on
all of R‘f_ by letting it be zero outside Q. Our strategy is to show that the operator Ff,R‘j_
is bounded and to then apply Theorem 2.1.

Forn € N% let C, denote the cube (n,,n;+1)x...x(ng,ny+1). ForasetX C R%,
let Py: L2(R%) — L?(R%) denote the orthogonal projection of L?(R$) onto L?(X), and let
r > 0 be such that

2+/dr < dist(supp [ dggp,0€2)-

By considering test functions g € C° (Ri) such that supp g N rC,, C rC,, for every m, we

give meaning to the equality

Crpa = | 22 Prey | Tpaa | 20 Prow | = 22 PreTpaaPre,

neNd meNd m,neNd

aterm Prg I'ppaPrg, being non-zero only if
(rC,, +rC,) Nsupp f # 9. (5.2)

Hence there are only finitely many non-zero terms in the decomposition. Since

“PrCn Ff'RiPrCm ” = ”‘ij,rcm,rcn “/

recalling the definition of e from Section 2, it therefore suffices to prove that
1¥f rc,p rc, | s bounded whenever (5.2) holds. If rC,,, rC,, C E there is nothing to prove
since I'y 5 is bounded by hypothesis. For the other terms, note that (5.2) and the choice

of r implies that

rC,, +1C, C 2, (5.3)
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20 M. Carlsson and K.-M. Perfekt

since 2+/dr is the diameter of rC,, + rC,. For any z € R?, x € rC,,, and g € CX(rC,,) we
have that

Ve rGrCn (@) (X) = / fx+ygy)dy = / . f&x+(y —2)9(y —2)dy,
m rCm+z

rC,
and hence

l ‘Df,rCm,rCn =1 \ij,rCm+z,rCn —z [

In particular, for z = r(n — m)/2 we obtain that

||qlf,rcm:rcn ” = ”\yf,TCm;n ,rcmg—n ” :

However, 2rCmin = 1Cy, + 1C;, 50 by (5.3) we conclude that rCmin C E. The desired
boundedness now follows as it did in the first case considered.

We have just demonstrated that ||I‘f'R$ | < oco. By Theorem 2.1 there exists a
function b € L>°(R%) such that BIRﬂf = f. This in particular implies that B|Q = f when we

return to the initial interpretation of f as a distribution on . |
We are now ready to provide the proof of Theorem 1.1.

Theorem 1.1. Let E be a simple convex polytope, and let f € D'(2), @ = 2E. Then
Tp: L(8) — L*(E) is bounded if and only if there is a function b € L®°(R%) such that
IAalg2 = f. There exists a constant ¢ > 0, depending on E, such that b can be chosen to

satisfy

bl < ITfN < 1Bl oo

Proof. Assume that I'; is bounded. Let {X]-}]J:1 be the vertices of Q, and let {uj}le be

partition of unity as in Lemma 4.2. For ¢ € C°(E) and x € E we have that
T,r@)x) = P& QE Fx +y)p(y) dy = | (67X Tp(p;) (x) dE,
Hi gJra’’ Rd 7 ¢
where g, (y) = e?"74¢(y). Hence, I L%(E) - L2(E) is bounded,

I, rll < il Tl
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Nehari's Theorem in Several Variables 21

Therefore, by Proposition 5.2 there are functions b; € L such that u;f = leg. Thus
f = Blg, where b = Z}:l b; € L™. Conversely, if f = B|Q, where b € L™, then I'y is
bounded by Proposition 3.1.

The constant ¢ now arises from abstract reasoning. Consider the Banach space
X = {rf,E Ty el < oo}

of Proposition 5.1. We have just shown that b — Thio.z is a map of L™ onto X. The open

mapping theorem hence guarantees the existence of c. |

We immediately obtain the corresponding result for Toeplitz operators, when
E is a simple convex polytope, which, possibly after a translation, is symmetric under

X — —X.

Corollary 1.2. Let E be a simple convex polytope such that for some z € R? it holds
that E+z=—E—z Letf € D'(Q), @ = E — E = 2E + 2z. Then O is bounded if and only
if there exists a function b € L®°(R%) such that BlQ = f. There exists a constant ¢ > O,

depending on E, such that b can be chosen to satisfy
Cliblligee < 1Of11 < NIbllgeo-

Proof. In this case ©pg = I';g, where fx) = f(x + 22), x € 28, and §(x) = g(—x — 2z),

—

x € E. Hence the result follows from Theorem 1.1. | |
We also deduce the weak factorization result for PW}z, see Section 2.5.

Corollary 5.3. Let E be a simple convex polytope, and let 2 = 2E. Then
PW, = PW, © PW-.

The norms of these Banach spaces are equivalent.

Proof. By Cauchy-Schwarz, the inclusion I: PWg © PWg — PW{, is bounded. Since I
has dense range by Proposition 5.1, the adjoint I*: (PW{,)* — (PWg © PWg)* has empty
kernel. Suppose u € (PWgz © PWg)*. Note that CG(x) = G(—x) defines an anti-linear

isometric involution C: PW;OPW g - PW;OPWy. This induces an anti-linear isometric
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22 M. Carlsson and K.-M. Perfekt

involution D: (PWg © PWg)* — (PWgz © PWg)*,
Du(G) = n(CG), G ePWg0OPWg.

According to Proposition 5.1, (f,9) = u(F~1g), g € CX(R), defines a distribution
on Q such that ITfell = llnll. By Theorem 1.1, there is a function b € L*®(R%) such
that b|g, = f. Since PW}, c L'(R?), we can interpret b as an element of (PWL)*, b(G) =
(G, b>L2(Rd). Then, recalling that JG(x) = G(—x), we have that

DI*b(G) = (b,JG) = (f, F'JG) = (f, FG) = u(G), G e FLCX(Q)),

that is, DI*b = u, or I*b = Dpu. Since D is an involution, it follows that I* is onto.
In other words, I*: (PW}Z)* — (PWgz © PWg)* is a Banach space isomorphism,

and therefore the inclusion I: PWg © PW; — PWY, is as well. Hence,
PW, © PW = PW},,

and the norms of these two Banach spaces are equivalent, by the open mapping

theorem. |

The method used to prove Theorem 1.1 extends to many unbounded polyhedral
sets. Instead of pursuing a general statement, let us consider the example of a strip

in R?,
E=R, x (0,1). (5.4)

This is an interesting addition to Theorem 1.1, since E does not have a simple vertex at

infinity. In fact, dE may be considered to have a cusp point there.

Proposition 5.4. Let E be the strip defined in (5.4), and let f € D'(RQ), Q = 2E. Then
g L%(E) — L2(E) is bounded if and only if there is a function b € L*®(R%) such that

Bls‘z =f.

Proof sketch. Let v, v, € C°(R) be functions such that v, (t) + v,(t) =1 for t € [0, 2], v,

vanishes in a neighborhood of 2, and v, vanishes in a neighborhood of 0. Let

Mj(X) = Vj(Xz)r Jj=12x= (X1,X%,) € Q.
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Nehari's Theorem in Several Variables 23
Then for ¢ € C°(E) and x = (x;,X,) € E we have that
P () () = / / b(6)e2T 0% dg Fx + p)p(y) dy = / (62T T g, (%) d,
J g JR R

where P:(¥) = eZ”iYﬁ(p(y), ¥ = (¥1,¥,) € E. Hence, as before we see that

IT,p 2l < 10Ty, gl =12, (5.5)
As in Proposition 5.2 and Theorem 1.1 it is sufficient to see that I',, L*(R%) - L*(R%)
and T, L*(R, x (—o00,1)) = L%(R, x (—oo,1)) define bounded operators, and by
symmetry it is sufficient to consider the first of the two.

Forn e N, let S,, denote the strip R, x(n,n+1), and let r > 0 be such that

2r < dist([0, 2] N supp vy, 2).

We decompose I, ¢ L?(R%) — L?(R?%) according to strips instead of cubes,

Tupz = D Prs,Tus,r2 Prs,

m,neN

There are only a finite number of non-zero terms in this decomposition, and for any

such term we have by our choice of r that
rS,, +1S, C Q. (5.6)

For n, m corresponding to a non-zero term, we have that

”PrSnme,RiPrSm” = Vo f i s, |l = MWy £ 1S4 208, —2ll = ”\Illl-lfrrsmérn TSmin Il

where z = (0,r(n — m)/2). Since rSmm C E by (5.6) and T, ¢: L%(E) — L%*(B) is
bounded by (5.5), we conclude that each non-zero term Prs,Ur w2 Prs,, is bounded.
Hence I', ;: L*(R%) — L*(R}) is bounded, finishing the proof. [ ]

6 General domain Toeplitz operators

In this section we consider general domain Toeplitz operators on open convex domains

c R4 such that both ccg and bcg have non-empty interior (as in the classical case

O O]

= R,). This forces E to be unbounded and, as we shall soon see, it also entails that
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Q=

there are points x; and x; for which

el

— & = R%. We shall also consider more general open connected sets E such that

x+ECECxy+E, (6.1)

—

and prove that 107zl = ||]2'||LOO under this hypothesis. This allows for domains E
with very irregular boundaries, in sharp contrast to Theorem 1.1. The corresponding
class of operators Oz partially extends the class of generalized Toeplitz operators
considered in [22], see Section 2.6. The next theorem can also be recovered by verifying
the hypotheses of and keeping track of the constants in the proof of [22, Theorem 5.4].

However, for completeness we prefer to give our own concrete proof.

Theorem 6.1. Let E be a set as above. Then E — E = R? and, for f e D' (R%), we have

that ©;: L*(E) - L*(E) is bounded if and only if f € F~!(L°). Moreover, | ©|| = IF ll o

Proof. Fix z € R% and set |z| = R. Pick a vector e e int(ccy) with distance greater
than R to the complement of ccg, which is possible since ccg is a cone with non-empty

—

interior. Then e + z € ccg, so for any x € € we have that x;, + x+e+z e x; + E C E.
Similarly, x; + x + e € E. Since z is the difference of these two vectors, the 1st claim
follows.

Suppose that we have proven the theorem for all f € C(R%). If f is a general
symbol for which Oy is bounded, consider the sequence of functions f,, € C° (R%) from
Proposition 3.3. Then f,, has, by Alaoglu’s theorem, a subsequence f, that converges
weak star in L* to some element g. Since f,, converges to f in distribution, it must be

that g =f'. Hence f € F~1(L*) and, by Propositions 3.1 and 3.3, we have that

I Flizee < klggo Ifny e = klggo 107, I < 191 < Il fllgee-

This proves the theorem for general symbols.
Hence we assume that f € ch(Rd). Fix £ € RY, pick any vector v in int(bcz), and

consider for ¢ > 0 the function

E (x) = eEX‘”+2”iX'5XE(X), X € EB.
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By [1, Lemma 9.5] this function is in LZ(X0 + &) (The set bcz was denoted © in [1].) and

hence E, € L?(E). We use E, as a test function:

(OE,, E,)
IE 12

10 > ’

1 .
= ‘ IE |2 //f(x — y)ea(x-l-y)vezﬂl(y—x).gxg(Y)XE(X) deX’
&

1 o |
- ‘ 1 [ f@e e [ e e dy dz
&€

Hence it follows that 1©f]l > [f(é;‘)l upon showing that

Z-v
eé‘

slir& |E, |12 /ezsy'vxs(zﬂ)xs(y) dy =1 (6.2)
&

uniformly on compacts in z. Since & is arbitrary this establishes that 1©fll > ||]2'||LOo and
by Proposition 3.1 we then conclude that 1©fll = ||f||Loo.
Fix R > 0 and suppose that z € R? with |z| < R. Again, pick a vector e € int(ccg)

with distance greater than R to the complement of ccz. Then e 4 z € ccg, and therefore
—z+ED-z+(x;+E)D—z+x+(e+2)+EDx;+e—x3+x9+EDx; +e—x,+ E.

With x, = x, +e—x, we have just shown that x,+E C —z+E. It also holds thatx,+E& C &,
by the last inclusion in the above chain and the fact that x; + e+ E C x, + E C E. This

gives us that

X2V —%) = XxgWIxgy —X2) < xgWxg(y +2) < xg(¥),

and hence that

e 2V ||E, || =/62*’"Y'”x3(y—Xz)dy < /ezay'”xE(erz)xE(y) dy < /ez”"”xE(y) dy = |IE,|I*.

The desired equality (6.2) is now immediate, completing the proof. |

Corollary 6.2. Let & C R? be any open connected domain such that

(1,000% c E C (0,00)¢,
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and let f € D'(R%). Then O L%(E) — L?*(8) is bounded if and only if f is a tempered

distribution and ||f||Loo(Rd) < 00, and in this case

[CHERT

7 Bounded extension of multilevel block Toeplitz/Hankel-matrices

In this section we interpret Corollary 1.2, when E is a d-dimensional cube, as a result
on the possibility of extending finite multilevel block Toeplitz matrices to infinite
multilevel block Toeplitz matrices which are bounded as operators on ¢2. In view of
the equivalence between Toeplitz and Hankel operators on the cube (cf. the proof of
Corollary 1.2), and a similar equivalence for finite Hankel and Toeplitz matrices, we
could equally well make the analogous statement for multilevel block Hankel matrices.
We present only the Toeplitz case. Such matrices appear in various applications, for
example in multi-dimensional frequency estimation. Note in particular that Pisarenko’s
famous method for one-dimensional frequency estimation [34], which relies on the
classical Carathéodory-Fejér theorem, was recently extended to the multi-variable case
[39] (see also [3]).

When d = 1 our statement reduces to a well-known theorem on extending
finite (ordinary) Toeplitz matrices, appearing previously for example in [5] and [26]. To
describe it, recall that a finite N x N Toeplitz matrix is characterized by its constant
diagonals, whose values we denote by a = (a_py,;,...ay_;). As an operator T, on

¢2({0,...,N — 1)), its action is given by
N—1
T,(v)(m) = Z Ay nVy VeEL{0,...,N—1}), me{0,...,N —1}.
n=0

We can also consider the case when N = oo, the definitions extending in the obvious
way. The completion result then states that it is always possible to extend a to a bi-
infinite sequence a such that the corresponding Toeplitz operator T;: £2(N) — ¢%(N)

satisfies
IT;N < 3| T,Il.

It is an open problem whether the constant 3 is the best possible in this inequality. A
discussion offering different approaches to the optimal constant can be found in [9]. See
also [36].
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.....

block Toeplitz matrix T,. As an operator on ¢2({0, ..., N — 1}%) it is given by the formula

T,Vm) = > @y v, vel’{0,....N—1}%), me{0,...,N-1}%
ne{0,...,.N—1}d

To understand this matrix, consider the d-level block Toeplitz matrix T, as an ordinary

N x N-Toeplitz matrix with entries which are (d — 1)-level block Toeplitz matrices,

T, ={Ai_jlijeo,..n-1y  Ai = {8 m—n)}mneo,.. . n—1}d-1-

For instance, a multilevel block Toeplitz matrix for d = 2 is an N x N Toeplitz matrix
whose entries are N x N Toeplitz matrices. Again, we allow for the possibility that N =
00. We now provide the multilevel block Toeplitz matrix analogue of the Toeplitz matrix

completion theorem.

Theorem 7.1. There exists a constant C; > 0 such that any finite multi-sequence a
can be extended to an infinite multi-sequence @ on Z<¢ for which T;: ¢2(N%) — ¢2(N9) is

bounded with norm

1Tzl < CgqliT,ll-

Proof. Let

where §,, is the Dirac delta function at n,
8.(9) = p(n), ¢ e CRRY.
Set & = (0, N)¢ and consider Of = Of 5. Given g € C;°(E), a short calculation shows that

Q@) = D> a,gx—n), xe©N.

neZin(x—g)

Withx=m +r, where m € {0,...,N — l}d and r € [0, 1)¢, this can be rewritten

®f(g)(m +r) = Z Ak 9(r + k).
kef{o0,...,.N—1}d

020z Asenuer |z uo Jasn Buipeay Jo AlsIaAlun AQ 12501 9S/E6 | ZUd/UIWI/SE0 "0 |/I0P/10B11Sqe-]01iB-80UBAPE/UIWI/WOD dNO"dIWSpe.//:Sd)y Wol) PapEojumMo(



28 M. Carlsson and K.-M. Perfekt

.....

Or(@(m +1) =Ty(g,)(M).

> 0@+ 1) =T @I < IT 129,12 = 1T, 12 D) lgm+n)l*.

Integrating both sides over r € (0, 1)¢ gives us that 10£@)1? < T, II%llgl*. In other words,
O L2(E) > L%(E) is bounded and

O£l < 1Tl

Noting that the constant c in Corollary 1.2 is invariant under homotheties, we find that
there exists a distribution f —beD (R%), coinciding with f on (—N, N)4, such that

10z gall < CallTell,

where C; only depends on the dimension d. Of course, ®f,Rd : L2(RY) > L%(R%) is nothing
but the operator of convolution with f.

Now pick any function ¢ € CX((—1/2,1/2)%) with [ |p|?dx = 1 and consider the
isometry I: ¢2(N%) — L2(R%) given by

Iv(x) = Z v,p(x—n), Ve Zz(Nd), x e RY,

neNd
Then
rom = [ gwpk—mdx geF®, e
It follows that

I*©Iv(m) = z GpynVy V€ L2(NY), m e N9,

neNd

where

dn=/ / fx-y+neyex dyds, nez
Rd JRA
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That is, I'* ®J~J = T;. It is clear by construction that a is an extension of a,

&nzan/dep(y)lzdy:an, ne{—N+1,...,N—1}d.

This finishes the proof. |
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