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Abstract
Introduction  The rapid expansion of Type 2 Diabetes (T2D), that currently affects 90% of people suffering from diabetes, 
urges us to develop a better understanding of the metabolic processes involved in the disease process in order to develop 
better therapies. The most commonly used model for T2D research is the db/db (BKS.Cg-Dock7 < m > +/+ Lepr < db >/J) 
mouse model. Yet, a systematic 1H NMR based metabolomics characterisation of most tissues in this animal model has not 
been published. Here, we provide a systematic organ-specific metabolomics analysis of this widely employed model using 
NMR spectroscopy.
Objectives  The aim of this study was to characterise the metabolic modulations associated with T2D in db/db mice in 18 
relevant biological matrices.
Methods  High-resolution 1H-NMR and 2D-NMR spectroscopy were applied to 18 biological matrices of 12 db/db mice 
(WT control n = 6, db/db = 6) aged 22 weeks, when diabetes is fully established.
Results  61 metabolites associated with T2D were identified. Kidney, spleen, eye and plasma were the biological matrices 
carrying the largest metabolomics modulations observed in established T2D, based on the total number of metabolites that 
showed a statistical difference between the diabetic and control group in each tissue (16 in each case) and the strength of the 
O-PLS DA model for each tissue. Glucose and glutamate were the most commonly associated metabolites found significantly 
increased in nine biological matrices. Investigated sections where no increase of glucose was associated with T2D include 
all intestinal segments (i.e. duodenum, jejunum, ileum and colon). Microbial co-metabolites such as acetate and butyrate, 
used as carbon sources by the host, were identified in excess in the colonic tissues of diabetic individuals.
Conclusions  The metabolic biomarkers identified using 1H NMR-based metabolomics will represent a useful resource to 
explore metabolic pathways involved in T2D in the db/db mouse model.

Keywords  Type II Diabetes · Metabolome · Nuclear magnetic resonance (NMR) spectroscopy · db/db mouse

Abbreviations
NMR	� Nuclear magnetic resonance
T2D	� Type two diabetes

1  Introduction

Type II Diabetes (T2D, also known as non-insulin-depend-
ent, or adult onset diabetes) is a complex metabolic dis-
order characterised by insulin resistance and systemic 
hyperglycaemia (Tai et al. 2015). Common associated co-
morbidities include kidney failure, nerve damage, blindness 
and cardiovascular diseases caused by poorly controlled 
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hyperglycaemia (Amin et al. 2010; Anavekar et al. 2004; 
Trautner et al. 1997). The dramatic rise in diabetes has 
become a world leading cause of concern as it currently 
affects 422 million adults and results in circa 1.5 million 
deaths directly attributed to diabetes each year (http://www.
who.int/diabe​tes/en/); T2D represents around 90% of the 
cases. T2D is also an increasing clinical issue among chil-
dren and adolescents, who suffer more aggressive complica-
tions than adults or paediatric T1D, including hypertension, 
proteinuria, peripheral and autonomic neuropathy, renal dis-
ease and retinopathy (Krakoff et al. 2003; Eppens et al. 2006; 
Yokoyama et al. 1997; Group 2012).

Systematic metabolomics characterisation of various 
research models such as rodents, chickens, pigs, humans 
and horses have been published in the past (Claus et al. 
2008; Le Roy et al. 2016; Martin et al. 2007; Merrifield 
et al. 2011; Ndagijimana et al. 2009; Holmes et al. 1997; 
Escalona et al. 2015; Mora-Ortiz et al. 2019), but to date, 
a comprehensive metabolic phenotyping of the leptin 
receptor defective (db/db) T2D mouse model: BKS.Cg-
Dock7 < m > +/+ Lepr < db >/J is missing. Previous reports 
have characterised relevant biological matrices such as 
urine, plasma and kidneys, showing an increase in glu-
cose levels and modulations in the tricarboxylic acid cycle 
(TCA cycle), branched-chain amino acids (BCAAs) levels, 
homocysteine-methionine metabolism and ketone and fatty 
acid metabolism at different stages of the disease. However, 
a systematic metabolomics characterisation of this animal 
model in a large number of biological matrices has never 
been published. Therefore, we herein provide a useful 
resource to progress in the understanding of organ-specific 
metabolic alterations in established T2D in the db/db mouse 
model (Saadat et al. 2012; Wei et al. 2015; Gipson et al. 
2008; Connor et al. 2010; Kim et al. 2016; Salek et al. 2007; 
Wei et al. 2015).

Here, we characterised the metabolic profiles of 18 bio-
logical matrices relevant to T2D pathology in the widely-
used mouse model BKS.Cg-Dock7 < m > +/+ Lepr < db >/J.

2 � Materials and methods

2.1 � Animal handling and sample collection

In order to characterise the metabolic fingerprint of T2D, 
twelve four-week-old mice (females, n = 8; males, n = 4) 
from the strain BKS.Cg-Dock7 < m > +/+ Lepr < db >/J 
and their corresponding WT controls were acquired from 
Charles River Laboratories, Italy. Animals were allocated 
into two different homogenous environments, diabetic and 
control, according to their genetic background (db/db = 6, 
of which 4 were females and 2 males; control = 6, of which 
4 were females and two were males) and bedding from each 

environment was mixed on weekly basis to minimise cage 
effect. After one week of acclimatisation, body weight was 
recorded on a weekly basis starting from week six. Animals 
were humanely euthanized by neck dislocation, accord-
ing to the specifications of the United Kingdom Animals 
(Scientific Procedures) Act, 1986 (ASPA), when they were 
22 weeks old. The procedure was performed first time in 
the morning.

Cerebrum, cerebellum, hypothalamus, eyes, kidneys, 
spleen, liver, white adipose tissue (WAT), muscle, heart, 
intestinal sections (duodenum, jejunum, ileum, proximal 
colon, mid colon and distal colon), urine and blood were 
aseptically collected and immediately frozen in liquid nitro-
gen to be later on kept at − 80 °C until the day of the analy-
sis. NMR sample preparation is detailed in S1.

2.2 � NMR analysis

1H NMR spectra from all biofluids and extracts, except 
the liver, were acquired on a Bruker Avance HD 700 MHz 
(Bruker BioSpin, Rheinstetten, Germany) with a TCI Cryo-
probe and equipped with a cooled SampleJet sample changer 
from the same manufacturer. For liver samples, NMR spec-
tra were acquired on a Bruker Avance III 500 MHz NMR 
spectrometer (Bruker BioSpin, Rheinstetten, Germany) 
equipped with a High-Resolution Magic Angle Spinning 
1H NMR probe from the same manufacturer at a rotational 
speed of 5000 Hz.

For each one-dimensional (1D) NMR spectrum (for each 
tissue), a total of 64 scans were accumulated into 64 K data 
points with a spectral width of 13 ppm. Two types of 1D 
experiments were recorded, using standard pulse sequence: 
Carr–Purcell–Meiboom–Gill (CPMG, cpmgpr1d) (Mei-
boom and Gill 1958) and 1D NOESY (noesypr1d), both 
with water suppression applied during the relaxation time 
for 3 s. The mixing time of the noesypr1d was 50 ms in the 
case of the 500 MHz, and 10 ms in the case of the 700 MHz. 
The CPMG T2 filter was set at 39 ms. Additionally, one 
Correlation Spectroscopy (1H–1H COSY) was acquired on a 
selected representative sample from each bio-fluid and liver 
(Aue et al. 1975).

2.3 � Data processing and statistical analysis

Descriptive statistics and one-way ANOVA (factor = genetic 
background) were carried out on body weight, body weight 
gain (body weight i at time x − body weight i at time 0), 
liver and WAT relative weight (tissue weight i/body weight 
i) using RStudio (version 0.99.489—© 2009–2015 RStudio, 
Inc).

Spectra were pre-processed using MestReNova version 
11.0.2-18153 (Mestrelab Research S.L., Spain) with manual 
phasing followed by automatic baseline correction using the 

http://www.who.int/diabetes/en/
http://www.who.int/diabetes/en/
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Whittaker smoother algorithm and manual multipoint base-
line correction when appropriate. Chemical shift calibra-
tions were carried out relative to TSP (δ 0.00) for all tissues, 
except for liver and plasma where the glucose anomeric peak 
(δ 5.223) was used. NMR spectra were imported into Matlab 
version R2015b (Mathworks, UK) and analysed using the 
statistic toolbox and algorithms provided by Korrigan Tool-
box version 0.1 (Korrigan Sciences Ltd., U.K.). In Matlab, 
residual water (δ 4.70–5.10) and noise (regions before δ 0.5 
and after δ 9.5) were removed prior to matrix normalisation 
using a median-based probabilistic quotient method (Diet-
erle et al. 2006), except for plasma. The statistical strategy 
adopted for the analysis of the samples involved a prelimi-
nary unsupervised Principal Component Analysis (PCA), 
followed by a supervised pairwise Orthogonal Projection 
to Latent Structures Discriminant Analysis (O-PLS DA) 
(Bylesjö et al. 2006; Cloarec et al. 2005), which allowed 
the identification of specific modulations driven by T2D 
metabolic impairments. O-PLS DA models were evaluated 
for goodness of prediction (Q2Y value) using 7-fold cross-
validation. Random permutation testing (300 randomisa-
tions) was then applied to validate the models and calculate 
a p value, which is the probability of obtaining such model 
purely by chance. Aliphatic and aromatic regions from urine 
datasets, where glucose signal is not present, were further 
studied applying a normalisation under total area (Diet-
erle et al. 2006) and interrogated by O-PLS DA model as 
described above. Metabolite identification was done using 
Chenomx NMR Suite 8.2 from Chenomx Inc (Edmonton, 
Canada), online publicly available databases: the Human 
Metabolome Data Base (HMDB, http://www.hmdb.ca), the 
Biological Magnetic Resonance data bank (BMRB, http://
www.bmrb.wisc.edu) and published literature (Claus et al. 
2011, 2008, Mora-Ortiz et al. 2019). A heatmap was calcu-
lated in R using the metabolites relative modulations (i.e. 
increase or decrease of the metabolite amongst diabetic indi-
viduals compared to control ones) obtained from the O-PLS 
DA analysis. The dendograms were calculated as part of the 
heatmap() function, and clustering was done calculating the 
mean of rows and columns.

3 � Results and discussion

3.1 � Body weight gain, and relative WAT weight 
was higher in diabetic individuals

The twelve animals of the study arrived at week four of age 
and were monitored until they were just over 22 weeks old, 
when they were euthanized. Body weight gain was signifi-
cantly higher in diabetic animals (p < 0.01) (S2_Fig. 1a), in 
particular during the first 6 weeks (p < 0.001), when animals 
were between 5 and 11 weeks old and increased body weight 

gain more rapidly and variability was smaller. During the 
last week, diabetic individuals had 210% higher body weight 
gain than controls. WAT weight was significantly higher 
(434.8%) in the diabetic group (p < 0.001) (S2_Fig. 1b).

3.1.1 � Biomarkers of T2D in biofluids

Plasma from diabetic individuals showed an increase in 
glucose and a decrease in alanine, anserine, arginine, cre-
atine, glutamate, glutamine, glycine, histidine, homoser-
ine, isoleucine, lactate, leucine, phenylalanine and tyrosine 
(Fig. 1a, b and c) (R2Y = 0.83, Q2Y = 0.74, n = 10). Leucine 
decrease was consistent with previous observations show-
ing that ketogenesis is altered in the db/db mouse model. In 
addition, it has also been reported that BCAAs decreased 
in the late stages of the disease, which is consistent with 
the 22 weeks of age of the animals used in this work, effec-
tively corresponding to a well-established disease (Kim 
et al. 2016; Li et al. 2015; Kim et al. 2016). This decrease 
in glucogenic and ketogenic amino acids among diabetic 
individuals is likely the result of a deficient intake of glu-
cose by insulin-resistant cells, compensated by gluconeo-
genesis and ketogenesis from available amino acids, which 
is a well-known feature of human T2D (Menni et al. 2013). 
The impaired intake of glucose promotes gluconeogenesis in 
the liver which uses glucogenic amino acids as a fuel to pro-
duce pyruvate and 3-phosphoglycerate (Altmaier et al. 2008; 
Magnusson et al. 1992). These metabolic changes involv-
ing lactate and glucose pathway modulations go in accord-
ance with the metabolomics changes previously described 
in plasma of animal models and patients in the literature 
(Nagana Gowda et al. 2008; Major et al. 2006).

The urine metabolic profile was characterised by an 
increase in glucose signal in the diabetic group dominating 
other metabolic changes. We therefore conducted a more 
focussed statistical analysis on the aliphatic and aromatic 
regions where glucose resonance is absent, as described in 
materials and methods. This allowed the identification of 
other metabolites, including 2-oxoglutarate, allantoin, cis-
aconitate, citraconate, lactate and urea, which were increased 
in diabetic individuals. Conversely, 3-methyl-3-ketovalerate, 
BCAAs, glycylproline, orotic acid and phenylalanine had 
lower levels in diabetic individuals (Fig. 1, panels d, e, g 
and i). Glucose set aside, the most noticeable differences 
were the presence of high citraconate in diabetic individu-
als, which were not detected in controls. This metabolite 
is an isomeric carboxylic acid, derived from citrate which 
is known to inhibit fumarate reduction (Vaidyanathan et al. 
2001; Hao et al. 2017). As a consequence, this would slow 
down the rest of the Krebs cycle and therefore limit the use 
of acetylCoA to produce ATP (You et al. 2016; Hao et al. 
2017). Eventually, excessive acetylCoA may be directed 
towards de novo lipid synthesis and contribute to lipid 

http://www.hmdb.ca
http://www.bmrb.wisc.edu
http://www.bmrb.wisc.edu
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Fig. 1   Metabolic differences in plasma (a, b and c) and urine (d, e, f, 
g, h and i). a plasma O-PLS DA model score plot calculated using all 
spectra as a matrix of independent variables and genetic background 
as predictor (R2Y = 0.83, Q2Y = 0.74, n = 10). d and e Aliphatic and 
aromatic regions of urine spectra showing differences between dia-

betic (red) and control (black) individuals. f and g O-PLS DA model 
score and loading plots calculated using the aliphatic (R2Y = 0.94, 
Q2Y = 0.92) region of urine. h and i O-PLS DA model calculated 
using the aromatic (R2Y = 0.88, Q2Y = 0.82) region of urine
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accumulation in the liver (Solinas et al. 2015; Postic and 
Girard 2008). Conversely, 2-keto-3-methylvalerate, an inter-
mediate of the degradation of isoleucine, was significantly 
decreased in diabetics, consistent with observed lower levels 
of BCAAs in plasma.

3.1.2 � Biomarkers of T2D in muscles and major metabolic 
organs

Heart from diabetic individuals had higher levels of ala-
nine, glucose, glycerol and inosine and lower levels of cre-
atine, glutamate, histidine, hypoxanthine, lysine phenylala-
nine and tyrosine (Fig. 2, panels a, b and c) (R2Y = 0.87, 
Q2Y = 0.76). The O-PLS DA analysis of skeletal muscle 
identified higher levels of glucose, glycerol and lipids and 
lower levels of anserine, creatine and IMP in diabetic indi-
viduals (R2Y = 0.89, Q2Y = 0.74) (Fig. 2, panels d, e and f). 
Anserine acts as a buffer in muscle tissues, and is essential 
for good functioning. In particular, it protects against protein 
trans-glycation, which is the first step of advanced glycation 

end products (AGEs) known to trigger a number of physi-
opathologic processes (Boldyrev et al. 2013; Fournet et al. 
2018). Thus, a reduction in muscular anserine may be an 
unexplored mechanism contributing to the physiopathology 
of T2D.

The spleen O-PLS DA (R2Y = 0.85, Q2Y = 0.67, n = 12) 
identified that diabetic individuals had higher levels of cho-
line, fumarate, glucose, glycerol, isobutyrate and NADH. 
Conversely, diabetic individuals had lower levels of aspar-
tate, creatine, glutamate, hypoxanthine, lactate, O-phosphoe-
thanolamine, serine, taurine, threonine and uracil (Fig. 3a).

The O-PLS DA conducted on kidney samples (R2Y = 0.95, 
Q2Y = 0.91) allowed the identification of metabolites dif-
fering between diabetic and control individuals (Fig. 3b). 
Diabetic individuals had higher levels of glucose and lower 
levels of alanine, creatinine, fumarate, glutamate, glycine, 
hypoxanthine, leucine, Π-methylhistidine, phenylalanine, 
proline, serine, threonine, tyrosine, uracil and valine.

Heart, spleen and kidney followed a similar pattern 
to what was observed in plasma, where glucogenic and 

Fig. 2   Metabolomics differences in heart and muscle. a heart O-PLS 
DA model (R2Y = 0.87, Q2Y = 0.75) score plot calculated using all 
spectra as a matrix (n = 12) of independent variables and genetic 
background as predictor. b and c loading plots from the heart O-PLS 
DA model. d score plot of the muscle O-PLS DA model calculated 

using all spectra as a matrix (n = 12) of independent variables and 
genetic background as predictor (R2Y = 0.89, Q2Y = 0.74). e and f 
loading plots from the O-PLS DA model carried out in muscle sam-
ples



	 M. Mora‑Ortiz et al.

1 3

89  Page 6 of 16

ketogenic amino-acids were decreased among diabetic indi-
viduals, consistent with an activation of the gluconeogenesis 

pathway. Glucose levels were increased among diabetic indi-
viduals in these tissues.
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Diabetic nephropathy (DN) is a leading cause of death 
and one of the major reasons of end stage renal disease (Shao 
et al. 2013; Shaw et al. 2010); yet, metabolic characterisation 
of changes occurring in DN remain unresolved and urinary 
tests fail to give an accurate early diagnosis (Wei et al. 2015; 
Shao et al. 2013). 1H-NMR metabolomics analysis identified 
sixteen metabolites that were modulated in the kidneys of 
diabetic individuals. Likewise, many intermediates involved 
in the TCA cycle and glycolysis were decreased in diabetic 
individuals, while glucose was increased. Similar changes 
were previously reported when comparing db/db versus 
db/+ individuals in metabolomics studies using targeted 
Liquid Chromatography-Mass Spectroscopy (LC/MS), Gas 
Chromatography-Mass Spectroscopy (GC/MS) (Sas et al. 
2016) and 1H-NMR metabolomics (Wei et al. 2015). Kid-
neys displayed a metabolic impairment very similar to that 
observed in the spleen (Fig. 3a and b). Similarly, sixteen 
metabolites were modified in the spleen. Metabolic changes 
in the spleen are very complex and reflect a complete shift in 
metabolism characterised by excessive NADH production, 
which is one of the main molecular features of the diabetic 
phenotype due to excessive glycolysis (Wu et al. 2016). One 
of the main differences observed in the spleen compared to 
the kidney, were decreased amounts of O-phosphoethanola-
mine in diabetic individuals. O-phosphoethanolamine plays 
an important role in sphingolipid metabolism in mammals. 
This is the only pathway that transforms sphingolipids to 
non-sphingolipids through sphingosine-1-phosphate lyase 
(Frolkis et al. 2010). Therefore, future efforts should focus 
on the pathways associated with these biomarkers.

Contrarily to what was observed in the spleen and the kid-
ney, the heart tissue, which has traditionally received more 
attention due to the cardiovascular complications associated 
with T2D, only presented a few metabolic modulations: ala-
nine, glucose, glycerol and inosine were increased in dia-
betic individuals, while creatine, glutamate, hypoxanthine 
and lysine were decreased.

Interestingly, de Castro et  al. (2013) also observed 
changes in creatine in the cardiac tissue in the rat Zucker 
fa/fa model. Dysfunctionality of the creatine kinase sys-
tem happens from an early stage of diabetic impairment in 

human hearts but has not been associated with ventricular 
dysfunction (Scheuermann-Freestone et al. 2003; Kouzu 
et al. 2015). Creatine has been suggested as a potential sup-
plement to improve glucose tolerance and seemed promising 
when combined with exercise (Gualano et al. 2007; Gualano 
et al. 2011). Other studies have shown that creatinine miti-
gated hyperglycaemia and reduced the insulinogenic index in 
rodents, thus delaying the initiation of diabetes, and helped 
muscle recovery in both rats and humans (Ferrante et al. 
2000; Op’t Eijnde et al. 2006).

Liver histology showed a clear pattern of fat accumula-
tion characteristic of steatosis in diabetic livers (Fig. 3c). It 
was not possible to identify metabolic differences between 
lobes, but healthy individuals showed higher inter-individual 
variability (Fig. 3d). Liver O-PLS DA analysis (R2Y = 0.83, 
Q2Y = 0.71)  were driven by  higher levels of triglycer-
ides in diabetic individuals while minor changes in polar 
metabolites were also observed (Fig. 3e) Changes in polar 
metabolites were not consistent with previous findings in 
the rat fa/fa model (Claus et al. 2011). However, different 
NMR-based techniques were used to measure the hepatic 
metabolic fingerprints in the two studies and the results are 
therefore difficult to compare. Yet, high levels of triglycer-
ides is a characteristic feature of the diabetic liver, and has 
previously been associated with fatty liver (Sakitani et al. 
2017), which is also evidenced by the histological results 
obtained in this analysis. Non-Alcoholic Fatty Liver Disease 
(NAFLD) is the major cause leading to cirrhosis (Hazle-
hurst et al. 2016; Bugianesi et al. 2007), which increases by 
75% the risk of developing liver cancer (Bhatt and Smith 
2015; Zawdie et al. 2018). The db/db mouse model may 
therefore represent a suitable experimental model to study 
the evolution of early hepatic metabolic changes associated 
with NAFLD progression in T2D.

Small and large intestine showed a lower number of 
metabolomics modulations compared to the numerous 
changes observed in major metabolic organs (S3).

3.1.3 � Biomarkers of T2D in the brain

The analysis of the metabolic profile of cerebrum 
(R2Y = 0.75, Q2Y = 0.48, n = 10, Fig. 4a) detected several 
compounds decreased in the diabetic mouse including aspar-
tate, citrulline, dCTP, glycylproline, histidine, hypoxanthine, 
inosine, lactate, leucine, N-acetylaspartate, serine, uracil 
and uridine (Fig. 4b and c). Leucine is an essential amino 
acid and is currently considered one of the most important 
BCAAs in brain metabolism. Brain amino acids are used 
to maintain low intra-synaptic concentrations of glutamic 
acid, an excitatory neurotransmitter, to maximize the sig-
nal-to-noise ratio when it is released from nerve terminals 
(Meldrum 2000). In this way, the potential excitotoxicity of 
glutamatergic stimulation is kept to a minimum (Yudkoff 

Fig. 3   Metabolomics and histological analysis of liver and metabo-
lomics analysis of spleen and kidney. a Liver histology, type 2 dia-
betes individuals showed clear fat accumulation characteristic of 
steatosis (lower row) compared to control liver (top row) in all the 
liver lobes. b PCA showing clusters control and diabetic individuals 
respectively. Higher variability was observed in healthy individuals. 
c O-PLS DA model calculated using all liver spectra as a matrix of 
independent values (R2Y = 0.83 and Q2Y = 0.71). d spleen O-PLS 
DA model calculated using all spectra as a matrix (n = 12) of inde-
pendent variables and genetic background as predictor (R2Y = 0.85, 
Q2Y = 0.67, n = 12). e Kidney O-PLS DA model calculated using 
all spectra as a matrix (n = 12) of independent variables and genetic 
background as predictor (R2Y = 0.95, Q2Y = 0.91)

◂
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et al. 2005; Nicholls et al. 1999). Hence, leucine easily 
penetrates the brain, promoting buffering mechanisms to 
maintain glutamate in optimum concentrations (Oldendorf 
1971; Smith et al. 1987). Lower concentrations of leucine 
in diabetic individuals may therefore indicate a failure in the 
regulation of neurotransmitters. 

In the hypothalamus, although the metabolic effects of 
diabetes were not as strong as in the cerebrum, as indicated 
by a lower goodness of prediction (Q2Y = 0.27), it was 
still possible to identify some metabolites that increased 
amongst healthy individuals, including choline, glutamate, 
hypoxanthine and N-acetylglutamate. By contrast, diabetic 

individuals were associated with higher levels of lactate 
and sn-glycero-3-phosphocholine (Fig. 4, panels d, e and f, 
R2Y = 0.80, Q2Y = 0.27). Neurotransmission in the ventro-
medial hypothalamus is mediated by GABAergic neurotrans-
mission. The suppression of GABAergic neurotransmission 
is necessary to activate the counter-regulatory responses to 
hypoglycemia (Chan et al. 2006; Zhu et al. 2010). Lactate 
contributes to counter-regulatory failure in hypoglycemic 
diabetic patients. This is carried out by increasing ventro-
medial hypothalamus GABA levels (Chan et al. 2013). Glu-
tamate, glutamine and GABA were also reduced in the eye, 
which suggests that the GABA pathway is also altered in 

Fig. 4   Metabolomics analysis of cerebrum and hypothalamus. a brain 
O-PLS DA model score plot calculated using all spectra as matrix 
(n = 10) of independent variables and genetic background as predic-

tor (R2Y = 0.75, Q2Y = 0.48). b and c loadings for brain O-PLS DA 
model. d hypothalamus O-PLS DA model (R2Y = 0.80, Q2Y = 0.27). 
e and f loadings for hypothalamus O-PLS DA model
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diabetic retinopathies. In previous studies, it has been shown 
that GABA content and activity of glutamate decarboxylase 
(GAD) and GABA transaminase (GABA-T) in the retina 
of diabetic STZ-treated rats was decreased, which has also 
been reported in the db/db mouse model (Honda et al. 1998; 
Ishikawa et al. 1996; Kobayashi et al. 1999). GABA content 
and GAD activity were reduced in the superior colliculus 
of STZ-treated rats. Altogether this indicates that GABA 
metabolism is altered in diabetic individuals.

Serine hypothalamic levels were lower among diabetic 
individuals. Serine deficiency resulting from a defect in 
biosynthesis is well documented. Three main causes are 
known: (i) 3-phosphoglycerate dehydrogenase deficiency, 
(ii) 3-phosphoserine phosphatase deficiency and (iii) phos-
phoserine aminotransferase deficiency. These enzyme 
defects result in severe psychomotor retardation and micro-
cephaly (Singh and Singh 2011; Madeira et al. 2015). This 
suggests that some of the motor difficulties observed in the 
db/db mouse model could be linked to decreased serine lev-
els in cerebrum, in addition to excessive body weight and 
loss of muscle mass.

No differences between diabetic and control individuals 
were found in the cerebellum.

Interestingly, the eye presented one of the most distinc-
tive metabolic features, characterized by increased glucose 
and lipid levels, and reduced levels of alanine, citrulline, 
GABA, glutamate, glutamine, histidine, hypoxanthine, ino-
sine, isocitrate, myo-inositol, O-phosphocholine, phenyla-
lanine and tyrosine (R2Y = 0.81, Q2Y = 0.67, S4). Diabetic 
retinopathy was previously linked to an increased activity of 
polyol synthesis pathway (Lorenzi 2007; Gabbay 1973). As 
a consequence, reduced levels of myo-inositol are expected 
and have indeed been observed in the eyes of diabetic rab-
bits and rats (Loy et al. 1990; Gabbay 1973). In our db/
db mouse model, myo-inositol was also decreased amongst 
diabetic individuals. It has been previously reported that 
treating STZ-induced diabetic rats with myo-inositol was 
an effective method to avoid metabolic impairments associ-
ated with activation of the polyol pathway (Coppey et al. 
2002). Findings in the db/db model are consistent with the 
literature and indicate that this could be a valid model for the 
development of new therapies to maintain adequate levels of 
myo-inositol in T2D.

Other metabolomics changes in the eye affected citrul-
line levels. Nitric oxide (NO) is produced when L-arginine 
is transformed to L-citrulline by the enzymatic activity 
of NO synthase (NOS) (Bredt and Snyder 1994). It has 
been shown that during the onset of diabetic retinopathy 
in STZ-treated rat retinas, T2D damages the functioning of 
the nNOS-positive amacrine cells and reduces NO genera-
tion via nNOS (Goto et al. 2005). A similar process to what 
was observed in STZ-treated rats may occur in the diabetic 
mouse model BKS.Cg-Dock7 < m > +/+ Lepr < db >/J. For 

further information, the p-values resulted from the permuta-
tions carried out in every model can be found in S5.

In total, 61 distinct metabolites were identified associ-
ated with diabetic modulations. Glucose and glutamate were 
the most commonly associated metabolites, and they were 
significantly increased across nine biological matrices. Kid-
neys, spleen, eye and plasma, clustering all in the same super 
group in the heatmap (S6), were the organs and fluids that 
displayed the most varied metabolic changes. This clustering 
was partially due to a decrease in amino acids. The large het-
erogeneity in the metabolic response that is strongly organ-
specific prevented further grouping of the organs.

In total, 16 metabolites were found modulated in kidney 
and spleen, and 15 in eye and plasma. Table 1 and Fig. 5 and 
S6 summarize these findings. Out of the 15-metabolic modu-
lations detected in the kidney and the spleen, 6 were shared 
by these two organs (Fig. 5a). This highlights the need to 
devote more attention to the role of kidneys and spleen in 
T2D. Moreover, metabolic modulations showed that both, 
proximal and distal colon were affected by changes in tyros-
ine and phenylalanine, whose availability in these biological 
matrices is strongly influenced by the gut microbiota (S6, 
Dodd et al. 2017; Fujisaka et al. 2018). These modulations 
were also present in plasma, heart, eye and kidney. This 
suggests that further studies should investigate the potential 
influence of the gut microbiota on the amino acid imbalance 
associated with T2D.  

4 � Conclusion

The present study reports qualitative differences in 16 
tissues between diabetic db/db mouse model BKS.Cg-
Dock7 < m > +/+ Lepr < db >/J and their wild type control, 
identifying over 60 metabolites modulated between these 
two groups. This study represents the most comprehensive 
tissue-specific metabolic characterization of this model and 
is intended to be used as a reference for further research in 
this area. Kidney, spleen, eye and plasma were the organs 
that showed the most metabolic modulations between con-
trol and diabetic individuals. In total, across all the tissues 
and biofluids studied, 61 biomarkers were found associated 
with diabetes.

Some limitations of this study included a restricted cover-
age of some potentially important metabolites, such as bile 
acids and lipids, due to the nature of the methods employed 
and further studies are necessary to uncover these modula-
tions. The use of a small number of mice of both genders, 
which impeded a study of gender specific changes is another 
limitation. Future studies, should also consider the impact 
of diet and environment on the metabolic modulations 
associated with diabetes. Hence, diabetic studies should be 
addressed as part of an integrative approach considering 
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metabolomics along other ‘omics’ technologies such as 
metagenomics.
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