

Regional striatal cholinergic involvement in human behavioural flexibility

Article

Accepted Version

Bell, T. ORCID: <https://orcid.org/0000-0002-9591-706X>,
Lindner, M., Langdon, A., Mullins, P. G. and Christakou, A.
ORCID: <https://orcid.org/0000-0002-4267-3436> (2019)
Regional striatal cholinergic involvement in human behavioural
flexibility. *The Journal of Neuroscience*, 39 (29). pp. 5740-
5749. ISSN 1529-2401 doi: 10.1523/JNEUROSCI.2110-
18.2019 Available at <https://centaur.reading.ac.uk/83975/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1523/JNEUROSCI.2110-18.2019>

Publisher: Society for Neuroscience

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading's research outputs online

Research Articles: Behavioral/Cognitive

Regional Striatal Cholinergic Involvement in Human Behavioural Flexibility

Tiffany Bell¹, Michael Lindner¹, Angela Langdon², Paul Gerald Mullins³ and Anastasia Christakou¹

¹*School of Psychology and Clinical Language Sciences, and Centre for Integrative Neuroscience and Neurodynamics, University of Reading, RG6 6AL, UK*

²*Princeton Neuroscience Institute, Princeton University, NJ 08544, USA*

³*School of Psychology, Bangor University, LL57 2DG UK*

<https://doi.org/10.1523/JNEUROSCI.2110-18.2019>

Received: 16 August 2018

Revised: 8 May 2019

Accepted: 13 May 2019

Published: 20 May 2019

Author contributions: T.B., M.L., P.G.M., and A.C. designed research; T.B. performed research; T.B., M.L., A.J.L., P.G.M., and A.C. analyzed data; T.B. wrote the first draft of the paper; T.B., M.L., A.J.L., P.G.M., and A.C. edited the paper.

Conflict of Interest: The authors declare no competing financial interests.

This study was supported by a Human Frontier Science Program (HFSP) grant (RGP0048/2012), and an Engineering and Physical Sciences Research Council (EPSRC) doctoral training grant (EP/L505043/1). The funders had no involvement in study design, in the collection, analysis, and interpretation of data, in writing the report, or in the decision to submit the paper for publication. The authors would like to thank Rosie Gillespie and Emma Davis for assistance with data collection.

Corresponding author: Dr Anastasia Christakou, School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, anastasia.christakou@reading.ac.uk

Cite as: J. Neurosci 2019; 10.1523/JNEUROSCI.2110-18.2019

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

1 Regional Striatal Cholinergic Involvement

2 in Human Behavioural Flexibility

3 Role of human striatal choline in reversal learning

4 Tiffany Bell¹, Michael Lindner¹, Angela Langdon², Paul Gerald Mullins³, Anastasia Christakou¹

5 1. School of Psychology and Clinical Language Sciences, and Centre for Integrative Neuroscience
6 and Neurodynamics, University of Reading, RG6 6AL, UK

7 2. Princeton Neuroscience Institute, Princeton University, NJ 08544, USA

8 3. School of Psychology, Bangor University, LL57 2DG UK

9

10 Corresponding author: Dr Anastasia Christakou

11 School of Psychology and Clinical Language Sciences

12 University of Reading

13 Reading RG6 6AL

14 anastasia.christakou@reading.ac.uk

15

16 Number of pages: 36

17 Number of Figures: 5

18 Number of Tables: 6

19 Number of Words: Abstract 248

20 Introduction 586

21 Discussion 1440

22

23 Conflict of Interest The authors declare no competing interests.

24 Acknowledgments: This study was supported by a Human Frontier Science Program (HFSP)
25 grant (RGP0048/2012), and an Engineering and Physical Sciences Research Council (EPSRC)
26 doctoral training grant (EP/L505043/1). The funders had no involvement in study design, in the
27 collection, analysis, and interpretation of data, in writing the report, or in the decision to submit the
28 paper for publication. The authors would like to thank Rosie Gillespie and Emma Davis for
29 assistance with data collection.

30 Data Accessibility: Anonymized data are freely available on the Open Science Framework: Bell,
31 T., Lindner, M., Langdon, A., Mullins, P.G., & Christakou, A. (2019) Regional Striatal Cholinergic
32 Involvement in Human Behavioural Flexibility [WWW Document]. URL <https://osf.io/p9rvn/>

33

34 ABSTRACT

35 Animal studies have shown that the striatal cholinergic system plays a role in behavioural flexibility
36 but, until recently, this system could not be studied in humans due to a lack of appropriate non-
37 invasive techniques. Using proton magnetic resonance spectroscopy (MRS) we recently showed
38 that the concentration of dorsal striatal choline (an acetylcholine precursor) changes during reversal
39 learning (a measure of behavioural flexibility) in humans. The aim of the present study was to
40 examine whether regional average striatal choline was associated with reversal learning. 22
41 participants (mean age = 25.2, range = 18-32, 13 female) reached learning criterion in a
42 probabilistic learning task with a reversal component. We measured choline at rest in both the
43 dorsal and ventral striatum using MRS. Task performance was described using a simple
44 reinforcement learning model that dissociates the contributions of positive and negative prediction
45 errors to learning. Average levels of choline in the dorsal striatum were associated with
46 performance during reversal, but not during initial learning. Specifically, lower levels of choline in
47 the dorsal striatum were associated with a lower number of perseverative trials. Moreover, choline
48 levels explained inter-individual variance in perseveration over and above that explained by
49 learning from negative prediction errors. These findings suggest that the dorsal striatal cholinergic
50 system plays an important role in behavioural flexibility, in line with evidence from the animal
51 literature and our previous work in humans. Additionally, this work provides further support for the
52 idea of measuring choline with MRS as a non-invasive way of studying human cholinergic
53 neurochemistry.

54

55 SIGNIFICANCE STATEMENT

56 Behavioural flexibility is a crucial component of adaptation and survival. Evidence from the animal
57 literature shows the striatal cholinergic system is fundamental to reversal learning, a key paradigm
58 for studying behavioural flexibility, but this system remains understudied in humans. Using proton
59 magnetic resonance spectroscopy, we showed that choline levels at rest in the dorsal striatum are
60 associated with performance specifically during reversal learning. These novel findings help to
61 bridge the gap between animal and human studies by demonstrating the importance of cholinergic
62 function in the dorsal striatum in human behavioural flexibility. Importantly, the methods described
63 here can not only be applied to furthering our understanding of healthy human neurochemistry, but
64 also to extending our understanding of cholinergic disorders.

65

66 INTRODUCTION

67 Acetylcholine (ACh) plays an important role in adaptive behaviour, and has been implicated in
68 disorders of cognitive flexibility, such as Parkinson's disease (Tanimura et al., 2018; Zucca et al.,
69 2018). Studies in rodents have repeatedly demonstrated that ACh transmission, determined by the
70 activity and regulation of cholinergic interneurons in the dorsal striatum, is involved in reversal
71 learning and similar forms of behavioural flexibility (Ragozzino et al., 2002, 2009; Tzavos et al.,
72 2004; McCool et al., 2008; Brown et al., 2010; Bradfield et al., 2013; Aoki et al., 2018; Okada et
73 al., 2018). Further, ACh efflux has been shown to increase specifically during reversal learning (but
74 not during initial learning), and this effect is specific to the dorsomedial striatum (with no changes
75 in ACh levels in either the dorsolateral striatum or the ventral striatum) (Ragozzino et al., 2009). It
76 is clear then that cholinergic activity in the dorsal striatum plays an important role in reversal
77 learning but, despite the importance of understanding this system, there remain important
78 challenges in probing ACh function in humans due to a lack of appropriate non-invasive techniques.
79 Proton magnetic resonance spectroscopy (MRS) is a non-invasive method for measuring brain
80 metabolites *in vivo* (Puts and Edden, 2012). Although it cannot be used to study ACh directly due to
81 its low concentration (Hoover et al., 1978), MRS can be used to measure levels of certain choline
82 containing compounds (CCCs) involved in the ACh cycle, including choline (CHO). CHO is the
83 product of ACh hydrolysis, and its uptake in cholinergic terminals is the rate-limiting step in ACh
84 biosynthesis (Lockman and Allen, 2002). Using functional MRS, we previously demonstrated task-
85 driven changes in the concentration of CHO in the human dorsal striatum during reversal learning
86 (Bell et al., 2018). Although MRS studies typically model CCCs as a single peak due to their
87 proximity on the spectrum, we showed that using this method may mask CHO-specific effects.
88 Therefore, in the context of studying ACh function, it is necessary to separate the metabolites when
89 measuring individual differences in CHO levels (Lindner et al., 2017; Bell et al., 2018).

90 Among the many open questions around this approach is the nature of the relationship between
91 baseline levels of CHO availability and function-relevant ACh activity. Animal studies have shown
92 that ACh synthesis is tightly coupled to CHO availability. For example, depletion of CHO has been
93 shown to reduce ACh synthesis (Jope, 1979) and administration of CHO has been shown to increase
94 it (Koshimura et al., 1990). Further, overexpression (Holmstrand et al., 2013) and under-expression
95 (Parikh et al., 2013) of presynaptic CHO up-take transporters has been shown to increase and
96 decrease ACh levels respectively. It is possible, therefore, that baseline CHO availability may
97 modulate ACh activity, leading to effects on behavioural flexibility. In this study, we used MRS to
98 test whether baseline levels of dorsal striatal CHO are related to individual differences in reversal
99 learning performance. Due to limitations of spectroscopy voxel sizes, it is not possible to precisely
100 target the human homologue of the rodent dorsomedial striatum, therefore we obtained average
101 measures of CHO from the dorsal striatum overall. To test the hypothesised regional striatal
102 specificity, we also measured CHO levels from the ventral striatum. Finally, we also measured
103 CHO levels from the cerebellum as a further, more general control. In line with the animal literature
104 and our previous findings in humans (Bell et al., 2018), we predicted that average levels of CHO in
105 the dorsal, but not the ventral, striatum would be associated with performance during reversal, but
106 not initial, learning.

107 METHODS

108 Participants

109 The study was approved by the University of Reading Research Ethics Committee (UREC
110 reference 13/15). 36 volunteers (20 female) between the ages of 18.3 and 32.8 (mean = 24.8, SD =
111 3.5) were recruited from the University of Reading and surrounding areas. All participants were
112 healthy, right handed non-smokers and written informed consent was taken prior to participation.

113 Two participants were excluded from analyses due to a high proportion of missed responses
114 (participant 14: 35% during initial learning and 39% during reversal learning; participant 31: 27%
115 during initial learning, 54% during reversal learning). One participant was excluded from
116 spectroscopy analysis due to issues with segmentation of the structural scan. Data from the ventral
117 striatum of two participants were excluded from analysis due to poor data quality.

118 **Behavioural Data Collection**

119 *Learning Task*

120 The task used was a probabilistic multi-alternative learning task previously described (Bell et al.,
121 2018), and was programmed using MATLAB (2014a, The Mathworks, Inc., Natick, MA, United
122 States) and Psychtoolbox (Brainard, 1997).

123 First, participants were presented with a fixation cross displayed in the centre of the visual display.
124 Participants were then presented with four decks of cards. Each deck contained a mixture of
125 winning and losing cards, corresponding respectively to a gain or loss of 50 points. The probability
126 of getting a winning card differed for each deck (75%, 60%, 40%, and 25%) and the probabilities
127 were randomly assigned across the four decks for each participant. Participants indicated their
128 choice of deck using a computer keyboard. Outcomes were pseudo-randomised so that the assigned
129 probability was true over every 20 times that deck was selected. Additionally, no more than 4 cards
130 of the same result (win/lose) were presented consecutively in the 75% and 25% decks and no more
131 than 3 cards of the same result in the 60% and 40% decks. A cumulative points total was displayed
132 in the bottom right-hand corner throughout the session and in the centre of the visual display at the
133 end of each trial (Figure 1). Participants were instructed that some decks may be better than others,
134 they are free to switch between decks as often as they wish, and they should aim to win as many
135 points as possible.

136 The learning criterion was set at selection of either of the two highest decks (60% or 75%) on at
137 least 80% of the time over ten consecutive trials. Though the optimal strategy is to repeatedly
138 choose the 75% deck, pilot testing revealed the participants were not always able to distinguish
139 between the 75% and 60% decks. Therefore, as both decks generate an overall gain in points and
140 choice of either deck could be considered a good strategy, both decks are included in the learning
141 criterion.

142 The initial learning phase (round 1) was completed when either the learning criterion was reached,
143 or the participant completed 100 trials. The deck probabilities were then reversed so that the high
144 probability decks became low probability (75% to 25%, and 60% to 40%) and vice versa.
145 Participants were not informed of the reversal. The task ended either after the learning criterion was
146 reached following the reversal (round 2), or after another 100 trials (Figure 2).

147 *Impulsivity*

148 Previous research has shown that trait levels of impulsivity can influence decision making (Bayard
149 et al., 2011). Individuals with higher levels of impulsivity have been shown to demonstrate sub-
150 optimal performance on decision making tasks, displaying a decreased ability to learn reward and
151 punishment associations and implement these to make appropriate decisions. For instance,
152 individuals with high levels of impulsivity were relatively impaired in adapting their behaviour
153 during a reversal learning task (Franken, van Strien, Nijs, & Muris, 2008). Other tasks of cognitive
154 flexibility have also been shown to be influenced by trait impulsivity levels (e.g. Müller, Langner,
155 Cieslik, Rottschy, & Eickhoff, 2014). Therefore all participants completed the Barratt
156 Impulsiveness Scale (BIS-11; Patton, Stanford, & Barratt, 1995) and their total score was used as a
157 trait measure of impulsivity. This was included in the analysis to account for effects driven by
158 individual differences in impulsivity.

159 ***Data Analysis***

160 Participants were split into two groups based on performance. Those who learnt both rounds (i.e.
161 reached criterion both during initial learning and after reversal) were classified as learners and those
162 who did not learn both rounds were classified as non-learners.

163 Behaviour was analysed for learners only. The task stops at 100 trials in each round if the criterion
164 is not met. Therefore, participants who did not reach criterion in either one round or both rounds
165 were excluded from behaviour analysis.

166 Performance was measured using the number of trials taken to reach criterion in round 1 (initial
167 learning) and in round 2 (reversal learning). Round 2 was subdivided into perseverative trials and
168 post-reversal learning (Figure 2). The number of perseverative trials was defined as the number of
169 trials after reversal until the probability of selecting the previously favoured deck reached chance
170 level (0.25), i.e. the number of trials taken to identify the reversal and switch behaviour. Post-
171 reversal learning was defined as the number of trials taken to reach criterion in round 2, minus the
172 number of perseverative trials, i.e. the number of trials to reach criterion after the reversal had been
173 detected. In other words, post-reversal learning is measured by the number of trials the participant
174 took to learn the contingencies once they had realised the deck probabilities had reversed.
175 Additionally, the post-reversal learning period included a measure of regressive errors. The number
176 of regressive errors was defined as the number of times the previously favoured deck was selected
177 during the post-reversal learning period (i.e. after the perseverative period had ended).

178 ***Temporal Difference Reinforcement Learning Model***

179 We modelled participants' choice behaviour as a function of their previous choices and rewards
180 using a temporal difference reinforcement learning algorithm (Sutton and Barto, 1998). This allows
181 us to track trial-and-error learning for each participant, during each task stage, in terms of a

182 subjective expected value for each deck. On each trial t , the probability that deck c was chosen was
 183 given by a soft-max probability distribution:

$$P(c_t = c) = e^{m_t(c)} / \sum_j e^{m_t(j)} \quad (1)$$

184 where $m_t(c)$ is the preference for the chosen deck and j indexes the four possible decks. The
 185 preference for the chosen deck was comprised of the participant's expected value of that deck on
 186 that trial, $V_t(c)$, multiplied by the participant's individual value impact parameter β (equivalent to
 187 the inverse temperature):

$$m_t(c) = \beta V_t(c) \quad (2)$$

188 The parameter β describes the extent to which trial-by-trial choices follow the distribution of the
 189 expected values of the decks: a low β indicates choices are not strongly modulated by expected
 190 value, being effectively random with respect to this quantity (i.e. participants are not choosing
 191 based exclusively on value, and are effectively exploring all options); conversely, a high β indicates
 192 choices largely follow expected value (i.e. participants choose the deck with the highest expected
 193 value; exploitation).

194 To update the subjective value of each deck, a prediction error was generated on each trial, pe_t
 195 based on whether participants experienced a reward or a loss ($reward_t = +1$ or -1 respectively). The
 196 expected value of the chosen deck was subtracted from the actual trial reward to give the prediction
 197 error:

$$pe_t = reward_t - V_t(c) \quad (3)$$

198 Studies have shown that individuals differ in the degree to which they learn from better than
 199 expected outcomes (positive prediction errors) and worse than expected outcomes (negative
 200 prediction errors) (Gray, 1970; Niv et al., 2012; Christakou et al., 2013; Bull et al., 2015). To

201 account for this, two learning rate parameters were used to model sensitivity to prediction errors in
 202 updating the expected values: the weight of learning from better than expected outcomes (learning
 203 rate from positive prediction errors: η^+) and the weight of learning from worse than expected
 204 outcomes (learning rate from negative prediction errors: η^-). For example, individuals who are
 205 reward seeking will place a high weight on the former, whereas those who are loss-aversive will
 206 place a high weight on the latter. The prediction error on each trial was multiplied by either the
 207 positive (η^+) or negative (η^-) learning rate and used to update the value of the chosen deck.

$$\delta_t = \eta^+ \times pe_t \quad \text{if } pe_t > 0 \quad (4)$$

$$\delta_t = \eta^- \times pe_t \quad \text{if } pe_t < 0 \quad (5)$$

$$V(chosen_t) = V(chosen_{t-1}) + \delta_t \quad (6)$$

208 Thus, the model has three parameters of interest (β , η^+ and η^-). In psychological terms, β captures
 209 the degree to which the subjective value of the chosen deck influenced decisions, while the learning
 210 rates capture the individual's preference for learning from positive (η^+) or negative (η^-) prediction
 211 errors to guide choice behaviour during this task.

212 ***Model Fitting***

213 The model was fit per participant to provide parameters that maximised the likelihood of the
 214 observed choices given the model (individual maximum likelihood fit; Daw, 2011). The reward
 215 value was updated as 1 (win) or -1 (loss). Subjective value was initialised at zero for all decks and
 216 the initial parameter values were randomised. To ensure the model produced consistent,
 217 interpretable parameter estimates, η was limited to between 0 and 1 and β was assumed positive.
 218 The parameters were constrained by the following distributions based on Christakou et al (2013):

$$\beta \sim \text{Gamma} (2,1)$$

$$\eta \sim Beta(1.2, 1.2)$$

219 The model was fit separately over the trials encompassing round 1 (R1, initial learning) and round 2
220 (R2, perseverative trials and post-reversal learning, denoted as reversal learning). This was done to
221 capture the change in influence of the model parameters from initial learning to reversal learning.
222 The model was not fit over the perseverative trials separately as the average number of
223 perseverative trials was too small to generate a stable model fit.

224 Traditionally, to investigate the fit of a temporal difference reinforcement learning model the
225 Bayesian information criterion (BIC) is used. The BIC is a post hoc fit criterion which looks at the
226 adequacy of a model whilst penalising the number of parameters used. A lower number indicates a
227 better fit (Steingroever et al., 2016). However, the BIC is generally used to compare different
228 models, rather than model fits over different sets of data, and will penalise different sized data sets.
229 Alternatively, the corrected likelihood per trial (CLPT) can be used. The CLPT is a more intuitive
230 measure of fit that takes into account the number of trials completed without penalising different
231 sized data sets. The CLPT varies between 0 and 1, with higher values indicating a better fit (Leong
232 and Niv, 2013; Niv et al., 2015).

233 Wilcoxon signed-rank tests showed there was no significant difference between the CLPT values
234 for the model fit over round 1 (Mdn = 0.23) and round 2 (Mdn = 0.23; Z = -1.308, p = 0.191).
235 Additionally, there was no significant difference between the BIC values for the model fit over
236 round 1 (M = 75.7, SD = 45.5) and round 2 (M = 90.9, SD = 43.6; t(33) = -1.533, p = 0.135, r =
237 0.26).

238 To summarise, the model fit equally well across rounds. Therefore, differences in parameter
239 estimates across the task can be examined.

240 **Magnetic Resonance Spectroscopy**241 *Data Acquisition*

242 Data was collected at the University of Reading on a Siemens Trio 3T MRI scanner using a
243 transmit-receive head coil. A high-resolution whole-brain T1 structural image was acquired for
244 voxel placement using an MPRAGE sequence parallel to the anterior-posterior commissure line
245 (176x1mm slices; TR = 2020ms; TE = 2.9ms; FOV = 256x256mm², flip angle = 9°, voxel size
246 1x1x1mm³).

247 Voxels were placed in either the left or right dorsal striatum, ventral striatum and the cerebellum,
248 with hemisphere placement and order of measurements counterbalanced across participants.
249 Anatomy was used to guide voxel positioning. The top of the dorsal striatum was identified by
250 slice-by-slice examination of the structural scan. The slice below the slice where the top of the
251 striatum was no longer visible was selected and the top of the voxel was aligned with this slice. The
252 slice above the slice where the bottom of the striatum could no longer be seen was selected and used
253 for alignment of the ventral striatum voxel. The cerebellum voxel was placed as high in the
254 superior cerebellar vermis as possible whilst ensuring only cerebellar tissue was contained in the
255 voxel. The superior cerebellar vermis was chosen as it has been shown to have the lowest variability
256 in both inter and intra subject metabolite ratios as measured with MRS at rest (Currie et al., 2013).
257 All voxels were visually inspected to ensure minimal cerebrospinal fluid was included in the voxels.
258 A PRESS sequence was used to acquire data from the three separate voxel positions (voxel size =
259 10x15x15mm³; TR = 2000ms; TE = 30ms). 128 spectra were collected and averaged for each area.
260 A water-suppressed spectrum was also obtained from each area for data processing, which
261 consisted of an average of 15 spectra. The SIEMENS Auto Align Scout was used in between each

262 scan to adjust the voxel position based on the actual head position of the participant. This was used
263 to correct for participant motion and minimize the variability of the voxel position.

264 ***Structural Segmentation***

265 Structural scans were processed using FSL version 5.0.8 (Smith et al., 2004; Jenkinson et al., 2012).
266 First, the skull was removed using the brain extraction tool (BET) (Smith, 2002). Images were
267 segmented into three separate tissue types: grey matter (GM), white matter (WM) and cerebrospinal
268 fluid (CSF) using the FAST tool (Zhang et al., 2001). The coordinates and dimensions of the voxel
269 were then superimposed on these images and the proportion of each of the three tissue types
270 contained within the voxel was calculated.

271 ***Quantitation***

272 Data was processed in the time domain using Java-Based Magnetic Resonance User Interface
273 (jMRUI software version 5.0 (<http://www.mrui.uab.es/mrui>; Naessi et al., 2001). Phase correction
274 was performed using the corresponding water spectrum from each area. Each spectrum was then
275 apodized using a Gaussian filter of 3Hz to improve signal quality, reduce noise and reduce effects
276 of signal truncation (Jiru, 2008). The residual water peak was removed using the Hankel-Lanczos
277 Singular Value Decomposition (HLSVD) filter tool.

278 Metabolite models were generated using the software Versatile Simulation, Pulses and Analysis
279 (VEsPA; <https://scion.duhs.duke.edu/vespa/project>; Soher, Semanchuk, Todd, Steinberg, & Young.,
280 2010). 14 typical brain metabolites (Acetate, Aspartate, CHO, Creatine, Gamma-Aminobutyric
281 Acid (GABA), Glucose, Glutamate, Glutamine, Lactate, Myo-inositol, N-acetyl Aspartate (NAA),
282 Phosphocreatine, PC & GPC, Scyllo-inositol, Succinate, Taurine) were simulated at a field strength
283 of 3T using a PRESS pulse sequence (TE1 = 20ms, TE2 = 10ms, main field = 123.25MHz). For
284 initial analyses, CHO was modelled separately from PC+GPC based on the method described in
285 Bell et al., 2018. Additionally, the sum of the three peaks (total choline, tCHO) was included in the

286 analyses for comparison. If tCHO produced similar results to CHO, it would potentially suggest that
287 there may not be a need to separate the three peaks, or that the quantitation method is not separating
288 CHO effectively.

289 The jMRUI tool Accurate Quantification of Short Echo time domain Signals (AQSES) was used for
290 automatic quantification of spectra signals. AQSES was applied using the method described in
291 Minati, Aquino, Bruzzone, & Erbetta, 2010. To correct for any chemical shift displacement, the
292 spectrum was shifted so that the peak for n-acetyl-aspartate (NAA) was at 2.02ppm. The frequency
293 range selected for processing was limited to 0-8.6ppm (equal phase for all metabolites, begin time
294 fixed, delta damping (-10 to 25Hz), delta frequency (-5 to 5Hz), no background handling, 0
295 truncated points, 2048 points in AQSES and normalisation on). Based on common practice in the
296 field, values with a CRB higher than 30% were excluded on a case by case basis.

297 Metabolite concentrations were calculated for CHO, PC+GPC, tCHO, NAA and total creatine (tCR,
298 creatine + phosphocreatine), correcting for partial-volume and relaxation effects, using the formula
299 described in Gasparovic et al., 2006.

300 **Experimental Design and Statistical Analysis**

301 Statistical analysis was performed using SPSS (IBM Corp. Released 2013. IBM SPSS Statistics for
302 Windows, Version 22.0. Armonk, NY: IBM Corp).

303 The relationships between model parameters and behaviour, along with model parameters and
304 metabolite levels² and behaviour and metabolite levels were assessed using correlation analysis.
305 The distribution of the data was analysed using measures of skewness and kurtosis, along with the
306 Shapiro-Wilk test. When the assumptions of normality and homogeneity were met, Pearson's
307 correlation (r) was used to assess correlations. When assumptions of normality were not met,
308 Kendall's Tau (r_T) was used to assess correlations, as it provides a better estimation of the
309 correlation in a small sample size compared to other non-parametric methods (Field, 2009). Both the

310 behavioural and MRS data reported satisfy false discovery correction using the Benjamini-
311 Hochberg procedure at a reasonably conservative 10% false discovery rate (Benjamini and
312 Hochberg, 1995). We report the FDR correction because of our strong a priori prediction and the
313 high cost of false negatives. Further, in the case of model-behaviour correlations, the FDR
314 correction is more appropriate than a family-wise error rate correction for multiple comparisons
315 (such as the Bonferroni method) because of the high correlation rate expected in the data, given that
316 model parameters were estimated from behaviour itself. We included a bootstrap approach (1000
317 iterations) to calculate bias-corrected 95% confidence intervals (CI). Where appropriate,
318 hierarchical multiple regression analysis was used to assess the variance in behaviour explained by
319 metabolite levels, after the model parameters were accounted for.

320 ***Confounding Variables***

321 There were no significant differences in metabolite levels between hemispheres, therefore the
322 results were combined across hemisphere of acquisition.
323 To examine if variations in the metabolite values might be caused by differing proportions of tissue
324 composition, correlations were performed between CCC levels and proportion of grey and white
325 matter present in the voxel. Additionally, metabolite values were checked against the water signal
326 for the same reason. No significant correlations were found between CCCs and grey/white matter
327 content, indicating any variance seen is generated by differing metabolite levels. The water signal
328 significantly correlated with dorsal striatum tCHO (r_T (34) = -0.348, p = 0.003) and ventral striatum
329 PC+GPC (r_T (31) = -0.270, p = 0.001). Therefore, analyses involving dorsal striatum tCHO or
330 ventral striatum PC+GPC were corrected for this source of variance using partial correlations. No
331 other significant correlations were seen between the water signal and metabolite levels of interest.
332 There is evidence that metabolite levels in the brain can vary based on time of day (Soreni et al.,
333 2006) and age (Pfefferbaum et al., 1999; Reyngoudt et al., 2012). Therefore, all metabolites were

334 checked against these two variables to ensure this was not a source of variance. Time of day
335 significantly correlated with dorsal striatum tCHO (r_T (34) = 0.249, p = 0.038) and cerebellum
336 tCHO (r_T (30) = 0.285, p = 0.026). Therefore, analyses involving dorsal striatum tCHO or
337 cerebellum tCHO were corrected for this source of variance using partial correlations. No other
338 significant correlations were seen between metabolite levels and time of day or age of participant.

339 **Controls**

340 The cerebellum was used as a control to demonstrate the regional specificity of results. None of the
341 effects were present in the cerebellum and therefore these results are not reported further. NAA and
342 tCR were used as controls to demonstrate the neurochemical specificity of the results (i.e. that the
343 relevant individual differences were specific to choline and not to spectrum-wide inter-individual
344 differences). None of the effects were present in either NAA or tCR and therefore these results are
345 not reported further. Furthermore, none of the reported effects were found when using tCHO as a
346 measure of cholinergic availability and therefore these results are not reported further.

347 **RESULTS**

348 **Behavioural Results**

349 Twenty-two (22) participants reached criterion during both rounds (i.e. they reached criterion both
350 during initial learning and after the reversal) and were included in the analysis. Table 1 shows the
351 average number of trials taken to complete each component.

352 **Model parameters and performance**

353 A reinforcement-learning model was used to disentangle components of learning that contribute to
354 overall behaviour. We looked at three parameters of interest, the learning rates from positive (η^+)
355 and negative (η^-) prediction errors, and the overall impact of subjective value of the deck on the

356 participants choice (value impact parameter, β). Table 2 shows the mean of the model parameters
357 for both rounds. Outlier analysis resulted in the exclusion of the value impact parameter (β) during
358 initial learning for one participant ($Z=3.12$).

359 To explore how the contribution of the model parameters to behaviour changes over time, we
360 looked at correlations between behaviour (as measured by trials to criterion, number of
361 perseverative trials and number of regressive errors) and the corresponding model parameters
362 separately, i.e. behaviour during initial learning was correlated with model parameters fit over the
363 initial learning period, and likewise for the reversal learning period.

364 Table 3 shows the correlation coefficients for the relationships between model parameters and
365 behaviour. Faster initial learning (low number of trials to criterion) was associated with a higher
366 learning rate from positive prediction errors ($r(21) = -0.439$, $p = 0.041$) and a higher value impact
367 parameter ($r(20) = -0.536$, $p = 0.012$). A lower number of perseverative trials was associated with a
368 higher learning rate from negative prediction errors ($r(21) = -0.527$, $p = 0.012$). As was the case
369 during initial learning, during post-reversal learning (after the reversal has been identified) a lower
370 number of trials taken to reach criterion was associated with a higher learning rate from positive
371 prediction errors ($r_T(21) = -0.335$, $p = 0.03$), and a higher value impact parameter ($r_T(21) = -0.352$,
372 $p = 0.022$). Additionally, during post-reversal learning, a lower number of regressive errors was
373 associated with a higher learning rate from positive prediction errors ($r_T(21) = -0.355$, $p = 0.023$)
374 and a higher value impact parameter ($r_T(21) = -0.337$, $p = 0.031$).

375 ***Effects of trait impulsivity on performance***

376 To investigate the influence of impulsivity on decision making, we looked at correlations between
377 impulsivity (total BIS-11 score) and measures of behaviour (including model parameters) in
378 learners. Higher impulsivity levels were associated with a lower number of perseverative errors
379 ($r(21) = -0.470$, $p = 0.027$). No other measures of behaviour correlated with impulsivity.

380 ***Summary***

381 The contribution of learning parameters to performance changes over the learning period. Faster
382 initial learning was indexed by both higher learning rates from positive prediction errors ($R1\eta^+$) and
383 higher value impact parameters ($R1\beta$). However, reduced numbers of perseverative trials were
384 associated with higher learning rates from negative prediction errors ($R2\eta^-$) and higher impulsivity
385 levels. Similar to initial learning, faster post-reversal learning was associated with higher learning
386 rates from positive prediction errors ($R2\eta^+$) and higher value impact parameters ($R2\beta$).
387 Additionally, during post-reversal learning, lower numbers of regressive errors were associated with
388 higher learning rates from positive prediction errors ($R2\eta^+$) and higher value impact parameters
389 ($R2\beta$).

390 **Spectroscopy Results**

391 One participant was excluded from spectroscopy analysis due to issues with segmentation of the
392 structural scan. All metabolite values had $CRB < 30\%$ and were all included in the analysis.

393 ***Association of reversal learning with dorsal striatal choline***

394 Table 4 shows the average metabolite levels in the dorsal striatum. To test the hypothesis that
395 reversal learning performance is associated with dorsal striatal CHO levels, we looked at the
396 correlation between measures of reversal learning performance (number of perseverative trials and
397 learning rate from negative prediction errors; $R2\eta^-$) and levels of CHO in the dorsal striatum in
398 learners ($n = 21$).

399 A lower number of perseverative trials was associated with lower levels of dorsal striatum CHO (r_T
400 (20) = 0.367 , $p = 0.021$; 95% CI [0.081 , 0.669]; Figure 4A). The opposite effect was seen with
401 dorsal striatum PC+GPC ($r(20) = -0.447$, $p = 0.042$; 95% CI [-0.779 , 0.004]). Additionally, higher
402 learning rates from negative prediction errors were associated with lower dorsal striatum CHO

403 levels (r_T (20) = -0.371, p = 0.019; 95% CI [-0.258, -0.025] Figure 4B). This result is specific to
404 dorsal striatum CHO, with no other dorsal striatum metabolites found to correlate with learning
405 rates from negative prediction errors.

406 After establishing an association between CHO levels and reversal performance, we wanted to
407 examine whether CHO contributed to reversal efficiency over and above behavioural and
408 personality variables. Using a hierarchical multiple regression, we first modelled the contribution of
409 variance from learning rates from negative prediction errors and total BIS scores to the variance in
410 the number of perseverative trials (Model 1; $F(2,18)$ = 9.460 p = 0.002, R^2 = 0.512; Table 5). The
411 second model looked at whether the addition of dorsal striatum CHO would explain significantly
412 more variance, over and above that explained by learning rates from negative prediction errors and
413 total BIS score (Model 2; $F(3,17)$ = 9.574 p = 0.001, R^2 = 0.628; Table 5).

414 The amount of variance in the number of perseverative trials explained by learning rates from
415 negative prediction errors was significant in both Model 1 (β = -0.493, $t(18)$ = -2.980, p = 0.008;
416 Table 5) and Model 2 (β = -0.430, $t(17)$ = -2.843, p = 0.011; Table 5). Additionally, total BIS score
417 also explained a significant amount of variance in both Model 1 (β = -0.472, $t(18)$ = -2.855, p =
418 0.011; Table 5) and Model 2 (β = -0.419, $t(17)$ = -2.787, p = 0.013; Table 5).

419 In Model 2, dorsal striatum CHO also explained a significant amount of variance in the number of
420 perseverative trials (β = 0.351, $t(17)$ = 2.300, p = 0.034; Table 5). The addition of dorsal striatum
421 CHO to the model increased R^2 by 0.116 and this increase was statistically significant ($F(1,23)$ =
422 5.291, p = 0.034; Table 5).

423 To assess the specificity of this result, dorsal striatum PC+GPC was also included in the model.
424 However, analysis of multicollinearity diagnostics showed a tolerance of 0.175, which is below the
425 acceptable value of 0.2. This is due to the strong significant correlation between dorsal striatum
426 CHO and dorsal striatum PC+GPC (r_T (20) = -0.667 p < 0.001). As a result, including the two

427 variables in the same regression model would violate the assumption of multicollinearity and the
428 regression model would not be able to provide unique estimates of the regression coefficients, as
429 each will account for overlapping variance (Field, 2009). Therefore, we instead repeated the
430 hierarchical regression with dorsal striatum PC+GPC in place of dorsal striatum CHO. The amount
431 of variance explained by dorsal striatum PC+GPC was not significant ($\beta = -0.301$, $t(17) = -1.900$, p
432 = 0.075). The addition of dorsal striatum PC+GPC to the model increased R^2 by 0.085 and this
433 increase was not statistically significant ($F(1,23) = 3.611$, $p = 0.075$). This indicates that dorsal
434 striatum CHO levels can explain part of the variance in the number of perseverative trials, however
435 dorsal striatum PC+GPC levels cannot.

436 ***Association of other learning parameters with dorsal striatal choline***

437 No significant correlations were seen with measures of performance in round 1 (trials to criterion,
438 $R1\eta^+$ or $R1\beta$) and average levels of CHO in the dorsal striatum.
439 No significant correlations were seen with dorsal striatal CHO levels and measures of performance
440 during post reversal learning (trials to criterion, $R2\eta^+$ or $R2\beta$). Additionally, there were no
441 significant correlations between dorsal striatal CHO levels and the number of regressive errors.

442 ***Association of learning parameters with ventral striatal choline***

443 Two participants were excluded from analysis due to poor data quality of the ventral striatal spectra.
444 Table 6 shows the average metabolite levels in the ventral striatum. To test the hypothesis that
445 associations between dorsal striatal CHO levels are region specific and not from the striatum as a
446 whole, we looked at the correlation between measures of learning performance and levels of CHO
447 in the ventral striatum in learners ($n = 20$).

448 Ventral striatal CHO did not correlate with trials to criterion in round 1. However, low levels of
449 CHO in the ventral striatum were associated with higher learning rates from positive prediction
450 errors during initial (but not reversal) learning ($r(19) = -0.625$, $p = 0.003$; 95% CI [-0.873, -0.363];

451 Figure 5A) and lower value impact parameter during initial (but not reversal) learning ($r(18) =$
452 0.555 , $p = 0.014$; 95% CI [0.312, 0.874]; Figure 5B).

453 Ventral striatal CHO was not found to correlate with either the number of perseverative trials or
454 learning rates from negative prediction errors.

455 No significant correlations were seen with ventral striatal CHO levels and measures of performance
456 during post reversal learning (trials to criterion, $R^2\eta^+$ or $R^2\beta$). Additionally, there were no
457 significant correlations between ventral striatal CHO levels and the number of regressive errors.

458 ***Group Comparisons***

459 To investigate whether average levels of CHO in the striatum relate to learning ability, the average
460 levels were compared between learners and non-learners. There was no significant difference in
461 CHO levels between learners and non-learners in either the dorsal striatum or the ventral striatum.

462 ***Summary***

463 In the dorsal striatum, average CHO levels were associated with performance during reversal, but
464 not during initial learning. There was a significant positive correlation between dorsal striatal CHO
465 levels and the number of perseverative trials, and a significant negative correlation between dorsal
466 striatal CHO levels and learning rates from negative prediction errors ($R^2\eta^-$). Additionally, dorsal
467 striatal CHO levels explained variance in the number of perseverative trials over and above that
468 explained by learning rates from negative prediction errors.

469 In the ventral striatum, average CHO levels were not associated with performance during reversal
470 learning. Although ventral striatal CHO levels were not associated with the speed of initial learning,
471 there was a significant positive correlation between ventral striatal CHO levels and learning rates
472 from positive prediction errors, and a significant negative correlation between ventral striatal CHO
473 levels and the value impact parameter during initial learning.

474 **DISCUSSION**

475 We used MRS to investigate the relationship between average CHO levels in the human striatum (at
476 rest) and probabilistic reversal learning. We show that baseline levels of CHO in the human dorsal
477 striatum are associated specifically with individual differences in reversal learning efficiency, but
478 not in initial learning, and that this effect is specific to the dorsal, but not the ventral striatum.

479 Behaviourally, we show that faster initial learning is indexed by a higher learning rate from positive
480 prediction errors (η^+) and a higher value impact parameter (β). Therefore, during this period,
481 participants are using wins and expected value to guide their choices. This is also seen during the
482 post-reversal learning period, in which faster post-reversal learning is indexed by higher learning
483 rates from positive prediction errors (η^+) and higher value impact parameters (β). Faster reversal
484 (less perseveration), however, was indexed by higher learning rates from negative prediction errors
485 (η^-) only. During this period, i.e. after the reversal has been implemented, participants must now
486 pay increased attention to worse than expected outcomes in order to identify the change in
487 contingencies. Therefore, to adapt to changes in task structure, participants adapt their strategy by
488 altering the weight of learning from prediction errors based on reward history.

489 The learning rate for negative prediction errors, even after accounting for trait impulsivity,
490 explained a significant amount of variance in perseveration, providing a simple mechanism to
491 explain reversal efficiency. Average dorsal striatum CHO levels explained variance in perseveration
492 over and above this original model. This suggests a more complex mechanism in which
493 perseveration is influenced, in part, by the learning rate from negative prediction errors (which can
494 change due to task demand) and by resting levels of dorsal striatum CHO. Indeed, Franklin &
495 Frank, 2015 showed that a model which takes into account cholinergic activity performs better on a
496 reversal learning task than a model based solely on dopamine prediction error signalling.

497 Our results indicate that participants who were quicker to reverse had lower average levels of dorsal
498 striatum CHO, suggesting that low trait levels of dorsal striatum CHO are beneficial for reversal
499 learning. Based on evidence that ACh efflux increases during reversal learning (Ragozzino et al.,
500 2009; Brown et al., 2010), this suggests two potential mechanisms. Firstly, lower levels of dorsal
501 striatum CHO at rest could reflect lower levels of ACh at rest. This is also supported by evidence
502 from the animal literature, which has shown a positive correlation between ACh levels at rest as
503 measured by microdialysis and average CCCs as measured by MRS (Wang et al., 2008).
504 Additionally, higher levels of CHO availability have been shown to lead to higher levels of ACh
505 release, implying a positive correlation between the two metabolites (Koshimura et al., 1990).
506 Based on this notion, the findings here suggest that lower levels of ACh at rest may be beneficial
507 for reversal learning because they enable a higher contrast between ACh levels at rest and during
508 reversal learning. However, it is important to note that Wang et al. (2008) modelled all three CCCs
509 as a single peak. It is likely that the relationship between CHO levels as measured by spectroscopy
510 and ACh levels in the brain is not straightforward, and this interpretation should be considered with
511 caution. Indeed, animal studies have shown the relationship between CHO and ACh can change
512 based on neuronal firing and ACh requirement (Löffelholz, 1998; Klein et al., 2002). Furthermore,
513 we have previously demonstrated a drop in CHO levels in the human dorsal striatum during reversal
514 learning, thought to reflect the sustained increase in ACh release seen in animal studies (e.g.
515 Ragozzino et al., 2009). This drop is thought to be due to an increase in translocation of CHO
516 uptake receptors in response to sustained neural firing (Bell et al., 2018). Though we have described
517 the measurements in this study as “at rest”, cholinergic interneurons are tonically active, and
518 therefore the relationship between CHO and ACh levels in the striatum will likely reflect a more
519 complex dynamical relationship between the two.

520 The second potential mechanism supported by our findings is that lower levels of dorsal striatum
521 CHO at rest may result from a more efficient CHO uptake system. Mice carrying mutations in the

522 gene coding for CHO uptake transporters have reduced neuronal capacity to both clear CHO and
523 release ACh. Moreover, performance on an attention task was impaired in these mice (Parikh et al.,
524 2013). Additionally, in a study of frontal cortex cholinergic modulation during attention, humans
525 with a gene polymorphism which reduces CHO transport capacity showed reduced activation in the
526 prefrontal cortex during an attentional task. Furthermore, the pattern of activation predicted CHO
527 genotype (Berry et al., 2015). Although our findings are in line with biochemical and functional
528 evidence in various models, it is clear that further work is needed to determine the relationship
529 between CHO uptake, ACh release, and reversal learning.

530 With regards to performance, disruption of cholinergic signalling in rodents typically results in an
531 increase in regressive errors (Brown et al., 2010; Bradfield et al., 2013). However, here we found no
532 association between dorsal striatum CHO levels and the number of regressive errors. In humans,
533 measures of individual differences in perseverative and regressive errors are likely to be
534 confounded by individual differences in representation of the task structure. Rather than making
535 perseverative and regressive errors based solely on feedback, the ability to flexibly alter response
536 depends in part on a higher level representation of the task, which is thought to be maintained in
537 frontal areas of the cortex (Armbruster et al., 2012). It should be noted that the basal ganglia-
538 thalamo-cortical system has been shown to be modulated by the maintenance of task rules, with
539 individuals with stronger representation of the task structure showing higher activation in the
540 caudate and thalamus during a behaviour switch (Ueltzhöffer et al., 2015), indicating that
541 representation of task structure likely modulates dorsal striatum activity in response to the need for
542 behavioural flexibility. Inevitably, caution is needed when translating evidence from rodent studies
543 of learning to human studies. This emphasises the need to further develop non-invasive techniques
544 for studying human neurochemistry *in vivo*.

545 As predicted, and in line with evidence from the animal literature (Ragazzino et al., 2009), levels of
546 CHO in the ventral striatum were not associated with reversal learning. However, ventral striatum

547 CHO levels were associated with model parameters which contributed to initial learning. Though
548 Ragozzino et al. demonstrated that ACh levels in the rat ventral striatum did not change during
549 reversal learning, they did not test if they changed during initial learning. Successful learning
550 requires the ability to learn from feedback, which is encoded through dopaminergic prediction error
551 signalling in the ventral striatum (Schultz et al., 1997). The rodent ventral striatum has a higher
552 density of cholinergic interneurons than the dorsal striatum (Matamales et al., 2016) and changes in
553 cholinergic activity are time locked to changes in dopaminergic activity, which is thought to
554 enhance the contrast of prediction error signalling (Aosaki et al., 2010). Indeed, cholinergic activity
555 in the ventral striatum has been linked with effective learning of a stimulus-outcome association
556 (Brown et al., 2012), therefore it is likely that cholinergic activity in the ventral striatum is involved
557 in some aspect with goal-directed learning, and further studies should explore this contribution.

558 Due to our specific a priori hypotheses and novel MRS application, we used several controls to
559 demonstrate that these effects are specific to CHO levels in the striatum. We acquired data from a
560 voxel in the cerebellum, geometrically identical to the striatal voxels. No learning effects were
561 present in the cerebellum, demonstrating that our findings are specific to the striatum. Additionally,
562 we also quantified two control metabolites (NAA and tCR) to ensure that the results were specific
563 to the metabolite of interest, rather than a general measurement or region effect. None of the effects
564 were seen in levels of NAA and tCR in the dorsal striatum or ventral striatum. Importantly, none of
565 the effects were seen when modelling all three peaks together (tCHO), highlighting once more the
566 importance of separating CHO when using MRS to investigate individual differences in CCC
567 levels.

568 As is common with learning tasks, a significant proportion of our sample did not reach criterion,
569 leaving a smaller sample for analysis. This proportion is similar to that reported in previous studies
570 using this task (i.e. Schönberg et al., 2007), and although the final sample size was reduced by this
571 effect, it is in line with the size of typically published MRS/MRI samples. This observation

572 notwithstanding, the novelty of the approach presented here naturally warrants further validation of
573 both the method and the findings.

574 In summary, we used MRS to demonstrate that average levels of CHO in the human dorsal striatum
575 are associated with performance during probabilistic reversal, but not during initial learning. This is
576 in line with evidence from the animal literature and our own prior work with humans, which
577 suggests a specific role for cholinergic activity in the dorsal striatum during reversal learning. These
578 results provide evidence for the role of the human cholinergic striatum in reversal learning and
579 behavioural flexibility more generally. Additionally, these findings further support the idea of using
580 CHO levels as measured by MRS as a tool for non-invasive *in vivo* monitoring of both healthy
581 human neurochemistry, as well as disorders of the human cholinergic system.

582 REFERENCES

583 Aoki S, Liu AW, Akamine Y, Zucca A, Zucca S, Wickens JR (2018) Cholinergic interneurons in
584 the rat striatum modulate substitution of habits. *Eur J Neurosci* 47:1194–1205 Available at:
585 <http://doi.wiley.com/10.1111/ejn.13820> [Accessed February 2, 2018].

586 Aosaki T, Miura M, Suzuki T, Nishimura K, Masuda M (2010) Acetylcholine-dopamine balance
587 hypothesis in the striatum: An update. *Geriatr Gerontol Int* 10:S148–S157 Available at:
588 <http://doi.wiley.com/10.1111/j.1447-0594.2010.00588.x>.

589 Armbruster DJN, Ueltzhöffer K, Basten U, Fiebach CJ (2012) Prefrontal cortical mechanisms
590 underlying individual differences in cognitive flexibility and stability. *J Cogn Neurosci*
591 24:2385–2399 Available at: http://www.mitpressjournals.org/doi/10.1162/jocn_a_00286.

592 Bayard S, Raffard S, Gely-Nargeot M-C (2011) Do facets of self-reported impulsivity predict
593 decision-making under ambiguity and risk? Evidence from a community sample. *Psychiatry*
594 *Res* 190:322–326 Available at: <http://dx.doi.org/10.1016/j.psychres.2011.06.013>.

595 Bell T, Lindner M, Mullins PG, Christakou A (2018) Functional neurochemical imaging of the
596 human striatal cholinergic system during reversal learning. *Eur J Neurosci* 47:1184–1193
597 Available at: <http://doi.wiley.com/10.1111/ejn.13803>.

598 Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and Powerful
599 Approach to Multiple Testing. *J R Stat Soc Ser B* 57:289–300 Available at:
600 <https://www.jstor.org/stable/2346101> [Accessed December 6, 2018].

601 Berry AS, Blakely RD, Sarter M, Lustig C (2015) Cholinergic capacity mediates prefrontal
602 engagement during challenges to attention: Evidence from imaging genetics. *Neuroimage*
603 108:386–395 Available at: <http://www.ncbi.nlm.nih.gov/pubmed/25536497> [Accessed June
604 23, 2015].

605 Bradfield LA, Bertran-Gonzalez J, Chieng B, Balleine BW (2013) The thalamostriatal pathway and
606 cholinergic control of goal-directed action: interlacing new with existing learning in the
607 striatum. *Neuron* 79:153–166 Available at: <http://dx.doi.org/10.1016/j.neuron.2013.04.039>
608 [Accessed April 12, 2016].

609 Brainard DH (1997) The Psychophysics Toolbox. *Spat Vis* 10:433–436.

610 Brown HD, Baker PM, Ragozzino ME (2010) The parafascicular thalamic nucleus concomitantly
611 influences behavioral flexibility and dorsomedial striatal acetylcholine output in rats. *J
612 Neurosci* 30:14390–14398 Available at: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896060/> [Accessed February 10, 2014].

613 Brown MTC, Tan KR, O'Connor EC, Nikonenko I, Muller D, Lüscher C (2012) Ventral tegmental
614 area GABA projections pause accumbal cholinergic interneurons to enhance associative
615 learning. *Nature* 492:452–456 Available at: <http://www.ncbi.nlm.nih.gov/pubmed/23178810>
616 [Accessed May 24, 2014].

619 Bull PN, Tippett LJ, Addis DR (2015) Decision making in healthy participants on the Iowa
620 Gambling Task: new insights from an operant approach. *Front Psychol* 6 Available at:
621 <http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00391/abstract>.

622 Christakou A, Gershman SJ, Niv Y, Simmons A, Brammer M, Rubia K (2013) Neural and
623 Psychological Maturation of Decision-making in Adolescence and Young Adulthood. *J Cogn
624 Neurosci* 25:1807–1823 Available at:
625 http://www.mitpressjournals.org/doi/10.1162/jocn_a_00447.

626 Currie S, Hadjivassiliou M, Wilkinson ID, Griffiths PD, Hoggard N (2013) Magnetic resonance
627 spectroscopy of the normal cerebellum: What degree of variability can be expected?
628 *Cerebellum* 12:205–211 Available at: <http://www.ncbi.nlm.nih.gov/pubmed/22987337>
629 [Accessed March 24, 2014].

630 Daw ND (2011) Trial-by-trial data analysis using computational models Delgado, M.R., Phelps,
631 E.A., Robbins TW, ed. *Atten Perform* XXIII 23:1 Available at:
632 <http://books.google.com/books?hl=en&lr=&id=LAHKGtbeunwC&oi=fnd&pg=PA3&dq=Trial+by+trial+data+analysis+using+computational+models&ots=Jcvveroasp9&sig=cv1A7wcpUFznn7QLkoVpbtQsdW4%5Cnpapers2://publication/uuid/409A068A-2FD7-4B3E-B92A-3969A1EE486F>.

633 Field A (2009) Discovering Statistics using SPSS. In: Third Edition.

634 Franken IHA, van Strien JW, Nijs I, Muris P (2008) Impulsivity is associated with behavioral
635 decision-making deficits. *Psychiatry Res* 158:155–163 Available at:
636 <http://www.sciencedirect.com/science/article/pii/S0165178107001680> [Accessed May 27,
637 2014].

638 Franklin NT, Frank MJ (2015) A cholinergic feedback circuit to regulate striatal population
639 uncertainty and optimize reinforcement learning. *Elife* 4.

643 Gasparovic C, Song T, Devier D, Bockholt HJ, Caprihan A, Mullins PG, Posse S, Jung RE,
644 Morrison LA (2006) Use of tissue water as a concentration reference for proton spectroscopic
645 imaging. *Magn Reson Med* 55:1219–1226 Available at:
646 <http://www.ncbi.nlm.nih.gov/pubmed/16688703> [Accessed October 3, 2016].

647 Gray JA (1970) The psychophysiological basis of introversion-extraversion. *Behav Res Ther*
648 8:249–266 Available at: <http://linkinghub.elsevier.com/retrieve/pii/0005796770900690>.

649 Holmstrand EC, Lund D, Cherian AK, Wright J, Martin RF, Ennis EA, Stanwood GD, Sarter M,
650 Blakely RD (2013) Transgenic overexpression of the presynaptic choline transporter elevates
651 acetylcholine levels and augments motor endurance. *Neurochem Int* 73:217–228 Available at:
652 <http://www.ncbi.nlm.nih.gov/pubmed/24274995> [Accessed December 3, 2013].

653 Hoover DB, Muth EA, Jacobowitz DM (1978) A mapping of the distribution of acetylcholine,
654 choline acetyltransferase and acetylcholinesterase in discrete areas of rat brain. *Brain Res*
655 153:295–306 Available at: <http://www.ncbi.nlm.nih.gov/pubmed/687983>.

656 Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL.
657 *Neuroimage*:782–790.

658 Jiru F (2008) Introduction to post-processing techniques. *Eur J Radiol* 67:202–217 Available at:
659 <http://www.sciencedirect.com/science/article/pii/S0720048X08001472> [Accessed March 26,
660 2014].

661 Jope RS (1979) High Affinity Choline Transport and AcetylCoA Production in Brain and their roles
662 in the Regulation of Acetyl-Choline Synthesis. *Brain Res Rev* 1:313–344.

663 Klein J, Weichel O, Ruhr J, Dvorak C, Loffelholz K (2002) A homeostatic mechanism
664 counteracting K+-evoked choline release in adult brain. *J Neurochem* 80:843–849 Available
665 at: <http://doi.wiley.com/10.1046/j.0022-3042.2001.00754.x>.

666 Koshimura K, Miwa S, Lee K, Hayashi Y, Hasegawa H, Hamahata K, Fujiwara M, Kimura M,

667 Itokawa Y (1990) Effects of choline administration on in vivo release and biosynthesis of
668 acetylcholine in the rat striatum as studied by in vivo brain microdialysis. *J Neurochem*
669 54:533–539.

670 Leong YC, Niv Y (2013) Human reinforcement learning processes act on learned attentionally-
671 filtered representations of the world. *Reinf Learn Decis Conf* 43:43–47.

672 Lindner M, Bell T, Iqbal S, Mullins PG, Christakou A (2017) In vivo functional neurochemistry of
673 human Cortical cholinergic function during visuospatial attention Motta A, ed. *PLoS One*
674 12:e0171338 Available at: <http://dx.doi.org/10.1371/journal.pone.0171338> [Accessed February
675 20, 2017].

676 Lockman PR, Allen DD (2002) The transport of choline. *Drug Dev Ind Pharm* 28:749–771
677 Available at: <http://www.tandfonline.com/doi/full/10.1081/DDC-120005622>.

678 Löffelholz K (1998) Brain choline has a typical precursor profile. *J Physiol* 92:235–239 Available
679 at: <http://www.sciencedirect.com/science/article/pii/S0928425798800259> [Accessed
680 September 7, 2015].

681 Matamales M, Götz J, Bertran-Gonzalez J (2016) Quantitative imaging of cholinergic interneurons
682 reveals a distinctive spatial organization and a functional gradient across the mouse striatum
683 Fisone G, ed. *PLoS One* 11:e0157682 Available at:
684 <http://dx.plos.org/10.1371/journal.pone.0157682>.

685 McCool MF, Patel S, Talati R, Ragozzino ME (2008) Differential involvement of M1-type and M4-
686 type muscarinic cholinergic receptors in the dorsomedial striatum in task switching. *Neurobiol
687 Learn Mem* 89:114–124 Available at:
688 <http://linkinghub.elsevier.com/retrieve/pii/S1074742707000913>.

689 Minati L, Aquino D, Bruzzone M, Erbetta A (2010) Quantitation of normal metabolite
690 concentrations in six brain regions by in-vivo ¹H-MR spectroscopy. *J Med Phys* 35:154

691 Available at:
692 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208823/>
693 [Accessed March 28, 2014].

694 Müller VI, Langner R, Cieslik EC, Rottschy C, Eickhoff SB (2015) Interindividual differences in
695 cognitive flexibility: influence of gray matter volume, functional connectivity and trait
696 impulsivity. *Brain Struct Funct* 220:2401–2414 Available at: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208823/>.
697

698 Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D (2001)
699 Java-based graphical user interface for the MRUI quantitation package. *Magn Reson Mater
700 Physics, Biol Med* 12:141–152 Available at: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390270/>.

701 Niv Y, Daniel R, Geana A, Gershman SJ, Leong YC, Radulescu A, Wilson RC (2015)
702 Reinforcement Learning in Multidimensional Environments Relies on Attention Mechanisms.
703 *J Neurosci* 35:8145–8157 Available at:
704 [http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.2978-14.2015/](http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.2978-14.2015).

705 Niv Y, Edlund JA, Dayan P, O'Doherty JP (2012) Neural Prediction Errors Reveal a Risk-Sensitive
706 Reinforcement-Learning Process in the Human Brain. *J Neurosci* 32:551–562 Available at:
707 <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5498-10.2012> [Accessed January 11,
708 2012].

709 Okada K, Nishizawa K, Setogawa S, Hashimoto K, Kobayashi K (2018) Task-dependent function
710 of striatal cholinergic interneurons in behavioural flexibility. *Eur J Neurosci* 47:1174–1183
711 Available at: <http://doi.wiley.com/10.1111/ejn.13768> [Accessed June 25, 2018].

712 Parikh V, St. Peters M, Blakely RD, Sarter M (2013) The Presynaptic Choline Transporter Imposes
713 Limits on Sustained Cortical Acetylcholine Release and Attention. *J Neurosci* 33:2326–2337
714 Available at: <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4993-12.2013> [Accessed

715 June 15, 2015].

716 Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the barratt impulsiveness scale. *J Clin*
717 *Psychol* 51:768–774 Available at: <http://doi.wiley.com/10.1002/1097-4679%28199511%2951%3A6%3C768%3A%3AAID-JCLP2270510607%3E3.0.CO%3B2-1>
718 [Accessed April 16, 2016].

720 Pfefferbaum A, Adalsteinsson E, Spielman D, Sullivan E V, Lim KO (1999) In vivo spectroscopic
721 quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray
722 and white matter: effects of normal aging. *Magn Reson Med* 41:276–284 Available at:
723 <http://www.ncbi.nlm.nih.gov/pubmed/10080274>.

724 Puts NAJ, Edden RAE (2012) In vivo magnetic resonance spectroscopy of GABA: A
725 methodological review. *Prog Nucl Magn Reson Spectrosc* 60:29–41 Available at:
726 <https://www.sciencedirect.com/science/article/pii/S0079656511000434?via%3Dihub>
727 [Accessed June 25, 2018].

728 Ragozzino ME, Jih J, Tzavos A (2002) Involvement of the dorsomedial striatum in behavioral
729 flexibility: role of muscarinic cholinergic receptors. *Brain Res* 953:205–214 Available at:
730 <http://www.ncbi.nlm.nih.gov/pubmed/12384254>.

731 Ragozzino ME, Mohler EG, Prior M, Palencia CA, Rozman S (2009) Acetylcholine activity in
732 selective striatal regions supports behavioral flexibility. *Neurobiol Learn Mem* 91:13–22
733 Available at: <http://linkinghub.elsevier.com/retrieve/pii/S1074742708001755>.

734 Reyngoudt H, Claeys T, Vlerick L, Verleden S, Acou M, Deblaere K, De Deene Y, Audenaert K,
735 Goethals I, Achten E (2012) Age-related differences in metabolites in the posterior cingulate
736 cortex and hippocampus of normal ageing brain: a 1H-MRS study. *Eur J Radiol* 81:e223-31
737 Available at: <http://www.ncbi.nlm.nih.gov/pubmed/21345628> [Accessed April 24, 2014].

738 Schönberg T, Daw ND, Joel D, O'Doherty JP (2007) Reinforcement learning signals in the human

739 striatum distinguish learners from nonlearners during reward-based decision making. *J*
740 *Neurosci* 27:12860–12867 Available at: <http://www.ncbi.nlm.nih.gov/pubmed/18032658>
741 [Accessed January 21, 2014].

742 Schultz W, Dayan P, Montague PR (1997) A Neural Substrate of Prediction and Reward. *Science*
743 (80-) 275:1593–1599 Available at:
744 <http://www.sciencemag.org/cgi/doi/10.1126/science.275.5306.1593>.

745 Smith SM (2002) Fast robust automated brain extraction. *Hum Brain Mapp* 17:143–155.

746 Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister
747 PR, Luca M De, Drobniak I, Flitney DE, Niazy R, Saunders J, Vickers J, Zhang Y, Stefano N
748 De, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis
749 and implementation as FSL. *Neuroimage* 23:208–219.

750 Soher BJ, Semanchuk P, Todd D, Steinberg J, Young. K (2010) Vespa: Integrated applications for
751 RF pulse design, spectral simulation and MRS data analysis. In: ISMRM Stockholm, Sweden,
752 pp 3169.

753 Soreni N, Noseworthy MD, Cormier T, Oakden WK, Bells S, Schachar R (2006) Intraindividual
754 variability of striatal (1)H-MRS brain metabolite measurements at 3 T. *Magn Reson Imaging*
755 24:187–194 Available at:
756 <http://www.sciencedirect.com/science/article/pii/S0730725X05003073> [Accessed March 14,
757 2014].

758 Steingrover H, Wetzels R, Wagenmakers E (2016) Bayes factors for reinforcement-learning
759 models of the Iowa gambling task. *Decision* 3:115–131 Available at:
760 <http://doi.apa.org/getdoi.cfm?doi=10.1037/dec0000040>.

761 Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction (Books P-B, ed). MIT Press.

762 Tanimura A, Pancani T, Lim SAO, Tubert C, Melendez AE, Shen W, Surmeier DJ (2018) Striatal

763 cholinergic interneurons and Parkinson's disease. *Eur J Neurosci* 47:1148–1158 Available at:
 764 <http://doi.wiley.com/10.1111/ejn.13638> [Accessed June 25, 2018].

765 Tzavos A, Jih J, Ragozzino ME (2004) Differential effects of M1 muscarinic receptor blockade and
 766 nicotinic receptor blockade in the dorsomedial striatum on response reversal learning. *Behav
 767 Brain Res* 154:245–253 Available at:
 768 <http://linkinghub.elsevier.com/retrieve/pii/S0166432804000543>.

769 Ueltzhöffer K, Armbruster-Genç DJN, Fiebach CJ (2015) Stochastic dynamics underlying cognitive
 770 stability and flexibility. *PLoS Comput Biol* 11:e1004331 Available at:
 771 <http://dx.plos.org/10.1371/journal.pcbi.1004331>.

772 Wang X-CC, Du X-XX, Tian Q, Wang J-ZZ (2008) Correlation between choline signal intensity
 773 and acetylcholine level in different brain regions of rat. *Neurochem Res* 33:814–819 Available
 774 at: <http://link.springer.com/10.1007/s11064-007-9509-4>.

775 Zhang Y, Brady M, Smith SM (2001) Segmentation of brain MR images through a hidden Markov
 776 random field model and the expectation-maximization algorithm. *IEEE Trans Med Imaging
 777* 20:45–57.

778 Zucca A, Zucca S, Wickens J (2018) Cholinergic mechanisms in adaptive behaviour. *Eur J
 779 Neurosci* 47:1146–1147 Available at: <http://doi.wiley.com/10.1111/ejn.13926> [Accessed June
 780 25, 2018].

781 Tables

782 *Table 1: Performance variables*

	<i>Average Number of Trials</i>	<i>SD</i>
Initial Learning	44	28
Reversal Learning	47	23
Perseveration Period	12	8
Post Reversal Learning	35	22

	Regressive Errors	7
783		6

784 *Table 2: Estimates of model parameters*

	η^+	η^-	β
Initial Learning	0.37 (SD = 0.30)	0.42 (SD = 0.31)	1.44 (SD = 0.56)
Reversal Learning	0.24 (SD = 0.35)	0.31 (SD = 0.27)	1.37 (SD = 0.97)

785 *Note: η^+ = learning rate from positive prediction errors; η^- = learning rate from negative prediction
786 errors; β = impact of subjective value on choice.*787 *Table 3: Correlation coefficients for relationships between model parameters and behaviour*

	η^+	η^-	β
Initial Learning (TTC)	-0.439 [-0.710, -0.066]	-0.218 [-0.307, -0.680]	-0.536* [-0.808, -0.248]
Reversal Learning			
Perseverative Errors	-0.176 [-0.516, 0.233]	-0.527* [-0.754, -0.285]	0.132 [-0.117, 0.403]
Post Reversal Learning (TTC)	-0.335* [-0.593, -0.014]	0.322 [-0.164, 0.673]	-0.352* [-0.674, -0.051]
Regressive Errors	-0.355* [-0.612, -0.047]	0.292 [-0.174, 0.649]	-0.337* [-0.639, -0.054]

788 *Note: η^+ = learning rate from positive prediction errors; η^- = learning rate from negative
789 prediction errors; β = value impact parameter; * $p < 0.05$; ranges in square brackets indicate bias
790 corrected 95% confidence intervals.*

791

792 *Table 4: Average metabolite levels in the dorsal striatum*

	CHO	PC+GPC	tCHO	NAA	tCR

Learners	0.15 (SD = 0.20)	0.27 (SD = 0.10)	0.42 (SD = 0.12)	8.73 (SD = 0.77)	11.58 (SD = 1.74)
Non-Learners	0.11 (SD = 0.16)	0.36 (SD = 0.14)	0.46 (SD = 0.10)	8.83 (SD = 2.37)	11.80 (SD = 2.31)

793 Note: *CHO* = choline, *PC+GPC* = phosphocholine and glycerophosphocholine, *tCHO* = total

794 *choline*, *NAA* = *n-acetyl aspartate*, *tCR* = *total creatine*.

795 Table 5: Summary of hierarchical regression analyses for variables predicting perseveration

	<i>B</i>	<i>SE B</i>	β	<i>R</i> ²	ΔR^2	<i>p</i>
Model 1				0.512		0.002
R2 η^2	-14.476	4.858	-0.493			0.008
BIS Total	-0.504	0.176	-0.472			0.011
Model 2				0.628	0.116	0.034
R2 η^2	-12.619	4.439	-0.430			0.011
BIS Total	-0.447	0.160	-0.419			0.013
DS CHO	5.306	2.307	0.351			0.034

796 Note, for $\Delta R^2=0.139$, *p* = 0.037

797 *B* = unstandardized coefficient, *SE* = standard error, β = standardised coefficient

798 Table 6: Average metabolite levels in the ventral striatum

	<i>CHO</i>	<i>PC+GPC</i>	<i>tCHO</i>	<i>NAA</i>	<i>tCR</i>
Learners	0.24 (SD = 0.17)	0.27 (SD = 0.12)	0.5 (SD = 0.17)	5.39 (SD = 1.97)	12.02 (SD = 2.26)
Non-Learners	0.23 (SD = 0.17)	0.25 (SD = 0.14)	0.48 (SD = 0.16)	5.45 (SD = 1.54)	11.13 (SD = 3.95)

799 Note: *CHO* = choline, *PC+GPC* = phosphocholine and glycerophosphocholine, *tCHO* = total

800 *choline*, *NAA* = *n-acetyl aspartate*, *tCR* = *total creatine*.

801 **FIGURE LEGENDS**

802 Figure 1: General outline of learning task trials. Participants were instructed to choose between four
803 decks of cards. Each deck had a different probability of generating wins:losses (75:25, 60:40, 40:60,
804 25:75). Once the learning criterion had been reached, the deck probabilities were reversed so that
805 high probability decks became low probability decks and vice versa. Participants were not informed
806 of this in advance and were simply instructed to gain as many points as possible. Each screen was
807 shown for 2.5s, RT = reaction time

808

809 Figure 2: General overview of learning task structure. Participants completed the initial learning
810 phase (round 1) by reaching the predefined accuracy criterion or after 100 trials. Upon completion
811 of the initial learning phase, the deck probabilities were reversed. Participants then completed a
812 reversal learning phase (round 2). For behavioural analysis, this was subdivided into perseverative
813 trials (PER) and a post-reversal learning period. The number of perseverative trials was defined as
814 the number of trials after reversal until the probability of selecting the previously favoured card
815 reached chance level (0.25). The post-reversal learning period was the number of trials to reach
816 criterion in round 2, minus the number of perseverative trials. The number of regressive errors was
817 defined as the number of times the previously favoured deck was selected during the post-reversal
818 learning period. The task ended once participants either reached the same accuracy criterion in
819 round 2 or after 100 round 2 trials.

820

821 Figure 3: Location of voxels and example spectra. Heat maps showing the sum of the ^{MRS} voxels
822 over all subjects in MNI space, along with a voxel and a representative spectrum from a single
823 subject (A = Dorsal Striatum, MNI coordinates: -3.41, 2.37, 11.16; B = Ventral Striatum, MNI
824 coordinates: -2.99, 5.92, -3.93; C = Cerebellum, MNI coordinates: -2.10, -61.03, 19.20).

825

826 Figure 4: Correlations between dorsal striatum CHO levels and performance during reversal **A:**
827 Positive correlation between the number of perseverative trials and levels of CHO in the dorsal
828 striatum ($r_T(21) = 0.367, p = 0.021$). **B:** Negative correlation between the learning rate based on
829 negative prediction errors derived from round 2 ($R2\eta^-$) and levels of CHO in the dorsal striatum (r_T
830 (21) = -0.371, $p = 0.019$). DS: Dorsal Striatum; CHO: Choline.

831

832 Figure 5: Correlations between ventral striatum CHO levels and performance during initial learning
833 **A:** Negative correlation between learning rate based on positive prediction errors derived from
834 round 1 ($R1\eta^+$) and levels of CHO in the ventral striatum ($r(19) = -0.625, p = 0.003$). **B:** Positive
835 correlation between impact of participant's subjective value on their future choice derived from
836 round 1 ($R1\beta$) and levels of CHO in the ventral striatum ($r(18) = 0.555, p = 0.014$). VS: Ventral
837 Striatum; CHO: Choline.









