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ABSTRACT

Animal studies have shown that the striatal cholinergic system plays a role in behavioural flexibility
but, until recently, this system could not be studied in humans due to a lack of appropriate non-
invasive techniques. Using proton magnetic resonance spectroscopy (MRS) we recently showed
that the concentration of dorsal striatal choline (an acetylcholine precursor) changes during reversal
learning (a measure of behavioural flexibility) in humans. The aim of the present study was to
examine whether regional average striatal choline was associated with reversal learning. 22
participants (mean age = 25.2, range = 18-32, 13 female) reached learning criterion in a
probabilistic learning task with a reversal component. We measured choline at rest in both the
dorsal and ventral striatum using MRS. Task performance was described using a simple
reinforcement learning model that dissociates the contributions of positive and negative prediction
errors to learning. Average levels of choline in the dorsal striatum were associated with
performance during reversal, but not during initial learning. Specifically, lower levels of choline in
the dorsal striatum were associated with a lower number of perseverative trials. Moreover, choline
levels explained inter-individual variance in perseveration over and above that explained by
learning from negative prediction errors. These findings suggest that the dorsal striatal cholinergic
system plays an important role in behavioural flexibility, in line with evidence from the animal
literature and our previous work in humans. Additionally, this work provides further support for the
idea of measuring choline with MRS as a non-invasive way of studying human cholinergic

neurochemistry.
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SIGNIFICANCE STATEMENT

Behavioural flexibility is a crucial component of adaptation and survival. Evidence from the animal
literature shows the striatal cholinergic system is fundamental to reversal learning, a key paradigm
for studying behavioural flexibility, but this system remains understudied in humans. Using proton
magnetic resonance spectroscopy, we showed that choline levels at rest in the dorsal striatum are
associated with performance specifically during reversal learning. These novel findings help to
bridge the gap between animal and human studies by demonstrating the importance of cholinergic
function in the dorsal striatum in human behavioural flexibility. Importantly, the methods described
here can not only be applied to furthering our understanding of healthy human neurochemistry, but

also to extending our understanding of cholinergic disorders.
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INTRODUCTION

Acetylcholine (ACh) plays an important role in adaptive behaviour, and has been implicated in
disorders of cognitive flexibility, such as Parkinson’s disease (Tanimura et al., 2018; Zucca et al.,
2018). Studies in rodents have repeatedly demonstrated that ACh transmission, determined by the
activity and regulation of cholinergic interneurons in the dorsal striatum, is involved in reversal
learning and similar forms of behavioural flexibility (Ragozzino et al., 2002, 2009; Tzavos et al.,
2004; McCool et al., 2008; Brown et al., 2010; Bradfield et al., 2013; Aoki et al., 2018; Okada et
al., 2018). Further, ACh efflux has been shown to increase specifically during reversal learning (but
not during initial learning), and this effect is specific to the dorsomedial striatum (with no changes
in ACh levels in either the dorsolateral striatum or the ventral striatum) (Ragozzino et al., 2009). It
is clear then that cholinergic activity in the dorsal striatum plays an important role in reversal
learning but, despite the importance of understanding this system, there remain important

challenges in probing ACh function in humans due to a lack of appropriate non-invasive techniques.

Proton magnetic resonance spectroscopy (MRS) is a non-invasive method for measuring brain
metabolites in vivo (Puts and Edden, 2012). Although it cannot be used to study ACh directly due to
its low concentration (Hoover et al., 1978), MRS can be used to measure levels of certain choline
containing compounds (CCCs) involved in the ACh cycle, including choline (CHO). CHO is the
product of ACh hydrolysis, and its uptake in cholinergic terminals is the rate-limiting step in ACh
biosynthesis (Lockman and Allen, 2002). Using functional MRS, we previously demonstrated task-
driven changes in the concentration of CHO in the human dorsal striatum during reversal learning
(Bell et al., 2018). Although MRS studies typically model CCCs as a single peak due to their
proximity on the spectrum, we showed that using this method may mask CHO-specific effects.
Therefore, in the context of studying ACh function, it is necessary to separate the metabolites when

measuring individual differences in CHO levels (Lindner et al., 2017; Bell et al., 2018).
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Among the many open questions around this approach is the nature of the relationship between
baseline levels of CHO availability and function-relevant ACh activity. Animal studies have shown
that ACh synthesis is tightly coupled to CHO availability. For example, depletion of CHO has been
shown to reduce ACh synthesis (Jope, 1979) and administration of CHO has been shown to increase
it (Koshimura et al., 1990). Further, overexpression (Holmstrand et al., 2013) and under-expression
(Parikh et al., 2013) of presynaptic CHO up-take transporters has been shown to increase and
decrease ACh levels respectively. It is possible, therefore, that baseline CHO availability may
modulate ACh activity, leading to effects on behavioural flexibility. In this study, we used MRS to
test whether baseline levels of dorsal striatal CHO are related to individual differences in reversal
learning performance. Due to limitations of spectroscopy voxel sizes, it is not possible to precisely
target the human homologue of the rodent dorsomedial striatum, therefore we obtained average
measures of CHO from the dorsal striatum overall. To test the hypothesised regional striatal
specificity, we also measured CHO levels from the ventral striatum. Finally, we also measured
CHO levels from the cerebellum as a further, more general control. In line with the animal literature
and our previous findings in humans (Bell et al., 2018), we predicted that average levels of CHO in
the dorsal, but not the ventral, striatum would be associated with performance during reversal, but

not initial, learning.

METHODS

Participants

The study was approved by the University of Reading Research Ethics Committee (UREC
reference 13/15). 36 volunteers (20 female) between the ages of 18.3 and 32.8 (mean = 24.8, SD =
3.5) were recruited from the University of Reading and surrounding areas. All participants were

healthy, right handed non-smokers and written informed consent was taken prior to participation.

6
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Two participants were excluded from analyses due to a high proportion of missed responses
(participant 14: 35% during initial learning and 39% during reversal learning; participant 31: 27%
during initial learning, 54% during reversal learning). One participant was excluded from
spectroscopy analysis due to issues with segmentation of the structural scan. Data from the ventral

striatum of two participants were excluded from analysis due to poor data quality.

Behavioural Data Collection

Learning Task

The task used was a probabilistic multi-alternative learning task previously described (Bell et al.,
2018), and was programmed using MATLAB (2014a, The Mathworks, Inc., Natick, MA, United

States) and Psychtoolbox (Brainard, 1997).

First, participants were presented with a fixation cross displayed in the centre of the visual display.
Participants were then presented with four decks of cards. Each deck contained a mixture of
winning and losing cards, corresponding respectively to a gain or loss of 50 points. The probability
of getting a winning card differed for each deck (75%, 60%, 40%, and 25%) and the probabilities
were randomly assigned across the four decks for each participant. Participants indicated their
choice of deck using a computer keyboard. Outcomes were pseudo-randomised so that the assigned
probability was true over every 20 times that deck was selected. Additionally, no more than 4 cards
of the same result (win/lose) were presented consecutively in the 75% and 25% decks and no more
than 3 cards of the same result in the 60% and 40% decks. A cumulative points total was displayed
in the bottom right-hand corner throughout the session and in the centre of the visual display at the
end of each trial (Figure 1). Participants were instructed that some decks may be better than others,
they are free to switch between decks as often as they wish, and they should aim to win as many

points as possible.
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The learning criterion was set at selection of either of the two highest decks (60% or 75%) on at
least 80% of the time over ten consecutive trials. Though the optimal strategy is to repeatedly
choose the 75% deck, pilot testing revealed the participants were not always able to distinguish
between the 75% and 60% decks. Therefore, as both decks generate an overall gain in points and
choice of either deck could be considered a good strategy, both decks are included in the learning

criterion.

The initial learning phase (round 1) was completed when either the learning criterion was reached,
or the participant completed 100 trials. The deck probabilities were then reversed so that the high
probability decks became low probability (75% to 25%, and 60% to 40%) and vice versa.
Participants were not informed of the reversal. The task ended either after the learning criterion was

reached following the reversal (round 2), or after another 100 trials (Figure 2).
Impulsivity

Previous research has shown that trait levels of impulsivity can influence decision making (Bayard
et al., 2011). Individuals with higher levels of impulsivity have been shown to demonstrate sub-
optimal performance on decision making tasks, displaying a decreased ability to learn reward and
punishment associations and implement these to make appropriate decisions. For instance,
individuals with high levels of impulsivity were relatively impaired in adapting their behaviour
during a reversal learning task (Franken, van Strien, Nijs, & Muris, 2008). Other tasks of cognitive
flexibility have also been shown to be influenced by trait impulsivity levels (e.g. Miiller, Langner,
Cieslik, Rottschy, & Eickhoff, 2014). Therefore all participants completed the Barratt
Impulsiveness Scale (BIS-11; Patton, Stanford, & Barratt, 1995) and their total score was used as a
trait measure of impulsivity. This was included in the analysis to account for effects driven by

individual differences in impulsivity.
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Data Analysis

Participants were split into two groups based on performance. Those who learnt both rounds (i.e.
reached criterion both during initial learning and after reversal) were classified as learners and those

who did not learn both rounds were classified as non-learners.

Behaviour was analysed for learners only. The task stops at 100 trials in each round if the criterion
is not met. Therefore, participants who did not reach criterion in either one round or both rounds

were excluded from behaviour analysis.

Performance was measured using the number of trials taken to reach criterion in round 1 (initial
learning) and in round 2 (reversal learning). Round 2 was subdivided into perseverative trials and
post-reversal learning (Figure 2). The number of perseverative trials was defined as the number of
trials after reversal until the probability of selecting the previously favoured deck reached chance
level (0.25), i.e. the number of trials taken to identify the reversal and switch behaviour. Post-
reversal learning was defined as the number of trials taken to reach criterion in round 2, minus the
number of perseverative trials, i.e. the number of trials to reach criterion after the reversal had been
detected. In other words, post-reversal learning is measured by the number of trials the participant
took to learn the contingencies once they had realised the deck probabilities had reversed.
Additionally, the post-reversal learning period included a measure of regressive errors. The number
of regressive errors was defined as the number of times the previously favoured deck was selected

during the post-reversal learning period (i.e. after the perseverative period had ended).
Temporal Difference Reinforcement Learning Model

We modelled participants’ choice behaviour as a function of their previous choices and rewards
using a temporal difference reinforcement learning algorithm (Sutton and Barto, 1998). This allows

us to track trial-and-error learning for each participant, during each task stage, in terms of a
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subjective expected value for each deck. On each trial ¢, the probability that deck ¢ was chosen was

given by a soft-max probability distribution:

me(c)
P(e,=c)=¢" /Z.emt(j)
! ()

where my(c) is the preference for the chosen deck and j indexes the four possible decks. The
preference for the chosen deck was comprised of the participant’s expected value of that deck on
that trial, V,(c), multiplied by the participant’s individual value impact parameter 5 (equivalent to

the inverse temperature):

me(c) = BV, (c) )
The parameter f§ describes the extent to which trial-by-trial choices follow the distribution of the
expected values of the decks: a low f indicates choices are not strongly modulated by expected
value, being effectively random with respect to this quantity (i.e. participants are not choosing
based exclusively on value, and are effectively exploring all options); conversely, a high f indicates
choices largely follow expected value (i.e. participants choose the deck with the highest expected

value; exploitation).

To update the subjective value of each deck, a prediction error was generated on each trial, pe;
based on whether participants experienced a reward or a loss (reward, = +1 or -1 respectively). The
expected value of the chosen deck was subtracted from the actual trial reward to give the prediction

€I1or:

pe, = reward, — V.(c) (3)

Studies have shown that individuals differ in the degree to which they learn from better than
expected outcomes (positive prediction errors) and worse than expected outcomes (negative

prediction errors) (Gray, 1970; Niv et al., 2012; Christakou et al., 2013; Bull et al., 2015). To

10
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account for this, two learning rate parameters were used to model sensitivity to prediction errors in
updating the expected values: the weight of learning from better than expected outcomes (learning
rate from positive prediction errors: #") and the weight of learning from worse than expected
outcomes (learning rate from negative prediction errors: 7). For example, individuals who are
reward seeking will place a high weight on the former, whereas those who are loss-aversive will
place a high weight on the latter. The prediction error on each trial was multiplied by either the

positive (") or negative (1) learning rate and used to update the value of the chosen deck.

8 =n" xpe. if pe,>0 4)
8¢ =n" Xpe, ifpe<0 ()
V(chosen;) = V(chosen;_,) + &; (6)

Thus, the model has three parameters of interest (8, #” and 7). In psychological terms,  captures
the degree to which the subjective value of the chosen deck influenced decisions, while the learning
rates capture the individual’s preference for learning from positive (1) or negative (1) prediction

errors to guide choice behaviour during this task.
Model Fitting

The model was fit per participant to provide parameters that maximised the likelihood of the
observed choices given the model (individual maximum likelihood fit; Daw, 2011). The reward
value was updated as 1 (win) or -1 (loss). Subjective value was initialised at zero for all decks and
the initial parameter values were randomised. To ensure the model produced consistent,
interpretable parameter estimates, 7 was limited to between 0 and 1 and S was assumed positive.

The parameters were constrained by the following distributions based on Christakou et al (2013):

B ~ Gamma (2,1)

11
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n ~ Beta (1.2,1.2)

The model was fit separately over the trials encompassing round 1 (R1, initial learning) and round 2
(R2, perseverative trials and post-reversal learning, denoted as reversal learning). This was done to
capture the change in influence of the model parameters from initial learning to reversal learning.
The model was not fit over the perseverative trials separately as the average number of

perseverative trials was too small to generate a stable model fit.

Traditionally, to investigate the fit of a temporal difference reinforcement learning model the
Bayesian information criterion (BIC) is used. The BIC is a post hoc fit criterion which looks at the
adequacy of a model whilst penalising the number of parameters used. A lower number indicates a
better fit (Steingroever et al., 2016). However, the BIC is generally used to compare different
models, rather than model fits over different sets of data, and will penalise different sized data sets.
Alternatively, the corrected likelihood per trial (CLPT) can be used. The CLPT is a more intuitive
measure of fit that takes into account the number of trials completed without penalising different
sized data sets. The CLPT varies between 0 and 1, with higher values indicating a better fit (Leong
and Niv, 2013; Niv et al., 2015).

Wilcoxon signed-rank tests showed there was no significant difference between the CLPT values
for the model fit over round 1 (Mdn = 0.23) and round 2 (Mdn = 0.23; Z= -1.308, p = 0.191).
Additionally, there was no significant difference between the BIC values for the model fit over
round 1 (M = 75.7, SD = 45.5) and round 2 (M = 90.9, SD = 43.6; #(33) = -1.533, p=0.135,r =
0.26).

To summarise, the model fit equally well across rounds. Therefore, differences in parameter

estimates across the task can be examined.

12
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Magnetic Resonance Spectroscopy

Data Acquisition

Data was collected at the University of Reading on a Siemens Trio 3T MRI scanner using a
transmit-receive head coil. A high-resolution whole-brain T1 structural image was acquired for
voxel placement using an MPRAGE sequence parallel to the anterior-posterior commissure line
(176x1mm slices; TR = 2020ms; TE = 2.9ms; FOV = 256x256mm>, flip angle = 9°, voxel size

1x1x1mm3).

Voxels were placed in either the left or right dorsal striatum, ventral striatum and the cerebellum,
with hemisphere placement and order of measurements counterbalanced across participants.
Anatomy was used to guide voxel positioning. The top of the dorsal striatum was identified by
slice-by-slice examination of the structural scan. The slice below the slice where the top of the
striatum was no longer visible was selected and the top of the voxel was aligned with this slice. The
slice above the slice where the bottom of the striatum could no longer be seen was selected and used
for alignment of the ventral striatum voxel. The cerebellum voxel was placed as high in the
superior cerebellar vermis as possible whilst ensuring only cerebellar tissue was contained in the
voxel. The superior cerebellar vermis was chosen as it has been shown to have the lowest variability
in both inter and intra subject metabolite ratios as measured with MRS at rest (Currie et al., 2013).
All voxels were visually inspected to ensure minimal cerebrospinal fluid was included in the voxels.
A PRESS sequence was used to acquire data from the three separate voxel positions (voxel size =
10x15x15mm’; TR = 2000ms; TE = 30ms). 128 spectra were collected and averaged for each area.
A water-unsuppressed spectrum was also obtained from each area for data processing, which

consisted of an average of 15 spectra. The SIEMENS Auto Align Scout was used in between each

13
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scan to adjust the voxel position based on the actual head position of the participant. This was used

to correct for participant motion and minimize the variability of the voxel position.

Structural Segmentation

Structural scans were processed using FSL version 5.0.8 (Smith et al., 2004; Jenkinson et al., 2012).
First, the skull was removed using the brain extraction tool (BET) (Smith, 2002). Images were
segmented into three separate tissue types: grey matter (GM), white matter (WM) and cerebrospinal
fluid (CSF) using the FAST tool (Zhang et al., 2001). The coordinates and dimensions of the voxel
were then superimposed on these images and the proportion of each of the three tissue types

contained within the voxel was calculated.
Quantitation

Data was processed in the time domain using Java-Based Magnetic Resonance User Interface

(JMRUI software version 5.0 (http://www.mrui.uab.es/mrui; Naressi et al., 2001). Phase correction

was performed using the corresponding water spectrum from each area. Each spectrum was then
apodized using a Gaussian filter of 3Hz to improve signal quality, reduce noise and reduce effects
of signal truncation (Jiru, 2008). The residual water peak was removed using the Hankel-Lanczos

Singular Value Decomposition (HLSVD) filter tool.

Metabolite models were generated using the software Versatile Simulation, Pulses and Analysis

(VEsPA; https://scion.duhs.duke.edu/vespa/project; Soher, Semanchuk, Todd, Steinberg, & Young.,

2010). 14 typical brain metabolites (Acetate, Aspartate, CHO, Creatine, Gamma-Aminobutyric
Acid (GABA), Glucose, Glutamate, Glutamine, Lactate, Myo-inositol, N-acetyl Aspartate (NAA),
Phosphocreatine, PC & GPC, Scyllo-inositol, Succinate, Taurine) were simulated at a field strength
of 3T using a PRESS pulse sequence (TE1 = 20ms, TE2 = 10ms, main field = 123.25MHz). For
initial analyses, CHO was modelled separately from PC+GPC based on the method described in

Bell et al., 2018. Additionally, the sum of the three peaks (total choline, tCHO) was included in the
14
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analyses for comparison. If tCHO produced similar results to CHO, it would potentially suggest that
there may not be a need to separate the three peaks, or that the quantitation method is not separating

CHO effectively.

The jMRUI tool Accurate Quantification of Short Echo time domain Signals (AQSES) was used for
automatic quantification of spectra signals. AQSES was applied using the method described in
Minati, Aquino, Bruzzone, & Erbetta, 2010. To correct for any chemical shift displacement, the
spectrum was shifted so that the peak for n-acetyl-aspartate (NAA) was at 2.02ppm. The frequency
range selected for processing was limited to 0-8.6ppm (equal phase for all metabolites, begin time
fixed, delta damping (-10 to 25Hz), delta frequency (-5 to 5Hz), no background handling, 0O
truncated points, 2048 points in AQSES and normalisation on). Based on common practice in the

field, values with a CRB higher than 30% were excluded on a case by case basis.

Metabolite concentrations were calculated for CHO, PC+GPC, tCHO, NAA and total creatine (tCR,
creatine + phosphocreatine), correcting for partial-volume and relaxation effects, using the formula

described in Gasparovic et al., 2006.
Experimental Design and Statistical Analysis

Statistical analysis was performed using SPSS (IBM Corp. Released 2013. IBM SPSS Statistics for

Windows, Version 22.0. Armonk, NY: IBM Corp).

The relationships between model parameters and behaviour, along with model parameters and
metabolite levels, and behaviour and metabolite levels wereas assessed using correlation analysis.
The distribution of the data was analysed using measures of skewness and kurtosis, along with the
Shapiro-Wilk test. When the assumptions of normality and homogeneity were met, Pearson’s
correlation () was used to assess correlations. When assumptions of normality were not met,
Kendall’s Tau (r;) was used to assess correlations, as it provides a better estimation of the

correlation in a small sample size compared to other non-parametric methods (Field, 2009).Both the
15
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behavioural and MRS data reported satisfy false discovery correction using the Benjamini-
Hochberg procedure at a reasonably conservative 10% false discovery rate (Benjamini and
Hochberg, 1995). We report the FDR correction because of our strong a priory prediction and the
high cost of false negatives. Further, in the case of model-behaviour correlations, the FDR
correction is more appropriate than a family-wise error rate correction for multiple comparisons
(such as the Bonferroni method) because of the high correlation rate expected in the data, given that
model parameters were estimated from behaviour itself. We included a bootstrap approach (1000
iterations) to calculate bias-corrected 95% confidence intervals (CI). Where appropriate,
hierarchical multiple regression analysis was used to assess the variance in behaviour explained by

metabolite levels, after the model parameters were accounted for.
Confounding Variables

There were no significant differences in metabolite levels between hemispheres, therefore the

results were combined across hemisphere of acquisition.

To examine if variations in the metabolite values might be caused by differing proportions of tissue
composition, correlations were performed between CCC levels and proportion of grey and white
matter present in the voxel. Additionally, metabolite values were checked against the water signal
for the same reason. No significant correlations were found between CCCs and grey/white matter
content, indicating any variance seen is generated by differing metabolite levels. The water signal
significantly correlated with dorsal striatum tCHO (7 (34) = -0.348, p = 0.003) and ventral striatum
PC+GPC (7 (31) = -0.270, p = 0.001). Therefore, analyses involving dorsal striatum tCHO or
ventral striatum PC+GPC were corrected for this source of variance using partial correlations. No

other significant correlations were seen between the water signal and metabolite levels of interest.

There is evidence that metabolite levels in the brain can vary based on time of day (Soreni et al.,

2006) and age (Pfefferbaum et al., 1999; Reyngoudt et al., 2012). Therefore, all metabolites were
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checked against these two variables to ensure this was not a source of variance. Time of day
significantly correlated with dorsal striatum tCHO (7 (34) = 0.249, p = 0.038) and cerebellum
tCHO (r7 (30) = 0.285, p = 0.026). Therefore, analyses involving dorsal striatum tCHO or
cerebellum tCHO were corrected for this source of variance using partial correlations. No other

significant correlations were seen between metabolite levels and time of day or age of participant.

Controls

The cerebellum was used as a control to demonstrate the regional specificity of results. None of the
effects were present in the cerebellum and therefore these results are not reported further. NAA and
tCR were used as controls to demonstrate the neurochemical specificity of the results (i.e. that the
relevant individual differences were specific to choline and not to spectrum-wide inter-individual
differences). None of the effects were present in either NAA or tCR and therefore these results are
not reported further. Furthermore, none of the reported effects were found when using tCHO as a

measure of cholinergic availability and therefore these results are not reported further.

RESULTS

Behavioural Results

Twenty-two (22) participants reached criterion during both rounds (i.e. they reached criterion both
during initial learning and after the reversal) and were included in the analysis. Table 1 shows the

average number of trials taken to complete each component.

Model parameters and performance

A reinforcement-learning model was used to disentangle components of learning that contribute to
overall behaviour. We looked at three parameters of interest, the learning rates from positive (n")

and negative () prediction errors, and the overall impact of subjective value of the deck on the
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participants choice (value impact parameter, ). Table 2 shows the mean of the model parameters
for both rounds. Outlier analysis resulted in the exclusion of the value impact parameter () during
initial learning for one participant (Z=3.12).

To explore how the contribution of the model parameters to behaviour changes over time, we
looked at correlations between behaviour (as measured by trials to criterion, number of
perseverative trials and number of regressive errors) and the corresponding model parameters
separately, i.e. behaviour during initial learning was correlated with model parameters fit over the

initial learning period, and likewise for the reversal learning period.

Table 3 shows the correlation coefficients for the relationships between model parameters and
behaviour. Faster initial learning (low number of trials to criterion) was associated with a higher
learning rate from positive prediction errors (#(21) = -0.439, p = 0.041) and a higher value impact
parameter (7(20) =-0.536, p = 0.012). A lower number of perseverative trials was associated with a
higher learning rate from negative prediction errors (#(21) = -0.527, p = 0.012). As was the case
during initial learning, during post-reversal learning (after the reversal has been identified) a lower
number of trials taken to reach criterion was associated with a higher learning rate from positive
prediction errors (r7 (21) =-0.335, p = 0.03), and a higher value impact parameter (7 (21) =-0.352,
p = 0.022). Additionally, during post-reversal learning, a lower number of regressive errors was
associated with a higher learning rate from positive prediction errors (7 (21) = -0.355, p = 0.023)

and a higher value impact parameter (7 (21) =-0.337, p = 0.031).
Effects of trait impulsivity on performance

To investigate the influence of impulsivity on decision making, we looked at correlations between
impulsivity (total BIS-11 score) and measures of behaviour (including model parameters) in
learners. Higher impulsivity levels were associated with a lower number of perseverative errors

((21)=-0.470, p = 0.027). No other measures of behaviour correlated with impulsivity.
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Summary

The contribution of learning parameters to performance changes over the learning period. Faster
initial learning was indexed by both higher learning rates from positive prediction errors (R1n") and
higher value impact parameters (R1B). However, reduced numbers of perseverative trials were
associated with higher learning rates from negative prediction errors (R2n") and higher impulsivity
levels. Similar to initial learning, faster post-reversal learning was associated with higher learning
rates from positive prediction errors (R2n") and higher value impact parameters (R2p).
Additionally, during post-reversal learning, lower numbers of regressive errors were associated with

higher learning rates from positive prediction errors (R2n") and higher value impact parameters

(R2B).

Spectroscopy Results

One participant was excluded from spectroscopy analysis due to issues with segmentation of the

structural scan. All metabolite values had CRB < 30% and were all included in the analysis.

Association of reversal learning with dorsal striatal choline

Table 4 shows the average metabolite levels in the dorsal striatum. To test the hypothesis that
reversal learning performance is associated with dorsal striatal CHO levels, we looked at the
correlation between measures of reversal learning performance (number of perseverative trials and
learning rate from negative prediction errors; R2n) and levels of CHO in the dorsal striatum in
learners (n =21).

A lower number of perseverative trials was associated with lower levels of dorsal striatum CHO (rp
(20) = 0.367, p = 0.021; 95% CI [0.081, 0.669]; Figure 4A). The opposite effect was seen with
dorsal striatum PC+GPC (1r(20) = -0.447, p = 0.042; 95% CI [-0.779, 0.004]). Additionally, higher

learning rates from negative prediction errors were associated with lower dorsal striatum CHO
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levels (rp (20) = -0.371, p = 0.019; 95% CI [-0.258, -0.025] Figure 4B). This result is specific to
dorsal striatum CHO, with no other dorsal striatum metabolites found to correlate with learning

rates from negative prediction errors.

After establishing an association between CHO levels and reversal performance, we wanted to
examine whether CHO contributed to reversal efficiency over and above behavioural and
personality variables. Using a hierarchical multiple regression, we first modelled the contribution of
variance from learning rates from negative prediction errors and total BIS scores to the variance in
the number of perseverative trials (Model 1; F(2,18) = 9.460 p = 0.002, R = 0.512; Table 5). The
second model looked at whether the addition of dorsal striatum CHO would explain significantly
more variance, over and above that explained by learning rates from negative prediction errors and

total BIS score (Model 2; F(3,17) =9.574 p = 0.001, R*=0.628; Table 5).

The amount of variance in the number of perseverative trials explained by learning rates from
negative prediction errors was significant in both Model 1 (f =-0.493, t(18) = -2.980, p = 0.008;
Table 5) and Model 2 (B = -0.430, t(17) =-2.843, p = 0.011; Table 5). Additionally, total BIS score
also explained a significant amount of variance in both Model 1 ( = -0.472, t(18) = -2.855, p =

0.011; Table 5) and Model 2 (f =-0.419, t(17) =-2.787, p = 0.013; Table 5).

In Model 2, dorsal striatum CHO also explained a significant amount of variance in the number of
perseverative trials (B = 0.351, t(17) = 2.300, p = 0.034; Table 5). The addition of dorsal striatum
CHO to the model increased R* by 0.116 and this increase was statistically significant (F(1,23) =

5.291, p=0.034; Table 5).

To assess the specificity of this result, dorsal striatum PC+GPC was also included in the model.
However, analysis of multicollinearity diagnostics showed a tolerance of 0.175, which is below the
acceptable value of 0.2. This is due to the strong significant correlation between dorsal striatum

CHO and dorsal striatum PC+GPC (ry (20) = -0.667 p < 0.001). As a result, including the two
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variables in the same regression model would violate the assumption of multicollinearity and the
regression model would not be able to provide unique estimates of the regression coefficients, as
each will account for overlapping variance (Field, 2009). Therefore, we instead repeated the
hierarchical regression with dorsal striatum PC+GPC in place of dorsal striatum CHO. The amount
of variance explained by dorsal striatum PC+GPC was not significant (B = -0.301, t(17) = -1.900, p
= 0.075). The addition of dorsal striatum PC+GPC to the model increased R? by 0.085 and this
increase was not statistically significant (F(1,23) = 3.611, p = 0.075). This indicates that dorsal
striatum CHO levels can explain part of the variance in the number of perseverative trials, however

dorsal striatum PC+GPC levels cannot.
Association of other learning parameters with dorsal striatal choline

No significant correlations were seen with measures of performance in round 1 (trials to criterion,

R1In" or R1B) and average levels of CHO in the dorsal striatum.

No significant correlations were seen with dorsal striatal CHO levels and measures of performance
during post reversal learning (trials to criterion, R2n" or R2pB). Additionally, there were no

significant correlations between dorsal striatal CHO levels and the number of regressive errors.

Association of learning parameters with ventral striatal choline

Two participants were excluded from analysis due to poor data quality of the ventral striatal spectra.
Table 6 shows the average metabolite levels in the ventral striatum. To test the hypothesis that
associations between dorsal striatal CHO levels are region specific and not from the striatum as a
whole, we looked at the correlation between measures of learning performance and levels of CHO

in the ventral striatum in learners (n = 20).

Ventral striatal CHO did not correlate with trials to criterion in round 1. However, low levels of
CHO in the ventral striatum were associated with higher learning rates from positive prediction

errors during initial (but not reversal) learning (#(19) = -0.625, p = 0.003; 95% CI [-0.873, -0.363];
21
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Figure 5A) and lower value impact parameter during initial (but not reversal) learning (r(18) =

0.555,p=0.014; 95% CI [0.312, 0.874]; Figure 5B).

Ventral striatal CHO was not found to correlate with either the number of perseverative trials or

learning rates from negative prediction errors.

No significant correlations were seen with ventral striatal CHO levels and measures of performance
during post reversal learning (trials to criterion, R2n" or R2B). Additionally, there were no

significant correlations between ventral striatal CHO levels and the number of regressive errors.
Group Comparisons

To investigate whether average levels of CHO in the striatum relate to learning ability, the average
levels were compared between learners and non-learners. There was no significant difference in

CHO levels between learners and non-learners in either the dorsal striatum or the ventral striatum.
Summary

In the dorsal striatum, average CHO levels were associated with performance during reversal, but
not during initial learning. There was a significant positive correlation between dorsal striatal CHO
levels and the number of perseverative trials, and a significant negative correlation between dorsal
striatal CHO levels and learning rates from negative prediction errors (R2n°). Additionally, dorsal
striatal CHO levels explained variance in the number of perseverative trials over and above that

explained by learning rates from negative prediction errors.

In the ventral striatum, average CHO levels were not associated with performance during reversal
learning. Although ventral striatal CHO levels were not associated with the speed of initial learning,
there was a significant positive correlation between ventral striatal CHO levels and learning rates
from positive prediction errors, and a significant negative correlation between ventral striatal CHO

levels and the value impact parameter during initial learning.
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DISCUSSION

We used MRS to investigate the relationship between average CHO levels in the human striatum (at
rest) and probabilistic reversal learning. We show that baseline levels of CHO in the human dorsal
striatum are associated specifically with individual differences in reversal learning efficiency, but

not in initial learning, and that this effect is specific to the dorsal, but not the ventral striatum.

Behaviourally, we show that faster initial learning is indexed by a higher learning rate from positive
prediction errors (n") and a higher value impact parameter (B). Therefore, during this period,
participants are using wins and expected value to guide their choices. This is also seen during the
post-reversal learning period, in which faster post-reversal learning is indexed by higher learning
rates from positive prediction errors (") and higher value impact parameters (B). Faster reversal
(less perseveration), however, was indexed by higher learning rates from negative prediction errors
(n") only. During this period, i.e. after the reversal has been implemented, participants must now
pay increased attention to worse than expected outcomes in order to identify the change in
contingencies. Therefore, to adapt to changes in task structure, participants adapt their strategy by

altering the weight of learning from prediction errors based on reward history.

The learning rate for negative prediction errors, even after accounting for trait impulsivity,
explained a significant amount of variance in perseveration, providing a simple mechanism to
explain reversal efficiency. Average dorsal striatum CHO levels explained variance in perseveration
over and above this original model. This suggests a more complex mechanism in which
perseveration is influenced, in part, by the learning rate from negative prediction errors (which can
change due to task demand) and by resting levels of dorsal striatum CHO. Indeed, Franklin &
Frank, 2015 showed that a model which takes into account cholinergic activity performs better on a

reversal learning task than a model based solely on dopamine prediction error signalling.
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Our results indicate that participants who were quicker to reverse had lower average levels of dorsal
striatum CHO, suggesting that low trait levels of dorsal striatum CHO are beneficial for reversal
learning. Based on evidence that ACh efflux increases during reversal learning (Ragozzino et al.,
2009; Brown et al., 2010), this suggests two potential mechanisms. Firstly, lower levels of dorsal
striatum CHO at rest could reflect lower levels of ACh at rest. This is also supported by evidence
from the animal literature, which has shown a positive correlation between ACh levels at rest as
measured by microdialysis and average CCCs as measured by MRS (Wang et al., 2008).
Additionally, higher levels of CHO availability have been shown to lead to higher levels of ACh
release, implying a positive correlation between the two metabolites (Koshimura et al., 1990).
Based on this notion, the findings here suggest that lower levels of ACh at rest may be beneficial
for reversal learning because they enable a higher contrast between ACh levels at rest and during
reversal learning. However, it is important to note that Wang et al. (2008) modelled all three CCCs
as a single peak. It is likely that the relationship between CHO levels as measured by spectroscopy
and ACh levels in the brain is not straightforward, and this interpretation should be considered with
caution. Indeed, animal studies have shown the relationship between CHO and ACh can change
based on neuronal firing and ACh requirement (Loffelholz, 1998; Klein et al., 2002). Furthermore,
we have previously demonstrated a drop in CHO levels in the human dorsal striatum during reversal
learning, thought to reflect the sustained increase in ACh release seen in animal studies (e.g.
Ragozzino et al., 2009). This drop is thought to be due to an increase in translocation of CHO
uptake receptors in response to sustained neural firing (Bell et al., 2018). Though we have described
the measurements in this study as “at rest”, cholinergic interneurons are tonically active, and
therefore the relationship between CHO and ACh levels in the striatum will likely reflect a more

complex dynamical relationship between the two.

The second potential mechanism supported by our findings is that lower levels of dorsal striatum

CHO at rest may result from a more efficient CHO uptake system. Mice carrying mutations in the

24



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

522
523
524
525
526
527
528

529

530
531
532
533
534
535
536
537
538
539
540
541
542
543

544 ‘

545

546

gene coding for CHO uptake transporters have reduced neuronal capacity to both clear CHO and
release ACh. Moreover, performance on an attention task was impaired in these mice (Parikh et al.,
2013). Additionally, in a study of frontal cortex cholinergic modulation during attention, humans
with a gene polymorphism which reduces CHO transport capacity showed reduced activation in the
prefrontal cortex during an attentional task. Furthermore, the pattern of activation predicted CHO
genotype (Berry et al., 2015). Although our findings are in line with biochemical and functional
evidence in various models, it is clear that further work is needed to determine the relationship

between CHO uptake, ACh release, and reversal learning.

With regards to performance, disruption of cholinergic signalling in rodents typically results in an
increase in regressive errors (Brown et al., 2010; Bradfield et al., 2013). However, here we found no
association between dorsal striatum CHO levels and the number of regressive errors. In humans,
measures of individual differences in perseverative and regressive errors are likely to be
confounded by individual differences in representation of the task structure. Rather than making
perseverative and regressive errors based solely on feedback, the ability to flexibly alter response
depends in part on a higher level representation of the task, which is thought to be maintained in
frontal areas of the cortex (Armbruster et al., 2012). It should be noted that the basal ganglia-
thalamo-cortical system has been shown to be modulated by the maintenance of task rules, with
individuals with stronger representation of the task structure showing higher activation in the
caudate and thalamus during a behaviour switch (Ueltzhoffer et al., 2015), indicating that
representation of task structure likely modulates dorsal striatum activity in response to the need for
behavioural flexibility. Inevitably, caution is needed when translating evidence from rodent studies
of learning to human studies. This emphasises the need to further develop non-invasive techniques

for studying human neurochemistry in vivo.

As predicted, and in line with evidence from the animal literature (Ragozzino et al., 2009), levels of

CHO in the ventral striatum were not associated with reversal learning. However, ventral striatum
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CHO levels were associated with model parameters which contributed to initial learning. Though
Ragozzino et al. demonstrated that ACh levels in the rat ventral striatum did not change during
reversal learning, they did not test if they changed during initial learning. Successful learning
requires the ability to learn from feedback, which is encoded through dopaminergic prediction error
signalling in the ventral striatum (Schultz et al., 1997). The rodent ventral striatum has a higher
density of cholinergic interneurons than the dorsal striatum (Matamales et al., 2016) and changes in
cholinergic activity are time locked to changes in dopaminergic activity, which is thought to
enhance the contrast of prediction error signalling (Aosaki et al., 2010). Indeed, cholinergic activity
in the ventral striatum has been linked with effective learning of a stimulus-outcome association
(Brown et al., 2012), therefore it is likely that cholinergic activity in the ventral striatum is involved

in some aspect with goal-directed learning, and further studies should explore this contribution.

Due to our specific a priori hypotheses and novel MRS application, we used several controls to
demonstrate that these effects are specific to CHO levels in the striatum. We acquired data from a
voxel in the cerebellum, geometrically identical to the striatal voxels. No learning effects were
present in the cerebellum, demonstrating that our findings are specific to the striatum. Additionally,
we also quantified two control metabolites (NAA and tCR) to ensure that the results were specific
to the metabolite of interest, rather than a general measurement or region effect. None of the effects
were seen in levels of NAA and tCR in the dorsal striatum or ventral striatum. Importantly, none of
the effects were seen when modelling all three peaks together (tCHO), highlighting once more the
importance of separating CHO when using MRS to investigate individual differences in CCC

levels.

As is common with learning tasks, a significant proportion of our sample did not reach criterion,
leaving a smaller sample for analysis. This proportion is similar to that reported in previous studies
using this task (i.e. Schonberg et al., 2007), and although the final sample size was reduced by this

effect, it is in line with the size of typically published MRS/MRI samples. This observation
26
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notwithstanding, the novelty of the approach presented here naturally warrants further validation of

both the method and the findings.

In summary, we used MRS to demonstrate that average levels of CHO in the human dorsal striatum
are associated with performance during probabilistic reversal, but not during initial learning. This is
in line with evidence from the animal literature and our own prior work with humans, which
suggests a specific role for cholinergic activity in the dorsal striatum during reversal learning. These
results provide evidence for the role of the human cholinergic striatum in reversal learning and
behavioural flexibility more generally. Additionally, these findings further support the idea of using
CHO levels as measured by MRS as a tool for non-invasive in vivo monitoring of both healthy

human neurochemistry, as well as disorders of the human cholinergic system.
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Tables

Table 1: Performance variables

Average Number of Trials SD

Initial Learning 44 28
Reversal Learning 47 23
Perseveration Period 12 8
Post Reversal Learning 35 22
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Regressive Errors 7 6
Table 2: Estimates of model parameters
n " B
Initial Learning 0.37 0.42 1.44
(SD=10.30) (SD=0.31) (SD =10.56)
Reversal Learning 0.24 0.31 1.37
(SD=0.35) (SD=10.27) (SD=10.97)

Note: " = learning rate from positive prediction errors; ' = learning rate from negative prediction

errors, f = impact of subjective value on choice.

Table 3: Correlation coefficients for relationships between model parameters and behaviour

F

i

n B

Initial Learning (TTC)

Reversal Learning

Perseverative Errors

Post Reversal Learning (TTC)

Regressive Errors

-0.439
[-0.710, -0.066]

-0.176
[-0.516, 0.233]

-0.335%
[-0.593,-0.014]

-0.355%
[-0.612, -0.047]

0218 -0.536*
[-0.307,-0.680]  [-0.808, -0.248]

-0.527*
[-0.754, -0.285]

0.132
[-0.117, 0.403]

0.322 -0.352%
[-0.164,0.673]  [-0.674,-0.051]
0.292 -0.337*

[-0.174,0.649]  [-0.639, -0.054]

Note: y" = learning rate from positive prediction errors; 5’ = learning rate from negative

prediction errors; = value impact parameter; * p<(0.05; ranges in square brackets indicate bias

corrected 95% confidence intervals.

Table 4. Average metabolite levels in the dorsal striatum

CHO

PC+GPC

tCHO NAA tCR

36



Learners 0.15 0.27 0.42 8.73 11.58
(Sb=0.20) (SD=0.100 (SD=0.12) (SD=0.77) (SD=1.74)
Non-Learners 0.11 0.36 0.46 8.83 11.80
(Sb=0.16) (SD=0.14) (SD=0.100 (SD=237) (SD=231)

793 Note: CHO = choline, PC+GPC = phosphocholine and glycerophosphocholine, tCHO = total

794 choline, NAA = n-acetyl aspartate, tCR = total creatine.

795  Table 5: Summary of hierarchical regression analyses for variables predicting perseveration

B SE B B R AR’ p
Model 1 0.512 0.002
R2y -14476  4.858 -0.493 0.008
BIS Total | -0.504 0.176 -0.472 0.011
Model 2 0.628 0.116 0.034
R2y 12,619 4.439 -0.430 0.011
BIS Total | -0.447 0.160 -0.419 0.013
DSCHO | 5.306 2.307 0.351 0.034

796  Note, for AR°=0.139, p = 0.037

797 B = unstandardized coefficient, SE = standard error, f = standardised coefficient

798  Table 6: Average metabolite levels in the ventral striatum

CHO PC+GPC tCHO NAA tCR

Learners 0.24 0.27 0.5 5.39 12.02
(SD=0.17) (SD=0.12) (SD=0.17) (SD=1.97) (SD=2.26)

Non-Learners 0.23 0.25 0.48 5.45 11.13
(SD=0.17) (SD=0.14) (SD=0.16) (SD=1.54) (SD=3.95)

799  Note: CHO = choline, PC+GPC = phosphocholine and glycerophosphocholine, tCHO = total
800  choline, NAA = n-acetyl aspartate, tCR = total creatine.
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FIGURE LEGENDS

Figure 1: General outline of learning task trials. Participants were instructed to choose between four
decks of cards. Each deck had a different probability of generating wins:losses (75:25, 60:40, 40:60,
25:75). Once the learning criterion had been reached, the deck probabilities were reversed so that
high probability decks became low probability decks and vice versa. Participants were not informed
of this in advance and were simply instructed to gain as many points as possible. Each screen was

shown for 2.5s, RT = reaction time

Figure 2: General overview of learning task structure. Participants completed the initial learning
phase (round 1) by reaching the predefined accuracy criterion or after 100 trials. Upon completion
of the initial learning phase, the deck probabilities were reversed. Participants then completed a
reversal learning phase (round 2). For behavioural analysis, this was subdivided into perseverative
trials (PER) and a post-reversal learning period. The number of perseverative trials was defined as
the number of trials after reversal until the probability of selecting the previously favoured card
reached chance level (0.25). The post-reversal learning period was the number of trials to reach
criterion in round 2, minus the number of perseverative trials. The number of regressive errors was
defined as the number of times the previously favoured deck was selected during the post-reversal
learning period. The task ended once participants either reached the same accuracy criterion in

round 2 or after 100 round 2 trials.

MRS yoxels

Figure 3: Location of voxels and example spectra. Heat maps showing the sum of the
over all subjects in MNI space, along with a voxel and a representative spectrum from a single

subject (A = Dorsal Striatum, MNI coordinates: -3.41, 2.37, 11.16; B = Ventral Striatum, MNI

coordinates: -2.99, 5.92, -3.93; C = Cerebellum, MNI coordinates: -2.10, -61.03, 19.20).
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Figure 4: Correlations between dorsal striatum CHO levels and performance during reversal A:
Positive correlation between the number of perseverative trials and levels of CHO in the dorsal
striatum (rp (21) = 0.367, p = 0.021). B: Negative correlation between the learning rate based on
negative prediction errors derived from round 2 (R2n-) and levels of CHO in the dorsal striatum (rp

(21)=-0.371, p = 0.019). DS: Dorsal Striatum; CHO: Choline.

Figure 5: Correlations between ventral striatum CHO levels and performance during initial learning
A: Negative correlation between learning rate based on positive prediction errors derived from
round 1 (R1nt) and levels of CHO in the ventral striatum (r(19) = -0.625, p = 0.003). B: Positive
correlation between impact of participant’s subjective value on their future choice derived from
round 1 (R1P) and levels of CHO) in the ventral striatum (r(18) = 0.555, p = 0.014). VS: Ventral

Striatum; CHO: Choline.
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