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Abstract. We investigate the geometrical structure of insta-
bilities in the two-scale Lorenz 96 model through the prism
of Lyapunov analysis. Our detailed study of the full spectrum
of covariant Lyapunov vectors reveals the presence of a slow
bundle in tangent space, composed by a set of vectors with a
significant projection onto the slow degrees of freedom; they
correspond to the smallest (in absolute value) Lyapunov ex-
ponents and thereby to the longer timescales. We show that
the dimension of the slow bundle is extensive in the number
of both slow and fast degrees of freedom and discuss its re-
lationship with the results of a finite-size analysis of instabil-
ities, supporting the conjecture that the slow-variable behav-
ior is effectively determined by a nontrivial subset of degrees
of freedom. More precisely, we show that the slow bundle
corresponds to the Lyapunov spectrum region where fast and
slow instability rates overlap, “mixing” their evolution into
a set of vectors which simultaneously carry information on
both scales. We suggest that these results may pave the way
for future applications to ensemble forecasting and data as-
similations in weather and climate models.

1 Introduction

Understanding the dynamics of multiscale systems is one of
the great challenges in contemporary science, both for the
theoretical aspects and the applications in many areas of in-
terests for the society and the private sectors. Such systems
are characterized by a dynamics that takes place on diverse
spatial and/or temporal scales, with interactions between dif-

ferent scales combined with the presence of nonlinear pro-
cesses. The existence of a variety of scales makes it hard to
approach such systems using direct numerical integrations,
since the problem is stiff. Additionally, simplifications based
on naive scale analysis, where only a limited set of scales are
deemed important and the others are outright ignored, might
be misleading or lead to strongly biased results. The nonlin-
ear interaction with scales outside the considered range may,
indeed, be important as a result of (possibly slow) upward or
downward cascades of energy and information.

A crucial contribution to the understanding of multiscale
systems comes from the now classic Mori—Zwanzig theory
(Zwanzig, 1960, 1961; Mori et al., 1974), which allows one
to construct an effective dynamics specialized for the scale
of interest, which are, typically, the slow ones. The enthusi-
asm one may have for the Mori—Zwanzig formalism is partly
counterbalanced by the fact that the effective coarse-grained
dynamics is written in an implicit form so that it is of limited
direct use. More tractable results can be obtained in the limit
of an infinite timescale separation between the slow modes of
interest and the very fast degrees of freedom one wants to ne-
glect; in this case, the homogenization theory indicates that
the effect of the fast degrees of freedom can be written as the
sum of a deterministic, drift-like correction plus a stochastic
white-noise forcing (Pavlioti and Stuart, 2008).

The climate provides an excellent example of a multi-
scale system, with dynamical processes taking place on a
very large range of spatial and temporal scales. The chaotic,
forced and dissipative dynamics and the nontrivial interac-
tions between different scales represent a fundamental chal-
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lenge in predicting and understanding weather and climate.
A fundamental difficulty in the study of the multiscale nature
of the climate system comes from the lack of any spectral
gap, namely, a clear and well-defined separation of scales.
The climatic variability covers a continuum of frequencies
(Peixoto and Oort, 1992; Lucarini et al., 2014), so the pow-
erful techniques based on homogenization theory cannot be
readily applied.

On the other side, there is a fundamental need to construct
efficient and accurate parametrizations for describing the im-
pact of small scales on larger ones in order to improve our
ability to predict weather and provide a better representation
of climate dynamics. For some time it has been advocated
that such parametrizations should include stochastic terms
(Palmer and Williams, 2008). Such a point of view is becom-
ing more and more popular in weather and climate modeling,
even if the construction of parametrizations is mostly based
on ad hoc, empirical methods (Franzke et al., 2015; Berner
et al., 2017). Weather and climate applications have been in-
strumental in stimulating the derivation of new general re-
sults for the construction of parametrizations of multiscale
systems and for understanding the scale—scale interactions.
Recent advances have been obtained using the (i) Mori—
Zwanzig and Ruelle response theory (Wouters and Lucarini,
2012, 2013), (ii) the generalization of the homogenization-
theory-based results obtained via the Edgeworth expansion
(Wouters and Gottwald, 2017), and (iii) the use of hidden
Markov layers (Chekroun et al., 2015a, b) from a data-driven
point of view. An extremely relevant possible advantage of
using theory-based methods is the possibility of constructing
scale-adaptive parametrizations (see discussion in Vissio and
Lucarini, 2017, ;).

Another angle on multiscale systems deals with the study
of the scale—scale interactions, which are key in understand-
ing instabilities and dissipative processes and the associ-
ated predictability and error dynamics. Lyapunov exponents
(Pikovsky and Politi, 2016), which describe the linearized
evolution of infinitesimal perturbations, are mathematically
well-established quantities and seem to be the most natural
choice to start addressing this problem. However, as it is well
known in multiscale systems, the maximum (or leading) Lya-
punov exponent controls only the early-stage dynamics of
very small perturbations (Lorenz, 1996). As time goes on,
the amplitude of the perturbations of the fastest variables
start saturating, while those affecting the slowest degrees of
freedom grow at a pace mostly controlled by the (typically
weaker) instabilities characteristic of the slower degrees of
freedom. While nonlinear tools, such as finite-size Lyapunov
exponents (Aurell et al., 1997), are able to capture the rate
of this multiscale growth, they lack the mathematical rigor of
infinitesimal analysis. In particular, they are unable to convey
information on the leading directions of these perturbations
when they grow across multiple scales — an essential problem
if one wishes to investigate, at a deterministic level, the non-
trivial correlations across structures and perturbations acting
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on different scales. It is therefore of primary importance to
better understand the multiscale and interactive structure of
these instabilities and, in particular, to probe the sensitivity
of multiscale systems to infinitesimal perturbations acting at
different spatial and temporal scales and different directions.
To this purpose, infinitesimal Lyapunov analysis allows one
to compute not only a full spectrum of Lyapunov exponents
(LEs) but also their corresponding tangent-space directions,
the so-called covariant Lyapunov vectors (CLVs; Ginelli et
al., 2007). CLVs are associated with LEs (in a relationship
that, loosely speaking, resembles the eigenvector—eigenvalue
pairing) and provide an intrinsic decomposition of tangent
space that links growth (or decay) rates of (small) perturba-
tions to physically based directions in configuration space. In
principle, they can be used to associate instability timescales
(the inverse of LEs) with well-defined real-space perturba-
tions or uncertainties.

While this information is gathered at the linearized level,
one may nevertheless conjecture that LEs and CLVs associ-
ated with the slowest timescales (i.e., the smallest LEs in ab-
solute value) can capture relevant information on the large-
scale dynamics and its correlations with the faster degrees
of freedom. In a sense, one may conjecture that the small
LEs and the corresponding CLVs could be used to gain ac-
cess to a nontrivial effective large-scale dynamics. See, for
instance, Norwood et al. (2013), where three coupled Lorenz
63 systems are investigated. Accordingly, the identification
of linear instabilities in full multiscale models is then ex-
pected to have practical implications in terms of control and
predictability. In the following, we will begin to investigate
these ideas, studying the tangent-space structure of a sim-
ple two-scale atmospheric model, the celebrated Lorenz 96
(LL96) model first introduced in Lorenz (1996).

The L96 model provides a simple yet prototypical repre-
sentation of a two-scale system where large-scale, synoptic
variables are coupled to small-scale, convective variables.
The Lorenz 96 model was quickly established as an impor-
tant test bed for evaluating new methods of data assimila-
tion (Trevisan and Uboldi, 2004; Trevisan et al., 2010) and
stochastic-parametrization schemes (Vissio and Lucarini,
2017; Orrel, 2003; Wilks, 2006). In the latest decade, it also
received considerable attention in the statistical physics com-
munity (Abramov and Majda, 2007; Hallerberg et al., 2010;
Lucarini and Sarno, 2011; Gallavotti and Lucarini, 2014),
while an earlier study — limited to the stronger instabilities
— highlighted the localization properties of the associated
CLVs (Herrera et al., 2011).

Our Lyapunov analysis reveals the existence of a nontriv-
ial slow bundle in tangent space, formed by a set of CLVs
— associated with the smallest LEs — that was the only one
with a nonnegligible projection onto the slow variables. The
number of these CLVs is considerably larger than the number
of slow variables, and it is extensive in the number of slow
and fast degrees of freedom. At the same time, the directions
associated with highly expanding and contracting LEs are
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aligned almost exclusively along the fast, small-scale degrees
of freedom. Moreover, we show that the LE corresponding
to the first CLV of the slow bundle (i.e., the most expand-
ing direction within this subspace) approaches the finite-size
Lyapunov exponent in a large-perturbation range, where lin-
earization is not generally expected to apply.

Altogether, it should be made clear that the timescale sep-
aration between the slow bundle and the fast degrees of free-
dom is large but finite and stays finite when the number of
degrees of freedom is let to diverge (i.e., it is not a standard
hydrodynamics component). Additionally, the stability is not
absolutely weak in the sense of nearly vanishing Lyapunov
exponents.

The paper is organized as follows. Section 2 introduces
both the .96 model and the fundamental tools of the Lya-
punov analysis used in this paper. Evidence for the existence
of a slow bundle is presented in Sect. 3. In Sect. 4, we inves-
tigate how this slow structure arises from the superposition
of the instabilities of the slow and fast dynamics. Section 5,
on the other hand, is devoted to a comparison with results of
finite-size analysis. Finally, in Sect. 6 we discuss our results,
further commenting on their generality and proposing future
developments and applications.

2 The Lorenz 96 model: a simple multiscale system
2.1 Model definition and scaling considerations

The L96 model is a simple example of an extended mul-
tiscale system such as the Earth atmosphere. Its dynamics
is controlled by synoptic variables, characterized by a slow
evolution over large scales, coupled to the so-called convec-
tive variables characterized by a faster dynamics over smaller
scales.

The synoptic variables Xj, with k =1,..., K, represent
generic observables on a given latitude circle; each X is
coupled to a subgroup of J convective variables Y; ; (j =
1,...,J) that follow the faster convective dynamics typical
of the k sector,

. hc
Xk = Xk—1(Xpey1 — Xp—2) — X+ Fs — 7;1@,;, (1a)

Yi,j=cbYr jr1(Ye j—1— Yk j12) —cYi,j
c hc
+ ZF £+ 7X k-

In both sets of equations, the nonlinear nearest-neighbor in-
teraction provides an account of advection due to the move-
ment of air masses, while the last terms describe the mutual
coupling between the two sets of variables. Each Xj vari-
able is affected by the sum of the associated Y ; variables,
while each Yy ; is forced by the variable X corresponding to
the same sector k. Finally, the linear terms — X and —cYy
account for internal dissipative processes (viscosity) and are
responsible for the contractions of the phase space.

(1b)
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We remark that in our configuration, following Vissio and
Lucarini (2017), energy is injected in the system both at large
and at small scales, provided by the constant terms Fg and Fr,
which impact the slow and fast scales of the system, respec-
tively.

The presence of the additional forcing term acting on the
Yy, ; variables makes it possible to have chaotic dynamics
on the small scales also in the limit of vanishing coupling
(h — 0), as opposed to the typical L96 setting, where the
small-scale variables become spontaneously chaotic without
the need of being forced by their associated Xy, as a result of
downward energy cascade from the slow variables.

Moreover, the parameter ¢ controls the timescale separa-
tion between the X and Yy ; variables, while b controls the
relative amplitude of the Yy, ; components. Finally, 4 gauges
the strength of the coupling between slow and fast variables.

The L96 model thus contains K slow variables and K x J
fast variables for a total of N = K (1+J) degrees of freedom.
It is complemented by the boundary conditions

Xi—k = Xkvk = Xk,

Yinj =Yirk.j = Yr )

Y, j—7 = Yi-1,j,

Y j+s =Ykt1,j- (@)

In his original work (Lorenz, 1996), Edward Lorenz consid-
ered K =36 slow variables and J = 10 fast variables for
each subsector, for a total of N =396 degrees of freedom.
As usual, one is ideally interested in dealing with arbitrar-
ily large K and J values, so it is preferable to formulate the
model in such a way that it remains meaningful in the limit
K, J — oo. In this respect, the only potential problem is the
global coupling, represented by the sum in Eq. (1a), which
should stay finite for J — oco. This can be easily ensured by
setting the coefficient in front of the sum to be inversely pro-
portional to J. The most compact representation is obtained
by introducing the rescaled variables Zy ; = bYy ; and re-
placing b with a new parameter f:

f===. 3)

With these transformations, Eqs. (1a) and (1b) can be rewrit-
ten as

Xy = Xp—1 (X1 —Xk—z)—Xk+Fs—hf(Zk,j)j, (4a)
Ezk,j =Zp jr1(Zy j—1— Zk,j1+2) — Zk,j
+ Fr+ h Xy, (4b)
where
1 J
(Zr)); = 7 > Zi. ®)
=1

while the boundary conditions are the same as above. In
practice f gauges the asymmetry of the interaction between
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slow and fast variables. From its definition, it is clear that
f strongly depends on the scale separation b. For the stan-
dard choice of the parameter values (see below), f =1, i.e.,
the average influence of the fast scales on the slow ones is
the same as the opposite. On the other hand, if we increase
the value of b, f — 0, which corresponds to a master—slave
limit, where the fast variables do not affect the slow ones but
are actually slaved to them. This makes sense because the
small-scale variables have extremely small amplitude. The
opposite master—slave limit, perhaps more interesting from a
climatological point of view, corresponds to taking the 7 — 0
and f — oo limits, while keeping the product /#f constant.
In this case, the fast variables follow up to first approxima-
tion their own autonomous dynamics but still drive the slow
ones through the finite coupling term A f (Zk, /)j‘ In this latter
limit, we envision the presence of an upscale energy transfer.

Apart from helping to clarify these master—slave limiting
cases, such a reformulation of the model also allows us to
better understand that, in order to maintain a fixed amplitude
of the coupling term, it is necessary to keep f constant when
J is varied. Selecting a constant value for the timescale sep-
aration ¢, we choose to rescale b with J as follows:

Jc
b=_[—. 6
‘/f (6)

With reference to the Lorenz original parameter choices
(Lorenz, 1996), b =c =10 and J = 10, we have f =1 and
the suggested scaling,

b=+10J. (N

It is finally interesting to note that, in the absence of forcing
and dissipation, Egs. (1a) and (1b) reduce to

. he
X = Xg—1(Xg41 — Xg—2) — 7;)’1@/, (82)

. hc
Y j=cbY jr1(Ye, j—1 — Yk j+2) + 7Xk, (8b)
which conserve a quadratic form of slow and fast vari-
ables (Vissio and Lucarini, 2017),

E=D Xi+2 X, =Z(X%+§<Z£,,>j). ©)
k k,j k

This conservation law, of course, does not hold in the more
interesting forced and dissipative case. However, this result
suggests that E can be identified with a bona fide energy —
and represents a natural norm — also in the forced and dis-
sipative case. Note also that, according to the last equality
in Eq. (9), changing the number of fast variables does not
change the total energy budget, provided that the ratio f/c
remains constant.

Given the more natural definition of the energy, when ex-
pressed in terms of the Y variables, in the following we keep
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using the original Lorenz notations, denoting the slow vari-
ables with the letter Y. Moreover, unless otherwise specified,
we will implicitly consider f =1 and typically adopt the
slow forcing and the timescale separation originally adopted
by Lorenz, Fy =10 and ¢ =10, and choose values for b
and J that satisfy the scaling condition (7). According to
Lorenz’s original derivation, one time unit in this model dy-
namics is roughly equivalent to 5 d in the real climate evolu-
tion (Lorenz, 1996).

We will fix Fr = 6, which guarantees chaoticity in the un-
coupled fast variables in the absence of coupling. Lorenz’s
original choice for the coupling between the slow and fast
scales was h = 1, but here we will also explore the weak
coupling regime, considering coupling values as small as
h=1/16.

2.2 Elements of Lyapunov analysis: Lyapunov
exponents and covariant Lyapunov vectors

As mentioned above, the right tools to quantify rigorously
the rate of divergence (or convergence) of nearby trajecto-
ries are the LEs and their associated covariant CLVs. We
provide here a qualitative description of these objects. For
a more thorough discussion, the reader can look to Ruelle
(1979), Eckmann and Ruelle (1985), Ginelli et al. (2013),
and Kuptsov and Parlitz (2012) and references therein.

For definiteness, let us consider an N-dimensional
continuous-time dynamical system,

x(1) = f(x@), (10)

with x(¢) being the state of the system at time ¢. One can
linearize the dynamics around a given trajectory, thus obtain-
ing the evolution of an infinitesimal perturbation §x (¢) in the
so-called tangent space:

8x(t) =J(x,1)6x(1), (11
where we have introduced the Jacobian matrix

_0fx@)
J(x,t)—T(t). (12)

LEs A; measure the (asymptotic) exponential rates of growth
(or decay) of infinitesimal perturbations along a given trajec-
tory. Their plurality holds in the fact that the growth rates as-
sociated with different directions of the infinitesimal pertur-
bations are in general different. We then refer to the ordered
sequence A1 > Ao > ... > Ay as the spectrum of characteris-
tic LEs, or the Lyapunov spectrum (LS), with N being the
dimension of the dynamical system. At each point x(¢) of
the attractor, the CLVs v; (x(¢)) give the directions of growth
of perturbations associated with the corresponding Lyapunov
exponent!. In other words, they span the Oseledets split-

n the presence of m > 1 degenerate (i.e., identical) LEs, the
corresponding m CLVs span an m-dimensional Oseledets subspace
whose elements are all characterized by the same growth rate.

www.nonlin-processes-geophys.net/26/73/2019/
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ting (Eckmann and Ruelle, 1985), i.e., an infinitesimal per-
turbation 8x; (7o) exactly aligned with the ith CLV v; (x (%)),
and after a sufficiently long time, ¢ will grow or decay as

13)

LEs are global quantities, measuring the average exponential
growth rate along the attractor, while CLVs are local objects,
defined at each point of the attractor and transforming co-
variantly along each trajectory, according to the linearized
dynamics (11),

I8x i (t0+ 1)1l ~ [18x: (o) || ™" .

v(x (1)) = M(x0,1)v(x0), (14)

where x( = x(0) and the tangent linear propagator M(x, t)
satisfies

M(x0,7) = J(x,)M(x0, 1), (15)

with M(x(, 0) being the identity matrix.

In the following, we always refer to CLVs assuming
that they have been properly normalized. With the above-
mentioned exception of degeneracies, CLVs constitute an
intrinsic (they do not depend on the chosen norm) tangent-
space decomposition into the stable and unstable directions
associated with the different LEs. LEs themselves have units
of inverse time so that the largest positive (in absolute value)
exponents — and their associated CLVs — describe fast grow-
ing (or contracting) perturbations, while the smaller ones cor-
respond to longer timescales.

Unfortunately, Eqgs. (13)—(14) cannot be used to directly
compute any LEs or CLVs beyond the first one. Unavoid-
able numerical errors generated while handling higher-order
CLVs are amplified according to a rate dictated by the largest
LE so that any tangent-space vector quickly converges to the
first CLV. In order to avoid this collapse, it is customary to
periodically orthonormalize the vectors with a QR decompo-
sition (Shimada and Nagashima, 1979; Benettin et al., 1980).
LEs are thereby computed as the logarithms of the basis vec-
tor normalization factors, time averaged along the entire tra-
jectory.

The mutually orthogonal vectors, obtained as a by-product
of this procedure, constitute a basis in tangent space and are
usually referred to as Gram—Schmidt vectors (by the name
of the algorithm used to perform the QR decomposition)
or backward Lyapunov vectors (BLVs; because they are ob-
tained by integrating the system forward until a given point
in time, thus spanning the past trajectory with respect to this
point). Being forced to be mutually orthogonal, BLVs allow
only reconstructing the orientation of the subspaces spanned
by the most expanding directions. In this work, we concen-
trate on the CLVs for the identification of the various expand-
ing and/or contracting directions. This is done by implement-
ing a dynamical algorithm based on a clever combination of
both forward and backward iterations of the tangent dynam-
ics, introduced in Ginelli et al. (2007) and more extensively
discussed in Ginelli et al. (2013).

www.nonlin-processes-geophys.net/26/73/2019/
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In practice, one first evolves the forward dynamics, fol-
lowing a phase-space trajectory to compute the full LS
{Xi}i=1,...n and the basis of BLVs {g; (#;,)}i=1,....y With a se-
ries of QR decompositions performed along the trajectory for
every T time unit, at times t,, = mt, withm =1, ..., M. One
is then left with a series of orthogonal matrices Q,,, whose
columns are the BLVs g, (#,), and the upper triangular ma-
trices R, which contain the vector norms and their mutual
projections.

The key idea is then to project a generic tangent-space vec-
tor u(t,,) on the covariant subspaces S;(#,) spanned by the
first j BLVs at times #,,. It can be easily shown (Ginelli et
al., 2013) that this projection, evolved backward in time ac-
cording to the inverse tangent-space dynamics, converges ex-
ponentially quickly to the jth covariant vector. In practice,
this backward procedure can be performed by expressing the
CLVs in the BLVs basis,

J
Vj(tm) = D Ci.j(tm)&i (tm).

i=1

(16)

The coefficients ¢; j(t,) thus compose an upper triangular
matrix C,,, whose dynamics is actually determined by the
R,, matrices obtained from the QR decomposition

Cn =R, Cp—1. (17)

This last relationship is easily invertible, assuring a computa-
tionally efficient and precise method to follow the backward
dynamics.

2.3 Lorenz 96 tangent-space dynamics and algorithmic
aspects

The tangent-space dynamics of L96 can be readily obtained
by linearizing the phase-space evolution Egs. (1a) and (1b),

8 Xk =8Xk—1 (Xxt1 — Xk—2)
+ Xp—1 (6 Xp+1 — 8 Xp—2) — 6 X

hc
- zzayk,j, (18a)
8Yk,j = cb[8Yx jy1 Yk, j—1 — Yk, j+2)
+ Ve j+1 (8Yk j—1 = 8Yk, j2)] — ¢V j
(18b)

+%;5Xk,

where 6 Xy and 8Yy ; are infinitesimal perturbations of, re-
spectively, slow and fast variables. Together, they define the
tangent-space vector u = (6X1,...,6Xk,0Y1,1,...6Yk ).
One can easily deduce the Jacobian matrix from Eqgs. (18a)
and (18b).

20r, in the case of degenerate LEs, it converges to a vector be-
longing to the corresponding Oseledets subspace.
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In this paper, we numerically integrate Eqs. (1a), (1b),
(18a) and (18b) using a Runge—Kutta fourth-order algorithm
with a time step Ar = 10_3, shorter than the choice At =
5 x 1073 typically made for the standard L96 model. In fact,
we have verified that such a small time step is actually re-
quired in order to compute the entire spectrum of LEs and
CLVs with sufficient accuracy. Typically, to discount tran-
sient effects in numerical simulations, we discard the first 103
time units, split in two equal parts: the first 500 time units al-
low for the phase-space trajectory to reach its attractor, while
the second is used for the convergence of the tangent-space
vectors towards the BLVs basis. Afterwards, a forward inte-
gration of typically 7 = 10% time units is performed in or-
der to analyze the properties of tangent space. Due to the
highly unstable nature of the L96 model (we will see in the
following that the maximum LE is around 20 for our choice
of parameter values), we have to perform the tangent-space
orthonormalization every T = 1072 time unit. Finally, a tran-
sient of 107 time units is used during the backward dynam-
ics to ensure the convergence of the backward vectors to the
true CLVs. We have also carefully verified that the forward
and backward transients are long enough to guarantee a suf-
ficiently accurate convergence to the true LEs and CLVs.

2.4 The Lorenz 96 Lyapunov spectrum

Spatially extended systems are known to typically exhibit
an extensive Lyapunov spectrum (Ruelle, 1978; Livi et al.,
1986; Grassberger, 1989). This property is instrumental for
the identification of intensive and extensive observables in
the thermodynamic sense. Extensivity means that for N tend-
ing to infinity (i.e., in the so-called thermodynamic limit),
the spectrum A; is a function of the rescaled index p =i/N
only>.

The single-scale L96 model (i.e., Eq. 1a) without the cou-
pling to the fast scale) is no exception (Karimi and Paul,
2010; Gallavotti and Lucarini, 2014). Here we show that
extensivity of chaotic behavior holds also in the two-scale
model provided that — as discussed in Sect. 2.1 — the rela-
tion (6) is satisfied. In the present context, the total number
N of degrees of freedom is controlled by two separate indica-
tors, K and J, so that, in principle, one can define two distinct
thermodynamic limits, i.e., K — oo and J — oco. However,
in practice, as long as K, J > 1, the spectral shape depends
only on N alone, as seen in Fig. 1, where several different
LSs nicely overlap.

In order to appreciate the different role of K and J, it is
necessary to zoom in, as shown in Fig. 1b, where the re-
gion characterized by a larger spread is displayed. The single
spectra are grouped into five different branches, each corre-
sponding to three different values of K (K = 18, 24 and 36,
respectively marked as circles, squares and triangles) and to

3Actuallly, it is customary to define p as (i — 1/2)/N to reduce
the amplitude of finite-size corrections (Pikovsky and Politi, 2016).
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Figure 1. Extensivity of chaos. (a) Lyapunov spectra as functions of
the rescaled index iy = (i — 1/2)/N for K = 18,24 and 36 and J =
10, 15, 20, 25 and 30 (all possible combinations). (b) Details of the
central region i € (0.45,0.55). The cyan arrow marks the direction
of increasing J values, while each J branch is the superposition of
the spectra for K = 18 (circles), K = 24 (squares) and K = 36 (tri-
angles). Inset of panel (a): Kolmogorov—Sinai entropy Hkgs (black
circles) and Kaplan—Yorke dimension dky (red squares) as a func-
tion of the number of degrees of freedom N = K (J+1). The dashed
lines mark a linear fit with zero intercept and slope =~ 2.6 (Hks)
and ~ 0.7 (dxy). Simulations have been performed with # = 1 and
b = +/10J (see main text).

the same J. As J increases from 10 to 30, these branches
converge to a limiting spectrum, which corresponds to the
double thermodynamic limit K, J — oo. The indistinguisha-
bility of the spectra obtained for the same J shows that K-
type finite-size corrections are very small for the given K;
this is not a surprise, since the number of fast variables, K J,
is much larger than that of the slow variables, K.

The existence of a limit spectrum implies that the
Kolmogorov—Sinai entropy Hgs — a measure of the diver-
sity of the trajectories generated by the dynamical system —
is proportional to the number N of degrees of freedom. This
can be appreciated in the inset of Fig. 1a (see the black cir-
cles), where Hkgs is determined through the Pesin formula,
which provides an upper bound to Hks (Eckmann and Ru-
elle, 1985),

Hgs = Zki .

>0

19)

Similarly, the dimension of the attractor, i.e., the number of
“active” degrees of freedom, is proportional to N, as seen
again from Fig. la, where we have plotted the Kaplan—
Yorke dimension Dy (see red squares; Eckmann and Ru-
elle, 1985):

ZiSM)“i

Dxy =M + ,
[Apt1l

(20)
with M being the largest integer such that > 4; > 0.

We conclude this section with a brief remark on the Lya-
punov spectrum in the zero-dissipation limit (8a and 8b),
shown in Fig. 2a for 2 = 1. The LS depends only on the ini-
tial value of the energy of the system (in our simulations, we
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Figure 2. (a) Lyapunov spectrum for the conservative setup in
Egs. (8a) and (8b). Parameters are b =10, K =36 and J =10
(N =396 LEs), and initial conditions are chosen such that the con-
served energy is £ = 36. The black solid line corresponds to 7 = 1,
while the dashed green line corresponds to 2 = —1; in the inset, the
absolute difference A); between the two LSs is compared with one
standard error in our numerical estimate (blue dashed line). (b) The
second half of the Lyapunov spectrum (i € [199,396]; red dashed
line) is folded under the reflection transformation A; — —An_; 41
over its first half (i € [1, 198]; black solid line); in the inset, the ab-
solute difference A); between LS and its folded transformation is
compared with one standard error in our numerical estimate (dashed
blue line).

have chosen E = 36 — see Eq. 9)*. Moreover, from Fig. 2b,
we can appreciate that the LS is perfectly symmetric, since
the second half of the spectrum superposes to the first half
under the transformation A; — —Axy_;1 within numerical
precision. This symmetry is an unexpected general property,
which holds for any choice of 4, ¢ and b. In fact, the conser-
vation law can only account for the existence of an extra zero-
Lyapunov exponent. The overall symmetry of the LS must
follow from more general properties such as the symplectic
structure of the model or invariance under time reversal of
the evolution equations. Unfortunately, this model is known
to possess no symplectic structure, even if the energy is con-
served (Blender et al., 2013), and the only symmetry we have
been able to find is the invariance under the transformation
t — —t, Xy = — Xy and Yy j — —Yx j, accompanied by a
change of the coupling constant 4. Indeed, the green dashed
line in Fig. 2a shows that the Lyapunov spectrum is invari-
ant under the transformation 4 — —h. Therefore, the overall
symmetry remains an unexplained property.

3 Slow tangent-space bundle
3.1 Projection of CLVs in the X subspace

We now come to the central result of this paper, namely the
existence of a nontrivial subspace in tangent space associated
with the slow dynamics of the L96 model.

4The invariant measure is absolutely continuous with respect to
the Lebesgue one in the energy shell.
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The individual LEs A; represent the average growth rate
(and thus the inverse of suitable timescales) of well-defined
small perturbations aligned along the corresponding CLV, v;.
It is therefore logical to ask which of these “fundamental”
perturbations are more relevant for the evolution of the ac-
cessible macroscopic observables. In the present case, it is
natural to focus our attention on the alignment along the slow
variables X.

The norm of the (rescaled) ith CLV can be written as
18X D12 +118Y D)2 =1, @1
where the two addenda represent the squared Euclidean
norm of the‘})rojection onto the slow and fast variables,
5XD = @x{",... 8XY) and 5YD = (6Y]'}... 8Y()), re-
spectively. The most natural indicator of how much the ith
CLV projects on the slow modes is thus the X -projected norm
¢ = 18X D2,

However, it should be noted that, although the CLVs are
intrinsic vectors, their mutual angles do depend on the rela-
tive scales used to represent the single variables and, in par-
ticular, fast and slow ones. If we change the units of measure
used to quantify the fast Y variables, introducing V; =yY;,
the (Euclidean) norm of the ith CLV becomes

L=¢i+y*(1—¢).

As aresult, in the new representation, the weight of the pro-
jection onto the slow variables becomes

=
¢ =",

which shows how the amplitude of the projection depends
on the relative scale used to measure fast and slow variables.
Since in the very definition of energy (see Eq. 9), X and Y
variables are weighted in the same way, it is natural to main-
tain the original definition, i.e., to assume that y = 1. Never-
theless, as we will see while discussing the evolution of finite
perturbations, the relative scale is an important parameter we
can play with to extract useful information.

Given the strong temporal fluctuations of ¢; () when the
vectors are covariantly transformed along a trajectory (see
the end of this section), it is convenient to refer to its time
average (which, assuming ergodicity, corresponds to an en-
semble average over the invariant measure),

Q; = (¢i(1)): - (22)

We have first computed the projection norm ®; for the
entire spectrum of vectors in a system of size K =36 and
J =10 with the “standard” parameter value » = 10. In a
wide range of coupling strengths — from strong (h = 1) to
weak (h =1/16) — we find that both rapidly growing and
rapidly contracting perturbations are almost orthogonal to
the slow-variable subspace, the associated CLVs exhibiting
a negligible projections over the X directions (see Fig. 3a).
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Figure 3. CLV projection onto the slow variables. (a) CLV average
projection norm ®; of the CLVs (see text) as a function of the vec-
tor index for K =36, J = 10 and b = 10 upon varying the coupling
constant . The upper part of (b) is the same as in (a) but in a log-
arithmic scale vertical scale; in the bottom part of the panel are the
corresponding Lyapunov spectra.

In fact, only a “central band” constituted by the CLVs asso-
ciated with the smallest LEs displays a significative projec-
tion over the slow variables. Note, however, that the typical
LEs associated with the central band CLVs are clearly finite
and are deemed “small” only in a relative sense, i.e., when
compared with the largest positive and negative exponents
of the full spectrum. For instance, for 4 = 1/4, we can ap-
proximately estimate the corresponding portion of the LS to
extend between a magnitude of 2 and —5. We will comment
further on this point in Sect. 4.

Note also that the CLV associated with the only null LE
(in the following we simply denote it as the 0-CLV) displays
a sharp peak of the projection norm &;. This is just a con-
sequence of the delocalization of this CLV: the perturbation
corresponding to the zero exponent points exactly along the
trajectory. Direct integration of the phase-space equations
(not shown) confirms that the total variability of the slow
variables is of the same order of magnitude as the total vari-
ability of the fast ones. This central band of CLVs defines
the tangent-space slow bundle relevant for this paper. It be-
comes more sharply defined for small values of the coupling
h, but it keeps approximately the same position and width as
the coupling 4 is increased. In particular, for this set of pa-
rameter values, this nontrivial slow bundle extends in tangent
space over roughly 120 CLVs, much more than the K = 36
slow degrees of freedom. The extension of the slow bundle
can be better appreciated in Fig. 3b, where the time-averaged
projections are shown on the logarithmic scale (top part of
panel) and compared with the full spectrum of LEs (bottom
part of panel).

We are interested in the dependence of this bundle on the
number of slow and fast variables. As discussed in the pre-
vious section, the L96 model is extensive in both the slow
and fast variables, provided that the ratio f = Jc/b? is kept
constant (for the standard choice of parameters ¢ = 10 and
f =1, so that it is sufficient to set b = +/10J). In the fol-
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Figure 4. Slow-bundle scaling for 7 =0.5 and f =1. (a) CLV
time-averaged X-projected norm ®; for K =18, 24 and 36 and
J =10 vs. the rescaled index (i —0.5)/K. (b) Rescaled (see main
text) CLV average projection norm ®; for K =18 and J = 10, 15,
20, 25 and 30 (increasing along the cyan arrow) vs. the rescaled
index (i —0.5)/J. A lack of precise collapse can be appreciated on
the rightmost side of the central band. (¢) Central band width W (see
main text for details) as a function of J for K = 18 (black circles),
K =24 (red squares) and K =36 (blue triangles). The best lin-
ear fits, marked by the dashed lines, are W = 18(1) +4.20(5)J (for
K =18),W =26(2)+5.4(1)J (K =24)and W =36(2)+8.2(2)J
(K = 36). (d) Rescaled CLV average projection norm ®; for K =
18, 24 and 36 and J = 10, 15, 20, 25 and 30 (all combinations) vs.
the rescaled index (i —i()/Ns. Here i is the index of the 0-CLV and
Ny = K(14+aJ), with o = 0.22 (see text). We choose the vertical
axis rescaling reference as Jy = 10.

lowing we present results for 2z = 0.5, but we have carefully
verified that analogous results hold for other values of the
coupling constant #.

We first set J = 10 and explore the behavior of the slow
bundle when K is varied (note that no parameter rescaling
is required while changing K). Our simulations, reported
in Fig. 4a, clearly show that the slow bundle is extensive
with respect to K: upon rescaling the vector index as i —
(i—0.5)/K, we observe a clear collapse of the projection
patterns.

We next focus on the scaling with J at a fixed K. For
the sake of computational simplicity, we first consider that
K = 18. As for the horizontal variable, it is natural to rescale
the CLV index by the number J of fast degrees of freedom
per subgroup. Moreover, since J corresponds to the ratio be-
tween the number of fast (K J) and slow (K) variables and
we use the standard Euclidean norm to quantify the projec-
tion onto the X subspace, one expects the fraction ®; of the
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X norm to be inversely proportional to J. The projection data
reported in Fig. 4b indeed show a convincing vertical col-
lapse of the rescaled X norm ®; J/Jy (here we fix a reference
Jo = 10), but accompanied by a shrinking of the central band
on the right side, as J is increased.

In order to accurately determine the width of the central
band, i.e., the slow-bundle dimension, we fix a threshold for
the rescaled X norm, J®;/Jy = 10~2 and estimate the num-
ber Ng of CLVs with a projection above such a threshold (we
have verified that our results hold within a reasonable range
of thresholds). The resulting widths Ng(K, J), computed for
different numbers of slow variables K, are summarized in
Fig. 4c, where they are plotted versus J. For the fixed K, we
see a clear linear increase, compatible with the law

Ng(K,J)=K(1+alJ), (23)

where the coefficient & depends on the values of 4, ¢, Fs and
Ft. In the present case, a best fit gives o &~ 0.22. The most
general representation of the projections is finally obtained
by rescaling the index according to N and by using the 0-
CLV (which corresponds to the peak of ®;) as the origin of
the horizontal axis. The excellent collapse in Fig. 4d con-
firms the extensivity of the slow bundle with both K and J.
The slow bundle is not a simple representation of the X sub-
space: it does not coincide with the slow variables themselves
but involves also a finite fraction « of the fast ones, singling
out a fundamental set of tangent-space perturbations closely
associated with the slow dynamics. The origin of the phe-
nomenological scaling law (23) will be discussed in the next
section.

Before concluding this section, we would like to briefly
discuss the time-resolved projected norm ¢;(¢). So far, we
have discussed time-averaged quantities, but it is worth men-
tioning that the X projections of individual CLVs are ex-
tremely intermittent, hinting at a complex tangent-space flow
structure.

In Fig. 5a we display a few selected time series of the
norm ¢;(t) for b =10, K =36, J =10 and h = 1/4 (the
overall picture does not change qualitatively for different
choices of the coupling strength). The time series correspond
to the 110th vector, located in the left part of the central band
(before the 0-CLV), the 160th vector, located in the right
part, and the 0-CLV (vector index i = 122). We clearly see a
strong intermittency, resulting in a very skewed distribution
of the time-resolved X norms. The 0-CLV is an exception,
displaying more regular oscillations and a rather symmetric
distribution around its mean value. This confirms the pecu-
liar nature of the 0-CLV, whose delocalized structure is es-
sentially determined by its alignment with the phase-space
flow.

In Fig. 5b we display vectors outside the slow bundle: the
Ist and the 250th, which are on the left- and right-hand side
of the central band, respectively. We see that also vectors out-
side the slow bundle display a certain degree of intermittency,
albeit on a faster timescale, and rather skewed distributions of
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Figure 5. Time trace and probability distribution of CLV instan-
taneous projection in the X subspace for 2 = 1/4 and b = 10 and
K =36 and J = 10. (a) Slow-bundle vectors, i = 110 (black line),
i =122 (red line, the 0-CLV) and i = 160 (green line). In the in-
set are the corresponding probability distributions of the three CLV
time traces. (b) For two other CLVs with negligible X projection,
first vector (black line) and 255th vector (red line). In the inset are
corresponding probability distributions of the two CLV time traces.

their ¢; (¢) values. Their X projection, of course, is strongly
suppressed and remains very close to 0. In Sect. 4, we will
further comment on the intermittent behavior of ¢; (¢), show-
ing that it arises from near degeneracies in the instantaneous
instability rates.

4 The origin of the slow bundle

In the previous section, we have identified a slow bundle in
the tangent space of the L96 model — a central band centered
around the 0-CLV — whose covariant vectors are character-
ized by a large projection over the slow degrees of freedom.
It is natural to expect this band to be associated not only with
long timescales (i.e., the inverse of the corresponding LEs)
but also with large-scale instabilities.

We begin by discussing the pedagogical example of the
uncoupled limit (A = 0). In this case, the X and Y subsys-
tems evolve, by definition, independently, and one can sep-
arately determine K LEs associated with the slow variables
and K J exponents associated with the fast variables. The full
spectrum can be thereby reconstructed by combining the two
distinct spectra into a single one. The result is illustrated in
Fig. 6a, where the red crosses correspond to the X LEs. Note
that the same area is also spanned by the central part of the
fast-variable spectrum. The region covered by the slow LEs,
where the instability rates of the two uncoupled systems have
the same magnitude, roughly corresponds to the location of
the slow bundle in the coupled-model CLVs spectrum. This
suggests that the origin of the slow bundle can be traced back
to a sort of resonance between the slow variables and a suit-
able subset of the fast ones.

Note also that, in the absence of coupling, the Jacobian
matrix has a block diagonal structure, with the CLVs either
belonging to the X or Y subspaces. The projection ®;, there-
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fore, is strictly equal to either O or 1, depending on the vector
type, and can be used to distinguish the two types of vec-
tors when the full set of (uncoupled) equations is integrated
simultaneously.

We now proceed to discuss the coupled case. When the
coupling is switched on, it has a double effect: (i) it modi-
fies the overall dynamics, i.e., the evolution in phase space,
in Egs. (1a) and (1b), and (ii) it directly affects the tangent-
space evolution, in Eqs. (18a) and (18b), destroying the block
diagonal structure of the uncoupled Jacobian matrix. This,
in turn, prevents one from identifying single LEs with ei-
ther the slow or the fast dynamics. In order to be able to
also distinguish the two contributions in the # > 0 case, we
study an intermediate setup characterized by a full coupling
in real space but remove it from the tangent-space dynam-
ics. In practice, we simulate the full nonlinear model (la
and 1b) and use the resulting trajectories to “force” an un-
coupled tangent-space dynamics, that is

8Xy = 8Xx—1 (Xit1 — Xx—2)

+ Xi—1 (0 Xg41 — 8 Xg—2) — 0 Xy, (24a)
8Yx,j =cb[8Yk, j+1 Vi j—1 — Yi,j+2)
+ Yij1 Vi jo1 = 8Yr j42)] — c8Yi j, (24b)

where the coupling terms, proportional to 4 in Egs. (18a)
and (18b), have been ignored. This way, the Jacobian matrix
is still block diagonal.

Thanks to this approximation, we can define two restricted
spectra k,f and AY for the slow and fast variables, respec-
tively, and thereby recombine them into a single spectrum by
ordering the exponents from the largest to the most negative
one. A comparison between the resulting reconstructed spec-
tra and the full ones (with coupling acting both in real and
tangent space) shows an excellent agreement, at least in the
range h € (0, 1). Two examples for h =1 and 2 = 1/16 are
given in Fig. 6b, while the dependence of their root-mean-
square difference AAR on h is reported in Fig. 6¢ (blue di-
amonds). It is not, however, clear to what extent this is a
general property of high-dimensional dynamics; we are not
aware of similar analyses made in high-dimensional models.

The modifications induced by real-space coupling are
more substantial. They can be quantified by computing the
root-mean-square differences

1 & 2
AAX () = Ez[xf(h)—,\,f(m], 25)
\ 7 k=l
1 & 2
Yoy | 2 Yoy 4 Y
W= g7 izl[x,«h) ol

which measure the average variation in the restricted spec-
tra upon increasing the coupling. Numerical simulations, re-
ported in Fig. 6¢, show that both AAX and ALY increase ap-
proximately linearly with 4, the main difference being that
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Figure 6. (a) Lyapunov spectra for the uncoupled (7 = 0) case de-
composed in its slow (AX ; red crosses) and fast (AY ; black solid
line) parts. (b) Full Lyapunov spectra (full lines) superimposed with
spectra reconstructed from their restricted (see text) counterparts
(dashed lines) for h =1 and & = 1/16. (¢) Root-mean-squared dif-
ference between the finite & restricted spectra and the completely
uncoupled fast and slow spectra, for both fast (black squares) and
slow (red circles) dynamics. Power law fits (dashed lines) return
slopes close to unity (respectively ~ 0.9 and ~ 1.1), suggesting a
simple linear growth with the coupling /. Blue diamonds refer to
the root-mean-square difference AR between the full LS and the
reconstructed ones in the restricted tangent-space approximation.
Both axes are represented in a double logarithmic scale. In the up-
per part of (d) is an enlarged view of the central part (i € [50,250]
of the restricted spectra for i = 1/8, with the slow (A%, red crosses)
and fast (AY, black solid line) components differently marked. In
the lower part of the panel is the same enlarged view of the # = 1/8
projection norm, as computed from the fully coupled dynamics. The
vertical red dashed lines mark the upper (i1 ) and lower (ir) bound-
aries of the superposition region as reported in Table 1. In all panels,
we have fixed the following: b = 10, K =36 and J = 10.

)L,f (h) values decrease (in absolute value) when £ is in-
creased, while the opposite holds for A}’ (h). In Fig. 6c, we

can also appreciate that both AAX and ALY are significantly
larger than AAR, showing that tangent-space coupling is not
relevant for the estimate of the LEs. On the other hand, this is
not expected to be true for the CLVs, which are local objects,
defined at each attractor point. CLVs associated with the re-
stricted LEs are, by definition, confined either to the X or the
Y subspace so that their X projection ®; is again either equal
to 0 or 1. The analysis carried out in the previous section for
the fully coupled dynamics shows instead that the average
projection ®; of any vector within the slow bundle is signifi-
cantly different from both 0 and 1 and substantially constant
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over the entire central band. This means that the orientation
of the CLVs is very sensitive to the coupling itself.

The main mechanism responsible for the reshuffling of the
CLV orientation is the (multifractal) fluctuations of finite-
time LEs (Pikovsky and Politi, 2016). Fluctuations are the
unavoidable consequence of the different degrees of stabil-
ity experienced in different regions of the phase space, and
they occur in both strictly hyperbolic and nonhyperbolic dy-
namical systems, although they are typically much larger in
the latter context. Fluctuations may be so large as to bridge
the gap between distinct LEs, which results in a lack of dom-
ination of the Oseledets splitting (Pugh et al., 2004; Bochi
and Viana, 2005) and in the sporadic occurrence of near tan-
gencies between pairs of different CLVs (Yang et al., 2009;
Takeushi et al., 2011)°. Fluctuations are also responsible for
the so-called coupling sensitivity (Daido, 1984; Pikovsky and
Politi, 2016): strictly degenerate LEs in uncoupled systems
may separate by an amount of the order of 1/|Ineg|, where ¢
is the (small) amplitude of the coupling strength.

Let us be more quantitative and introduce the finite-time
Lyapunov exponents y;(¢), computed from the average ex-
pansion rate over a window of length 7,

1
i) = T—lnllM(xz, Wi (DIl (26)

w

where M(x;, ty,) is the propagator (15) for the tangent-space
evolution over time 1y, while the CLVs v; is normalized
to unity. Their asymptotic time average obviously coincides
with the corresponding LEs, (y; (1)) = A;.

We are interested in the probability distribution P(y;) of
vi, obtained by evolving a long trajectory. For short times,
y; fluctuations significantly depend on the coordinates used
to parametrize the dynamics, but upon increasing ty, such
a variability is progressively lost and the width of P(y)
scales as 1/,/Tw, as prescribed by the multifractal formal-
ism (Pikovsky and Politi, 2016). In the following, we have
set Ty = 0.5, after having verified that it is long enough.
Here, for illustrative purposes, we have selected two vectors
which, in the absence of tangent-space coupling, are of the
X and Y type, respectively®. From Fig. 7a, it is clear that the
amplitude of the fluctuations largely exceeds the difference
between the corresponding mean values (i.e., the asymptotic
LEs; see the vertical straight lines) and that the same holds
true after restoring the coupling in tangent space (Fig. 7b).

Consistently, in Fig. 7c, we show that the corresponding
CLVs are characterized by nonnegligible near tangencies:

SPerfect tangencies may occur, but only for a set of zero-
measure initial conditions, such as the homoclinic tangencies in
low-dimensional chaos.

Given the two restricted spectra Aif and AY they are combined
into a single set of ordered LEs and labeled according to the index i.
Depending whether the ith exponent belongs to the X or Y restricted
spectra, we conclude that the corresponding ith CLV in the fully
coupled spectrum is of the X or Y type.
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The probability distribution of the relative angle,

6;,; (1) = arccos[v; (1) - v;(1)] , (27)

indeed exhibits a peak near 0.

We have verified this to be the generic behavior, as ex-
pected due to the nonhyperbolic nature of the L96 model.
The near tangencies between different CLVs within the slow
bundle provide strong numerical evidence of the mixing be-
tween slow and fast degrees of freedom and are perfectly
consistent with the nonnegligible projection onto the slow
X subspaces of all vectors in the slow bundle. In fact, in
the presence of two similarly unstable directions, the cor-
responding CLVs tend to wander in a (fluctuating) two-
dimensional subspace, selecting their current direction on the
basis of the relative degree of instability. It is therefore natu-
ral to expect that, in the presence of strong fluctuations, an X -
type vector (in the uncoupled limit) temporarily aligns along
the Y directions and vice versa, thereby giving rise to a pro-
jection pattern such as the one seen in the central region of
the CLVs spectrum, where all vectors have a nonnegligible
average projection over the X degrees of freedom.

The intermittent nature of the instantaneous X projection
¢;(¢) discussed in Sect. 3.1 further validates this picture: it
is the result of the large fluctuations exhibited by finite-time
LEs, which are, in turn, associated with changes of direc-
tions when the CLV comes close to tangencies. Furthermore,
the large ratio between the amplitude of the fluctuations and
the separation between consecutive LEs suggests that this ex-
change of directions may extend beyond the nearest neigh-
bors along the spectrum. We conjecture that the relatively
smooth boundary of the central band is precisely a manifes-
tation of this sort of extended interaction.

Finally, we return to the restricted LEs to see whether — as
implied by the above conjecture — their knowledge can help
to identify the slow-bundle boundaries. In practice, we have
first identified the borders of the region covered by both slow
LEs. They are given by the indices (within the reconstructed
spectrum) of the largest and smallest restricted slow LE, la-
beled, respectively, as i;, and ir. They are reported in Ta-
ble 1, together with the corresponding value of the restricted
Lyapunov exponent, for different coupling values. The agree-
ment with the actual boundaries of the slow bundle — as re-
vealed by a visual inspection of the projection patterns ®; —
is actually pretty good (see, e.g., Fig. 6d for 7 = 1/8).

Altogether, our analysis suggests that coupling in real
space induces a sort of “short-range” interaction within tan-
gent space: each LE (and the corresponding CLV) tends to
affect and be affected by exponents with a similar magnitude
and thereby characterizes a similar degree of instability in a
sort of resonance phenomenon.

Note finally that the spectral band where the slow and
fast restricted Lyapunov spectra superimpose covers all the
slow restricted LEs and a finite fraction of the fast ones,
thus providing a justification of the phenomenological scal-
ing law (23).
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Figure 7. (a-b) Probability distribution of the finite-time LEs (26) for two nearby LEs belonging to the slow bundle. We show results for the
92nd (black solid line) and 93rd (red dashed line) LEs which, in the absence of tangent-space coupling (the restricted setup; see text), belong,
respectively, to the AX and AY restricted spectra. (a) Finite-time LEs fluctuations in the restricted case. The vertical lines mark the mean
values )»5(2 =1.30 and Xg3 = 1.275 (indices refer to the full spectrum position, and they correspond to the 5th and 88th, respectively, LE in
the X and Y restricted spectra). (b) Finite-time LEs fluctuations in the fully coupled case. The vertical lines mark the mean values Agy = 1.31
and Ag3 = 1.25. (c) Probability distribution of the angle 60;; (see Eq. 27) between the two corresponding CLVs in the fully coupled case. All
simulations have been performed for K =36, J =10, b = 10 and & = 1/16. We have fixed the following in all panels: K = 36 and J = 10.

Table 1. X-restricted largest (Ai‘ ) and smallest (A)Ig) LE with the
corresponding full spectrum indices (if, and iR). All data refer to
b=10, K =36 and J = 10.

h A A i iR
1 133 —457 104 192
12 189 —5.18 93 197
1/4 213 =542 85 198
1/8 223 —553 80 199
1/16 229 —558 77 199

5 Finite perturbations

So far we have studied the geometry of the L96 model, deal-
ing exclusively with infinitesimal perturbations. A legitimate
question is whether we can learn something more by looking
at finite perturbations.

Finite-size analysis has been implemented in the 196
model since its introduction (Lorenz, 1996), and it has been
formalized with the definition of the so-called finite-size Lya-
punov exponents (FSLEs; Aurell et al., 1997). In a nutshell,
the rationale for introducing FSLEs is — as already recog-
nized by Lorenz — that in nonlinear systems the response
to finite perturbations may strongly depend on the observa-
tion scale. Dropping the limit of vanishing perturbations, of
course, weakens the level of mathematical rigor of the in-
finitesimal Lyapunov analysis, but it nevertheless allows for
a meaningful study of the underlying instabilities.

Here, we follow the excellent review (Cencini and Vulpi-
ani, 2013), where applications to L96 were also discussed.
Given a generic trajectory x(¢), the idea is to define a se-
ries of thresholds §, = §po”, with o > 1, and to measure
the times 7(§,) needed by the norm of a finite perturbation
Ax (1) = x'(t) — x(¢) to grow from the amplitude §,, to &,+1.

Nonlin. Processes Geophys., 26, 73-89, 2019

The FSLE A(§,) is then defined as

Ino
(T(dn))’

where (-) denotes an average over many realizations of the
perturbation. In practice, one starts at time 7y with a finite
perturbation [[Ax(#p)|| < §p to ensure a correct alignment
(along the most expanding direction) by the time the pertur-
bation amplitude reaches the first threshold &p. Subsequently,
both trajectories x and x’ are followed, registering the cross-
ing times of all §, thresholds. By repeating this procedure
many times, one is able to estimate the FSLEs for all am-
plitudes §,, via Eq. (28). The FSLE in principle depends on
the norm used to define the size of the perturbation (Cencini
and Vulpiani, 2013). However, by construction, for vanishing
perturbations, the FSLE should coincide with the largest LE,
regardless of the norm:

AS,) =

(28)

(Slg%A(S) =Al. (29)
In Cencini and Vulpiani (2013), FSLEs have been applied to
analyze the L96 model (see also Boffetta et al., 1998, for an
earlier study). In a slightly different setup (no fast-variable
forcing and a larger scale separation b), it was shown that the
FSLE is characterized by two different plateaus: (i) a small-
8 one, essentially associated with the instability of the fast,
convective degrees of freedom and roughly equivalent to the
largest LE, A () & A1, and (ii) a large-§ plateau that was as-
sociated with the intrinsic instability Ag on the slow larger
scales. Interestingly, it was observed that also the height of
the second plateau seems to be roughly norm independent.
This observation led to the conjecture that the nonlinear evo-
lution of large perturbations may be controlled by the linear
dynamics of an effective lower-dimensional system, captur-
ing the essence of the slow-variable dynamics (Cencini and
Vulpiani, 2013).

www.nonlin-processes-geophys.net/26/73/2019/
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Figure 8. FSLE analysis. (a) FSLEs for different coupling con-
stants, 7 = 1 (black line), 7 = 1/2 (red line), h = 1/4 (green line),
h =1/8 (blue line) and 7 = 1/16 (red line) — decreasing along the
cyan arrow — vs. the finite-size amplitudes &, for the y = 10-3
norm. In the inset are the FSLEs for 4 = 1/4 and different ¥ norms
(y=1, 10-1,1072 and 1073, decreasing along the orange arrow).
The error bars measure one standard error. The black dashed line
marks the FSLEs for the limiting case y — 0. Note the logarithmic
scale for the abscissa of both graphs. (b) Details of the LE spectrum
(top part of panel) and of the ®; average projection norm patterns
(bottom part of panel) as in Fig. 3b. The solid dots and the vertical
dashed line mark the value and the location of the LEs ;4 as iden-
tified in Table 2 (see main text for more details). Different coupling
constant values are color-coded as in panel (a), with & decreasing
along the cyan arrow in the top part of the panel.

In this section we repeat this analysis in our setup, compar-
ing the behavior of the FSLE with the analysis of the tangent-
space slow bundle. In the following we use our standard pa-
rameters (K =36, J =10 and b = 10), using o = V2 and
8o =107 and averaging the crossing times over 10° real-
izations. For each realization, the initial finite perturbation
(AXy,...,AXg,AY11,AYk, ) is chosen at random, with
an initial amplitude of 107>,

As we expect the FSLE to depend on the norm, we have
decided to transform this weakness into an advantage by
studying the behavior of an entire family of Euclidean norms,
thereby extracting useful information from the dependence
on the chosen norm. More precisely, we introduce the y-
dependent norm

11, =\/ZX,%+VZY,ij,
% K

which, for y =1, coincides with the standard Euclidean
norm. We consider y € (0, 1], a choice which allows explor-
ing a broad range of weights of the slow variables.

In the inset of Fig. 8a, we see that the main effect of chang-
ing the norm is a variation in the length of the two plateaus:
upon decreasing y, the first plateau shrinks, leaving space
for a longer second plateau. The height of the two plateaus
is largely y independent. This behavior can be qualitatively
understood as follows. At early times, all components of the
perturbation grow according to the maximum LE, which we

(30)
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Table 2. Estimated slow dynamics finite-size instability Ag(h) com-
pared to the closest LE and its index ig for different coupling con-
stants. Numbers in parenthesis refer to the uncertainty in Ag and,
accordingly, of ig. Results of the restricted analysis carried on in
Sect. 4 are reported from Table 1 for comparison. All data have
been obtained with b = 10, K =36 and J = 10.

)\'X

h As Aig is 1 iL
1 12(3) 115 110(6) 1.33 104,
1/2 1.86 (11) 1.90 94(2) 1.89 93,
1/4 207 (8) 204 87(1) 213 85,
1/8 216 (11) 215 81(1) 223 80,
1/16 22(1) 218 78 (1) 229 71.

know from the previous analysis to be mostly controlled by
the dynamics of the fast Y variables. As time goes on, the
perturbations of the Y variables start saturating, while those
of the slow variables keep growing, however, at a pace con-
trolled by their (weaker) intrinsic instability. Upon decreas-
ing y, the relative weight of the less unstable, slow variables
increases. However, there is a limit: even when y — 0, the
growth rate of the X perturbations is initially controlled by
the fast variable. The range of this initial, approximately lin-
ear regime depends on the initial amplitude of the fast com-
ponents; this limit corresponds to the dashed curve in the in-
set of Fig. 8a.

The FSLEs obtained for different coupling parameters &
are shown in Fig. 8a, all for y = 1073, Two plateaus are
clearly visible, at least for 4 < 1. The first one coincides with
the maximum LE of the whole system, as per Eq. (29). The
second one approximately extends over a range of 1 order of
magnitude (at large scales, the plateau is obviously limited
by the attractor size). Its height corresponds to the character-
istic instability Ag(h) associated with the effective dynamics
of the slow variables, as conjectured in Cencini and Vulpiani
(2013).

For each coupling A, we estimated the corresponding
Ag(h) as the average of A(§,) in the interval §, € [1, 10] and
identified the closest LE A;; and its index ig in the Lyapunov
spectra. The results of this procedure are summarized in Ta-
ble 2 and compared with the results of the restricted analysis
obtained in Sect. 4.

In practice, by interpreting the height of each plateau as
a suitable instability rate within the full Lyapunov spec-
trum, one can thereby extract the corresponding index ig
for each value of the coupling constant. In Fig. 8b we have
marked these indices with dashed vertical lines (upper part
of panel) and compared with the slow-bundle projection pat-
terns (lower part of panel). Interestingly, these values seem to
provide a reasonable estimate of the leftmost boundary of the
central band which defines the slow bundle in tangent space.
Essentially, i coincides fairly well with the left “shoulder”,
where ®; starts to drop towards negligible values for decreas-
ing i. Note, however, that for larger values of &, the second
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plateau becomes less sharply defined, up to the case h =1,
where it is practically impossible to define a threshold. Cor-
respondingly, the boundaries of the slow bundle in tangent
space, as defined by inspection of ®;, also become less well
defined.

Altogether, the slow-variable (large-scale) instability Ag
emerging from the finite-size analysis roughly coincides with
the upper boundary of the slow bundle (i.e., the LEs associ-
ated with the CLVs with a relevant projection onto the X
variables). Following the analysis of the restricted spectra
carried out in the previous section, Ag is also close to the first
restricted LE associated with the X subspace A%, as shown
in Table 2. The parameter y proves to be useful in improving
the accuracy of the two plateaus exhibited by the FSLEs.

It is remarkable that the analysis of a single pair of trajec-
tories allows for extracting information about (at least) two
different Lyapunov exponents. We conjecture that the lin-
early controlled growth of small, finite perturbations stops
as soon as the fast components saturate because of nonlin-
earities. Afterwards, fast variables act as a sort of noise on
the slow ones, whose dynamics is still in the linear regime.
Finally, in view of the above-mentioned closeness between
the restricted and fully coupled LS, it is reasonable to con-
jecture that, since coupling does not play a crucial role in
tangent space, the growth rate corresponds, in this second
regime, to the maximal LE of the slow variables, as indeed
observed. Our result supports an earlier conjecture of Cencini
and Vulpiani (2013) concerning the existence of an effective
lower-dimensional dynamics capturing the slow-variable be-
havior.

6 Discussion and conclusions

Our analysis of the tangent-space structure of the .96 model
has identified a slow bundle within the full tangent space. It
is composed of the set of covariant Lyapunov vectors charac-
terized by a nonnegligible projection over the slow degrees of
freedom. Vectors in this set are associated with the smallest
(in absolute value) LEs and thus with the longest timescales.
We have verified that the number of such vectors increases
linearly with the total number of degrees of freedom so that
the slow-bundle dimension is an extensive quantity.

The upper and lower boundaries of the slow bundle are
better defined for a weak coupling #. However, the rescaled
formulation of L96 (see Eq. 4a) shows that the effective
upward coupling (from the fast to the slow variables) is
hf = hJc/b?, thereby suggesting that an increase of the am-
plitude separation b can increase the sharpness of the slow-
bundle boundaries even for large h. As reported in Fig. 9a,
numerical simulations with # = 1 and increasing values of b
actually confirm this intuition, indicating that a slow bundle
can be clearly defined also in the strong coupling limit, pro-
vided that the slow- and fast-scale amplitudes are sufficiently
separated.
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Figure 9. (a) X-projection patterns ®; for Lorenz 96 with fast-
variable forcing (Ff = 6), strong coupling # =1 and increasing
(along the direction of the cyan arrow) values of amplitude sepa-
ration, b = 10, 20, 40 and 50. (b) Lyapunov spectrum (top part of
panel) and X-projection patterns (bottom part of panel) for Lorenz
96 with no fast-variable forcing (Ff = 0) and standard parameter
values, h =1 and b = ¢ = 10. The red crosses mark the values of
the X-restricted spectrum (see Sect. 4 for more details). System size
is K =36 and J = 10 in both panels.

In order to clarify the origin of the slow bundle, we have
introduced the notion of restricted Lyapunov spectra and ar-
gued that the central region, where the CLVs retain a signi-
ficative projection over both slow and fast variables, corre-
sponds to the range where the restricted spectra overlap with
one another. In this region, fluctuations of the finite-time LEs
much larger than the typical separation between consecutive
LEs lead inevitably to frequent “near tangencies” between
CLVs, thereby mixing slow and fast degrees of freedom into
a nontrivial set of vectors which carries information on both
sets of variables.

Besides, we have found that coupling in tangent space
weakly influences the actual LEs, provided that it is ac-
counted for in real space. This is one of the reasons for the
finite-size analysis being able to give information about the
instability of the slow bundle (i.e., the correspondence be-
tween the second plateau displayed by the FSLE and the up-
per boundary of the slow bundle). Further investigations are
necessary to put our consideration on firmer ground.

So far, we have discussed the slow bundle in a setup where
the fast degrees of freedom are forced by a strong external
drive Ft so that the fast dynamics is intrinsically chaotic even
in the absence of coupling. One might wonder how general
these results are and, in particular, how they could be ex-
tended to the traditional L96 setup, with no forcing of the fast
variables (Lorenz, 1996). When F; = 0, in the zero-coupling
limit, the fast dynamics is dominated by dissipation with no
chaotic features. However, it is easy to verify that for a suffi-
ciently strong coupling, the fluctuations of the slow variables
induce a chaotic dynamics on the fast ones as well so that the
“classical” setup resembles the forced one analyzed in this
paper. While we have not performed an accurate and thor-
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ough study, preliminary simulations indicate that the signa-
ture of a slow bundle can be found also in the classical setup
for sufficiently strong coupling. In particular, as reported in
Fig. 9b for i = 1, one can see that the region of nonnegligible
X projections of the CLVs again coincides with the superpo-
sition region of the slow and fast restricted spectra.

As already mentioned, the slow bundle is identified as the
set of CLVs with a nonnegligible projection onto the slow
degrees of freedom. One might argue that the average pro-
jection @ on the X subspace decreases with J, being at best
of the order of 1/J, i.e., the fraction of slow degrees of free-
dom. However, what matters is not the actual value of ® but
rather the ratio between the height of the plateau and that of
the underlying background. The scaling analysis reported in
Fig. 4 shows that this ratio stays finite while increasing the
number of fast variables.

Altogether, we conjecture that (i) the fast stable directions
lying beyond the slow-bundle central region are basically
slaved degrees of freedom, which do not contribute to the
overall dynamical complexity, and (ii) the fast unstable di-
rections act as a noise generator for the Y degrees of free-
dom (their projection onto the X variables being negligible,
and they do not talk directly with the slow variables). There-
fore, it is natural to conjecture that the two subsystems mu-
tually interact only through the slow-bundle instabilities so
that suitably aligned perturbations of the fast variables can
affect the slow variables and vice versa (see also Vannitsem
and Lucarini , 2016). While this is a mere conjecture to be ex-
plored in future works, it suggests that (some) covariant vec-
tors could be profitably applied to ensemble forecasting and
data assimilation in weather and climate models. In particu-
lar, it has already been shown that restricting variational data
assimilation to the full unstable subspace can increase the
forecasting efficiency (Trevisan and Uboldi, 2004; Trevisan
et al., 2010). In the future, we would like to explore whether
a data assimilation scheme restricted to the slow bundle only
(which does not encompass the entire unstable space) can
lead to further improvements in forecasting.

The mechanism discussed in Sect. 4, relying on the overlap
of the two restricted Lyapunov spectra should be common in
nonlinear multiscale systems; therefore we believe our find-
ings to be fairly generic. In the future, it will be interesting
to extend the present analysis of Lyapunov exponents and
covariant Lyapunov vectors to models with multiple scales
and/or higher complexity and relevance, such as the coupled
atmosphere—ocean model MAOOAM (De Cruz et al., 2016),
or simplified multilayer models of the atmosphere, such as
PUMA (Fraedrich et al., 2005) or SPEEDY (Molteni, 2003),
thus going beyond the LEs studies of De Cruz et al. (2018)
to include the full tangent-space geometry.
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