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Capillary transport in particulate porous media at low levels of saturation

Alex V. Lukyanov', Vladimir Mitkin*, Theo G. Theofanous® and Mike Baines!
tSchool of Mathematical and Physical Sciences,
University of Reading, Reading, RG6 6AX, UK
t Aerospace Research Laboratory, University of Virginia, Charlottesville, VA 22903, USA and
§ University of California, Santa Barbara, CA 93106, USA

We have established previously, that the spreading of liquids in granular porous media at low
levels of saturation, typically less than 10% of the available void space, has very distinctive features
in comparison to that at higher saturation levels. In particular, we showed that the spreading is
controlled by a special type of diffusional process, that its physics can be captured by an equation of
the super-fast diffusion class, and these findings were supported by first-of-a-kind experiments. In
this paper, we take these findings to the next level including deeper examination and exposition of the
theory, an expanded set of experiments to address scaling properties, and systematic evaluations of
the predictive performance against these experimental data, keeping in mind also potential practical

applications.

I. INTRODUCTION

Even a small amount of aliquid added to a dry gran-
ular material may dramatically change its structural
properties due to the appearance of a strong capillary
cohesion force between the particles [1-7]. The strong
capillary force, of the order of F ~ 2w Rycosf,, is
due to the liquid bridges (pendular rings) formed at
the point of particle contact [1-5, 8, 9]. Here, R is
the average particle radius, « is the surface tension
coefficient and 6, is the static contact angle of the
liquid formed at the three-phase contact line on the
flat surface of the solid. A simple estimate for wa-
ter at room temperature (y = 72mN/m) and sand
particles (6. = 30°) of 400 um in diameter results in
F ~ 8x107°N, which is much larger than the gravity
force acting on each particle ~ 8 x 1078 N. It is in-
teresting to note, that the cohesive force is practically
independent of the liquid content, that is the value of
saturation, as long as the liquid morphology consists
of isolated pendular rings.

(a) (b)
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Figure 1. Illustration of isolated bridges at low levels of
saturation. (a) Micro-x-ray computer tomography (Mi-
croXCT) image, typical from our experiments. (b) 3D im-
age reconstruction of MicroXCT data. The liquid within
the grain roughness is invisible to MicroXCT, since reso-
lution is limited to a few micrometres.

The formation of isolated liquid bridges is the main

characteristic feature of the pendular regime of wet-
ting in porous materials, when liquid volumes inside
the porous matrix are only connected via liquid layers
developed on rough surfaces of the particles, Fig. 1.
The pendular regime of wetting is observed in exper-
iments and computer simulations in a range of satu-
rations 0.2% < s < 10%, where the saturation s is
defined as the ratio of the liquid volume V7, within a
sample volume element V to the available void space
s =& [1-3,6, 7, 10, 11].

The minimal saturation level is observed when the
liquid bridges start to disappear, and when the porous
network starts to lose its cohesive and transport prop-
erties [1-3, 11]. At this level of saturation, the bridges
are predominantly formed between asperities on the
grains, as is illustrated in Fig. 2, leading to the for-
mation of bottleneck regions at the points of parti-
cle contacts, so that permeability of the entire porous
network is bound to be greatly reduced when the satu-
ration is approaching this critical level [1-3, 5, 11, 12];
at this point essentially the whole quantity of the lig-
uid resides in liquid layers formed within the surface
roughness of the grains. We will later discuss this
scenario in relation to our experimental observations
and the formulation of our theoretical model. Here,
we note, that as a consequence, we will further dis-
tinguish two critical quantities so and sy associated
with the minimal saturation level. The first quantity
So is roughness induced and corresponds to the crit-
ical saturation level, which would be obtained if we
considered the liquid content only residing within the
surface roughness of the grains, basically excluding the
liquid in the bridges from the consideration. While,
the second quantity sy designates critical saturation
level due to the total liquid content in the porous ma-
trix, including the liquid bridges. Apparently, by the
definition, sy > s, if liquid bridges do not cease to
exist completely in the domain of consideration, which
is assumed to be always the case in our study. Also,
as we will see further, s; ~ so. The latter may be
intuitively obvious, since the bottleneck regions oc-
cur when the bridge liquid content is lower than the
potential surface roughness capacity.



The value of sy, according to its definition, can
be parametrized by the non-dimensional quantity %,
where parameter ¢;, has the dimension of length and
can be interpreted as the characteristic average thick-
ness of the liquid layer in the surface roughness; the
amplitude of the surface roughness is designated by
0gr- Apparently, two parameters should be consistent,
that is 07, < max(dg). For example, a threshold value
s§ = so = 0.2% has been observed in experiments us-
ing spherical particles, average radius R = 187.5 yum,
with the maximum surface roughness amplitude of
max(dr) ~ 500nm as determined by scanning force
microscopy [1]. At the same time, in our exper-
iments with Ottawa sands of average grain radius
R ~ 250 um a minimal value of sy ~ so ~ 0.6% was
observed. In Ottawa sands, the surface roughness am-
plitude dpr is distributed between min(dr) ~ 250 nm
and max(dr) ~ 3 um with the mean value found in
the range 0.7 um < 6 < 1 um depending on the av-
erage particle radius [13]. One can see then that the
lower is the surface roughness on average, the lower
are the critical values so and s;.

If we now consider spherical (or nearly spherical)
grains with identical, on average, surface area 47 R?
and volume Vj = %’/TR?’ and take into account that
only some part of the grain surface volume 47 R26;,
is available for the liquid during the spreading, then
the value of saturation due to the liquid distributed
on the rough surface of the grains is

S0 = 3 R% %, (1)
where parameter ap is the fraction of the surface
(roughness) volume occupied by the liquid and ¢ is
the porosity. Indeed, if we consider a sample volume
element V' containing N > 1 solid particles of volume
Vo, then following the definition of the saturation

s _ﬁ_ 47TR2OZR§LN (2)
T Ve 1%
and
(1-9¢)V =NW. (3)

The result (1) then follows from (2) and (3). The
quantity ag is a phenomenological parameter of the
model defined by the properties of the surface rough-
ness [14-17].

In our experiments, as we will show in Section TV A,
parameter ag is found to be ag =~ 0.3 at equilibrium.
We can thus estimate, using (1), that to get so =
0.6% at R = 250 um and ¢ = 30%, one needs to
have d;, ~ 0.7 pm, which is well in the range of the
surface roughness amplitudes in the sands used in the
experiments. At the same time, to get so = 0.2%
at R = 187.5um and ¢ = 30%, one needs to have
61, =~ 180nm, which is also below the maximum value
of the surface roughness observed 500 nm.

Above s, ~ 10%, liquid bridges coalesce into more
complex structures, like trimers and pentamers, and

Bottleneck region
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Figure 2. The contact zone between two rough spher-
ical particles. The size of the contact zone is L. =

v/max(dr)R [5].

the pendular wetting state gradually transforms into
the so called funicular regime, Fig. 3, while the global
connectivity of the liquid volumes is still absent [1-
3, 6, 7]. Finally, at s = 30% a percolation transition
occurs when the largest clusters contain about 90% of
the available liquid.

ERow -
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Funicular Pendular
Figure 3. An UV fluorescence image of the liquid (TEHP)
distribution in sands in the transition from the pendular

to the funicular regimes of wetting, at s > 10%.

Our prime concern here is liquid transport in the
range of saturations corresponding to the pendular
regime of wetting, which is important for accurate rep-
resentation of soil-liquid characteristic curves at the
lower end of saturations to study biological processes,
such as plant water uptake and microbial activity, and
spreading of persistent (non-volatile) liquids in arid
environments and dry industrial installations [11, 16].

The peculiar character of the diffusion processes in
the pendular regime of wetting, when porous network
connectivity is conditioned by thin liquid films, has
been recognized previously [11, 14-20]. It has been
shown that specific features of liquid transport at low
levels of saturation could lead to a special class of



mathematical problems, when effective coefficient of
non-linear diffusion D(s) diverges at the lower end of
saturation, that is in the limit 213% D(s) = s with
A <0.

For the first time, the diverging behaviour of
the diffusion coefficient D(s), named hyperdisper-
sion, was predicted in the analysis of spreading in
porous networks driven by the disjoining pressure
II(h) of nanoscale (thickness h ~ 1 —100nm) wetting
films [19, 20]. A range of admissible A has been pre-
dicted depending on the behaviour of the disjoining
pressure I1(h) as a function of the film thickness h, in-
cluding hyperdispersive exponents A < 0. Evidence of
hyperdispersive behaviour has been observed in two-
phase fluid flows with the exponent A ~ —1 [18]. One
needs to note, though, that the values of the effec-
tive diffusion coefficient measured in [18] were two-
three orders of magnitude higher than those predicted
in [19]. On the other hand, studies of persistent liq-
uids spreading in sands have revealed another mech-
anism leading to the formulation of a super-fast non-
linear diffusion model [11]. The driving force in this
model is due to the macroscopic capillary pressure de-
veloped on a scale of the surface roughness dr with
D(s) o (s — s9) /2, formally diverging (in the model
s > s¢ is always the case) at much higher values of
saturation s = sg &~ 0.6% than that anticipated in
[19, 20] and with a different exponent value A = —3/2.
A comparison between a lead-in theoretical model of
superfast diffusion and experimental observations has
shown quite good agreement [11]. In this study, we
further pursue this work, aiming for enhanced defini-
tion of the theoretical approach and a more detailed
comparison with experiments, including new ones de-
signed to explore scaling properties of the process.

II. EXPERIMENTAL OBSERVATIONS

Our experiments have been conducted, as in our
previous work, by carefully placing small liquid drops
of a controlled volume, 3mm?® < Vp < 12mm?3, on
naturally packed sand beds (slightly shaken to level
out) with porosity levels of ¢ ~ 0.3. After the drop
had been put in place, the light-shielding experimen-
tal box was closed and kept at constant temperature
with stagnant atmosphere. To obtain the desired low-
dispersion samples, we processed from the standard
Ottawa Sand (EMD Chemicals, product SX0075) us-
ing a mini-sieves set (Bel-Art Products). The aver-
age radii obtained were R = 0.32,0.26,0.25,0.2 and
0.14 mm with the standard deviations, wg, as is pre-
sented in Table I. The surface roughness amplitude
according to a previous study was distributed in the
range min(dg) ~ 0.25 um < 0 < max(dr) ~ 3pum
with the mean value found in the range 0.7 um < 53 <
1 um depending on the average grain size [13]. For lig-
uids, we have used several low-volatility (organophos-
phate) liquids of varying viscosity and surface tension:
tributyl phosphate (TBP, molar weight 266.32 g/mol),

CAS 126-73-8; Tris(2-ethylhexyl) phosphate (TEHP,
molar weight 434.63 g/mol), CAS 78-42-2 and tricresyl
phosphate (TCP, molar weight 368.37 g/mol), CAS
1330-78-5 (Sigma-Aldrich); the details can be found
in Table I. The contact angles 6. of TBP, TEHP and
TCP measured on smooth /rough flat glass surfaces in
our laboratory at 20 C° were found to be at 10°/0°,
10°/0° and 30°/20° respectively, though no detailed
characterization of the surface roughness was made,
therefore later on in the analysis we will use those
numbers as the range of the contact angles variations.

The spreading process has been monitored by time-
lapse photography using UV-excited fluorescence of
the liquid obtained by adding a small amount (1%
by weight) of Coumarin 503 dye. We have verified
that the liquid properties, including surface tension,
were unaffected by the presence of the dye. The pho-
tographs, Fig. 4, were taken by 10.7 MPixel remotely
controlled digital cameras (Lumenera Corporation)
equipped with a macro-lens and focused to resolve in-
dividual grains. The lens was covered by long-pass
glass filters to cut off scattered excitation light. No
significant background signal could be detected in the
absence of the dyed liquid in the range of exposures
used in the experiments.

Set Il

Figure 4. UV fluorescence images of wet areas taken after
~ 45000 min of spreading into a sand bed prepared using
R ~ 0.26 mm particles. From left to right the images are
from runs III, IT and I, as seen in Tables I and II.

It has been demonstrated previously that after
several minutes following the drop contact with the
porous bed, the wet region in the sand had the shape
of a hemisphere [11]. This implies that the roles of
gravity and evaporation are negligible. The effects of
evaporation can be also seen directly by observing a
decrease in the fluorescence intensity. We have no-
ticed that evaporation begins to come into play late
in the TBP runs after about six days of exposure, near
achieving the steady state, defined as the moment of
time when the moving front position propagation rate
had decreased by an order of magnitude, at which
point the measurements were terminated. This agrees
with calculations (the vapour pressures are given in
Table I), which also agree with experiments that for
the other two liquids evaporation was utterly negligi-



Run |Liquid|x (mPa - s)|y (mN/m) |0, smooth/rough (°)| P,. (Pa) |Vp (mm®)|R (mm)|wr (mm)|s; (%)|dr(um)|dr(um)
I | TCP 20 42.5 30/20 8 x 107° 3 0.26 0.06 0.61 0.8 0.7
II | TCP 20 42.5 30/20 8 x107° [§ 0.26 0.06 0.61 0.8 0.7
III | TCP 20 42.5 30/20 8 x107° 12 0.26 0.06 0.61 0.8 0.7
IV | TCP 20 42.5 30/20 8 x107° 6 0.32 0.08 0.49 0.8 0.7
V | TCP 20 42.5 30/20 8x107° [§ 0.2 0.06 0.73 0.7 0.6
VI | TCP 20 42.5 30/20 8 x107° [§ 0.14 0.04 1.16 0.7 0.6

VII | TBP 3.9 28 10/0 1.5 x 107! 6 0.25 0.08 0.68 0.8 0.8

VIII| TEHP 15 29 10/0 1.1x107° [§ 0.25 0.08 0.68 0.8 0.8

Table 1. Parameters of the drop spreading experiments: liquid viscosity p at 20° C' | surface tension ~ at 25° C, static
contact angle 6. on smooth and rough surfaces, equilibrium vapour pressure P., at 20° C [26, 27], drop volume Vp,
average grain radius R, standard deviation around the average grain radius wg, steady state saturation level sy, the
average surface roughness amplitude 0r, the average liquid layer thickness &1, calculated using (16).

Run |Liquid | (mPa - s) |y (mN/m)|Vp (mm®)|R (mm)|s; (%)|s; — s§ (%) |p}/p} (10" Pa)| Dy (107" m*/s) | D§ (10~ m*/s)
I | TCP 20 42.5 3 0.26 0.61 0.043 —3.6/ — 3.8 9.7+1.9 9.7+4
II | TCP 20 42.5 6 0.26 0.61 0.043 —3.6/ — 3.8 9.7+1.9 9.7+4
IIT | TCP 20 42.5 12 0.26 0.61 0.043 —3.6/ — 3.8 9.7£1.9 9.7+4
IV | TCP 20 42.5 6 0.32 0.49 0.028 —3.6/ — 3.8 75+1 6.3+3
VvV | TCP 20 42.5 6 0.2 0.73 0.073 —3.6/ — 3.8 9.2+12 17£10
VI | TCP 20 42.5 6 0.14 1.16 0.15 —3.6/ — 3.8 7.6+£2 34+19
VII | TBP 3.9 28 6 0.25 0.68 0.047 —2.6/ —2.6 164 + 32 150 £ 96
VIII| TEHP 15 29 6 0.25 0.68 0.047 —2.7/ —2.6 59+ 6 41+ 25

Table II. Parameters of the drop spreading experiments and simulations: liquid viscosity p at 20° C', surface tension v at
25° C, drop volume Vp, average grain radius R, steady state saturation level sy, the model parameter sy — s§ calculated
at By = 29 um? on the basis of (49), capillary pressure at the moving front calculated assuming either a smooth p} or a
rough surface p}, coefficient of diffusion Dy obtained in the comparison with experimental data, coefficient of diffusion
Dg calculated on the basis of (23), (53) and parameters of the liquids and the sands at 6. = 30° in the case of TCP and

0. = 10° in the case of TBP and TEHP, and &y = 0.038.

ble.

The externally visible wet spot diameter can be di-
rectly converted into the wet volume V. The wet vol-
ume, in turn, can be converted into average satura-
tion 5§ = X—{i Typical evolution dynamics of the wet
regions obtained by depositing TCP liquid drops of
different volumes (Vp = 3,6 and 12mm?) is shown
in Fig. 5. One can see that the wet volume mono-
tonically increases with time eventually saturating at
5 = s; =~ 50, with parameter s; apparently being in-
dependent of the amount of the liquid deposited, Vp
(Table I).

At 5 = 10% the increase of the wet volume with
time becomes a power law V(t) oc t* with \3 =~
0.75, that is the wetting front radius in this three-
dimensional case behaves as X3(t) o< t°-25. This power
law has been previously identified to be universal for
the pendular regime in the case of three dimensional
geometry of wetting volumes [11]. One may notice
that using reduced time t/t; with the scaling dictated

cer . . y2/3
by a diffusion law, that is ¢ty = %f
the evolution curves corresponding to different drop
volumes Vp into a master curve. Here, Dy is the coef-
ficient of diffusion obtained from comparison with ex-
periments, Table II. The result indicates that macro-
scopically the process of spreading can be described

by a diffusion-like model, which will be explored in

, one can bring

1 al 1 1 al

End of power law
s~1%

100 ;

Power law
V~A+B(t/t))* "

Onset of ’

pendular regime

Normalised volume, V¢/V
S

Figure 5. Spreading of TCP liquid drops of different vol-
umes Vp = 3,6 and 12mm?® in R &~ 0.26mm sand in a
three-dimensional case. Normalized volume V¢/Vp (in-
verse average saturation 5 ') as a function of reduced

2/3
VD%, Dy = 9.7 x 107" m?/s
(to ~ 3.4 x 10"s at Vp = 6mm?), Table II. The solid
line is the fit V¢/Vp = A + B(t/t0)>™ at A = 2.9 and
B = 2400.

time t/to, where to =

the next parts. Notice, that there is some memory
effect in early scaled times, but the data collapse to
a single master curve over the whole duration of the



pendular regime (0.006 < 5 < 0.10). Also notice, that
this poorly-scaled portion of the evolution is less than
10% of the total duration of the spreading process.
This characteristic behaviour was observed in all our
experiments conducted using different liquids (TCP,
TEHP and TBP) and sands with different grain radii
R, see further discussions.

A. Steady state and formation of a bottleneck
region

The steady state has been reached usually after
about two weeks of spreading, when the rate of change
of the moving front position had dropped to the value
at least an order of magnitude lower than that in the
power law zone, Fig. 5. We continued to monitor
the wet spots for another month (in some test runs
up to three months) without observing any changes
in the position of the wetting front within the accu-
racy of our measurements, Fig. 5. To ensure that
we actually observe a steady state, which is supposed
to be independent of the sensitivity of our measure-
ments, we varied the UV-light intensity tenfold and
observed no changes in the visible position of the wet-
ting front. This implies that the position of the wet-
ting front was well-defined, in particular that there
was no some small quantities of liquid running ahead
of the brightly visible front.

The steady state at a particular value of satura-
tion s = sy can be, we argue, for two reasons. First,
due to the small, but essentially non-zero static con-
tact angles of the liquid-solid combinations used in
our experiments, such that the spreading parameter
Ysv — vsr — 7 < 0 was always negative, where ygy,
~vsr, and 7 are the solid-vapour, solid-liquid and liquid-
gas surface tensions respectively. In this case, thin lig-
uid films observed in complete wetting case can not be
formed, and the minimal liquid layer thickness should
be controlled by the available minimal surface rough-
ness length scales [21]. We note, though, that even
in our case of incomplete wetting, the observed liquid
layer thickness d; ~ 0.7 um was found to be above
the minimal length scale of the grain surface roughness
min(dr) = 250 nm [13], so that there should have been
an additional factor leading to the observed steady
state behaviour. This is, as we argue, the formation of
bottleneck regions due to the surface roughness at the
points of particle contacts, Fig. 2. At sufficiently low
saturation levels, the remaining contact area would be
between asperities on the rough surface, so that the
permeability is expected to be greatly reduced, by at
least two orders of magnitude [1-3, 5, 12].

To estimate an order of magnitude of the reduc-
tion, consider typical distribution of roughness in Ot-
tawa sands with min(dg) ~ 250nm and max(dg) ~
3pum [13]. We note, that the length scale of the
contact is defined by the maximal level of the sur-
face roughness available, while the maximum capil-
lary pressure is defined by the lower end of the rough-
ness length scales (or by the disjoining pressure in the

5

films). The size of the filled-in contact area LS;), Fig.

2, is expected to be LSL) = /max(dr)R [5]. That
is LS;) ~ 30um at R = 250 um, while the size of
the emptied contact area, that is when the contact

between two particles only occurs through a few as-
(d)

perities on the surface, is L

a result

= max(dg) ~ 3 um. As

LY/ <. (4)

So that, there bound to be an order of magnitude
(@
reduction in the size of the area if’l" ~ 0.1 and then

cl
two orders of magnitude reduction in the permeability
according to its dimension (square of the characteristic

L@\ 2
length scale), <L§i)) ~ 0.01.
cl

This specific feature of the phenomenon, the exis-
tence of a minimal saturation level s; was essentially
used in the developing of the theoretical model. It im-
plies that the main driving force could be only the cap-
illary pressure developed on the average length scale
of the surface roughness, so that even the lower end
of the roughness length scale distribution should be
practically cut off from participating in the spreading
of the liquid. We note in this respect, that the ob-
served in our experiments levels of sy, Tables I and II,
are very close to an estimate based on the character-
istic liquid bridge volume at the onset of the asperity
regime, (11), which is supposed to be very close to the
bottleneck cutoff point.

Should the initial spreading parameter be positive
(equilibrium spreading parameter is equal to zero), the
liquid dispersion may lead to formation of very thin
liquid layers on the molecular length scale with dis-
joining pressure playing a significant role, as we know
from experiments and theoretical studies on dynamic
wetting phenomena [21-25]. This can potentially lead
to different types of non-linearity in the effective coef-
ficient of dispersion in the system, as it has been dis-
cussed in [16-20]. At the same time, we argue, that
due to the formation of the bottleneck regions at the
point of particle contacts at extremely low saturations
levels, even in this case the equilibration period after
the flow was inhibited by the bottlenecks is expected
to be extremely long following the dramatic reduction
of the permeability of the contact area. For exam-
ple, the equilibration period observed in our experi-
ments, when the flow domain was connected by the
liquid bridges of the size above the threshold value

Ly = ij), was about ¢t = 4 x 1072ty ~ 17 days
for Vp = 6mm?® TCP drops, Fig. 5. Then, following
an expected two-order-of-magnitude fall in the perme-
ability of the contact area, estimate (4), the equilibra-
tion period would be prohibitively long, about 4 years,
so that the steady state would be still controlled by the
average surface roughness length scale. Should, on the
other hand, the bottleneck regions be absent, then the
effects of disjoining pressure shall manifest themselves
to the fullest extent. We note in this respect, though
this is not part of this study, that liquid spreading



in porous paper materials, we observed, where bottle-
neck regions are absent, has not demonstrated such
clear steady state behaviour.

d =6.15mm

Figure 6. Channels in Teflon (diameter of the hemicylinder
d. = 6.15mm) filled in by the standard Ottawa sand (R ~
0.25mm) before depositing Vp = 3mm?® liquid drops.

40 r r
304 o TCP

o TBP
209 Error bar

Normalised volume, V¢/V,
>

Figure 7. Spreading TCP, TEHP and TBP liquid drops
(Vb = 3mm?®) in sands with R = 0.25mm in one-
dimensional geometry, as in Fig. 6. Comparison between
experimental data and simulations using superfast diffu-
sion model model (54) with initial distribution of satura-
tion given by (60). Normalised wet volume V¢/Vp (in-
verse average saturation 5 ') as a function of the reduced
time t/to, where to = L3/D; for experimental data and
the numerical results were scaled by t, = Lg/DS. Ex-
perimental data are shown by symbols and simulation is
presented by the solid line. Parameters of the simulations
and the fitting are summarized in Table II. The dashed
line (brown) is the fit V/Vp = A+ B(t/t0)*® at A =~ 8.5
and B = 340.

B. Experiments in one-dimensional geometry

In another set of experiments, we studied liquid
spreading in essentially one-dimensional geometry,
Fig. 6. As in the three dimensional geometry, the

behaviour is characterized by an initial phase of lig-
uid spreading and a power law corresponding to the
main phase of the pendular regime, Fig. 7. As ex-
pected, the spreading is faster for the less viscous,
well-wetting TBP liquid and slower for more viscous
TCP liquid with a larger contact angle.

The power law observed in the evolution of the mov-
ing front in the one-dimensional geometry, Xi(t)
t0-5  and in the three-dimensional case, X3(t) oc t0-25,
suggests that in general there should be universal be-
haviour X, (t) oc t/("+1) where n designates the di-
mension of the experimental setup. In what follows,
we examine these data on theoretical grounds.

g

o

g

=

§ -10 ,

s Contact angle
e 6 =0°

S -20. R

5 A 9c=20

> o

'=“ .30 o) 90—30

g :

©  q0° 102 10"

Bridge volume, VBR'3

Figure 8. Reduced capillary bridge pressure p/po in the
case of two identical solid spheres in contact (zero sepa-
ration distance) as a function of the reduced bridge vol-
ume Vg R™® at different contact angles .. Symbols indi-
cate exact solutions from [8] and the solid line is the fit

p/po = Co — C1(VB R73)71/2 at Cp =3.7,C1 = 1.3.

Figure 9. Illustration of the model groove geometry with
an opening angle Or and a contact angle 6. used in the
analysis of ko and sg. In the illustration, the groove is
not fully filled in. The liquid filament cross-section area
Sw is shown with the free surface at the capillary pressure
p = —v/dp. A fully filled-in groove at a different pressure
is illustrated by the pinned interface shown by a dashed
line, surface area Sp.



III. MACROSCOPIC MODEL

Consider the pendular regime of wetting, when the
liquid bridges are completely isolated (that is when
more complex clusters like trimmers, for example,
are practically absent) and only connected via liquid
films (with the thickness on the roughness length scale
0r) on the particle surfaces. The morphology of the
porous media is assumed to be in static conditions,
that is the particles are not moving in the process of
the liquid spreading and, therefore, macroscopic prop-
erties of the porous matrix such as porosity, for exam-
ple, are not functions of time.

To obtain governing equations in the continuum
limit, we consider a sample volume element V in the
flow domain containing many particles. On the mi-
croscopic, grain size length scale, the liquid flow in
the domain, and in each sample element, takes place
on the surface of particles, in the surface roughness,
and through the liquid bridges connecting the flow
between the particles. In the setting relevant to our
experiments, the main driving force of the flow, which
creates the gradient of pressure, is wetting of the dry
rough solid areas ahead of the moving front. Depend-
ing on the wetting conditions (incomplete or complete
wetting), the microscopic capillary pressure on the
surface of grain particles forming the moving front
could be either generated on the scale of the sur-
face roughness available (incomplete wetting) or on
the scale of the wetting films. While the driving pres-
sure can reach very high levels, ~ 10° Pa in the case of
incomplete wetting according to the roughness length
scales available (min(dr) ~ 250nm) or ~ 107 Pa in
the case of complete wetting, the central physics to
the flow dynamics is the interplay between the capil-
lary pressure and the size or the volume of the liquid
bridges.

This is because while the liquid bridges do not play
any active role in driving the flow, they serve as con-
necting elements, so that upon a substantial decrease
in their volumes, the flow will be inhibited. It has
been established previously, that at very high (neg-
ative) capillary pressures, the liquid bridges can only
exist at the point of contacts of asperities on the rough
surface areas of the grains, Fig. 2, [1, 5, 12]. At the
lower levels of the (negative) capillary pressure, the
gap between the asperities is filled in with the liquid
providing a limited, but still sufficiently large contact
area.

When, on the other hand, that contact area is re-
duced with increase of the negative capillary pressure,

the permeability of the contact, which is proportional

to the square of the contact area length scale, Lg)

or Lgi), can be dramatically diminished, see estimate
(4), so that when this critical negative pressure level
is attained in the whole flow domain, the spreading
should slow down dramatically, practically it should
stop.

As we have already discussed, we have observed this
scenario very clearly. The existence of the maximal

level of the negative capillary pressure will be used in
our macroscopic model. At the moving front, on the
microscopic level, we should have a gradual transition
between the contact zones of both kinds, with reduced
contact areas above (the gap between the asperities
is filled in) and below (the liquid bridges are formed
only between the tips of the asperities) the critical
level corresponding to the maximal level of the neg-
ative capillary pressure. The critical pressure at the
moving front should be defined by the mean values
of roughness length scale distribution éz. The impli-
cation of this scenario (taken from the experimental
observations) for our model is that, we will presume
that the capillary pressure at the front is constant.
This should be equivalent to some constant level of
saturation, which will be defined from experimental
observations.

A. Capillary pressure at low levels of saturation

To obtain a relationship between capillary pressure
and the liquid content, that is saturation, consider
pendular rings first. In any element V', the averaged
value of pressure in the pendular rings should be the
same as the average pressure in the macroscopic lig-
uid films in the creeping flow conditions. Basically,
in the macroscopic limit, there should be no strong
variations of pressure in any part of the liquid in the
volume element at all, otherwise, the macroscopic de-
scription may be inadequate.

In each individual pendular ring, the liquid content
is a function of pressure, unlike liquid content in the
surface roughness grooves, which should start to vary
only when local (negative) capillary pressure is on the
level or larger than /dgr. For a liquid bridge formed
between two identical spheres of radius R, there is an
analytical solution relating bridge free surface shape,
and hence the liquid volume contained in the ring, to
the capillary pressure [8]. The analytical expressions
are quite lengthy involving, implicitly, a chain of el-
liptic integrals, but, for small contact angles . < 1
(between 0° and approximately 30°) we have shown
numerically, Fig. 8, that the approximate relationship

P~ po {Co -G <‘IZ) 1/2} (5)

is quite adequate; pg = %’ cosf., Co =3.7,Cy = 1.3
and Vg is the bridge volume per particle (that is a half
of the actual bridge volume) [11]. One can see that
as the liquid content increases the capillary pressure
decreases and ultimately tends to a constant value (in-
dependent of saturation). This trend was observed in
both spherical grains and real sieved sands [2]. Since
in the pendular regime s < 1, that is Vg R™3 < 1,
equation (5) can be further simplified neglecting terms

of the order of (Vg R_3)1/2 < 1to

RS 1/2
p~ —po C1 (VB> . (6)



Note, the obtained approximation of the pressure-
saturation law is very close to that estimated in [5]
at zero contact angles, where

p=—Ppo \/z (i)lﬂ- (7)

To parametrize in terms of saturation, we split av-
erage liquid content in a sample volume V' contain-
ing N > 1 identical grains (neglecting dispersion of
the grain particles) into two parts: the liquid con-
tained on the rough surface of particles of volume
V. = 4rapR?6; N and the liquid contained in the
capillary bridges V.. = (V5)!N. N. Here, (Vg)! is the
average bridge volume in V, (..)\ = V7! sz d®z is in-
trinsic liquid averaging, V; is liquid volume within the
sample volume V and parameter N, is the coordina-
tion number, that is the average number of bridges
per a particle. In our experiments the value of N, was
found to be around N, = 7, which is further assumed
to be constant N, = const.

Combining both contributions, saturation s can be
presented as

Vet+ Ve _
SE Ty T (VB)'R™® A, + so, (8)
where
31—6¢N,
A, =200
T4 ¢ 0w

and s is given by (1).

Treating the bridge volume Vg as an average, using
(6) and (8), the average capillary bridge pressure P =
(p)! in the volume element V can be presented as

Ac

e A =AY
(s —s0)172 aAz )

P = —pg

We would like to emphasize that so far in obtain-
ing the non-linear pressure-saturation relationship, we
had made no assumptions about possible dependence
of sg on the capillary pressure itself. The obtained re-
sult solely takes into account the fact how the average
bridge volume is reacting to variable average capillary
pressure. The potential effects of variations of sy with
capillary pressure are discussed in the next section.
We note, that the singularity in (9) as saturation
s tends to the critical value sg is formal. In a simi-
lar way, capillary pressure in a drop formally diverges
as its radius R vanishes, p o« 1/R. We presume that
within the macroscopic domain, including the bound-
ary, where the liquid flow takes place, the average
bridge volume is always non-zero, so that it is al-
ways the case that s > sy > so. Also, relationship
(9) is only valid, strictly speaking, when the bridge is
formed between two particles, where the characteristic
length scale is the particle radius R, but not between
the tips of the surface roughness asperities, where the
characteristic length scale is the size of the asperity,
so that when the bridge volume actually vanishes, the

relationship should be corrected to take into account
the change in the solid surface curvature, if this would
be necessary.

In the present formulation, we do not analyse the as-
perity regime of the wetting contact in details assum-
ing that the system comes into equilibrium just when
this transition to the asperity regime occurs. Indeed,
one can estimate the characteristic level of saturation

when this transition occurs. The characteristic liquid
()

volume Vp,. of the bridge at the transition from L

to ij) at the asperity regime of the contact area is

max(fmf

- (10

V. R73 = <

according to [5]. Therefore, from (8) and (10) at ¢ =
0.3, N. =7, max(dg) = 3um and R = 250 pm,

R (m}w

which is close to the values obtained in this study
from the analysis of the experimental data, Table II.
This justifies the use of the macroscopic approach with
a fixed value of the saturation at the moving front,
on the one hand, on the other hand, it points out
to a scaling of parameter sy — sg with the particle
radius (31), which is further used in our analysis of
the experimental data.

In the remaining of this section, in Section IIIB,
we discuss variations of parameter sy with the cap-
illary pressure, in Section IIIC, consider local flow
in the grooves and their permeability, and in Section
IIID, using the pressure-saturation relationship (9)
obtain macroscopic governing equations. To enhance
the accuracy of the model predictions, we estimate
surface permeability of spherical particles in Section
ITTE to obtain a correction to the effective coefficient
of dispersion. In Section IIIF, before turning into a
comparison of the model with experimental data, we
analyse and discuss similarity properties of the main
governing equation with a set of boundary conditions
to understand potential asymptotic behaviour, which
might be expected from this kind of mathematical
problems.

2
) = 0.055%, (11)

B. Surface liquid content at variable capillary
pressure

We have assumed previously that parameter sg is
constant, that is independent of the capillary pres-
sure [11]. This is a good approximation over a range
of capillary pressures, but could be possibly violated
at small values of s ~ sy = s9, when the absolute
value of (negative) capillary pressure is at its maxi-
mum. Here, we test the accuracy of this assumption
on the basis of a model one-dimensional surface groove
geometry shown in Fig. 9.

Liquid steady states and surface flows in that kind
of geometry have been studied previously in detail



both experimentally and theoretically [15, 28-32].
The first thing to mention here is that liquid morphol-
ogy in such V-shaped grooves can be either a liquid
drop or a filament depending on the groove opening
angle 0 [28, 32]. Clearly, imbibition into the groove
is only possible when the liquid volume has a shape
of a filament. The liquid morphology changes from a
filament to a drop, when the opening angle 0 obtains
a critical value 0% = 7 — 260, from below at a given
contact angle 6.. So that in our analysis we assume
that the opening groove angle 0y is always smaller
than the critical value 6. Given the range of contact
angles in our case, that is 0 < 6. < 7/6, condition
Or < 0% does not impose significant restrictions.

Depending on the capillary pressure, the meniscus
radius of curvature in the groove could be much larger,
about equal, or smaller than the characteristic length
scale of the groove. For example, at s = s, = 10%,
R = 250 um (s, is the saturation at the onset of the
pendular regime of wetting), 6. = 0 and so = 0.6%
from (9) the radius of curvature of the meniscus would
be around 15 pm, which is much larger than the max-
imum surface roughness amplitude in our sand grains,
max(dg) ~ 3 um. But as s tends to sy, for example at
s = 0.65%, the radius of curvature would be already
only 1 ym, which is comparable with the characteristic
length scale of the groove, as is shown in Fig. 9.

When the radius of curvature is much larger than
the groove dimensions, the meniscus contact line
points are pinned to the groove edges, the meniscus
shape is almost flat and the groove is completely filled
in with the liquid [15]. In the one dimensional geome-
try shown in Fig. 9, liquid content in this state could
be approximately (neglecting small curvature of the
free surface) characterised by the cross-sectional area
of the fully filled-in groove Sg, which is obviously

) sin(0r/2)
Sr(0r) = 6Rm.

(12)

At the same time, when the radius of curvature is
smaller than the groove dimensions, the liquid, simply
by geometrical considerations at a given contact angle
0., would only partially fill in the groove available vol-
ume, as is shown in Fig. 9. The cross-sectional area
in this case at a given capillary pressure p = —v/dp
can be represented as

2
SW(9R790,p2) = ;72 FC(0R796)7 (13)

where

cos(0r/2)

—_ C082 —
sn(0p/2) O e+ 0r/2)

F0m,0) = {

0
g 0.+ 71{ + cos(fe + Or/2) sin(6, + 93/2)} .

One can formally notice that, when the opening angle
0r is attending the critical value 6% from below, the

surface area tends to zero Sy (6F) = 0, as one can see
from (13). This is another manifestation of the liquid
morphology change at 8z = 0% . Obviously, grooves
with Or > 0% are unlikely to be filled during natural
spreading.

Based on the groove geometry, it is not difficult to
discern that the contact line would be at the groove
edge, when the following condition is satisfied

cos(0%/2)

Or|p|
sin(6$,/2) ’

cos(f. + 0%/2) = (14)

which defines a critical angle 0r = 0% at given cap-
illary pressure p and the groove size dg. When the
opening corner angle is attending the critical value 6%
from above, the contact line moves to the groove edge
and remains there, due to the contact line pinning
to the edges, for any further reduction of g and the
absolute value of the capillary pressure. Using char-
acteristic front pressure p; ~ —3.6 x 10* Pa for TCP
and 6p = 0.8 um, Table II, one can estimate, using
(14), that % ~ 37 at 6. = /6. The summary of
different configurations is given in Table III.

In general, surface roughness, even in a simplified
case, should be represented by some distribution of
grooves having different parameters, such as opening
angle fr and the groove depth. Following a statisti-
cal approach applied in the similar kind of the groove
geometry [15], we obtain averaged microscopic prop-
erties using several simplifying assumptions. In par-
ticular, we apply averaging over the opening corner
angle fr assuming constant groove depth ér and a
uniform angular distribution in a range 0 € [0, 7/2],
where the upper limit was chosen to avoid large, ob-
tuse opening angles, which are rarely observed [13].
For simplicity, we presume that there are only two
states of the groove filling separated by the critical
value 0%; the grooves with the free surface pinned to
the groove edges are assumed to be fully filled in, their
liquid content is constant and is characterized by the
cross-sectional area Sg given by (12). Otherwise, the
grooves are assumed to be partially filled in, and their
cross-sectional area is characterized by Sy given by
(13).

From this simple geometric and statistical consider-
ations, the saturation level sg being an average quan-
tity is expected to be inversely proportional the square
of the capillary pressure and decrease with 6. increas-
ing due to the presence of partially filled in grooves.
Apparently, as the pressure amplitude decreases, all
grooves in the range would be eventually filled in and
parameter so would attain a constant value. It is
not difficult to estimate that for TCP, for example,
at p ~ —1.2 x 10*Pa (s ~ 1%), the critical angle
0% > w/2. This implies that the saturation due to
the liquid residing in the surface grooves would vary
in a range so € [s§, s{*], when saturation s changes
in s € [sy,sc] (sc = 10%), where the maximum value
sg* should be solely defined in the one-dimensional
geometry by the averaged cross-section surface area

of fully filled-in grooves s§* « 2/m foﬂ/Q Sr dir, while
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Liquid | (mPa - s)|y (mN/m) |6, smooth/rough (°) |§% smooth/rough (°)|6% smooth/rough (°)|p}/p} (10* Pa)|dr(um)
TCP 20 42.5 30/20 120/140 68/74 —-3.6/ —38 0.8
TBP 3.9 28 10/0 160/180 80/85 —2.6/—26 | 0.8

TEHP 15 29 10/0 160,180 80/85 —27/-27 | 08

Table III. Parameters of the liquids and the surface roughness grooves: liquid viscosity p at 20° C' , surface tension v
at 25° C, static contact angle 6. on smooth and rough surfaces, critical groove opening angle % of the morphology
transition, critical groove opening angle 0% calculated from (14) at p = py, Table II, capillary pressure at the moving
front calculated assuming either a smooth p} or a rough surface p}, and the surface roughness average amplitude Or.

the minimal value s§ should also reflect a contribu-
tion from the surface area of partially filled-in grooves

8§ o< 2/m (foeg Spdir + fi/g Sw dHR). In particu-
R

lar, one can obtain two important averaged parame-
ters, the ratio

i Ji” S don (15)
6 Jy* Spdon+ [ Swdbr

and the characteristic length scale of the liquid layer
at equilibrium

5. fOOIC% SFd0R+f97ZR/2SWd0R

Or JT Sp dog

(16)

If we now take the minimum value of sg from our ex-
periments with TCP, s§ ~ 0.6%, and fix the capillary
pressure at the characteristic value py ~ —3.6 x 10* Pa
and the surface roughness amplitude at 0z = 0.8 um,
Table I, then the average maximum value sj* can be
estimated using (15) at sj* =~ 0.9% at 6. = 7/6 giving
a range of variations of so. At the same time, the av-
eraged depth of the liquid layer d; can be estimated
using (16) at ¢y, =~ 0.7 um, Table L.

Considering that si* was found to be close to s§
and s;® < s., one can set parameter sy without loss
of accuracy at its equilibrium value sf, so that the
pressure-saturation relationship becomes

Ac

P (17)

P = —po

Further, in Section IIIC, we consider grooves
permeability on the basis of the simplified one-
dimensional model groove geometry, Fig. 9, and the
statistical approach, which have been implemented in
this section. While we have established that varia-
tions of the surface liquid content with capillary pres-
sure can be in principle neglected in our problem, the
same variation of the capillary pressure can have much
stronger effect on the surface permeability. This is due
to the fact that only 10% of the surface grooves are
actually fully connected and can conduct the flow on
the particle surface [15]. As we will show, if the prop-
erly connected grooves are those that experience par-
tial filling, the effect is expected to be much stronger,
exactly as we observed in our experiments.

C. Surface conductivity and the groove
geometry

Consider now the local transport on the surface of
particles, which is described by the average surface
flux density q. The quantity is defined by averaging
the volumetric flux over a sample cross-section area
containing many grooves and including areas of both
solid and liquid. According to a study of liquid spread-
ing on rough surfaces made of microscopic grooves of
various shapes and dimensions [15, 29-31], the flow on
average obeys a Darcy-like law

Rm,
= -V, 18
q 7 (G (18)

where p is liquid viscosity, ¢ is the averaged pressure
within the surface roughness and k,, is the effective
coefficient of permeability. In the study, we assume
that the surface properties are isotropic and the law
(18) is always fulfilled.

We consider a non-dimensional quantity «g, which
is defined by k,, = rod%. To understand its para-
metric dependencies, we again consider the surface
grooves of a simplified geometry, as is shown in Fig.
9, and use the example as a guide.

We note, that even in this simplified one-
dimensional case, there are no closed form analytical
solutions available to describe the flow, and a numer-
ical treatment should be applied [29]. The results of
numerical analysis of corner flows performed in one-
dimensional geometry assuming a fully developed rec-
tilinear Hagen-Poiseuille flow in the open channel, Fig.
9, at different opening and contact angles, fr and 6,
respectively, can be represented in terms of a non-
dimensional coefficient of flow resistance

0, dy
o opgdz’
where the z-axis is along the groove, 1 is average pres-
sure in the grooves and ¢ is the average volumetric
flux density (the average liquid velocity) inside the
groove [29]. Since the averaging in (18) included ar-
eas of solid, the two quantities ¢ and ¢ are related in
the one-dimensional case through parameter ap (the
fraction of the surface roughness volume occupied by
the liquid ), that is ard = gq.

As a result, 8 can be interpreted as the inverse
non-dimensional permeability of the surface grooves
B = ar/ko. In the setting, Fig. 9, parameter 3 is



a function of the contact and opening angles, 6. and
0r, which has been tabulated using numerical simula-
tions [15, 29]. In a particular case of complete wetting
6. = 0 and capillary pressure p = —v/v/26g, 3 can be
parametrized in 6 € [, 37 as [15]

1 2.124 + 0.4486 05
Or) = = 19
B0r) QQXP( 1- 0237705 ) (19)
150
« 120
N
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©
»
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Figure 10. Comparison between the hydraulic approxima-
tion and the exact solution. Non-dimensional flow resis-
tance [ as a function of the groove corner angle 6r at
0. = 0 and p = —y/+/26g. The solid line is exact numer-
ical solution (19) and the dashed line is the result in the
hydraulic approximation (20).

1. Groove permeability in the approzimation of the
hydraulic diameter

This would be instructive to compare the exact re-
sult obtained in the one-dimensional flow configura-
tion with the approximation of the hydraulic diame-
ter, when

8mo%,
~ 20
p R, (20)
where S is the liquid cross-section area. The ap-

proximation (20) is exact for circular cross-section
S = w62, and it provides a reasonable approxima-
tion to calculate 8 in the corner flow configurations,
Fig. 10, given that the actual surface flows, we ap-
proximate, take place over complex two-dimensional
landscape, where the flow conditions are complicated
by effects of tortuosity [33, 34]. Therefore, in what
follows, we use the hydraulic approximation.

So far, we effectively assumed that all grooves,
where the liquid is residing, can conduct the flow.
This is not the case according to the analysis done
in [15], where the connectivity factor accounting for
the portion of the grooves contributing to the sur-
face flow was found to be as low as 0.1. So that, we
also introduce a phenomenological parameter ¢ to ac-
count for the portion of the grooves, which is able to
conduct the flow. The parameter will be defined by
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comparison with experiments. Obviously, it should
also incorporate parameter ar and the effects of the
complex three-dimensional groove geometry, such as
tortuosity. That is, {; oc ag, and given agr ~ 0.3
found from our comparison with the experiments (see
Section IV A), it is expected that £y < 0.3.

To introduce the effects of the contact angle into
the model, we use averaging over 6 and approximate
using a linear relationship

(s—sp)+ry)  (21)

in the range s € [sy, s¢|, where s, ~ 10%, and param-
eters H(()l) and Kéz) are the average quantities corre-
sponding to configurations with and without partially
filled-in grooves respectively. The maximum value of

the permeability /{(()2) is fully defined by the average

cross-section area

S L " Spdo
< F>_M/Hlin(eR) F R,

where d6r = Z — min(fg). That is

2
2 _ &(5F) 99
o= 8mé3 (22)

While the minimum value m(()l) is also defined by a

contribution of parameter Sy, at the capillary pres-
sure given by (17) at s = sy. That is

0(3
FONN | { / U Spdoa+  (23)

o - 871'8}2% 50R min(6g)
/2
switg .
0%

The minimum value of i used in the averaging
of the permeability coefficient was set to the critical
value 6, = 27 found in the case of TCP at 6. = 7/6
and the characteristic pressure at the moving front py.
The choice is to maximize the effect of the contact an-
gle on the permeability of the surface grooves, and is
dictated by our experimental observations of spread-
ing of different liquids. Indeed, as one can see from
Table I, the factors 7 cos 8./ contributing into the ef-
fective coefficient of diffusion Dy in (45) for TCP and
TEHP liquids are practically identical, while, as we
discuss in detail later, the propagation curves shown in
Fig. 17 suggest that the coefficient of diffusion should
be at least a factor of six different, see Table II, in-
dicating that the difference should come from xo(s).
The grooves with sharp angles below 6% = %W can be
assumed to be fully filled in with the liquid for both
TCP and TEHP, so that their permeability would be
the same. So, the inclusion of the grooves with sharp
angles in the averaging procedure would reduce the ef-
fect of the contact angle on the surface permeability.



Apparently, the choice of the minimal angle 6g
should not depend on the liquids considered, since
it reflects the connectivity properties of the surface
roughness. Whether or not such a choice is fully jus-
tified should be seen in further experimental and theo-
retical studies of the surface flows using more realistic
models of the surface roughness. Here, we use (23) as
a guide to understand, if it is feasible within the model
to unify all experimental observations with sufficient
accuracy. We also note that the value of {; = 0.038
(see Section IV F) found later in the comparison with
the experiments indicates that in the chosen partition
of the groove opening angles, the connectivity factor
was about 0.25 given that ag ~ 0.3 (see Section IV A)
and the tortuosity effects would reduce permeability
at least twofold. The larger value of the connectivity
factor than that found in [15] indicates that indeed
the grooves with sharp opening angle are very poorly
connected.

D. Macroscopic governing equation of the
super-fast diffusion model

According to the spatial averaging theorem [35], ap-
plying intrinsic liquid averaging (...)!

_ bm ! ~1 n IR
M{V<w>+vl K ds} @. (@1

where S; is the area of the liquid interface confined
inside the volume element V' and with normal vector
n. The surface integral in the creeping flow conditions,
when the pressure variations across the liquid layer
are insignificant, can be neglected V; ™! [ ¢ ndS ~ 0
and

- ’%”vw — ()" (25)

Thus, one can cast the continuity equation,

dops B
into
dps K
e \Y {MVP} (26)
Here,
_ Se i
Q - §<Q> ) (27)

S'is the surface area of the sample volume V' with the
effective area of entrances and exits S. and coefficient
K = nm% It is assumed that in creeping flow con-
ditions, neglecting pressure variations over the liquid
bridges, P = (p)! = (1))!. Note, that the ratio S./S is
not strictly speaking just a geometric factor. It is an
average quantity defined by (27), which incorporates
connectivity and the shape of the surface elements.
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To estimate effects of gravity, we first notice that
the capillary pressure is assumed to be generated on a
length scale 6 ~ 0.8 um. If we now compare the cap-
illary length I, = v/v/pg ~ 2mm, where p is liquid
density and g is the gravity constant, with the length
scale associated with the gradient of capillary pres-
sure \/drLg, where Ly ~ 10mm is the characteristic
length scale of the wetting area in our experiments,
then I, > \/drLo ~ 0.1mm. This implies that the
gravity effects can be ignored. At the same time, the
length scale associated with the gradient of capillary
pressure v/ RLg in the funicular regime may be com-
parable with [, so that the accuracy of our approxi-
mation may be reduced.

Assuming further that porosity ¢ is constant and
using expression (17) for the average pressure, one
can transform the governing equation (26) into a non-
linear diffusion equation for the saturation s(x,t)

Os D,Vs
A v A et 2
o=y {(5—33)3/2}’ (28)
where
1Kp0AC
Dy(s) = —— .
(=) 2p 9

To address a moving boundary value problem set in
an open domain with a smooth boundary 92 moving
with velocity v, the governing equation (28) is com-
plemented with the boundary conditions

Sloq =S5, S§ > 8§ (29)

and

n-Vs

3/2°

“sp(sp — s6) (30)

VDl = Unlgg = —

where n is the normal vector to the boundary 0f2. The
boundary value of the saturation sy is defined by the
capillary pressure developed at the moving front. To
be precise, the inverse of the reduced capillary pres-
sure (capillary pressure normalized by 2v/R) is re-
lated with the difference of two parameters sy — s§.
So that the first boundary condition at the moving
front is set by the assumption of the maximum cap-
illary pressure, which is presumed to be constant in
the model. At the same time, parameter s; defines
a steady state saturation level, when the network
connectivity is reduced but not broken. The second
boundary condition sets the velocity of the moving
front in the assumption that the front is moving into
a dry area. We would like to point out that in the
study, we treat parameters sy and s§ as phenomeno-
logical, and determine them from the observations.
To get an estimate of the typical values of the
boundary pressure and the saturation, we assume that
the pressure is generated by capillaries with a charac-
teristic size of the order of 0z. Then, for example for

TCP, taking surface tension v = 42.5mN/m at 25° C,

the capillary pressure |P| = Sl ~ 5.3 x 10 Pa at
R



Sr = 0.8um. As a result, from (17), taking typical
parameter values R = 250 pm and ¢ = 0.3, parameter
sy — sG ~ 0.04%, which is close to the values found
in the previous analysis of experimental data [11], the
estimate at the point of cutoff due to the formation
of the bottleneck regions (11) and the values found in
the analysis of the current experimental data in this
study, Table II. Note that, as a result Sf;gs‘e) < 1,

considering that s§ ~ 0.6%.
In general, using (17), one can obtain the following
scaling of sy — s§ with the grain size R

A%42 cos? 0,

31
p?RQ ) ( )

sp—s5=4

where p; is the capillary pressure at the front. That
is, taking into account (1), a similar scaling for s is
given by

1-¢6
¢ R

A%y2 cos? 6,
i

Sf = 30éR (32)

These relationships will be further used in the anal-
ysis of experimental data to estimate the main non-
dimensional model parameters sy and s; — s§.

E. Global surface permeability of a system of
spherical particles

To simulate liquid spreading with the help of (28),
the coefficient of permeability K and hence the pa-
rameter S./S need to be determined somehow.

To obtain an estimate of these parameters, we con-
sider surface flow in steady state conditions over just
one single particle with a closed surface I', as is shown
in Fig. 11. The particle surface is split into three
sub-domains g, €7 and 5 with surface boundaries
between them 0€Q; and 0, Fig. 11, whose positions
are fixed in the steady state. The sub-domains 2,
and €y correspond to the area covered by the liquid
in the bridges, while the surface flow, described by
(18), takes place in Q.

The transport process in the surface layer of the
granular elements is described by a Darcy’s like law
(18) relating average liquid pressure ¢ with averaged
volumetric flux density q. The capillary pressure vari-
ations on the scale of one grain particle are assumed
to be small enough, 6y < v/dg, so that the groove
filling and, hence, the local coefficient of permeability
Km can be considered constant. Then, due to incom-
pressibility of the liquid V -q = 0, and from (18), the
problem can be reduced to a boundary-value problem
for the Laplace-Beltrami equation

A, =0 (33)

defined on the surface element €y of the particle.
At the same time, liquid pressure variation in the
bridges is negligible in slow creeping flow conditions
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in comparison to that in {2y, so that in steady state
one can assume that

Vloq, = ¥1 = const,  Plyq, = o = const.  (34)

As one can see, physically, the problem formulation
(33)-(34) is equivalent to calculation of the surface
flow in g, which is driven by the constant pressure
difference o — 11 applied to the boundaries of the
surface element .

The boundary-value problem (33)-(34) has a unique
solution, which, if it is found, allows to calculate the
total flux Q7 through any contour 02 on g, which
can not be contracted to a point

QTzéLﬁ—m/ n, - Vi,
HoJoa

where ng is the tangential normal vector to the con-
tour 0N on the surface, Fig. 11, dr is the average
width of the surface layer conducting the liquid flux.
In particular, due to conservation of the liquid mass
and in steady state

QTzéL’L’"/ n, - Vodl =
B Jon,

—5L’L’”/ ns - Vi dl. (35)
HJoq,

If the surface flux Q7 is found, then given constant
pressure difference 1), —1)1, permeability of the surface
element Qg can be defined and deduced.

1. Analytical solutions of the Laplace-Beltrami problem
in azimuthally symmetric case and surface permeability
of spherical particles

To obtain analytical results, we restrict ourselves
to the case of a spherical particle of radius R. In
this case, domain boundaries 9€2; and 02 will be
circular cross sections of the spherical surface T, Fig.
11, where we used a spherical coordinate system with
the polar angle 6 counted from the axis of symmetry
of 9. The location of the sub-domains ©; and Q9
with respect to each other on the surface is fixed by
an angle v.

We consider an azimuthally symmetric case, v = ,
with equal in size (radius of curvature) domain bound-
aries 0€); and 0f)s, as is shown in Fig. 11. The set-
ting implies that the liquid bridges are formed be-
tween identical particles in contact. The size of the
boundary contours, that is their radius Rsin 6y, will
be characterized by the polar angle 6y counted from
the axis of symmetry of each contour and the particle
radius R. Then, due to the nature of the boundary
conditions (34), the problem (33)-(34) is equivalent to

1 0 (. oy
—_ — ) = <O0<m-
sin989<sme&9> 0, Op<O<m—0 (36)



with the boundary conditions

1/J|9:00 =1, ¢|9:ﬂ—90 = 1s. (37)

The problem (36)-(37) admits an analytical solu-
tion, which is, after applying the boundary conditions,

B In sin 6
p=t2— % {1 - e } + 1. (38)

2 1+cos 6o

One can now calculate the total flux, using (38) and
(35),

Qr = —216; 27 sin 6,
W

9%
90 14—,
Em Y2 —

1+4cosfg °
H In sin 6o

= —7T(5L (39)

As aresult, one can define the effective coefficient of
permeability of a sphere K7, which is approximately
equivalent to K, by

Qr = 4R (s wo%. (40)

So that, from (39) and (40)

(SL TRm
K, = ﬁiln 1_:510;000 . (41)

One can see, equation (41), that the permeability
coefficient K is divergent at 6y = /2 and tends to
zero at 0y = 0 as expected, that is

(SL TRm

NTRG )

and

0 Thm 1
K= 2L L), o0 @
! 4R|1n90+0(|1n90|>’ 00 (42)

In what follows, we approximate the coefficient of
permeability K by Kj, equation (41), obtained in
an azimuthally symmetric case of a spherical parti-
cle. Surface permeability of arbitrary particle shapes
have been examined numerically in [36]. It has been
demonstrated that by and large using spherical parti-
cles with symmetric boundary disposition to approxi-
mate permeability of real particles is a reasonable ap-
proach in the first approximation.

To incorporate K7 into the model in the limit of
0y < 1, equation (42), we should express it through
the saturation s. Using an approximate relationship
between the radius of curvature R sin 6y of the bound-
ary contour 0€); and the pendular ring volume at
0o < 1 or (s—si) < 1, see details in [1],

Rsinfy ~ Ry = R <R3
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one can get
bo = (s — s5)'/". (43)
That is, from (42) and (43)

or, Thm

K, =k Thm
"7 R In(s — s9)]

(44)

So, finally, (28) using (21), (22), (23) and (44) be-
comes

0s DyVs
Z° . 4
o=V {|1n(s—ss>|<s—ss>3/2}7 (45)

where

62 Tro(s) v cos b, A.
R p ¢

The model now includes a logarithmic correction to
the non-linear coefficient of diffusion due to the spe-
cific permeability of spherical particles and the local

coefficient of permeability of the grooves ko (s) due to
the variable liquid content in the surface rough layer.

Dy =0dr,

F. Self-similarity and superfast diffusion

The obtained non-linear partial differential equa-
tion is known in mathematical literature as the su-
perfast non-linear diffusion equation, which has dis-
tinctive mathematical properties [37]. In particular,
it is well known that many non-linear diffusion mod-
els, such as the porous medium equation, exhibit the
so called self-similar behaviour, which allows to obtain
universal long-time limiting asymptotic solutions. For
example, there are compactly supported Barenblatt
self-similar distribution profiles satisfying a natural
set of boundary conditions with finite velocity of the
moving boundary [38-41]. These asymptotic distri-
butions are very useful in practical applications, since
solutions to the porous medium equations of different
types are practically independent of initial conditions
and ultimately tend to the asymptotic distributions
with time [39-41].

But, this is not the case here. The super-fast diffu-
sion model in our case does not demonstrate this uni-
versal behaviour. While initial distributions of satura-
tion evolve with time to a distinctive saturation profile
(as we will discuss later in detail), there was no true
self-similar behaviour identified in our simulations so
far. Indeed, consider a simplified non-dimensional ver-
sion of (45) in a one-dimensional domain Q C R with
the boundary 02 moving with velocity v. Neglecting
relatively slow variations of k¢ with saturation, one
has

ou 0 {(u+u0)_ ou

%
= - 2 -— Q 4
ot~ 9z | Wn(utuy) m}, reQ, t>0 (46)
with

ulpo =0 (47)



and

_3
1 uy? Ou

_glnuog 00

U|aQ = ) (48)

where u = s — sy and ug = sy — s5. Consider a one-
parameter group of transformations of the variables
t — et, u — €9y and x — €™, which is used to obtain
self-similar solutions, in particular the Barenblatt self-
similar distribution profiles; ¢ > 0. One can imme-
diately see that the moving boundary value problem
(46) is not invariant under the group of transforma-
tions, that is one can not determine such ¢ and m at
ug # 0 so that to obtain an invariant equation with in-
variant boundary conditions (47) and (48). This con-
clusion is consistent with our numerical simulations,
where no global self-similar behaviour of the distribu-
tion profiles s(x,t) with time has been identified so
far.

Figure 11. Illustration of the surface diffusion domains.

IV. RESULTS AND DISCUSSION

In this part, we consider and discuss applications
and comparisons of the developed macroscopic model
with our experimental data. First, we analyse steady
states of the spreading process, that is the final ex-
tends of the spreading volumes, in three-dimensional
spherically symmetric geometry. We will discuss and
demonstrate how steady state data can be used to ob-
tain estimates of the model parameters sy and s — s§.
We will also evaluate the effects of evaporation. Next,
we augment our super-fast diffusion model to extend
its applicability domain to the entire funicular regime
of spreading. We will discuss saturation profiles and
their intimate connection with the universal power law
of liquid spreading observed in the experiments. To
verify the fidelity of our approach and the mathemat-
ical model, we consider spreading and compare with
the experiments in one-dimensional geometry using
parameter set obtained in the three-dimensional ex-
periments and comparisons. Finally, we will analyse
liquid spreading in pre-wet porous matrices.
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A. Steady state distributions

Consider final extends of spreading obtained in a
series of experiments with TCP liquid drops placed
on sands with different grain sizes R, that is runs II,
IV, V, and VI, see details in Tables I and II. The
dependence of the equilibrium saturation in the end
of the spreading process, sy, on the inverse particle
radius R~! is shown in Fig. 12. Assuming scaling
(32), we fit the dependence by a function

sp=s+BfR?=A;R '+ B;R? (49)

with Ay = 1.5 yum+0.2 pm and By = 29 pm?+24 ym?.
This implies that one can only determine one parame-
ter with sufficient accuracy, and place upper and lower
bounds for the other parameter.

Then, using obtained value of A; and the most
probable value of By, from (32) and typical surface
roughness parameters, one can estimate parameters
0r and ag. From Ay = 3ap %(& using ¢ = 0.3, one
Ag,YZ cos? 0,

Py
one can estimate assuming constant front pressure py
that at 6, = /6 and By = 29 um?, py ~ —3.6 x
10* Pa. That is, from p; = —v/6,, §, ~ 1.2 ym, and
from (16), one gets 6y =~ 0.7pm and ag ~ 0.3 at
dr ~ 0.8 um.

The equilibrium value of saturation sy observed in
the spreading of TEHP drops is consistent with the
above estimates, while the observed value for TBP is
slightly off. Indeed, the equilibrium level of TEHP in
R = 0.25mm sand was found to be sy ~ 0.68%, which
is consistent with estimates using (1), if one presumes
similar value of agp = 0.3 and é;, ~ 0.8 um, Table I,
obtained scaling the front pressure p; with ycosf..

At the same time, the final saturation level of TBP
in the sand with the same average grain radius, es-
timated assuming conservation of mass of the liquid,
was found to be at much higher level s; = 0.93%.
Since wetting properties of both liquids, TEHP and
TBP, are very similar, Table I, such deviation is likely
to be due to much higher equilibrium vapour pressure
of TBP, Table I, and hence much higher evaporation
rates involved in this case. Roughly, the observed level
sy = 0.93% corresponds to evaporation of a quarter
of a liquid drop Vp = 6 mm?.

)

gets agdy, ~ 0.2um. Then, from By = 4

1. The effects of evaporation

To obtain an estimate of the amount escaped from
the surface of the TBP wet spot and compare with
the observations, one can utilize evaporation rate cal-
culated on the basis of the vapour pressure in quies-
cent conditions (as it was in our experiments) [42].
That is, evaporation rate at P, = 0.15Pa in quies-
cent conditions (no air flow) for TBP (molar weight
266.32 g/mol) is qe, ~ 1.6 x 1078 kg/m?s [42]. Then,
the total mass evaporated during time ¢ is Qe,(t) =
QeuT fot R?(t) dt, where R(t) is the radius of the ob-
served wet spot. If we use experimentally observed



dependence of R(t) for TBP, Fig. 17, the amount
of the liquid equivalent to a quarter of a liquid drop
Vp = 6mm?® would evaporate in about four days
(t/to = 5.4 x 1072, Fig. 17) at this rate, which is
comparable with the characteristic time to reach the
steady state in the case of TBP. At the end of the
power law phase, t/ty ~ 6 x 1072 in Fig. 17 (about
10 hours), only 2% of the drop volume would be lost
at this evaporation rate. One can see, that the total
amount of the TBP liquid evaporated at the end of
the run is consistent with the observed level of the
saturation calculated assuming conservation of mass
(as if no evaporation occurred), that is sy = 0.93%.
On the other hand, apparently, evaporation plays no
role during the power law phase of the TBP spreading.

It is also dinstructive to compare the total evapo-

ration rate % with the total mass flux due to the

dispersion processes, which is Qg = psf(j)%, where
p is the liquid density. It turned out that at the be-
ginning of the spreading process Qg > dQe,/dt, but
the two quantities are becoming comparable (in the
case of TBP) Qg ~ dQ.,/dt at t/ty ~ 1.5 x 1072, Fig.
17, basically at the end of the spreading process when
approaching the steady state, where some small dis-
tortion of the evolution curve can be observed. So, one
can conclude that even in the case of TBP (TCP and
TEHP liquids have vapour pressure almost four or-
ders of magnitude lower), the evaporation effects can
be neglected during the power law spreading phase.

0.015 T T T T

0.0104 L

0.0054 -

Saturation S;

0.000 T T T T
0.000 0.002 0.004 0.006 0.008

Inverse particle radius R™* [um'l]

Figure 12. Saturation s; as a function of R™' shown by
symbols. The solid line is the fit s; = A;R™' + B;R™2 at
Ay = 1.5 um and By = 29 ym?.

B. The dynamics of spreading

To understand the dynamics of liquid spreading and
evolution of the moving front, that is the wetting vol-
ume, consider the superfast diffusion model (45). One
can present (45) in non-dimensional form by normal-
izing distances X = x/Lo and time ¢ = t/ty. As the
characteristic length scale, we use the wet spot ra-
dius Lo at some moment of time, which will be initial
time for simulations ¢ = 0, and ¢y = L3/D§. Then,
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omitting tilde in the notations, equation (45) can be
presented as

§: . ko(s) Vs
o =V {|1n<s—ss>|<s—ss>3/2}’ (50)

with two boundary conditions

Sloa = ¢ (51)
and
Ko(s) (n-V)s
o = — S (32
vrloe = = Gy — sy —spre 2
Here
. 52 mrlV ~ cosf. A,
Do = 5LR% /f T (53)
and
(2) /(1)
— Ko [ky — 1 .
Ko(s) = % (s —s0) +1
)
in
55 < s<s.
otherwise
Ro(s) = kg /).

So, the problem has three essential non-dimensional
parameters s¢, sy — s§ and Vp/L3. The last parame-
ter is only reflected by the initial profile of saturation
s(x,0) at ¢ = 0. We have already seen that varia-
tions of initial drop volume Vp at sy = const and
sf — 85 = const result in collapse on a single mas-
ter curve after re-normalizing time ¢ by a factor of
Vé/ ®. This implies that one can further assume that
L3 o< Vp, so that parameter Ly can be solely defined
by the initial drop volume Vp. This leaves us with
just two non-dimensional parameters.

The role of parameter sf is clear, it defines the fi-
nal level of saturation and the final size of the wetting
zone in porous media after the spreading comes to
standstill. To understand the role of the remaining
parameter sy — si, which represents the capillary ac-
tion, that is the inverse of the reduced capillary pres-
sure at the moving front, consider numerical solutions
to the problem. The details of the numerical moving
mesh method can be found in the appendix.

C. Augmented superfast diffusion model

In the experiments, only the spot wetting area
is measured giving the average value of saturation,
while the accurate estimation of the liquid distribu-
tion within the porous matrix is still unattainable.
This implies that the initial saturation profile at the
onset of the pendular regime of wetting is basically un-
known and should be simulated starting from a liquid



distribution at much higher saturation levels s > 10%,
that is in the funicular regime of wetting, where the
permeability is also a function of saturation [43].

To obtain realistic distributions of the liquid at
the onset of the pendular regime of wetting, we aug-
ment the diffusion law (50) using empirical permeabil-
ity relationships found in sands [43]. In unsaturated
porous media (in particular in sands) at high satu-
ration values, permeability decreases very fast with
liquid saturation log;, K s, as it could be antici-
pated, such that the augmented diffusion law, on the
basis of the super-fast diffusion model (45) and in non-
dimensional form (50), takes the form

~10000 T T
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< 10004 _ _ ]
2 Funicular regime

e
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= Crossover
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0.01 0.1
Saturation, s

Figure 13. Permeability function g(s) versus saturation s
at ag = 16.5, B4 = 1.65 and fo = 1.

95 _ g, Ro(s) g(s) Vs
5=V A ) O

where augmenting permeability function g(s), Fig. 13,

g(s) =1+ fo 10" P (55)

with
oy =16.5, B, = 1.65

(R 27,“10
o= () 35 0

where v,, and p,, are the surface tension and viscosity
of water respectively.

The values of the coeflicients in (55) have been cho-
sen such that, according to [43], in the medium fine
sands (R, ~ 260 um) and water

g(s) |s:o,1 =2, g(s) |s:0_3 = 2000

and fy = 1. As one can see, Fig. 13, the augment-
ing function g(s) due to the strong decline with the
saturation has a very short crossover region quickly
reaching a constant value g(s) ~ 1 at s ~ 0.1, where
the pendular regime begins. We note that we still use
pressure-saturation relationship (17), which provides
a reasonable approximation considering strong varia-
tions of permeability. Alternatively, the model can be
easily generalized by using a Leverett J-function [44].

and
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Figure 14. Simulation of spreading in a three-dimensional
spherically symmetric case using augmented superfast dif-
fusion model (54) with initial distribution (57) at A, = 0.3,
Sa = 0.4, ag = 16.5, By = 1.65, fo = 1 and sy = 0.0052,
but at different values of parameter sy — s5. Normalised
wet volume V¢/Vp (inverse average saturation 5 *, solid
lines) as a function of the reduced time t/to, to = L§/D§.
From left to right: (I) sy — s§ = 0.0001, (II) sy — s§ =
0.0002, (III) sy — s§ = 0.0004, (IV) sy — s§ = 0.0008. In-
sert shows the power law V¢/Vp = A + B(t/t0)%"™ (solid
line, brown) in comparison with the numerical data (sym-
bols, black) at sy — s§ = 0.0008.

D. Numerical simulations and experimental
results in three-dimensional spherically
symmetric cases

To compare numerical solutions of the superfast
diffusion model (54) with experimental observations,
we first consider simulations in a three-dimensional
spherically symmetric case, where saturation s(r,t) is
a function of time and the radius r in a spherical co-
ordinate system with its origin at the centre of the
hemisphere representing the wet volume, Fig. 4. We
have started our simulations in this case with

$(ryt) |,_g = 85 + sqcos™ (77/2), 0<r <1 (57)

at different values of parameters 0.2 < s, < 1—s7 and
0.2 < A\; < 0.4. The value of Ly then is defined by
conservation of the liquid, neglecting the evaporation
effects,

1
27r¢/ s(r,0)r?dr = VpLy®.
0

We note, that due to the use of a spherical coordi-
nate system, we also require that at » = 0 the first
derivative ds/0r = 0.

The choice of parameter s, in the initial distribu-
tion and even its functional form is not obvious. We
observed in the experiments that just in about ten
minutes of spreading, the wetting spot volume shape
becomes spherically symmetric, when the average sat-
uration level 5 ~ 0.5, Fig. 5. But what is the liquid
distribution at this stage?



If we fix parameters of the initial distribution (s,
and \,) and parameter s¢, then evolution of the mov-
ing front at different values of sy — s{j represents a
family of curves shown in Fig. 14. One may no-
tice that, first of all, the smaller is the parameter
sf — sG (that is the higher is the reduced capillary
pressure at the moving front) the faster the spreading
occurs. Secondly, the power law found in the exper-
iments V oc A + B(t/tg)"" is very well observed in
the simulations, see insert in Fig. 14.
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Figure 15. Simulation of spreading in a three-dimensional
spherically symmetric case using augmented superfast dif-
fusion model (54) at different initial distributions (57).
Saturation s(r,¢) as a function of the reduced spot radius
r/Lo at t/to = 0, t/to = t1 = 3 x 107% and t/ty = to =
6 x 107° at fixed values of ay, = 16.5, B, = 1.65, fo = 1,
sy = 0.0052 and sy — s§ = 0.0002. (a) A\, = 0.3 and
sa = 0.4; (b) Ay = 0.2 and s, = 0.5. The inserts show
variation of the saturation profile at ¢ = t2 with the param-
eters of the augmenting function g(s). Here (I) ay = 12.5
and B, = 1.25, (II) a, = 14.5 and B, = 1.45, and (III)
ag = 16.5 and B4 = 1.65.

1. Profiles of saturation during the spreading and the
role of the superfast diffusion processes

As one can see from the distribution of the lig-
uid at t > 0, Fig. 15 (a)-(b), the saturation profile
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quickly relaxes to a universal distribution at fixed val-
ues of s¢, sy — s§ and Vp. The distribution s(r,t) at
t =ty = 6 x 107°, when the average value of satu-
ration is already 5 ~ 0.1, does not depend much on
the details of the initial conditions. This implies that
we may not need to worry about the initial profile in
the simulations as far as the spreading at low satu-
ration levels is concerned. The profile shape is very
distinctive and is in good qualitative agreement with
direct nuclear magnetic resonance imaging of inflow
in porous materials such as gypsum building plaster,
Portland lime stone and Portland cement [45]. It is
flat in the central part, where the saturation levels are
still in the funicular regime, and sharply declines to
the boundary value s = sy through a zone with an
accentuated tail, where the saturation levels are char-
acteristic to the pendular regime of wetting. We note
that the saturation profile with the value in the central
part s ~ 0.3 already corresponds to an average satura-
tion level s =~ 0.1. This implies that, first of all, there
is no purely pendular or funicular regimes of spread-
ing in dry porous materials and both mechanisms are
in operation simultaneously. The overall dynamics of
the wetting spot area seems to be defined to the large
extent by the superfast diffusion processes in the tail
region of the saturation distribution, while the role
of the standard diffusion mechanisms inherent to the
funicular regime is to level the liquid distribution by
smoothing the profile in the central part. This can
be directly seen, if we change the values of the aug-
menting function parameters oy, 54 keeping the other
model parameters fy, sy and sy — s at the same level.
One can observe that such a change has almost no in-
fluence on the overall dynamics at t = to, see the
inserts in Fig. 15. Indeed, while in the central part
the permeability coefficients are almost two orders of
magnitude different, the position of the front at s = s;
is practically the same and the saturation level in the
centre has only variations within approximately 15%.
In what follows, we fix parameters of the augmented
function at ay = 16.5 and 3, = 1.65 and scale param-
eter fp according to (56) using particular properties
of the sand and the wetting liquid.

To understand the origin of the sharp transition ob-
served in the saturation profiles, consider an inter-
mediate asymptotic in the pendular regime of wet-
ting, when g(s) ~ 1. Introducing new variable { =
(r —ro)/e, € = const and rg = const, € < 1, and ne-
glecting terms of the order of O(e) and relatively slow
variations in the logarithmic term and in Ro(s), from
(54)

o1
08 (s — )2~
Then

1

(Wo(r — o) + Wh)?

s=s0+ + O(e). (58)

As one can see, Fig. 16, the asymptotic behaviour (58)
matches very well the simulated saturation profiles at



the point of the sharp transition and even in the tail
region.
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Figure 16. Simulation of spreading in a three-dimensional
spherically symmetric case using augmented superfast dif-
fusion model (54) with initial distributions given by (57)
at Ay = 0.2 and s, = 0.5. Saturation s(r,t) as a
function of the reduced spot radius r/Lo at fixed val-
ues of oy = 16.5, By = 1.65, fo = 1, sy = 0.0052 and
sy —sp = 0.0002. A comparison between the asymp-
totic solution (58) (solid line, brown) and the numeri-
cal solution at t = ¢t; = 3 x 107% shown by symbols,
Wo ~ 287. The insert shows a similar comparison, but
at t/to =t2 =6 x 1075, Wy ~ 62.

E. TUniversal scaling laws of the moving front
propagation and the super-fast diffusion model

The distinctive shape of the saturation profiles sug-
gests an explanation of the characteristic power laws
of the front motion observed in the experiments. First
of all, the total flux IIy(¢) at the moving front X, (¢)
should be proportional to the moving front velocity,
that is

no1dXn
Mo (t) o< X5 ™" —=,
where index n designates here the dimension of the
diffusion problem. At the same time, the asymptotic
behaviour (58) suggests that parameter Wy (t), Fig. 16
and the insert, should be inversely proportional to the
length of the tail region X,,(t) — ro(t). Hence, when
X, > 1o, the total flux IIy(¢) (since it is proportional
to the gradient of saturation) should scale with X, (t)
as Ig(t) ﬁ(t) That is in the one-dimensional case

dX, o 1

dt X
This results in X1 (t) o t'/2, which is the well-known
Lucas-Washburn law for fluid motion in a circular cap-

illary observed in our one-dimensional experiments.
In a general case

X, (t) oc /(41 (59)

19

which in the three-dimensional case would give rise to
X3 oc Y% or V(1) < X3 o t%7° - the power law ob-
served in the three-dimensional experiments and sim-
ulations. We have also verified by numerical solution
of the model that X(#) o t'/3 in two-dimensional
radially symmetric cases.

F. A comparison between numerical simulations
and experimental results

Consider now a comparison between numerically
found evolution curves of the moving front using (54)
and the experimental observations. In all simulations
we start from a profile with A, = 0.3 and s, = 0.4,
such that Ly = 3.24mm at Vp = 6mm?. Con-
sider spreading of TCP liquid drops (Vp = 6 mm?)
in R = 0.26 mm sand, Fig. 17. In the simulations, we
fixed the value of sy = 0.0061 according to the experi-
mental observations, Table I, and sf —s§ = 4.3 x 10™*
according to the scaling (32) at By = 29 um?. The ex-
perimentally observed evolution curves V (¢) have been
shifted by renormalising time (¢ —t)/to, to = L3/ Dy,
where an effective coefficient of diffusion Dy was the
fitting parameter. The time s corresponds here to
the actual time when the simulations started (about
30 — 90 minutes of spreading), when the average sat-
uration levels § observed in the experiments coincide
with the initial average saturation levels in the sim-
ulations. As one can see the numerical solution is a
good match to the observations. In the comparison,
parameter D; was determined by the best match be-
tween experimental data and the numerical solution,
then the value of the fitting parameter £y = 0.038 was
obtained by achieving Df = Dy. Considering that
parameter ag =~ 0.3 and the effects of tortuosity can
reduce permeability at least two-fold [34], the connec-
tivity factor contribution into £ can be estimated on
the level of 0.25 in comparison with 0.1 found in the
studies of surface flows [15]. This may imply that in-
deed surface grooves with sharp opening angles 0y are
poorly interconnected (that is serving mostly as liquid
reservoirs) and could be neglected while considering
surface flow permeability.

Now, in a similar way, we compare evolution of the
moving front for TEHP and TBP liquid spots with
numerical solutions, but with already fixed value of
&¢ = 0.038. To obtain parameter s¢ — sg for those lig-
uids, we scale the capillary front pressure p; with the
liquid surface tension -~y cos#., Tables I and II. Those
liquids have much smaller contact angle on a flat
smooth /rough surface of quartz, 6. =~ 10°/0° against
0. =~ 30°/20° in the case of TCP liquids. Therefore,
the surface grooves are expected to be fully filled in the
range of capillary pressures in question, hence one can
expect much higher permeability according to (23). In
the comparison, we presumed that for both TEHP and
TBP the equilibrium saturation level is sy = 0.68%
ignoring the higher value of s; = 0.93% found for
TBP. This implies that the formation (and the thick-
ness) of the liquid film on the rough surfaces of the



sand grains, given similar wetting properties of both
liquids, should be the same. One can observe, Fig.
17, very good agreement between numerical solutions
and the experimental data, demonstrating the scaling
of the propagation rates with the surface tension -,
liquid viscosity p and contact angle 6. through the
permeability of the surface layer Hél), (23), suggested
by the diffusion coefficient Dg.

-
o
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Figure 17. Spreading of TCP, TEHP and TBP liquid drops
(Vp = 6mm?) in R = 0.25mm sand (R = 0.26 mm for
TCP liquid). Comparison between experimental data and
simulations using superfast diffusion model (54) with ini-
tial distribution of saturation given by (57). Normalised
wet volume V¢/Vp (inverse average saturation 5 ') as a
function of the reduced time t/ty, where to = L3/Dy for
experimental data and the numerical results were scaled
by to = L%/D§. Experimental data are shown by symbols
and simulations are presented by the solid lines. Parame-
ters of the simulations and the fitting are summarized in
Table II.

Consider now how the average grain size affects the
spreading in the pendular regime. We have done a
series of experiments using TCP liquid drops (Vp =
6 mm?) placed on sand beds with different average
radius R, runs II, IV, V and VI, Table I. The results
of a comparison between numerical solutions of the
model and the data are shown in Figs. 17 and 18.
In the comparison, we used the fixed value of &y =
0.038 obtained previously and scaling (32) with By =
29 um? to estimate parameter s; — s§ and kg. As
one can see, the model demonstrates the same trend
as it was observed in the experiments. That is that
the evolution is slower for smaller grain sizes R. In
the model, this is a manifestation of the scaling of
the parameter sy — s§ o« R~2. The obtained values
of the fitting parameter D; were also in agreement
with the values predicted by the theory D§. The only
exception is observed at the smallest value of R, which
can be in principle mitigated by adjusting parameter
s§ — s within the uncertainty window. Alternatively,
one can think that properties of the surface roughness,
while not seen in the equilibrium distribution of the
liquid, may be different for large and small grains. So
that further improvement of the model would require,
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Figure 18. Spreading TCP liquid drops (Vp = 6 mm?®)
in sands with different grain radii R = 0.14,0.20 and
0.32mm. Comparison between experimental data and
simulations using superfast diffusion model model (54)
with initial distribution of saturation given by (57). Nor-
malised wet volume V¢/Vp (inverse average saturation
571) as a function of the reduced time t/to, where to =
L3/D; for experimental data and the numerical results
were scaled by to = L3/D§. Experimental data are shown
by symbols and simulations are presented by solid lines.
Parameters of the simulations and the fitting are summa-
rized in Table II.

perhaps, more accurate characterizations of the sand
particles and considerations of the flows within surface
roughness, at the micro-scale.

Consider now, how the dynamics observed in three-
dimensional spherically symmetric cases can be trans-
lated into one-dimensional geometry.

G. Dynamics of spreading in one-dimensional
geometries

The liquid spreading was observed in the open chan-
nels, as is shown in Fig. 6, by placing a Vp = 3mm?
liquid drops of TCP, TEHP and TBP at one end of
the groove. The numerical solutions were obtained
by solving the augmented model (54) with ay = 16.5
and 3, = 1.65, as before, and with initial distributions
given by

s(x,t) |,_g = S5 + Sacos™ (mx/2), 0<z <1 (60)

at A, = 0.3, s, = 0.2. We use the same set of bound-
ary conditions, together with ds/0z = 0 at x = 0 to
reflect the absence of the flux at the end of the chan-
nel.

A comparison between the experimental data and
the numerical solutions is shown in Fig. 7. In the com-
parison, we have taken all parameter values directly
from the similar comparison in the three-dimensional
geometry, Table II, with parameter Lg defined accord-



ing to the initial distribution (60)

1
wdfq&/o s(x,0)dx = 8VpLy*.

We note that practically all parameter values in the
comparison were fixed, we have only taken the liberty
to vary Ly within 1mm to take into account the fact
that the shape of the groove is hemispherical rather
than cylindrical at the ends, Fig. 6, so that the one-
dimensional model is an approximation.

Asis seen, Fig. 7, the numerical solutions follow the
propagation law observed in the experiments X (t) o
t%5. Secondly, one can observe that the scaling sug-

gested by the diffusion coefficient, D§ o nél)% cosf,,

is well observed. Indeed, after re-scaling the time ¢ /¢,

to = g—?}, the TCP, TBP and TEHP data collapsed

into a single curve. The overall comparison is look-
ing very good considering that there were practically
no fitting parameters involved. We note that an in-
teresting example of a purely one-dimensional system
has been recently analyzed in [46]. We believe that on
average, our results should be fully applicable to that
setup as well.

H. Spreading in pre-wetted porous media

Even kiln-dried sands in open-chamber conditions
would absorb some amount of the liquid present in the
gas phase due to capillary condensation processes [47].
So we have conducted a series of spreading experi-
ments in the presence of some background level s, of
the wetting liquid in the porous matrix to understand
how the spreading dynamics would be affected by the
pre-wet conditions. The pre-wetted sand samples were
prepared by shaking and mixing a certain amount of
the TEHP liquid with the sand in a closed container
over a long period of time to ensure that the liquid
is equally distributed in the sample. The experimen-
tal results of spreading of Vp = 6mm? TEHP lig-
uid drops in R ~ 0.25mm pre-wet sands are shown
in Figs. 19 and 20 at different levels of s,.. The
main question here is to understand if the mixing and
shaking of the pre-wetted sand samples would have
produced a similar liquid distribution on the grain
surfaces to that obtained during the natural liquid
spreading at similar saturation levels. Apparently,
one might expect that the distributions could be dif-
ferent due to the hysteresis effect commonly observed
in porous media spreading processes [44, 47, 48]. For
example, if some areas on the grain surfaces were inac-
cessible to the liquid flow at low saturation levels [15],
then during shaking and mixing those areas might be
wet. The assumption is in agreement with the anal-
ysis presented in [15] and our observations that the
equilibrium value of ar =~ 0.3 after natural spreading
is small. That is, during the natural spreading, large
surface areas of the grains were left dry. This implies
that the liquid content in equilibrium would depend
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on the way this equilibrium was achieved, and this
seemed to be observed in our experiments, Figs. 19
and 20. Indeed, as is seen from the figures, the rate of
the front evolution and the final size of the wet spot
area were practically independent of the value of s,,
as if the sand was almost dry. One can observe some
small effect of the background moisture presence, but
as we will argue below, this was way too low.

t=3 min

5,=0.005 5,=0.02

t=6 days

Figure 19. Spreading of TEHP liquid drops (Vp = 6 mm?)
in pre-wetted sands with different background saturations
levels s, = 0.5,1 and 2%. UV fluorescence wet spot areas
taken at ¢ = 3min and at ¢t = 6days after the deposition
of the drops on the sand bed.

100

Normalised volume, V¢/V,
)

Figure 20. Spreading of TEHP liquid drops (Vp = 6 mm?)
in pre-wetted sands with different background saturations
levels s, = 0,0.5,1 and 2%. Normalised wet volume
V¢/Vp (inverse average saturation 5~ ') as a function of
the reduced time t/to, where to = Lg/D; for experimental
data and the numerical results were scaled by to = L3 /DE.
The experimental results are shown by symbols. The re-
sults of numerical simulations are shown by solid lines
(sr = 0%) and by dashed lines s, = 1% and s, = 0.5%.

Theoretically, if we presume for a while that our
pre-wetted sands with some background level of satu-
ration s, have similar liquid morphology to that dur-
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Figure 21. Simulation of spreading of TEHP liquid drops
(Vp = 6mm?) in pre-wetted sands with the background
saturations level s, = 1% using the augmented model (54)
with initial conditions (61) at sq = 0.4, 7, = 4 and A\, =
0.3 with s§ ~ 0.0068.

ing the natural spreading, one should distinguish two
cases. In the first case, when s, > s§, there should be
liquid bridges present in the background porous ma-
terial. In the second case, when s, < s§, the global
network connection is broken. In the former case, the
notion of the moving wetting front is absent as a mat-
ter of fact.

1.  Liquid spreading in the system pre-wetted above the
equilibrium value

Consider, as an example, again a spherically sym-
metric three-dimensional case, when initial liquid dis-
tribution at ¢ = 0 is given by

5(r,0) = s, + 54 cos™ (77/2), 0<r<1 (61)

s(r,0) =8y, 1<r<r,

and there is no flux at the end of the simulation do-
main at r = r,, Fig. 21. Due to the nature of our
numerical method, which is using moving meshes, the
amount of the liquid is conserved in between any mov-
ing mesh points. Hence, one can easily follow the evo-
lution of a benchmark point z,,(t), as is shown in
Fig. 21. The result at s, = 1%, shown in Fig. 20 in
terms of the evolution of the volume contained within
0 < r < x,,, indicates that while there is some ini-
tial plateau in the distribution of the saturation, as
is observed in the experiments presented in the same
figure, in general the evolution is much slower. One
can conclude then that, while the initial plateau ob-
served during the volume evolution at high average
saturation values 5 ~ 20% at both s, = 2% and
sr = 1% indicates that the mechanism of spreading
is sensitive to the background levels, see Fig. 20, to
the large extent the spreading dynamics is still defined
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by the front capillary pressure generated on the scale
of surface roughness. One can also conclude that the
liquid morphology of that background liquid distribu-
tion seemed to be different from the liquid morphology
observed at these saturation levels during the natural
spreading.

2. Liquid spreading in the system pre-wetted below the
equilibrium value

In the second case, s, < s§, one needs to modify
the original model to include the presence of some
background saturation level. Using conservation of
the liquid in the domain Q with a front 9€(¢) moving
into the area with background saturation s, and the
transport Reynolds theorem

d / 3 / (88 ) 3
— sd’x = — + V. (sv) | d’x =

- / (v-n) s, dS, (62)
29(t)

where n is the normal vector to 0<.
Transforming the surface integral in (62) into the
volume integral

/Q(t) <(;Z +V-((s— Sr)v)) 3z = 0. (63)

Equation (63) implies that an equivalent moving
boundary-value non-linear diffusion problem of trans-
port in pre-wetted sands can be formulated in terms
of a function ¢ = s — s,

dp _ { o) g () Ve }
ot | In(p — o)l (¢ — w0)3/2 |’

(64)

Yo = 88 — Sp
with the boundary conditions

Plog = s — sr
and

Rim Ve
sp —sr)|In(sy — s6)[(sy — 56)3/2

v"|3§l = 7( (65)

One can see that in general due to a smaller factor at
the moving front sy — s, (instead of just sy), the front
motion is expected to proceed with much higher veloc-
ity. This is understandable, since one requires lesser
amount of the liquid to move the front by an infinites-
imal value Az within a time interval At, and this is
exactly what was observed in the numerical solutions
of (64)-(65) at the parameters of set VIII, Table II,
and initial distribution (57) at A\, = 0.3 and s, = 0.4,
Fig. 20. As one can see, the propagation of the front



is indeed much faster than that at s,, = 0 shown in the
same figure. One might expect that the value of the
parameter sy — sG would be larger in this case, since
in the pre-wetted sand the small length scales of the
surface roughness may not be available. This might
reduce the capillary pressure at the moving front and
slow down the propagation rate. But, we have checked
that even increasing the value of sy —s§ by three times
was insufficient to match the slower propagation ob-
served in the experiment. This again indicates that
the liquid morphology is different at s, = 0.5% than
one would anticipate. Basically, the wetting process is
unaffected by the presence of small background levels.
In a way, this result is in accord with the character-
istic values of the coefficient ap ~ 0.3 obtained in
the comparison with experimental data. This indi-
cates, that only a limited part of the surface area of
the grains is fully participating in the liquid transport
in the system. We note that, given the length scale
of the liquid films involved in the transportation in
the pendular regime, it is unlikely to have stochastic
enhancement of the dye transport in the wet porous
matrix [49]. These are very interesting results, which
definitely require further, specific studies.

CONCLUSIONS

In our previous study [11], we established that:

e The process of spreading can be described by
a special type of non-linear diffusion process,
where the driving force is the capillary pressure
at the moving front generated by the particle
surface roughness and the coefficient of diffu-
sion has a characteristic singular form D(s)
(s —55)73/2. The resulting mathematical model
belongs to a class known as super-fast diffusion
equation, and the so-suggested scaling with vis-
cosity and surface tension is as expected for cap-
illary flows, D o< v/ p.

e Motion of the wetting front Xs5(¢t) in a
three-dimensional spherically symmetric do-
main (when the wetted volume has a shape of
the hemisphere) exhibits universal scaling be-
haviour with time ¢, such that Xs(t) oc t'/4, ul-
timately going to standstill at finite saturation
levels sqg &~ 0.6%. This behaviour led us to a
conjecture, confirmed in numerical simulations
of the superfast diffusion model, that in general,
depending on the geometry, basically on its di-
mension n, X, (t) oc t'/(»+1) which may be used
in practical applications to analyse such kind of
spreading processes.

In the work reported here, with the help of a new
set of experiments, we have delved deeper into the
theoretical formulation aiming to refine the modelling
of relevant permeability and include the funicular
regime, so as to supply improved initial conditions for
the super-fast regime. The experiments were carried
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out with a set of low-dispersed (with small deviations
of the grain radius R from its average value), well
characterized sands, using different geometric set-ups
and regimes of spreading (one- and three-dimensional
symmetric regimes). The new results can be summa-
rized as follows:

1. The motion of the liquid wetting front X, (t)
in geometrically different set-ups and regimes
of liquid spreading indeed follows the universal
scaling law X, (t) oc t1/ (1) with n being solely
defined by the dimension of the moving front dif-
fusion problem. As it was shown by the numer-
ical analysis, the augmented superfast diffusion
model (54) clearly demonstrates this universal
behaviour, which may be used in the practical
applications for the analysis of spreading at low
saturation levels. Analysis of the mathematical
model has revealed that this behaviour is man-
ifestation of the specific shape of the saturation
profile (a Mexican hat), predicted by the model,
with a distinctive tail at almost equilibrium sat-
uration levels s =~ s¢. In the one-dimensional
case, when spreading is confined within long,
open channels, the advancing-front motion con-
forms to the well-known Lucas-Washburn law
X, () o t'/2 for a single capillary.

2. The overall evolution of the wetted volume is
predominantly defined by the diffusion rates in
the tail region, that is by the processes described
by the super-fast diffusion model. On the other
hand, the standard diffusion mechanisms, com-
monly applied for the analysis of spreading in
the funicular regime of wetting, only smooth out
the distribution profile at higher levels of satura-
tion, usually found in its central part. Thus, the
funicular and the pendular regimes are found to
simply operate simultaneously but in different
locations.

3. Experimental data obtained using liquids of dif-
ferent viscosities and wettabilities confirm our
previous finding that the spreading dynamics of
different liquids obeys the scaling law when the
driving force is the capillary pressure, and the
coefficient of diffusion D o ycosf./u, as is de-
picted by our super-fast diffusion model. Fur-
ther, we have been able to identify the scaling
behaviour of diffusion with the wettability of
the liquid-solid combinations involved, that is
with the contact angle .. As it might be ex-
pected, the diffusion rate is found to be smaller
for larger contact angles. This effect is directly
related with the available amount of the surface
roughness groove filling, which diminishes as the
contact angle increases.

4. A set of experiments using low-dispersed sand
samples with different distributions of the grain
sizes has allowed to obtain more accurate es-
timates of the main non-dimensional parame-



ters of the model, such that only one adjust-
ing parameter £; was left incorporating nothing
but specific microscopic properties of the sur-
face roughness. Spreading dynamics observed
in sands with different grain size distributions
was found to be slightly counter-intuitive. The
spreading was slower when the grain size re-
duces, while the effective surface area per unit
volume St o 1/R (and hence the effective free
surface energy) increases. This behaviour is
in accord with the mathematical model and is
manifestation of the scaling of the main non-
dimensional model parameter s; — s§ oc 1/R?,
which is in fact the inverse of the capillary front
pressure, the main driving force of the process.

5. Analysis of spreading in pre-wet sands with
a small background level of saturation s, =
1 — 2% have shown, that the distributions of
the same amount of a liquid are different after
natural spreading and mechanical mixing pro-
cedures. If a small background saturation level
was achieved by a mechanical mixing process, it

24

does not change dramatically the dynamics of
spreading predicted by the superfast diffusion
model.

6. While the dynamics of liquid spreading was
found to depend on the liquid and porous me-
dia properties, the equilibrium thickness of the
liquid film on the surface of grains was solely
defined by the surface roughness, at least for
the well-wetting liquid-solid combinations used
in our study. Such universal behaviour allows
to estimate one of the main parameters of the
model sy =~ 5o with sufficient accuracy only on
the basis of the effective surface area St x 1/R,
porosity ¢ and the average amplitude of the sur-
face roughness dp.

One can then finally conclude that on the basis of
comparison with experimental data the augmented su-
perfast non-linear diffusion model (54) provides an ad-
equate description of liquid transport at low satura-
tion levels, which therefore can be used in practical
applications.
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APPENDIX: NUMERICAL MOVING MESH
METHOD

The numerical technique used to solve the partial
differential equations in this study is a moving mesh
method driven by conservation, similar to that pre-
sented in [50] and described in [51]. A nodal velocity
v is constructed from a combination of a non-linear
diffusion equation, for example the 3-D radially sym-
metric nonlinear diffusion equation

0s 10 Js
% Zor ( *D(s >ar>

and the conservation law

Os 10

5% + = 25, (r’sv) =0, (A-1)
yielding the velocity formula
D(s) 0s
t)=— — A-2
o(rt) = —= 22 (42

where v(0,t) = 0. An equation for ds/dt following the
motion is then

ds Os 0s 1

TG )87“:_7"7287“(

0s
Erialey r?sv) +v(r, t)—

or

D(s) 0s

%g (r*v) = Si‘zaﬁ (7‘28T> (A-3)

s
Introducing moving nodes 7;(t) and corresponding

saturation values 5;(t), (i =1,...,N), an approxima-
tion to (A-2) is

sn on on

n o _‘D(Sz+1/2> 51+1 - 52 (A—4)
Vit1/2 = n Fno _m
Siv1/2 Tit1 i



The system (A-3) is approximated by the first-
order-in-time semi-implicit scheme

At (P jo = T2 ()
~n+1 ~n+1
AR I ik A
’ s i+1/2 (WJA - 7/’7)
D(s" st _gntl
(rz71/2>2 /(\i ) ( Zf\n A,Zi ) (A_5)
S5 licay2 (=7

(i=1,...,N — 1) where At is the time step, which
has the property that no new local extrema in 3; are
created in the interior of the domain in a time step,
thereby preserving positivity of 5; and avoiding oscil-
lations. This allows arbitrarily large numbers of nodes
without At being restricted by stability conditions.

The scheme (A-5) can be written in the matrix form

Bs"tt =g" (A-6)

where 3”7 = {s"*1}, 3" = {57}, and B is a tridiag-
onal matrix modified to take into account the bound-
ary condition Sy = sy and the continuity condition
0s/Or =0 at r = 0.

Once the 37" have been obtained the mesh nodes
77+ can be found from the Lagrangian form of the
conservation principle (A-1), i.e.

/§(r, t)r2dr is constant in time, (A-7)

valid when s(r,t) > 0.
A discretisation of (A-7) is
{FrEhPsrht — (Fr )38t} = its initial value
(A-8)

(t=2,...
= 0. Since the s!™! are positive the recursion

~n—+1
To
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,N), yielding ?’?H by recursion over 4, given

process ensures that the nodes remain ordered.
To summarise the algorithm, given the 7} and s}
values at time step n,

e approximate the v’

12 from (A-4)

e determine the 37! from (A-5), equivalently (A-

6)

e recover the ! from (A-8).
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LIST OF SYMBOLS

Fraction of the surface roughness volume
occupied by the liquid

Non-dimensional coefficient of flow resistance
Characteristic average thickness of

the liquid layer in the surface roughness
Amplitude of the surface roughness

Average amplitude of the surface roughness
Effective coefficient of diffusion

Porosity of the porous matrix

Coefficient of surface tension

Coefficient of permeability of the porous matrix
Coefficient of the surface permeability
Minimum coefficient of the surface permeability
Maximum coefficient of the surface permeability
Coeflicient of permeability of a spherical element
Size of the filled-in contact area between the grains
Size of the emptied contact area between the grains
Liquid dynamic viscosity

Coordination number

Local liquid pressure

Capillary pressure at the moving front

Average liquid pressure in the porous matrix
Saturation

Average saturation

Critical saturation level at the beginning of

the pendular regime

Saturation at the moving front

Saturation due to surface roughness
Equilibrium saturation due to surface roughness
Saturation of the pre-wet porous matrix
tributyl phosphate

tricresyl phosphate

Tris(2-ethylhexyl) phosphate

Polar angle to define the size

of the area covered by the bridge

Static contact angle

Surface groove opening angle

Bridge liquid volume

Bridge liquid volume at the transition

to the asperity regime of the contact area

Drop volume
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