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Abstract: This paper focuses on multi-attribute group decision-making (MAGDM) course in which
attributes are evaluated in terms of interval-valued intuitionistic fuzzy (IVIF) information. More
explicitly, this paper introduces new aggregation operators for IVIF information and further
proposes a new IVIF MAGDM method. The power average (PA) operator and the Muirhead mean
(MM) are two powerful and effective information aggregation technologies. The most attractive
advantage of the PA operator is its power to combat the adverse effects of ultra-evaluation values
on the information aggregation results. The prominent characteristic of the MM operator is that it is
flexible to capture the interrelationship among any numbers of arguments, making it more powerful
than Bonferroni mean (BM), Heronian mean (HM), and Maclaurin symmetric mean (MSM). To
absorb the virtues of both PA and MM, it is necessary to combine them to aggregate IVIF
information and propose IVIF power Muirhead mean (IVIFPMM) operator and the IVIF weighted
power Muirhead mean (IVIFWPMM) operator. We investigate their properties to show the
strongness and flexibility. Furthermore, a novel approach to MAGDM problems with IVIF decision-
making information is introduced. Finally, a numerical example is provided to show the
performance of the proposed method.

Keywords: multi-attribute group decision-making; interval-valued intuitionistic fuzzy sets; power
average operator; Muirhead mean; interval-valued intuitionistic fuzzy power Muirhead mean

1. Introduction

There are quite a few decision-making (DM) activities in real life. For example, when buying a
car, we usually have to comprehensively take into consideration the various indicators of the
alternatives of potential candidates. When considering a good supplier globally, a company usually
evaluates alternatives from multiple aspects. It is not difficult to find out that the essence of quite a
few actual DM problems is multi-attribute decision-making or multi-attribute group decision-
making (MAGDM) [1-5]. When using MAGDM theory framework to solve practical DM problem:s,
we always need to consider four basic elements, all possible alternatives, multiple attributes,
evaluation information, and best choice determining methods, among which the latter two are the
most important and complicated. In other words, there are two fundamental issues in MAGDM, (1)
how decision makers express their preference information in a proper way; (2) how the best candidate
is determined. Thanks to Prof. Zadeh [6] who provided an efficient methodology, called fuzzy set
theory (FST), to describe fuzzy information. Hence, FST-based MAGDM has sooner become a new

Symmetry 2019, 11, 441; doi:10.3390/sym11030441 www.mdpi.com/journal/symmetry



Symmetry 2019, 11, 441 2 of 20

hot research topic [7-10] and attracted attention from scholars and scientists all around the world.
Although FST has achieved great success in MAGDM, many scholars have noticed its shortcomings
and started to study new tools. A landmark discovery was the intuitionistic fuzzy sets (IFSs)
proposed by Atanassov [11] in 1986. The IFSs are powerful for their membership grades (MGs) and
non-membership grades (NMGs), which not only describe the degree of an element to a given fixed
set but also contain the grade that the element does not belong to the fixed set. Due to this feature,
IFSs received great attention from scholars in operational research and DM sciences. Xu [12] was the
founding father of intuitionistic fuzzy aggregation operator theory. Afterward, quite a few
intuitionistic fuzzy aggregation operators have been proposed based on Bonferroni mean (BM),
Heronian mean (HM), and Maclaurin symmetric mean (MSM) [13-15], as scholars started to realize
the relationship among attributes. Although IFSs have been proposed as early as 1986, they are still
widely applied in the field of MAGDM until now. For example, Meng et al. [16] investigated group
DM methods in which decision makers’ evaluations are expressed by linguistic intuitionistic
preference relations. Tao et al. [17] studied operations and aggregation operators for intuitionistic
fuzzy numbers (IFNs) based on Archimedean copulas. Garg and Arora [18] focused on the
combination of IFSs with soft sets and the corresponding DM methods. Cali and Balaman [19]
proposed a new intuitionistic fuzzy MAGDM method by integrating ELECTRE and VIKOR. Garg
and Rani [20] developed a new distinctive correlation coefficient measure of complex IFSs and
illustrated its robustness.

Although the powerfulness of IFSs in dealing with MAGDM has been widely investigated, the
limitations of IFS are also obvious. In IFSs, MG and NMG are denoted by two single certain values.
Nevertheless, decision makers sometimes would like to use interval values rather than crisp numbers
to express their preferences. Obviously, compared with crisp numbers, interval values contain more
information and can express decision makers’ evaluation information more comprehensively. Hence,
Atanassov and Gargov [21] generalized the traditional IFSs and proposed the interval-valued
intuitionistic fuzzy (IVIF) sets (IVIFSs). As known, aggregation operators are an efficient
methodology in solving MAGDM problems. Hence, more and more scholars started to investigate
aggregation operators for IVIF information. The most representative is the IVIF ordered weighted
average operator developed by Xu [22]. Besides, more and more scientists began to notice that there
is often strong interrelationship among attributes in MAGDM problems in reality. Hence, some
aggregation operators, such as IVIF Bonferroni means (IVIFBMs) [23], IVIF Heronian means
(IVIFHMs) [24], and IVIF Maclaurin symmetric means (IVIFMSMs) [25], were proposed to take such
relationship into account. Recently, IVIF aggregation operator theory has achieved important
development. To deal with complicated IVIF DM systems, some scholars introduced hybrid
aggregation operators, such as the IVIF power Bonferroni mean (IVIFPBM) operator [26], the IVIF
power Heronian mean (IVIFPHM) operator [27], and the IVIF power Maclaurin symmetric mean
(IVIFPMSM) [28] operator. Take the IVIFPBM operator as an example; it is a combination of IVIF
power average (IVIFPA) [29] operator and the IVIFBM operator. Hence, IVIFPBM operators have the
advantages of both IVIFPA and IVIFBM operators. Similarly, IVIFPHM and IVIFPMSM have the
merits as IVIFPBM. The recently proposed Muirhead mean (MM) [30] has similar advantages as BM,
HM, and MSM, as all of them can capture the interrelationship among attributes. However, MM is
believed to be more flexible due to its skill of considering the interrelationship among arbitrary
numbers of attributes [31-34]. Hence, it is very necessary to compound power average (PA) [35] with
MM to integrate IVIF information and propose IVIF power MM (IVIFPMM) operators. Furthermore,
we utilize the proposed operators to propose a new method to handle IVIF MAGDM problems.

This paper is constructed as follows. Section 2 reviews basic knowledge that is used in the
following sections. Section 3 introduces the IVIFPMM operator and its weighted form by taking the
weight vector of attributes into account. Section 4 presents the main steps of a new algorithm of
addressing MAGDM with IVIF information. Section 5 applies the new approach to real-life DM
problems. Additionally, we also prove why our method is more powerful and flexible than others.
Conclusions remarks can be found in Section 6.

2. Preliminaries
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2.1. The Power Average and Muirhead Mean Operators

Considering that the unduly high and unduly low assessments provided by decision makers
may have bad effects on the final results, Yager [35] introduced the PA operator in which the weight
vector depends on the input data.

Definition 1 [35]. Leta, (i =12,.., Tl) be a collection of positive real numbers, then the power

average (PA) operator is defined as

B

Z(HT(%))%
PA(a,,ay,..,a,) =0
(1+T(“,-))

i=1

, 1)

1

where T (a, )= i Sup(ai,aj) and Sup(al.,aj) denotes the support degree for 4, from 4, ,
j=1,j#i
satisfying the following conditions: 1) Sup(a,,a,)€[0,1] ; 2) Sup(a,a,)=Sup(a,a,) ; 3)
Sup(a,b) ZSup(c,d), if |a—b| S|c—d| .
The MM was introduced by Muirhead [30] for crisp numbers. Its flexibility is reflected in its
ability to capture the interrelationship among arbitrary numbers of input variables.

Definition 2 [30]. Let a; ( i=12,., 1’1) be a set of real numbers and S= (sl,sz,..., Sn) be a collection
of parameters, where s, ( i=12,., 71) is a non-negative real number. If

1

1 1 S N S
MM?® (al,az,...,an)=(—|ZH@’UJ;", ()

N ger, j=1

then MM® is the Muirhead mean (MM) operator, where ¢ (j)(j=1,2,...,7’l) denotes any

permutation of (1,2,...,71) and T, represents all possible permutations of (1,2,...,n).

2.2. Interval-Valued Intuitionistic Fuzzy Sets

Definition 3 [21]. Let X be a universe of discourse, an interval-valued intuitionistic fuzzy set
(IVIES). A over Xis defined as

A={{x, 1, (x),0, (x)) e X}, 3)

where £, (JC),U N (X) C[O, 1] are two intervals numbers, representing the membership and non-
membership degree, respectively, satisfying OSSUP(,uA (x))-i—sup(v " (x))Sl for all xe x . For
convenience, let £, (x) = [a,b] and v, (x) = |:C, d], so thata = ([a, b],[c, d]) , which can be called an

interval-valued intuitionistic fuzzy number (IVIFN).

Then, Xu [22] introduced some operations of IVIFNSs.

Definition 4 [22]. Let o, = ([“1/b1]r[c1rd1]) S0, = ([az,bz},[cz,dz ), a= ([a,b],[c,d]) be any
three IVIFNs and 4 be a positive real number, then
1. o®a,= ([u] +a,-aa,,b +b, —b]bz],[clcz,d]d2 )

1727

2. a,®a,= ([a1a2,b1b2],[c1 +c,—cc,,d, +d, —dldz])
Ao =([1—(1—51);",1—(1—b);”:|,[c*‘~,dq)
a’“=([ul/bq,[1—(l—c)ﬂ,1—(1—d)1)

w

-
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To compare two IVIFNs, Hung and Wu [36] gave the definitions of the score function and the
accuracy function of IVIFNs.

Definition 5 [36]. Let o = ([a,b},[c,d}) be an IVIFN, then a score function S and an accuracy

function H can be defined as follows

S(a)=(a-c+b-d)/2, ()

H(a)=(a+b+c+d)/2, ®)

Based on the score function and the accuracy function, Hung and Wu [36] introduced the
comparison rule for two IVIFNs.

Definition 6 [36]. Let «, :([al,bl],[cl,dl]) and a, =([a2,b2},[c2,d2]) be any two IVIFNSs,
S(al)and S(az) be the scores of «, and «,, respectively; H (al) and H (az) be the accuracy

of a, and «,, respectively. Then, the comparison law of two IVIFNs can be defined as

1. IfS(al) > S(az) ,thena, >a,;
2. IfS(al) = S(az), then
ifH(al)> H(a2), thena, <a,;
ifH(al)z H(az), thena, =a, .
Xu [37] gave the definition of Hamming distance between any two IVIFNs.

Definition 7 [37]. Let ¢, = ([“1/ b, ] ,[cl, d, ]) and o, = ([az /b, ] , [cz, dz]) be any two IVIFNs, then the

Hamming distance between ¢, and ¢, is defined as

1
d(a],az):zqal —ay|+|b, by +|e, ¢, | +]d, =), (6)
3. Power Muirhead Mean Operators for Interval-Valued Intuitionistic Fuzzy Sets
In this section, we combine PA with MM within an IVIF environment and propose some
interval-valued intuitionistic fuzzy power Muirhead mean operators.

3.1. The Interval-Valued Intuitionistic Fuzzy Power Muirhead Mean (IVIFPMM) Operator

Definition 8. Let a; (i =1,2,.., n) be a collection of IVIFNs and S = (sl, Sy/eeerS, ) be a collection of
parameters, where S; ( i=12,., n) is a non-negative real number. Then, the interval-valued

intuitionistic fuzzy power Muirhead mean (IVIFPMM) operator is given as

IVIFPMM® (o, @y, .., @, ) = lg Q| n—nr"—"lqg , @)
n

where
T(a)= 3 sup(a,a), ®)

and
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sup(a )14, g

where ¢ ( ])( j=1, 2,...,n) denotes any permutation of (1,2,...,11), T represents all possible
permutations of(l,Z,...,n), and n is the balancing coefficient. d(ai,a].) represents the Hamming

distance between ¢; and ¢;, and Sup(al.,a].) is the support for o, from &;, satisfying the following

conditions:

(1) Sup(a,e,)€[0,1];

(2) Sup( a]) up(a a)

®) Sup(a,B)=Sup(y,p),ifd(a,B)<d(y,p).

To simplify Eq. (7), let

(1+T a,))

“iT (10)
;(1+ (a])
then, Eq. (7) can be written as
1
IVIFPMM® (a,, @, ., @, ) = (MC?T ]®1(nw§() ) jZ (11)

For convenience, we call @ :(w],wz,...,wu )T the power weight vector, satisfying 27:1‘7]' =1
and@, €[0,1](j=1,2,..,n).

According to the operational rules of IVIFNs given in Definition 4, the following theorem can be
obtained.

Theorem 1. Let a ( j= 1,2,...,11) be a collection of IVIFNs and S = (sl SyyeeesS )be a collection of

parameters, where s}.( ji=1, 2,...,n) is a non-negative real number. The aggregated value by the
IVIFPMM operator is also an IVIFN and

IVIFPMM® (a,, @, ..., ) =

" " )\ " 215 - - ")) g ;’15’
1—[2[1—[{1[[1—(1—%) j D] , 1—[{]1[1—[}__1 (1—(1—174(/.)) j m ,

: (12)

n 1 n
n n B n! Zsl n n s n! 5j
1= _ _ ! = 11 _ ")\ =
1-|1 [H[1 | (1 0 ) D -1 [H[1 | (1 d ) ) D
¢eT, j=1 eT, j=1

Proof. According to Definition 4 and Eq. (11), we can obtain

_ ") () oy o)
”wcw)“cm‘ql‘(l‘”cm) ,1—(1—%) }'[C:m Ay D

and
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9 (o) =

j=1 f(]) 4
= 7\ nay \ = )\’ - )\
Hg(l—(l—ac(])) j 1] (1—(1—1;((].)) j Hl—g(l—c ) J—E[(l-dm)“) D
Further,

geT, j=1
- 2 TRY n n g\
n n nW: / S] n n e (] S]
(e e
Then,
e %(”%ﬂ;( ))7 =
(o ) o )
l -
(it ) (s )
Thus,

1 1
1 " 1 "
n n na 5; !t ’Z:l:s,v n n nay 5; n! = 5j
1= 1= T - T (=< A-[ 1= T]| -] (1=
el j=1 CeT, j=1

Example 1. There are three IVIFN, that is, a, =([0.1,02],[0.3,04]), &, =([0.2,03],[0.4,05])
,and a, = ([0.3,0.5],[0.2, 0.3]) . We utilize the IVIFPMM operator to aggregate them.
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Step 1. Calculate the support degrees Sup(a, @, )(i,j=1,2,3) . We can obtain
Sup(a,,a,)=08323 Sup(a,,a,)=0.8697 Sup(a,,a,)=0.8323 Sup(a,, a,)=0.9626
Sup(a,,@,)=0.8697 Sup(a,,a,)=0.9626;

Step 2. Calculate the power weight vector. We have
T(a,)=Sup(a, a,)+Sup(a,, a,)=0.8323+0.8697 = 1.7020 ;
T(a,)=Sup(a,,a,)+Sup(a,, a,)=0.8323+0.9626 =1.7949;
T(a,)=Sup(a,, a,)+Sup(a,,a,)=0.8697+0.9626 = 1.8323 .

Then,

1+T (¢ +1.
o (1+T(a1))+(1+Téa2;)+(1+T<a3)) ) (1+1.7020)+(1+1;842Lg)+(1+1.8323) 0

Similarly, we can get

@, =0.3356, @, =0.3400.

Step 3. Calculate the overall value a:([a,b],[c,d]) by the IVIFPMM operator. Suppose
S= (2, 3, 4) , then we have

1
a = IVIFPMM ) (0‘1/ a,, a3) = [l f[(nwg(j)ag(j))% J,Z,:S’

31T j=1
1
s R . % 2+3+4
1-(1-(1-01)"" ) x[1-(1-02)"") x(1-(1-03)"
1-(1-(1-010)"" ) x(1-(1-03)" ) x(1-(1-02)"" |

=0.2417

Similarly, we can getb =0.3957 , ¢=0.3828 4nd d=0.4989 Thus, we have
a=IVIFPMM®**" (e, ,, e, ) = ([0.2417,0.3957 [ 0.3828,0.4989 )

Moreover, the IVIFPMM operator has the following properties.
Theorem 2. (Idempotency) Let aj(j=1,2,...,n) be a collection of IVIFNs, if

a,=a=([ab],[c,d]) holds forallj, then,

IVIFPMM® (a,, @, ..., ) = a.. (13)
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Proof. Since ajzaz([a,b],[c,d]) holds for j=1,2,..,n, we can get Sup(ai,a],)zl for
i,j=1,2,..,n. Thus, wjzl/n(jzl,Z,...,n) holds forj=1,2,...,n. Therefore,

IVIEPMM® (e, ., @, ) = [l' 3 ﬁ(nla.] ’ JZ _ (l' > T1() ]Z

Niger i\ 1 ! nizer, "ji=1
1 E
1 5j > s 1 5 i
{E&Tn(a); ];] :[En'(a)u }ZI ¢
Theorem 3. (Boundedness). Let a ( i=1, 2,...,n) be a collection of IVIENSs,
a = min(al,az,..., a”) =([a,b},[c,d]) ,and o' =max(a1,az,...,an) =([e,f],[p,q]) . Then,
x<IVIFPMM® (a,, @,, .., @, )<y (14)

1 1
1 . VS 1 . A s
where x{—ZH(n%)a ) J;/ and y:(ﬁzn(nwgma ) J/ZI/

nlia ja

Proof. From Definition 4, we can obtain

3 (%) 2 M ()@
and
(”wg(/)%(j)) 2(”%)“ )
Therefore,
g(nmg(])ag(])) Zg(nwg(])a )
Further,
gg'!g(nwg(/)ag(])) Zgglg(nwg(])a ) ,
and
1 " 5 1 " 5
m@ﬁ(”’”m“;m) 218 f?l(”‘”;m“ )
Thus,
1
1 Ve, (1 e
(;2%(”%0)%0)) jz 2(;3,,@1(”%(»“ ) Jz =X,
which means that x < IVIFPMM?® (al, Ayyenes an) )
Similarly, we can also prove IVIFPMMS(al,az,...,a”)ﬁy. Thus, the proof of Theorem 3 is
completed.

The most important feature of IVIFPMM operator is that it not only reduces or eliminates the
negative effects of decision makers’ unreasonable evaluations on final decision results but also
reflects the interrelationship among any aggregated IVIFNSs. In addition, we can obtain some special
operators of IVIFPMM with respect to the change of the parameters. In the following, we discuss
some special cases of the IVIFPMM operator.
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Case 1. IfS=(1,0,..,,0), then the IVIFPMM operator reduces to the IVIFPA [29] operator. That

is,

VIFPMM™ (e, 1, ) = ¢

B

(1—bj)”f},{f[cj",f[dj’f D (15)

In this case, if Sup (a,., a],) =tforalli=j, then nw,; = 1, then the IVIFPMM operator reduces to the

interval-valued intuitionistic fuzzy average (IVIFA) operator [22], that is,

VIEPMM ™) (4, ... ) = Ml_ [H (1- u{)jl/” ,1_[11[ (1- b)]l/}{ljl[ c}/ﬂ/ﬁdf/nB

i=1 i=1 i=1

= IVIFA(a,, a,,...,a,) . (16)

Case 2. If S :(1,1,0, O,...,O) , then the IVIFPMM operator reduces to the IVIFPBM operator
proposed by Liu and Li [26], that is,

IVIFPMM(I’LO’O“”O) (0{1, Oy,ees Q, ) = (n(n;_l)lél ((ZUIOQ ) @ (ZUi(Zi ))J

1#]

1{H(l(l(1a’)w')(l(l”’f)m/)j](m ,1[}]111(1(1(1b')w')(l(lb])wf)ﬂn(“) |
; l[n(l(lc?)(lcj’)ﬂw - 1[wll[1(1(1d7')(1d7’))}w .(17)

In this case, if Sup (ai , a],) =tforalli#j, then nw, = 1, then the IVIFPMM operator reduces to the
IVIFBM operator [23] (when s = t = 1), that is,

ij=1
i#]

1/2 1/2
n 1 n 1
wirpPMM" N (4, a, ..., a,) = (1 -T1(1-ag, ),,(“)J ,(1 ~T1(1-pp, )0 } )

1/2 12
1—[1—ﬁ(1—(1—c1)(1—c]>)”(’31)J ,1—[1—ﬁ(1—(1—d,)(1—d]))"(”1UJ . (18)

i,j=1 i,j=1
I¢]

k n—k
———

Case 3.IfS= (1, 1..1,0,0,.., O) , then the IVIFPMM operator reduces to the IVIFPMSM operator
proposed by Liu et al. [28], that is,
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k n-k
P S ( .

1/k
IVIEPMM W Y-10.0-0) (al’azl_", an)= %1 o _®1(wi a )J
Sy <ipy <. <l J= I

- 11 [1—]%1[(1—(1—%/)@’}]@ 1= 11 [1—1_1[(1—(1—@])LU”DCﬁ ,

1<i; <iy..<iy <n j

1

1-1- ] (1-ﬁ(1—c”)jcl a-11- ] [1—]%[(1-61@’?)]Cl’5 .(19)

1<i;<iy ..<ip <n 1<iy <iy . <ip<n j=

In this case, if Sup (a,., a],) =t foralli# j, thennw; =1, then the IVIFPMM operator reduces to the
IVIFMSM operator [25], that is,

VIFPMM™ " (g ... 00, ) =
o\ Yk o \VE
e o) T
1<i, <..<i < -1 1<i,<..<iy<n j=1 '

1/k

1- 1—( 1 (1—]‘1!(11,])}? - 1—( 1 [1—1&[(1—51,.7)Dq . (20)

1<i<.<ip <n j 1<i) <..<i <n

Case 4. If S:(l,l,...,l) or S:(l/n,l/n,...,l/n) , then the IVIFPMM operator reduces to the

following:

1n
IVIEPMM ) or (e, ]/n)(al,%/---/a,,):é n(}—l—T(—a].))aj :]-Zl(nwja]')l/n
; 1+ (o))
# o NV _— n e \ /7 1 nar, \ /"
:Hg(l—(l—aj) ] ,1;[(1—(1—;7,.) ] Hl_j_] (1-c)' A-T1 (1-a=)' D.(zn

In this case, if Sup (0‘1’/ a}.) =tforalli+j, then new; = 1, then the IVIFPMM operator reduces to the

interval-valued intuitionistic fuzzy geometric (IVIFG) operator [22], that is,
n n n ]/Yt n 1/11
IVH:PMM(M ,,,,, or (1/n,1/n,... 1/'1)(01/0‘2/--'/0‘”):HHﬂ,rl/",Hbil/”},{l—(H(l—ci)J ’1_( (l_di)J n )
i=1 i=1 i=1 i=1

(22)

3.2. The Interval-Valued Intuitionistic Fuzzy Weighted Power Muirhead Mean (IVIFWPMM) Operator
Definition 9. Let a ( i=L2,., n) be a collection of IVIFNs and S = (51,52,..., sn) be a collection of

parameters, where sj< j =l,2,...,n) is a non-negative real number. Let w:(w Wy, ey W, )T be the

17
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weight vector of a; ( i=12,., n) , satisfying the condition that Z; w; = land0< w; <1 ( i=12,.., n) .

Then, the interval-valued intuitionistic fuzzy weighted power Muirhead mean (IVIFWPMM)
operator is defined as,

1

1 w,,. (1+T(a )) ;’SI
%4(3 g , ¢ (/) () a) ) (23)
o Zw]. (1+T(a].))

=1

IVIFWPMM® (a,, a1, ..., a, ) =

Where

T(a,)= Z Sup (e, @), (24)

i=1,i%]
And
Sup(ai,aj)zl—d<ai,aj), (25)

where & ( j)(j=1,2,...,n) denotes any permutation of (1,2,...,11), T represents all possible
permutations of (1,2,...,11), and n is the balancing coefficient. d (ai,aj) represents the distance

between ¢, and @;, and Sup(ai,aj) is the support for o, from &;, satisfying the following conditions

in Definition 8.

For convenience, let
_ w, (1+T(a],))
]Z:l: w; (1 +T a ))

o,

]

(26)

n

then, we «call 6= (61,52,.._,5 )T the power weight vector, satisfying Z;ﬂ 5]. =1 and
5]. S [0,1} ( ji=1, 2,...,n). Hence, Eq. (23) can be simplified as,

1

IVIFWPMMS(al,az,...,a”):[l ® ®(n5§(j)ag(j))5’j/2j , 7)

nleet, j=1
Based on the operations shown in Definition 4, the following theorem can be derived.

Theorem 4. Let a, ( ji=1, 2,...,n) be a collection of IVIFNs and S = (sl,sz,..., s”)be a collection of

parameters, wheres, ( j= 1,2,...,n) is a non-negative real number, then the aggregated value by the

IVIFWPMM operator is also an IVIFN and

IVIFWPMM® (a,, @, ..., ) =
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The proof of Theorem 4 is similar to the poof of that of Theorem 1.

4. A Method to MAGDM in the Interval-Valued Intuitionistic Fuzzy Context

In the present section, we propose a novel approach to MAGDM based on proposed operators.
A typical MAGDM problem in IVIF context can be described as follows. Let X = {xl,xz,..., x, } be m

alternatives, G = {Gl,GZ,..., Gn} be n attributes, w = (wl,wz,..., w, )T be the weight vector, satisfying
z:l:lwi =1 andw, 20,i=1,2,...,n. Let D:{Dtz/--th} be a set of decision makers with the
weight vector being y =(7,,7,,...7, )T the weight vector, satisfying 7,,k=12,..,t and z;zl 7,=1.
For a decision maker D, , he/she is required to express his/her preference information by an IVIFN
al = ([ai’;,bﬂ,[cg,d H) for an alternative x; with respect to attribute G].. In the following steps, we

propose a novel method to MAGDM in which attribute values take the form of IVIFNs based on the
proposed operators.

Step 1. Standardize the decision matrices according to the following equation,

o ([a;,bﬂ,[c;,d:; }) where G, is positive type -
i, di |, as,bl ) where G, is negative type
' Z ] M ] /

Step 2. Calculate the supports Sup(ai’]‘., ai‘j.) according to the following equation,
Sup(al.']f,a;) =1 —d(ai’;,a,;’)(k,d =1,2,..,.bk=d;i=1,2...,m;j=1, 2,...,n), (30)

where d (al.’; , 0‘5 ) is the Hamming distance between 0‘1-]; and ai]k, .

Step 3. Calculate T (ocg ) by

T(ak): > Sup(a.k ag)(k,d =1,2,.,ti=1,2.,m;j=1,2,...,m), (1)

ij k=1,k=d i’

Step 4. Compute the power weights 5,;‘ associated with the IVIFN ai’; by

. 7 (1+T(al.']‘,))

i~ Zz:lyk (1+T(a§)) ,

(32)

Sf>0 L oF=1
wherek=1,2,...,t,i=1,2...,.m,j=1,2,..,n, " g and Zk:l U .
Step 5. Utilized the interval-valued intuitionistic fuzzy power weighted average (IVIFPWA)
operator proposed by He et al. [29] to aggregate individual decision matrix, that is,
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a, = IVIFPWA(a!, a,‘,...,ai'],):ql—H(l—a;)gﬁ,1—ﬁ(1—b§)d7},{ﬂ(cg)5f,ﬁ(dk) D (33)

t
k=1 k=1

Thus, a collective decision matrix can be obtained.

Step 6. Calculate the supports Sup (051.1 SOy ) by

Sup(a, o) =1-d(ay,a,), (34)
wherei=1,2,..,ml, f=12,..,ml+ f andd(al,a )1s the Hamming distance between ¢, anda

Step 7. Compute T (ail.) by

T(aif) Zfl 1f¢lsup( I ) (35)

wherei=1,2,...,m;l, f=1,2,..,n
Step 8. Calculate the power weight7, associated with the IVIFN ¢ according to the following

formula,

w; (1+T(“ij))

e , (36)
Z]’:l wi (1 +T (aif ))
wherei=1,2,..,m;j=12,.,n
Step 9. For alternative x, (z' =12,.., n) , utilize the IVIFWPMM operator
a, = IVIFWPMM® (a,,, a1, ..., ), (37)

to aggregate attributes, and an overall evaluation value can be obtained.

Step 10. Rank the overall evaluation values ¢, ( =1,2.. n) according to Definition 3.

Step 11. Rank alternatives according to the rank of the overall values, and choose the best
alternative.

5. Case Analysis

In Section 3, we proposed the IVIFWPMM operator, which is a powerful and useful information
aggregation tool for interval-valued intuitionistic fuzzy information. Additionally, Section 4
introduced a new approach for interval-valued intuitionistic fuzzy MAGDM. To validate the newly
developed MAGDM method, this section applies it to a real decision-making problem. Talent
strategy is a major, macroscopic, and overall conception and arrangement for the cultivation. In June
2010, the Central Committee of the Communist Party of China and the State Council issued the
“National Medium and Long Term Talent Development Plan (2010-2020)” and issued a notice
requesting all localities and departments to conscientiously implement the reality. In order to train
more talents for the country and society, domestic universities generally increase the proportion of
admissions. So, the number of college students is increasing. Considering that the size of the existing
library is no longer sufficient for all teachers and students, a university is preparing to build a new
library. After the initial bidding, the university decides to take the seat of the new library from the
four listed builders (x,,i=1,2,3,4 ). In order to choose the most suitable builder, the four alternatives

are evaluated from four perspectives. They are, Gi: social influence, Gz: quality, Gs: reputation, and
Gu: service attitude. Weight vector of the four attributes is w, :(0.3,0.4,0.1,0.2)T. Three experts

D, (t =1, 2,3) in civil engineering and project management are invited to evaluate the four builders.

Weight vector of decision makers isy = (0.32,0.45,0.23)T . The three experts are required to utilize
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IVIENs to express their preference information over alternatives, and three interval-valued

intuitionistic fuzzy decision matrices R’ = (& (t =12, 3) are constructed. (See Tables 1-3).

ij )4><4

Table 1. The IVIF decision matrix R" givenby D, .

14 of 20

G1

G2

Gs

(&

X1

X3
X4

([0.5, 0.6],[0.3, 0.4])
([0.7, 0.8],[0.1, 0.2])
([0.4, 0.6],[0.2, 0.3])
([0.6, 0.7],[0.1, 0.3])

([0.4, 0.6],[0.2, 0.3])
([0.5, 0.6],[0.1, 0.2])
(0.5, 0.71,[0.1, 0.2])
(10,5, 0.6],[0.2, 0.3])

([0.6, 0.8],[0.1, 0.2])
([0.3, 0.5],[0.3, 0.4])
([0.4, 0.6],[0.3, 0.4])
([0.4, 0.5],[0.2, 0.4])

([0.6,0.7],[0.1, 0.3])
([0.7, 0.8],[0.1, 0.2])
([0.5, 0.6],[0.2, 0.3])
([0.4,0.71,[0.2, 0.3])

Table 2. The IVIF decision matrix R* givenby D, .

G1 G2 Gs Gs
x1 ([0.7,0.8],[0.1,0.2]) ([0.5,0.6],[0.1,0.3]) ([0.4,0.5],[0.2,0.4]) ([0.5,0.8],[0.1,0.2])
x2  ([0.5,0.6],[0.2,0.3]) ([0.6,0.7],[0.2,0.3]) ([0.5,0.5],[0.2,0.3]) ([0.6,0.7],[0.1,0.2])
xs ([0.4,0.5],[0.1,0.2]) ([0.6,0.8],[0.1,0.2]) ([0.5,0.7],[0.2,0.3])  ([0.6,0.7],[0.1,0.3])
xs ([0.5,0.6],[0.2,0.3]) ([0.4,0.5],[0.3,0.4]) ([0.6,0.8],[0.1,0.2]) ([0.5,0.8],[0.1,0.2])

Table 3. The IVIF decision matrix R’ givenby D, .

G1 G2 Gs G
x1  ([0.6,0.6],[0.2,0.3]) ([0.5,0.8],[0.1,0.2]) ([0.5,0.7],[0.1,0.2])  ([0.6,0.7],[0.2, 0.3])
x2 ([0.7,0.8],[0.1,0.2]) ([0.4,0.5],[0.3,04]) ([0.6,0.7],[0.1,0.2])  ([0.5,0.6],[0.2,0.3])
xs  ([0.6,0.6],[0.2,0.3]) ([0.5,0.7],[0.2,0.3]) ([0.6,0.8],[0.1,0.2])  ([0.5,0.6],[0.3, 0.4])
xs ([0.4,0.5],[0.3,0.4]) ([0.6,0.8],[0.1,0.2]) ([0.5,0.6],[0.2,0.3]) ([0.7,0.8],[0.1,0.2])

Table 4. The collective IVIF decision matrix R.

G1

G2

X1

X3

X4

([0.6217, 0.7057],[0.1676, 0.2749])
([0.6250, 0.7293],[0.1354, 0.2387])
([0.4533, 0.5582],[0.1469, 0.2504])
([0.5146, 0.6160],[0.1760, 0.3201])

([0.4701, 0.6581],[0.1247, 0.2737])
([0.5289, 0.6305],[0.1755, 0.2811])
([0.5475, 0.7498],[0.1172, 0.2194])
([0.4843, 0.6221],[0.2049, 0.3112])

G1

G2

X1

X2

X3

X4

([0.4961, 0.6708],[0.1356, 0.2711])
([0.4712, 0.5542],[0.1945, 0.2999])
([0.4965, 0.7004],[0.1942, 0.2996])
([0.5198, 0.6838],[0.1472, 0.2749])

([0.5583, 0.74951,[0.1174, 0.2505])
([0.6163, 0.71871,[0.1169, 0.2191])
([0.5473, 0.64811,[0.1612, 0.3205])

1
1
]
([0.5291, 0.7729],[0.1243, 0.2271])

]
]
1
|

5.1. The decision-making process

In this subsection, we use the method introduced in Section 4 to determine the optimal
alternative. The decision-making steps are presented as follows.
Step 1. As all attributes are benefit type, the original decision matrices do not need to be
normalized.

Step 2. Calculate the Sup(ag,ag) according to Eq. (30). For convenience, we utilize the symbol

Ss to represent the support between ag and 0‘5 (i,j=1,2,3,4; k,d=1,2,3; k=d). Hence, we obtain

the following results
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0.800
0.850
5, =5 = 0.925
0.925

0.950
0.900
0.950
0.900

0.800
0.900
0.900
0.800

3

S2=52=

0.925
0.950
0.925
0.900

0.875
0.850
0.875
0.900

0.925
0.850
0.900
0.775

Sl=6=

0.850
0.875
0.900
0.875

0.925
1.000
0.950
0.825

0.900
0.900

0.875 |

0.950

0.875
0.850
0.950
0.875

0.950
0.775
0.800
0.925
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0.975
0.850
0.950
0.850

Step 3. Calculate T (a,.’;) according to Eq. (31). For convenience, we use the symbol T* to represent

the values T (e} )(i,j =1,2,3,4;k =1,2,3)

1.725
1.850
1.875
1.750

1

1.825
1.750
1.900
1.775

1.750
1.675
1.700
1.725

1.900
1.800
1.875
1.750

2

1.675
1.700

~11.800

1.825

1.875
1.750
1.850
1.675

1.800
. |1.850
11.825

1.725

1.800
1.700
1.850
1.650

1.800
1.650
1.700
1.800

1.875
1.750
1.825|
1.800

1.650
1.775
1.800
1.675

1.825
1.850
1.800
1.850

Step 4. For a decision maker D, , calculate his/her power weight associated with the IVIFN al.’]‘. on

the basis of his/her weight y, , according to Eq. (32). For convenience, we use the symbol 6" to

represent the values 61;‘ (i, i=12,3,4k=1,2, 3) . Therefore, we can obtain the following

0.3181
0.3213
0.3238
0.3287

0.3239
0.3154
0.3148
0.3206

0.3206

. |0.3278
~10.3251
0.3168

0.2368
02355
~10.2296

0.2256

3

0.3244
0.3187
0.3251
0.3136

0.2266
0.2268
0.2287
0.2257

5=

0.2371
0.2245
0.2262
0.2368

0.4426
0.4367
0.4453
0.4576

0.2312
0.2251
0.2296 |
0.2294

0.4553
0.4519
0.4475
0.4456

0.4444
0.4562
0.4453
0.4570

0.4390
0.4601
0.4590
0.4426

Step 5. Utilize the IVIF weighted PA (IVIFWPA) operator to aggregate individual decision
matrices into a collective one, as shown in Table 4. The calculation process of the IVIFPWA operator

can be found as Eq. (33).

Step 6. Calculate the support between ¢, and &, that is, Sup (%r“

i

), according to Eq. (34). For

convenience, we use the symbol S” to represent the value Sup(aﬂ,al,f)(i,l, f=1,2,34;1=f ) Hence,

we can obtain the following results:

S = 5% =(0.9392,0.9306,0.9134,0.9814)
' = 5" =(0.9545,0.9856,0.9329,0.9210)

§* = 5% =(0.9475,0.9260,0.9382,0.9099)

§° =5 =(0.9509,0.8877,0.9295,0.9632)
S§¥ = 5% =(0.9870,0.9570,0.9356,0.9522)

§H =68 = (0.9551,0.8830,0.9608,0.9577) )
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Step 7. Calculate the support T(%) according to Eq. (35). Similarly, we use the symbol T to

denote the value T (%) for simplicity, and we can obtain the following matrix:
2.8446 2.8737 2.8930 2.8572
2.8040 2.8136 2.7277 2.7946
27759 27872 2.8259 2.8320|
2.8656 2.8436 2.8732 2.7886

Step 8. Calculate the power weight 7, associated with the IVIFN ¢, according to Eq. (36), and we

have

0.2985 0.4010 0.1008 0.1997
0.3004 0.4016 0.0982 0.1998
0.2983 0.3990 0.1008 0.2019 |
0.3018 0.4001 0.1009 0.1972

Step 9. For alternative x, (i =12, 3,4) , utilize the IVIFWPMM operator to calculate the overall
evaluation ¢, (i =1,2,3, 4) . Without the loss of generality, let S=(1, 1, 1, 1), and the overall evaluation

values are shown as follows:

o, =[(0.8819,0.9343),(0.0237,0.0563) | o, =[(0.8917,0.9249),(0.0272,0.0531)]
a, =[(0.8712,0.9259),(0.0276,0.0570) | a, =[(0.8726,0.9300),(0.0286,0.0590) |.

Step 10. Calculate the score ValuesS(a.)(i =1,2, 3,4) of the overall evaluation values, and we

1

can get

S(,)=0.8680 S(a,)=0.8682 S(a,)=0.8563 S(c,)=0.8575.

Step 11. According to the score values S (0‘1- )(z =1,2, 3,4) , the ranking orders of the alternatives

can be determined, thatis, A, > A, ~ A, >~ A, .Therefore, A, is the best alternative.

5.2. Sensitivity analysis

As we know, the vector of parameter S has a significant role in the decision results. In the
following section, we investigate the influence of the parameters on the score function and the final
decision results. As shown above, the IVIFWPMM operators are used to calculate the comprehensive
evaluation values in step 9. Therefore, we assign different vectors of parameters in the IVIFWPMM
operator and present the scores and ranking orders in Table 5.

Table 5. Scores and ranking orders with different S in the IVIFWPMM operator.

S Score function S ((x,. )(1 =1,2,3, 4) Ranking orders
S(a,)=05340 S(a,)=0.5318

$=(1,0,0,0) A=A -A, - A,

S(a,)=0.4980 S(a,)=0.5011
S(a,)=0.7471 S(a,)=0.7468

$=(1,1,0,0) A- A, - A, - A,
S(a,)=0.7256 S(a,)=0.7277
S(a,)=0.8265 S(a,)=0.8266

S$=(1,1,1,0) Ay = A= A - A,
S(a,)=08113 S(a,)=0.8129

S=(1,1,1,1) S(a,)=0.8680 S(a,)=0.8682 A=A - A, - A,
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S(a,)=0.8563 S(a, ) =0.8575

From Table 5, we can find out that with different S in the IVIFWPMM, the scores of
comprehensive evaluation values and ranking orders are also different. In addition, when the
interrelationship among more numbers of attributes is taken into consideration, the scores of
comprehensive evaluation values increase. Therefore, the parameter vector S can be viewed as
decision makers’ attitude to pessimism and optimism. Decision makers can choose proper S
according to reality and actual needs.

5.3. Comparison analysis

In subsection 5.1, we utilized the proposed method to solve the above example successfully,
which has proven the availability of the newly developed method. In addition, we also analyzed the
impacts of the parameters on the decision results in subsection 5.2. The sensitivity analysis illustrates
the high flexibility of the proposed method. To further demonstrate its great superiorities, the present
subsection compares the proposed method with some existing MAGDM methods. More specifically,
we compare the proposed method with that proposed by Xu [22] based on the IVIF weighted average
(IVIFWA) operator, that introduced by He et al. [29] based on the IVIFPWA operator, that presented
by Xu and Chen [23] on the basis of the IVIF weighted BM (IVIFWBM) operator, that developed by
Yu and Wu [24] based on the generalized IVIF weighted HM (GIVIFWHM) operator, that put
forward by Sun and Xia [25] based on the IVIF weighted MSM (IVIFWMSM) operator, that proposed
by Liu and Li [26] based on the IVIF weighted power BM (IVIFWPBM) operator, that introduced by
Liu [27] based on the IVIF weighted power HM (IVIFWPHM) operator, and that developed by Liu et
al. [28] based on the IVIF weighted MSM (IVIFWPMSM) operator. We use the above methods to solve
the following example and compare their ranking orders. The example is revised from reference [25].

Example 2: There are five high technological enterprises A, (i =1,2,3,4, 5) . In order to choose the

enterprises with highest innovation capability, decision-makers are required to evaluate the five
alternatives from four attributes, that is, innovation resources input ability (Gi), research and
development ability (Gz), manufacturing capacity and marketing ability (Gs), and innovation output

capacity (Gs). The weight vector of the four attributes is w:(0.2,0.1,0.3,0.4)T . For the attribute
G], ( i=12,3, 4) of alternative A, (i =1,2,3, 4,5) , decision makers use an IVIFN a, = ([ai],, bi].],[ci],, d,,]})

to express their evaluation values, and an IVIF decision matrix can be obtained as shown in Table 6.

Table 6. The IVIF decision matrix.

G1 G2 Gs Gs
x1 ([04,0.5],[0.3,04]) ([0.4, 0.6],[0.2,0.4]) ([0.1,0.3],[0.5,0.6]) ([0.3,0.4],[0.3,0.5])
x2  ([0.6,0.7],[0.2,0.3]) ([0.6,0.7],[0.2,0.3]) ([0.4,0.7],[0.1,0.2])  ([0.5,0.6],[0.1,0.3])
xs  ([0.3,0.6],[0.3,0.4]) ([0.5,0.6],[0.3,0.4]) ([0.5,0.6],[0.1,0.3]) ([0.4,0.5],[0.2,0.4])
xs ([0.7,0.8],[0.1,0.2]) ([0.6,0.7],[0.1,0.3]) ([0.3,0.4],[0.1,0.2])  ([0.3,0.7],[0.1,0.2])
xs ([0.3,04],[0.2,0.3]) ([0.3,0.5],[0.1,0.3]) ([0.2,0.5],[0.4,0.5]) ([0.3,0.4],[0.5, 0.6])

In the following, we utilize the above-mentioned methods to solve the example and present their
results in Table 7.

Table 7. Decision-making results by different methods.

Method Score function (e, )(i=1,2,3,4)

Method introduced by Xu S(e, )=-0.0661 S(a,)=0.3904
[22] S(a,)=02185 S(a,)=0.3962 S(a,)=-0.0396

Ranking orders

A=A, = A= A= A
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Method given by He et al.
[29] (A=1)

Method presented by Xu and
Chen [23] (s=t=1)

Method put forward by Yu
and Wu [24] (p=q =1)

Method proposed by Sun
and Xia [25] (k=2)

Method developed by Liu
and Li [26] (s=t=1)

Method raised by Liu [27]
(s=t=1)

Method proposed by Liu et
al. [28] (k=2)

The proposed method based
on the IVIFWPMM operator
5=(0.5,0.5,0.5,0.5)

S(a,)=-05178 S(a,)=-0.2335 S(a,)=-0.3945
S(a,)=-0.1933 S(a,)=-0.6314
S(a,)=-0.7085 S(a,)=-0.4866 S(a,)=-0.5854
S(a,)=-0.4648 S(a,)=-0.6912
S(a,)=-0.6965 S(a,)=-0.4602 S(a,)=-0.5606
S(a,)=-0.4382 S(a, ) =—0.6846
S(a,)=-0.7085 S(a,)=-0.4866 S(a,)=-0.5854
S(a,)=-0.4648 S(a,)=—-0.6912
S(a,)=-0.1075 S(a,)=0.3037 S(a,)=0.1401
S(a,)=0.3156 S(a,)=-0.0614
S(a,)=-0.0763 S(a,)=0.3407 S(a,)=0.1866
S(a,)=0.3604 S(a,)=-0.0443
S(a,)=-0.1075 S(a,)=0.3037 S(a,)=0.1401
S(a,)=0.3156 S(a,)=-0.0614
S(e,)=0.6069 S(a,)=0.7685 S(a,)=0.6977
S(a,)=0.7758 S(a;)=0.6164
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A=A =-A - A - A

A=A, = A=Ay = A

A=A, = A= A= A

A=A -A - A - A

A=A, = A=Ay - A

A=A, = A=A - A

A=A, - A - A= A

A=A, = A=Ay - A

From Table 7, we find that the decision result derived by the proposed method and those
obtained by others are the same, which proves the effectiveness and validity of the proposed method.
However, the shortcomings and irrationalities of existing decision-making methods are obvious. Xu's
[22] method is based on the IVIFWA operator, which does not consider the interrelationship among
attributes. Additionally, Xu’s [22] method does not consider to wipe off the bad influence of decision-
makers’ unreasonable evaluation values on the final decision results. In other words, if decision
makers make unreasonable evaluations, the decision-making results are also unreasonable via Xu’s
[22] method. Compared with Xu’s [22] method, our method is more flexible and robust. The
advantages of the proposed approach are reflected in its ability to capture the interrelationship
among attributes, and its efficiency in eliminating the bad effects of decision makers’ unreasonable
assessments on the results. Analogously, He et al.’s [29] method considers the power weighting
vectors but fail to reflect the interrelationship among attributes. Thus, our method is more powerful
than He et al.’s [29] method. Similarly, Xu and Chen’s [23], Yu and Wu's [24], and Sun and Xia's [25]
methods are based on BM, HM, and MSM, respectively. Thus, all of them have the capacity of
reflecting the interrelationship among attributes. Nevertheless, they neglect the power weighting
vectors. Our method takes not only the interrelationship among attributes but also the power
weighting vectors into consideration. Thus, the newly introduced method has advantages over the
methods proposed by Xu and Chen’s [23], Yu and Wu's [24], and Sun and Xia’s [25]. The methods
developed by Liu and Li [26], Liu [27], and Liu et al. [28] are on the basis of the IVIFWPBM,
IVIFWPHM, and IVIFWPMSM operators, respectively. Thus, all of the three methods not only focus
on the power weighting vectors but also capture the interrelationship among attributes. More
specifically, Liu and Li’s [26] and Liu’s [27] methods consider the interrelationship between any two
attributes, and Liu et al.’s method [28] can capture the interrelationship among multiple attributes.
Therefore, Liu et al.’s method [28] is better and more flexible than Liu and Li’s [26] and Liu’s [27]
methods to some extent. However, all of them fail to consider the interrelationship among any
attributes, which is precisely the most prominent advantage of the newly proposed method. In
addition, as mentioned in Section 3, Liu and Li’s [26] and Liu et al.’s [28] methods are special cases of
the proposed method, which demonstrates the flexibility and generality of the proposed method.
Hence, our method is of higher flexibility, powerfulness, and generality over existing interval-valued
intuitionistic fuzzy MAGDM methods [22-29]. To sum up, the reasons why decision-makers should
use the proposed MAGDM method are as follows. Firstly, decision-makers may provide extreme
evaluation values due to the high complexity of real-life MAGDM problems. Our proposed method
can reduce the bad influence of unreasonable evolution information, making the decision results
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more reliable. Secondly, there is usually an interrelationship among attributes, and our method can
effectively deal with such kind of interrelationship. Additionally, our method is very flexible as there
is a parameter vector in the proposed IVIFWPMM operator. Therefore, decision-makers should
choose the proposed method to determine the best alternatives in real MAGDM procedure.

6. Conclusion remarks

The PA and MM operators have good performance in the process of information aggregation.
PA makes the aggregation results more reasonable as it can eliminate the bad influence of unduly
high or low aggregated arguments. MM is a powerful information technique, which reflects the
interrelationship among any numbers of input variables. IVIFSs are a good tool to describe decision
makers’ preferential information in MAGDM. In order to fully exploit the advantages of PA, MM,
and IVIFSs, this paper developed the IVIFPMM and IVIFWPMM operators. Further, a new MAGDM
method with interval-valued intuitionistic fuzzy information was introduced. A builder selection
problem was presented to demonstrate validity. Through comparison analysis, the superiorities and
advantages can be found. To sum up, the contributions of this paper are two-fold. Firstly, we
developed some new aggregation operators for IVIFSs. These newly proposed operators exhibit
higher flexibility and powerfulness over most existing interval-valued intuitionistic fuzzy
aggregation operators. Secondly, a new interval-valued intuitionistic fuzzy MAGDM method was
proposed. In further works, we shall investigate more aggregation operators for IVIFSs.
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