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Abstract
Purpose  To test the prebiotic activity of wheat arabinogalactan-peptide (AGP), which is a soluble dietary fibre composed of 
arabinogalactan polysaccharide linked to a 15-residue peptide, which accounts for up to 0.4% of the dry weight of wheat flour.
Methods  The prebiotic activity of AGP prepared from white wheat flour was tested using in vitro fermentation by colonic 
bacteria in automated pH-controlled anaerobic stirred batch cultures and compared to fructooligosaccharide (FOS) and 
wheat flour arabinoxylan (AX). Bacterial populations were measured using fluorescence in situ hybridisation (flow-FISH) 
and short chain fatty acid (SCFA) concentrations were measured using HPLC.
Results  Fermentation of AGP resulted in a significant bifidogenic activity and increased concentrations of SCFAs, mainly 
acetate after 24 h of fermentation.
Conclusions  These results were comparable to those obtained with AX and confirm the prebiotic potential of AGP. Fur-
thermore, fermentation of a mixture of AGP and AX was faster compared to the single substrates and more similar to FOS, 
indicating that combinations of fermentable carbohydrates with different structures are potentially more effective as prebiot-
ics than single substrates.

Keywords  Arabinogalactan-peptide (AGP) · Prebiotic · Batch culture · Fluorescence in situ hybridisation (FISH) · Short 
chain fatty acids (SCFA)

Introduction

Cereals are the most important source of dietary fibre (DF) 
in the human diet, providing about 40% of the total dietary 
intake in the UK, with bread contributing about half of this.

A number of definitions of dietary fibre have been pro-
posed, the most widely used being that from the Codex 

Alimentarius 2009 which states that “dietary fibre consists 
of carbohydrate polymers with 10 or more monomeric units, 
which are not hydrolysed by the endogenous enzymes in the 
small intestine”. However, a footnote allows national author-
ities to also include “carbohydrates of 3–9 monomeric units” 
and these are usually included when considering wheat fibre. 
A number of studies have demonstrated that DF, and par-
ticularly cereal DF, has health benefits including regulation 
of satiety and diluting the energy density of food. The addi-
tion of insoluble DF to the diet increases stool weight from 
fibre bulk and increases in bacteria and water holding capac-
ity. Soluble DF has also been shown to reduce the glycae-
mic index of food products, reduce insulin sensitivity and 
decrease cholesterol absorption. Furthermore, DF has also 
been shown to reduce the risk of colorectal cancer.

While whole wheat grain contains 11.5–15.5% total 
DF, the content is much lower in the white flour which 
is used to make most food products and comprises the 
starchy endosperm, but not the fibre-rich aleurone and 
outer layers of the grain. The major DF components in 
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wheat are cell wall polysaccharides, which account for 
about 2–3% of the dry weight comprising about 70% ara-
binoxylan (AX), 20% (1 → 3,1 → 4)-β-d-glucan (β-glucan), 
2% cellulose ((1 → 4)-β-d-glucan) and 7% glucomannan 
[1] and 1.4–1.7% fructo-oligosaccharides (fructans) [2]. 
In addition, white wheat flour contains up to 0.4% dry 
weight of arabinogalactan-peptide (AGP) [3, 4] which 
comprises a 15-residue amino acid peptide [5] includ-
ing three hydroxyprolines which are o-glycosylated with 
branched arabinogalactan chains [6]. In most plants, ara-
binogalactans occur in covalent association with protein, 
either as proteoglycans or as glycoproteins, however, in 
wheat AGP, the polysaccharide is estimated to account 
for about 90% of the molecular mass. Although a recent 
study indicates that AGP is located in the cytoplasm or 
vacuole of the wheat cell, it does not appear to be essential 
for grain development and little is known of its biological 
function [7] or impact on human nutrition and health.

The process of fermentation, where colonic microbiota 
break down carbohydrates to monosaccharides before 
metabolising them to short chain fatty acids (SCFAs) 
appears to be particularly important to health benefits of 
DF. These benefits have led to the concept of “prebiot-
ics”: substrates that are selectively utilized by host micro-
organisms conferring a health benefit [8]. Prebiotics can 
also alter the host colonic microbiota to a more favourable 
composition, for example, by increasing the proportions 
of beneficial bacteria (e.g., bifidobacteria and/or lactoba-
cilli) [9].

Cereal DF components, particularly β-glucan and 
fructans, have well-established prebiotic activity, while a 
number of studies have demonstrated prebiotic activity for 
wheat AX [10–13]. However, although the concentration of 
AGP in wheat flour is similar to those of water-soluble AX 
and total β-glucan, its prebiotic potential has not been deter-
mined. We have, therefore, evaluated the prebiotic properties 
of AGP and determined whether AGP behaves synergisti-
cally with soluble AX from wheat flour, using an in vitro 
faecal culture system.

Materials and methods

Materials

AGP and water-soluble AX [average DP 131 (obtained using 
HP-SEC-MALLS using OHpak SB 802.5 HQ column on an 
Agilent 1260 infinity LC system)] were prepared from white 
flour from the wheat cultivar Yumai 34 using the method 
from Loosveld et al. [3] Fructo-oligosaccharides (FOS) 
from chicory (F8052 Sigma) (average DP 2–8) was used 
as a standard.

Monosaccharide analysis

Fifty µL of a solution of 1 mg/mL AX was dried under vac-
uum to which was added 400 µL of 2M trifluoroacetic acid 
(TFA) and incubated at 120 °C for 1 h in a heating block to 
hydrolyse samples. Hydrolysed samples were cooled on ice 
and dried in speed-vac at 30 °C (overnight). 500 µL of water 
was added to remove any remaining TFA and the sample 
was dried again in the speed-vac. The sample was finally 
resuspended in 400 µL of MilliQ water. The hydrolysate 
was diluted further 1:1 with water. Standard curves were 
constructed for fucose, rhamnose, arabinose, galactose, glu-
cose, xylose, mannose, galacturonic acid, and glucuronic 
acid using monosaccharide standards prepared from stock 
solutions of 1 mM and subjecting them to the same acid-
hydrolysis protocol as for samples. All samples and stand-
ards were run under the same conditions as described below. 
Twenty µL was injected onto a Carbopac PA20 column with 
flow rate 0.5 mL/min and gradient: isocratic 4.5 mM KOH, 
0–13 min; linear 4.5 to 10 mM KOH, 13–14 min; linear 10 
to 13 mM KOH, 14–15 min; linear 13 to 20 mM, 15–16 min; 
isocratic 20 mM 16–17 min; linear 20 to 4.5 mM KOH, 
17–18 min followed by isocratic 4.5 mM KOH 18–23 min; 
on a Dionex 5000 Ion Chromatography HPLC equipped with 
disposable gold electrode.

MALDI–ToF‑MS

MALDI–ToF-MS was as described in Marsh et al. [14] 
using a Micromass MALDI-LR mass spectrometer (Waters, 
Manchester, UK).

In vitro fermentation

100-mL sterile batch fermentation vessels (50 mL working 
volume) were aseptically filled with 45 mL of sterile basal 
medium and sparged with O2- free N2 overnight to establish 
anaerobic conditions. The medium contained per litre: 2 g of 
peptone water (Oxoid Ltd., Basingstoke, UK), 2 g of yeast 
extract (Oxoid), 0.1 g of NaCl, 0.04 g of K2HPO4, 0.01 g 
of MgSO4·7H2O, 0.01 g of CaCl2·6H2O, 2 g of NaHCO3, 
0.005 g of hemin (Sigma), 0.5 g of l-cysteine HCl (Sigma), 
0.5 g of bile salts (Oxoid), 2 mL of Tween 80, 10 µL of 
vitamin K (Sigma). Polysaccharide samples were added 
(1% w/v) to the basal medium. Each vessel was inoculated 
with 10% (v/v) of faecal slurry from a single donor, which 
was prepared by homogenizing fresh human faeces (10%, 
w/w) in phosphate-buffered saline (PBS; 8 g/L NaCl, 0.2 g/L 
KCl, 1.15 g/L Na2HPO4, and 0.2 g/L KH2HPO4), pH 7.3 
(Oxoid), using a stomacher (Stomacher 400, Seward). Three 
non-pooled faecal donors were used per experiment, two 
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male and one female, between 23 and 59 years of age and on 
a normal diet without any special dietary requirements and 
that had not taken antibiotics, prebiotic or probiotics in the 
previous 3 months. Two experiments were run due to limi-
tations of vessel numbers, one with a negative control (no 
carbon source added), FOS (0.5 g) (positive control), AGP 
(0.5 g) and AGP + AX (0.25 g and 0.25 g), and the second 
with a negative control, positive control as before and AX 
(0.5 g). Vessels were incubated at 37 °C with a water jacket 
for up to 48 h and the pH was controlled between 6.7 and 
6.9 using an automated pH controller with 0.5 M HCL and 
NaOH (Fermac 260, Electrolab, Tewkesbury, UK). Samples 
2 × 1 mL were collected at 0, 8 and 24 h for analysis.

SCFA analysis using HPLC

Aliquots of 750 µL were removed from in vitro fermentation 
vessels and centrifuged at 13,000×g for 5 min to remove 
particulate matter and filtered using a 0.2 µM nitrocellulose 
filter. 20 µL was injected on to a Rezex ROA Organic Acid 
H+ (8%) HPLC column (Phenomenex, UK) at 50 °C on a 
Shimadzu Prominence HPLC with 0.0025 M H2SO4 eluent 
at a flow rate of 0.6 mL/min. SCFA (lactate, formate acetate, 
propionate and butyrate) were quantified with reference to 
calibration curves from 5 to 50 mM of authentic standards 
(Sigma).

Enumeration of bacteria by flow‑FISH

Samples of 750 µL removed from in vitro fermentation ves-
sels were immediately placed on ice, before centrifugation at 
13,000×g for 3 min and the supernatant discarded. Pelleted 
bacteria were fixed for 4 h at 4 °C in (PBS) and 4% (w/v) 
filtered paraformaldehyde (PFA) (Sigma-Aldrich P6148, 
pH 7.2) in a ratio of 1:3 (v/v). Samples were washed twice 
with filtered PBS and resuspended in 600 µL of a mixture 
of PBS/ethanol (1:1, v/v) and then stored at − 20 °C for 
up to 3 months. Hybridisation was carried out as described 
in Rycroft et al. [15, 16] using genus and group specific 
16S rRNA-targeted oligonucleotide probes (MWG Biotech, 
Ebersberg, Germany).

The sample probes used were Bif164 [17], Bac303 [18], 
Lab158 [19], Ato291 [20], Prop853 [21], Erec482 [22], 
Rrec584 [21], Fprau655 [23], Chis150 [22], shown in Sup-
plementary Table 1. Samples were screened using a flow 
cytometer (Accuri C6, BD Biosciences, USA) with Accuri 
CFlow software.

Statistical analysis

The Genstat (2015, 18th edition, © VSN International Ltd, 
Hemel Hempstead, UK) statistical package was used for all 
analysis. One-way analysis of variance (ANOVA) and F test 

were applied to determine differences between treatments. 
Differences were deemed significant when P < 0.05.

Results

Monosaccharide analysis

Monosaccharide analysis of the AGP prepared from white 
flour (Triticum aestivum cv. Yumai 34) indicated that ara-
binose and galactose together comprised 96.73% (± 0.18) 
of total monosaccharides, with small amounts of glucose 
(2.6%) and xylose (1.74%). The A: G ratio for AGP was 
0.48. The combined contents of arabinose and xylose in the 
arabinoxylan fraction prepared from the same flour were 
91% (± 0.05), with galactose (5%) and glucose (4%). The 
A:X ratio for AX was 0.62. These data indicate that the 
AGP and AX fractions were over 95% and over 90% pure, 
respectively.

MALDI–TOF-MS was used to confirm the structure and 
purity of the carbohydrate moiety of the AGP, based on the 
molecular masses of the oligosaccharides released by the 
exo-b-(1 → 3)-galactanase. All samples were permethyl-
ated as described in Tryfona et al. [6] based on Ciucanu 
and Kerek [24] prior to mass spectrometry. Figure 1 shows 
the spectrum from 400 to 2400 m/z; the oligosaccharide 
composition is indicated by Hex (hexose residues) or Pent 
(pentose residues) while the subscript indicates the num-
ber of residues present, if greater than 1. The dominant ion 
was ‘Hex2 Pent’, at 637.5 m/z which is predicted to be two 
galactose units and an arabinose unit. The other ions are pre-
dicted as follows: m/z 477.7, Hex2; 841.5, Hex3Pent; 1001.6, 
Hex3Pent2; 1161.6, Hex3Pent3; 1365.8, Hex4Pent3; 1730.0, 
Hex5Pent4; 1934.0, Hex6Pent4; 2095.2, Hex6Pent5.

Effect of fermentation on SCFA concentrations

The concentrations of SCFA and lactate after fermentation 
of AGP were compared with the negative control (no sub-
strate), FOS (positive control) and AX in Table 1. Signifi-
cant increases (p < 0.05) compared to the negative control, 
occurred in the concentrations of total SCFAs for all sub-
strates, which mainly resulted from increased acetic acid. 
Acetic acid concentrations increased after 8 h fermentation 
of all substrates, with FOS having the greatest increase. 
Acetate continued to increase until 24 h fermentation for all 
substrates, however, at 24 h the greatest increase in acetate 
was by fermentation of AGP (39.34 mM) and AGP + AX 
(38.91 mM). Large decreases occurred in lactate concen-
trations with the AGP, AGP + AX and AX substrates after 
24 h compared with their negative controls. Total SCFA 
concentrations after 24 h fermentation were all significant 
and similar, the highest being with FOS (72.36 mM), then in 
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order of decreasing concentration, AGP + AX (67.42 mM), 
AGP (61.95 mM) and AX (57.15 mM). Although the 1:1 
mixture of AX and AGP resulted in higher concentrations 
of total SCFAs than either single substrate, these increases 
were not statistically different.

Effect of fermentation on bacterial populations

The populations of the dominant types of human colonic 
bacteria are shown in Table 2, while the populations of total 
enumerated bacteria, Bifidobacterium and Clostridium 

coccoides/Eubacterium rectale are shown in Fig. 2. The Bifi-
dobacterium populations increased significantly (p < 0.05) 
compared to the negative control after 8 h fermentation for 
FOS (positive control) and AGP + AX with the greatest 
increase of 1.95 log occurring with fermentation of FOS, fol-
lowed by an increase of 1.37 log with AGP + AX. The popu-
lations of Bifidobacterium increased with the separate AX 
and AGP substrates between 8 and 24 h, but decreased 0.88 
log between 8 and 24 h for FOS and 0.53 log for AGP + AX. 
As with Bifidobacterium, the Clostridium coccoides–Eubac-
terium rectale group increased after 8 h fermentation of FOS 

Fig. 1   Monosaccharide analysis 
of extracted AGP and AX 
using a Carbopac PA20 column 
(N = 3). Error bars are SD
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Table 1   SCFA and lactate 
concentration in batch cultures 
at 0, 4, 8 and 24 h fermentation 
comparing no substrate, FOS, 
AGP and AX

Formate is included in total SCFA but not shown. One-way AVONA was applied to the data to test the 
main interaction between treatments. Significant interaction between treatments and negative control are 
denoted. Standard error of the mean (SEM) is shown in brackets. Significant differences between treat-
ments and relevant negative control are denoted *p = 0.05 (F test)

Time Lactate Acetate Propionate Butyrate Total

Negative control 0 2.28 (1.20) 3.13 (1.05) 3.52 (0.62) 2.86 (1.08) 21.61 (1.48)
8 6.30 (1.79) 8.31 (1.84) 5.10 (0.97) 1.57 (0.65) 27.12 (5.41)

24 10.17 (2.42) 8.28 (2.04) 10.25 (5.19) 3.32 (1.24) 36.33 (8.49)
FOS 0 7.22 (3.51) 9.16 (1.09) 5.27 (1.80) 2.33 (0.28) 27.55 (8.28)

8 12.61 (8.95) 30.57 (4.77)* 11.27 (5.59) 3.09 (1.98) 67.45 (17.12)*
24 10.16 (5.53) 33.35 (6.69)* 13.03 (7.03) 8.36 (6.59) 72.36 (32.92)*

AGP 0 7.86 (5.12) 6.80 (3.25) 3.49 (1.52) 5.78 (1.67) 25.54 (5.97)
8 5.75 (2.37) 23.83 (5.95)* 12.33 (5.09) 2.81 (1.07) 50.96 (11.40)*

24 3.48 (1.65)* 39.34 (4.53)* 8.60 (6.90) 5.20 (3.53) 61.95 (9.94)*
AGP + AX 0 10.01 (2.58) 6.95 (3.49) 5.48 (1.37) 3.53 (0.84) 36.92 (9.28)

8 4.50 (1.98) 17.05 (8.52) 12.86 (5.25) 2.37 (1.94) 44.08 (15.81)
24 2.38 (1.03)* 38.91 (9.58)* 15.61 (6.47) 2.95 (1.74) 67.42 (10.47)*

Negative control for AX 0 11.02 (3.68) 4.21 (1.22) 4.36 (1.11) 2.22 (0.50) 21.85 (3.15)
8 5.66 (0.44) 9.05 (2.40) 8.77 (1.42) 1.53 (0.36) 26.24 (3.97)

24 6.45 (0.16) 9.84 (2.71) 9.33 (1.85) 1.20 (0.22) 30.08 (1.97)
AX 0 16.39 (3.37) 4.93 (1.01) 5.05 (0.60) 1.54 (0.20) 27.91 (3.04)

8 10.19 (2.86) 21.12 (4.46)* 8.09 (0.48) 1.76 (1.76) 47.79 (4.99)*
24 2.56 (1.31)* 27.64 (4.85)* 9.76 (2.77) 1.29 (0.12) 57.15 (12.25)*



European Journal of Nutrition	

1 3

Ta
bl

e 
2  

B
ac

te
ria

l e
nu

m
er

at
io

n 
of

 in
 v

itr
o 

ba
tc

h 
cu

ltu
re

 fl
ui

d 
af

te
r f

er
m

en
ta

tio
n 

co
m

pa
rin

g 
no

 su
bs

tra
te

, F
O

S,
 A

G
P 

an
d 

A
X

N
eg

at
iv

e 
co

nt
ro

l i
s n

o 
ad

de
d 

ca
rb

oh
yd

ra
te

 a
nd

 p
os

iti
ve

 c
on

tro
l i

s F
O

S.
 V

al
ue

s a
re

 m
ea

n 
lo

g 1
0 b

ac
te

ria
l n

um
be

rs
/m

L 
fo

un
d 

us
in

g 
flo

w
 F

IS
H

. O
ne

-w
ay

 A
V

O
N

A
 w

as
 a

pp
lie

d 
to

 th
e 

da
ta

 to
 te

st 
th

e 
m

ai
n 

in
te

ra
ct

io
n 

be
tw

ee
n 

tre
at

m
en

ts
. V

al
ue

s i
n 

br
ac

ke
ts

 a
re

 S
EM

. S
ig

ni
fic

an
t d

iff
er

en
ce

 b
et

w
ee

n 
tre

at
m

en
ts

 a
nd

 re
le

va
nt

 n
eg

at
iv

e 
co

nt
ro

l a
re

 d
en

ot
ed

 *
p =

 0.
05

 (F
 te

st)

Ti
m

e 
(h

)
Bi

fid
ob

ac
te

-
ri

um
 g

en
us

La
ct

ob
ac

ci
l-

lu
s E

nt
er

o-
co

cc
us

 g
ro

up

Ba
ct

er
oi

de
s-

 
Pr

ev
ot

el
la

 
gr

ou
p

C
lo

st
ri

di
um

 
co

cc
oi

de
s-

 
Eu

ba
ct

er
iu

m
 

re
ct

al
e 

gr
ou

p

Ro
se

bu
ri

a
At

op
ob

iu
m

 
cl

us
te

r
C

lo
st

ri
di

um
 

cl
us

te
r I

X
Fa

ec
al

i-
ba

ct
er

iu
m

 
pr

au
sn

itz
ii 

gr
ou

p

D
es

ul
fo

vi
br

i-
on

al
es

C
lo

st
ri

di
um

-
cl

us
te

r I
 

an
d 

II

To
ta

l

N
eg

at
iv

e
0

7.
96

 (0
.2

6)
6.

80
 (0

.3
8)

7.
14

 (0
.0

31
)

8.
53

 (0
.3

3)
6.

78
 (0

.7
5)

7.
20

 (0
.5

8)
7.

35
 (0

.3
6)

8.
28

 (0
.2

5)
7.

85
 (0

.4
7)

6.
86

 (0
.4

0)
8.

97
 (0

.3
3)

8
7.

72
 (0

.1
1)

7.
16

 (0
.1

2)
7.

43
 (0

.2
2)

8.
37

 (0
.2

5)
7.

38
 (0

.0
2)

7.
20

 (0
.1

0)
7.

42
 (0

.2
7)

8.
06

 (0
.2

4)
7.

69
 (0

.3
0)

7.
31

 (0
.1

7)
8.

85
 (0

.2
2)

24
7.

68
 (0

.6
6)

7.
25

 (0
.7

3)
7.

36
 (0

.6
8)

8.
00

 (0
.4

9)
7.

46
 (0

.7
1)

7.
51

 (0
.5

2)
7.

53
 (0

.6
0)

7.
49

 (0
.5

8)
7.

38
 (0

.4
6)

7.
12

 (0
.7

3)
8.

62
 (0

.5
7)

FO
S

0
7.

88
 (0

.2
7)

7.
01

 (0
.4

6)
7.

57
 (0

.4
3)

8.
23

 (0
.2

7)
7.

41
 (0

.5
0)

7.
01

 (0
.4

9)
7.

45
 (0

.3
5)

8.
22

 (0
.2

5)
7.

75
 (0

.4
6)

7.
11

 (0
.5

9)
8.

87
 (0

.3
0)

8
9.

83
 (0

.1
5)

*
7.

32
 (0

.6
0)

8.
20

 (0
.4

0)
9.

70
 (0

.1
7)

*
8.

16
 (0

.7
0)

8.
02

 (0
.4

6)
8.

22
 (0

.3
8)

8.
31

 (0
.4

1)
7.

88
 (0

.5
5)

7.
69

 (0
.4

8)
10

.2
6 

(0
.0

9)
*

24
8.

95
 (0

.2
1)

7.
13

 (0
.7

2)
7.

43
 (0

.6
6)

8.
73

 (0
.2

0)
7.

29
 (0

.7
2)

7.
17

 (0
.5

4)
7.

72
 (0

.6
0)

7.
89

 (0
.5

8)
7.

61
 (0

.6
0)

7.
16

 (0
.6

0)
9.

36
 (0

.2
7)

A
G

P
0

7.
96

 (0
.2

5)
7.

02
 (0

.2
6)

7.
23

 (0
.1

0)
8.

59
 (0

.1
9)

7.
66

 (0
.2

4)
7.

27
 (0

.3
0)

7.
41

 (0
.1

7)
8.

19
 (0

.2
4)

8.
04

 (0
.1

9)
7.

16
 (0

.1
9)

9.
00

 (0
.2

0)
8

8.
89

 (0
.4

5)
6.

87
 (0

.5
1)

6.
74

 (0
.7

0)
8.

92
 (0

.3
6)

7.
89

 (0
.2

2)
7.

23
 (0

.1
4)

7.
32

 (0
.3

0)
8.

47
 (0

.1
6)

8.
06

 (0
.0

8)
7.

18
 (0

.3
5)

9.
49

 (0
.3

1)
24

9.
39

 (0
.7

8)
*

7.
26

 (0
.3

3)
7.

68
 (0

.8
3)

9.
28

 (0
.4

7)
*

7.
46

 (0
.3

0)
7.

26
 (0

.3
7)

7.
89

 (0
.7

8)
8.

03
 (0

.1
7)

7.
19

 (0
.3

5)
6.

24
 (0

.7
6)

9.
84

 (0
.5

5)
*

A
G

P 
+

 A
X

0
7.

98
 (0

.1
8)

7.
06

 (0
.3

6)
7.

20
 (0

.4
6)

8.
63

 (0
.2

9)
7.

37
 (0

.4
6)

7.
12

 (0
.4

6)
7.

20
 (0

.4
1)

8.
38

 (0
.1

9)
7.

95
 (0

.3
6)

7.
04

 (0
.4

0)
9.

06
 (0

.2
6)

8
9.

35
 (0

.4
6)

*
7.

22
 (0

.4
4)

7.
74

 (0
.2

8)
9.

36
 (0

.3
8)

*
7.

61
 (0

.7
8)

7.
00

 (0
.1

2)
7.

63
 (0

.3
1)

8.
59

 (0
.2

3)
8.

00
 (0

.3
5)

6.
94

 (0
.3

0)
9.

89
 (0

.3
3)

*
24

8.
82

 (0
.2

8)
6.

88
 (0

.7
6)

6.
73

 (0
.6

7)
8.

82
 (0

.1
9)

6.
64

 (0
.7

5)
6.

27
 (0

.2
8)

6.
47

 (0
.5

3)
7.

13
 (0

.3
0)

6.
07

 (0
.4

5)
5.

62
 (0

.4
3)

9.
25

 (0
.1

3)
N

eg
at

iv
e 

fo
r 

A
X

0
8.

53
 (0

.3
3)

8.
76

 (0
.1

3)
7.

95
 (0

.1
2)

9.
11

 (0
.0

4)
8.

63
 (0

.1
1)

7.
60

 (0
.1

6)
8.

20
 (0

.0
9)

9.
07

 (0
.0

4)
8.

61
 (0

.0
6)

7.
75

 (0
.1

5)
9.

70
 (0

.0
3)

8
8.

58
 (0

.3
2)

7.
65

 (0
.0

3)
8.

55
 (0

.0
3)

9.
01

 (0
.0

8)
8.

25
 (0

.1
3)

7.
70

 (0
.0

9)
8.

70
 (0

.0
6)

8.
90

 (0
.0

2)
8.

54
 (0

.1
0)

8.
20

 (0
.1

2)
9.

67
 (0

.0
7)

24
8.

76
 (0

.3
)

7.
90

 (0
.1

8)
8.

45
 (0

.1
3)

8.
92

 (0
.0

7)
7.

74
 (0

.2
0)

7.
85

 (0
.1

0)
8.

76
 (0

.0
8)

8.
54

 (0
.0

6)
8.

12
 (0

.1
2)

7.
93

 (0
.1

2)
9.

58
 (0

.1
0)

A
X

0
8.

52
 (0

.4
1)

7.
92

 (0
.1

4)
8.

11
 (0

.1
7)

9.
13

 (0
.0

1)
8.

65
 (0

.0
6)

7.
88

 (0
.0

5)
8.

28
 (0

.1
2)

8.
89

 (0
.0

9)
8.

58
 (0

.0
3)

8.
00

 (0
.1

6)
9.

67
 (0

.0
7)

8
9.

23
 (0

.1
9)

*
7.

67
 (0

.2
0)

8.
84

 (0
.2

3)
9.

09
 (0

.3
8)

8.
32

 (0
.5

2)
7.

65
 (0

.3
7)

8.
93

 (0
.2

4)
9.

00
 (0

.1
9)

8.
61

 (0
.1

9)
7.

81
 (0

.4
0)

9.
94

 (0
.2

4)
*

24
9.

84
 (0

.0
9)

*
8.

08
 (0

.2
2)

8.
55

 (0
.4

4)
9.

57
 (0

.1
8)

*
8.

42
 (0

.4
0)

8.
45

 (0
.5

3)
8.

63
 (0

.4
4)

9.
06

 (0
.1

7)
8.

26
 (0

.2
0)

8.
11

 (0
.4

2)
10

.2
9 

(0
.0

5)
*



	 European Journal of Nutrition

1 3

and AGP + AX, and after 24 h fermentation of AX and AGP. 
No significant changes were observed in the Lactobacillus 
Enterococcus group, Bacteroides–Prevotella group, Rose-
buria, Atopobium, Desulfovibrionales, Clostridium cluster 
IX, Faecalibacterium prausnitzii group or Clostridium-clus-
ter I and II. The 1:1 mixture of AGP and AX gave signifi-
cantly greater populations of the beneficial Bifidobacterium 
and Clostridium coccoides/Eubacterium rectale groups than 
either single substrate at 8 h, but these were lower at 24 h.

Discussion

This study aimed to determine the prebiotic potential of the 
soluble wheat fibre AGP. AGP isolated from wheat flour 
was characterised and evaluated for prebiotic activity based 
on increases in the populations of beneficial bacteria and in 
the production of SCFA, using in vitro batch cultures. The 
fermentation of AGP was also compared to FOS and AX, 
which have established prebiotic activity [10, 11, 25, 26], 
in addition, a mixture of AGP and AX was tested to deter-
mine whether the combination may result in a synergistic 
prebiotic effect.

Short chain fatty acids (SCFA) are volatile fatty acids 
consisting of a straight-chain, aliphatic tail of fewer than 
six carbon atoms and are produced by fermentation of oli-
gosaccharide concomitant with increases in beneficial bac-
teria including Bifidobacterium. The principal SCFAs are 
acetate, propionate and butyrate, together comprising 95% 
of all SCFAs produced [27] and are metabolized primar-
ily by the colonic epithelium (butyrate), liver (propionate) 
and muscle (acetate) [28]. The concentrations of SCFAs in 

this study were used as a measure of the rate of fermenta-
tion of the substrates, with significant increases particularly 
apparent in the predominant SCFA, acetate. The spectra in 
Fig. 2 are very similar to those reported for AGP from white 
flour of cv. Cadenza by Tryfona et al. [6]. The mass spectra, 
therefore, confirm the purity and identity of the AGP used 
for in vitro fermentation.

Despite the huge variety of different bacterial popula-
tions present in the gut and relatively low numbers of the 
bacterial genus Bifidobacterium in the healthy adult (< 5%) 
[29] this genus is most often targeted by prebiotics. This 
is because of it’s association with multiple health benefits, 
including reducing the proliferation of colorectal cancer 
and the concentration of circulating cholesterol [30, 31]. 
A decrease Bifidobacterium levels below those in healthy 
adults has been linked to disorders such as antibiotic-associ-
ated diarrhoea, inflammatory bowel disease, irritable bowel 
syndrome, obesity and allergies [32] demonstrating their 
importance in the colon despite relatively low numbers. In 
this study, all substrates demonstrated beneficial effects by 
significantly increasing (p < 0.05) the populations of Bifido-
bacterium from 8 to 24 h compared to the negative control 
(Table 2; Fig. 3). Unlike the FOS and AGP + AX mixture 
which showed the maximum Bifidobacterium growth at 
8 h, proliferation was slower with AGP and AX singly as 
substrates, reaching the greatest population numbers after 
24 h. This effect was observed with all donors in the study; 
therefore, it appears to show that bifidobacteria ferment 
soluble wheat flour AX and AGP more slowly than FOS. 
The same effect was observed with the populations of the 
predominant beneficial bacterial group [33] Clostridium 
coccoides/Eubacterium rectale (Clostridium Cluster XIVa 

Mass (m/z)

Intensity 
(%)

Hex3Pent2

Hex4Pent3

Hex6Pent5

Hex5Pent4

Hex2

Hex2Pent

Hex3Pent3

Hex3Pent

Fig. 2   MALDI–ToF-MS spectra showing ions of m/z diagnostic of per-methylated oligosaccharides released from AGP by exo-B-(1 → 3) 
galactanase digestion. AGP was isolated from Triticum aestivum cv. Yumai-34 white flour. Spectra shows 400–2400 m/z 
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and XIVb), which showed significant increases simultane-
ously with bifidogenic effects and may be indicative of cross 
feeding interactions as reported by Rivière et al. [32].

The structures of fermentable carbohydrates, including 
the degree of polymerisation (DP) and molecular weight 

have previously been shown to affect the rate of fermenta-
tion [26] and FOS is thought to be rapidly fermented due 
to its low DP [34]. In this study, the DP of the AX (average 
DP 131) was much greater than that of FOS (DP 2–8). The 
longer polysaccharides in AX have fewer non-reducing ends 
per unit mass than FOS, providing less substrate for hydroly-
sis by bacterial enzymes, which may have contributed to 
the slower rate of fermentation shown with AX. Wheat 
AGP is considered have three carbohydrate moieties. Their 
molecular masses have not been determined but estimates 
of between 122 and 389 sugar residues can be made based 
on the reported mass of the whole AGP molecule, ranging 
from 22,000 to 70,000 [4, 35–37]. This mass is much greater 
than that of FOS, accounting for the slower fermentation.

A slower rate can be advantageous for health as it allows 
the prebiotic to reach the more distal regions of the colon, 
where the levels of fermentable carbohydrate are lower, and 
fermentation of proteins occurs with adverse effects [38].

The combination of AX + AGP showed faster fermenta-
tion than either substrate singly, with significant increases in 
beneficial bacterial populations by 8 h fermentation, similar 
to that of FOS.

It is possible that a faster fermentation may be achieved 
via utilization of multiple non-competing bacterial enzymes. 
For example, some Bacteroides spp. have been found to fully 
ferment highly branched xylans as well as β1–3 and β1–4 
arabinogalactans from soy by producing multiple enzymes 
[39].

Desulfovibrionales (DSV) is a group of sulphate-reducing 
bacteria which are suggested to contribute to the develop-
ment of ulcerative colitis through the production of cyto-
toxic H2S and add to the pathology of the disease [40, 41] 
(although this role is disputed as analyses of bacterial popu-
lations from faeces and mucosal biopsies have so far failed 
to demonstrate changes in DSV populations associated with 
the disease) [42]. Similarly, bacteria of Clostridium cluster I 
and II are also considered to have adverse effects on health, 
as they are associated with protein fermentation and some 
end products of protein fermentation can be harmful to the 
host, e.g., amines and ammonia [43]. A shift to protein fer-
mentation has been linked with increases in diseases such as 
irritable bowel syndrome (IBS) and colonic cancers, which 
occur more often in the distal regions of the gut [43, 44]. The 
populations of Desulfovibrionales, and Clostridium-cluster I 
and II did not increase with any of the substrates, despite the 
presence of a peptide chain in the AGP. This could be due 
to competition from saccharolytic bacteria which were still 
increasing up to 24 h of fermentation, to the low proportion 
of the peptide in the AGP structure 8% [45] or to the inacces-
sibility of the peptide, surrounded by arabinogalactan [45].

Total SCFA concentrations were highest with the positive 
control (FOS) after 24 h and comprised mostly acetate. The 
second highest concentration of total SCFAs was generated 
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Eubacterium rectale populations after fermentation of different sub-
strates at times 0, 8, and 24  h analysed by Flow-FISH. Error bars 
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by AGP + AX combined, being higher than those resulting 
from fermentation of either single component and comprised 
mainly acetate and propionate. The most abundant SCFAs, 
acetate, propionate and butyrate, have been shown to have 
multiple beneficial effects for the host, for example, by pro-
viding dietary energy, and by suppressing the growth of 
pathogens by decreasing the pH of the intestinal lumen [46]. 
These SCFAs were also reported to have anti-inflammatory 
effects in rats [47] and influence intestinal motility in rats 
via G-protein coupled receptor activation, with acetate being 
the most effective, followed by propionate and butyrate [48]. 
The production pathways of acetate are found widely among 
bacterial groups, however, pathways for production of pro-
pionate, butyrate, and lactate appear more highly conserved 
and substrate specific [49].

Large increases in acetate were observed after fermenta-
tion of all substrates, with AGP and AGP + AX showing 
the greatest increases. Bifidobacteria are known to produce 
acetate [50, 51] and were observed to increase concomitantly 
with acetate concentration with all substrates, however, (as 
Actinobacteria) they are present in much smaller numbers 
than bacteria from the Bacteroides and Firmicutes phyla. 
Acetate production occurs via widely distributed pathways 
among bacterial groups so the increases in acetate can also 
be attributed to other bacteria, including the predominant 
group found in the gut which can also produce acetate, the 
Clostridium coccoides group [33, 52] which increased in all 
substrates. Pathways for propionate, butyrate and lactate pro-
duction appear more highly conserved and substrate specific 
[49]. The decreases in lactate observed during fermentation 
of AGP, AGP + AX and AX demonstrate a healthy colonic 
environment and bacterial cross feeding. Under healthy gut 
conditions lactate is only present in low concentrations in 
faeces (< 5 mM) [53] because bacterial breakdown markedly 
exceeds production [54]. Lactate is formed from pyruvate 
through the action of lactate dehydrogenase in the homofer-
mentative pathway by many common gut bacteria includ-
ing Lactobacillus, Bifidobacterium, Enterococcus, and 
Streptococcus and Eubacterium spp. [55], but can also be 
converted to other SCFA. Decreases in lactate can, there-
fore, represent cross-feeding of different bacterial species 
including the species Roseburia intestinalis, Eubacterium 
rectale, Eubacterium halii, and Anaerostipes caccae [53, 
54, 56, 57] which utilise lactate for production of other 
SCFAs-mainly butyrate, but also propionate and valerate 
[56]. Because this mechanism is widely utilised it is not pos-
sible to attribute the decreases in lactate to specific bacterial 
groups in this study, however, the large decreases in lactate 
shown by fermentation of both AGP and AGP + AX demon-
strates a greater proportion of lactate-utilizing than lactate-
producing bacteria which is important as an accumulation 
of lactate in the gut can cause acidosis, neurotoxicity, and 
cardiac arrhythmia [58]. Lactate levels were not observed to 

drop over time with fermentation of FOS, which remained 
similar to the negative control, however, this was due to large 
individual variations (Table S1).

Butyrate is produced by a range of bacteria, including the 
Clostridium, Roseburia and Eubacterium genera [51] but is 
dominated by Faecalibacterium prausnitzii, Eubacterium 
rectale, Eubacterium hallii and R. bromii [56]. No signifi-
cant increases in butyrate were observed with fermentation 
of any of the substrates in this study (although FOS gave a 
non-significant increase by 24 h). It is thought that wheat 
polysaccharides, which would include, AX and AGP, are not 
directly butyrogenic, but rely on cross-feeding interactions 
between bacteria that utilize metabolites to produce butyrate 
and those producing the precursor metabolites directly from 
fermentation (e.g., Eubacterium spp., Faecalibacterium 
prausnitzii, and Roseburia which can utilize acetate from 
bifidobacteria) [58]. The butyrate concentration has previ-
ously been shown to increase during in vitro fermentation of 
several commercially available samples of wheat AX [23], 
however, this effect was not observed in this study and may 
be due to a lack of the dominant butyrate producers Faecali-
bacterium prausnitzii [56], which did not increase during 
fermentation.

Wheat AGP showed potential prebiotic activity during 
in vitro fermentation, by selectively increasing populations 
of beneficial bacteria including Bifidobacterium and Eubac-
terium genera and providing increases in the concentration 
of SCFAs (mainly consisting of acetate). A slower fermen-
tation can demonstrate that a substrate is able to persist 
to more distal regions of the colon. AGP showed slower 
bacterial fermentation than FOS, however, this persistence 
is unlikely to occur when wheat products are consumed as 
combining AGP with AX resulted in faster utilisation of the 
substrates. Since the ratio of water-soluble AX to AGP used 
in these experiments is similar to that in white wheat flour, 
their potential to act synergistically is more relevant to the 
consumption of wheat products than the results obtained 
with single substrates. This study used faecal samples to 
provide microbial populations for fermentation in vitro. The 
results should, therefore, be confirmed with larger num-
bers of samples and an in vivo human intervention study 
to further clarify the role of AGP/AGP + AX in colonic 
fermentation.
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