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Abstract. In wireless communications using massive multiple-input multiple-output (MIMO) 

channel modalities as would be required for communications with distributed sensing 

modalities to enable Internet of Things (IoT) connectivity, channel equalization must be 

performed following channel estimation using system identification tools. This contribution 

shows the necessity for extending existing subspace multiple output-error state space (MOESP) 

algorithms with their fractional-order equivalents to perform channel identification. 

1. Introduction 

Massive multiple-input multiple-output (MIMO) is a technology that uses hundreds of antenna 

elements at the base station to service tens of terminals in the same time-frequency resource [1]. This 

technology is being proposed for fifth generation (5G) wireless communications, and is said to achieve 

the benefits of multiuser MIMO such as increased capacity, increased data rate, enhanced reliability, 

reduced latency, improved energy efficiency, improved spectrum efficiency and reduced interference 

but at a greater extend [2] and with simple linear processing. But one of the limiting factors in 

achieving these benefits in massive MIMO systems is the channel estimation accuracy. In this paper 

we propose the use of state-space models to estimate the channel, i.e. system identification. Subspace 

system identification (SSI) algorithms namely the MOESP fractional-order algorithm will be used to 

identify the system. Works using subspace identification in communications can be found in [3 – 5]. 

2. System model 

We consider a massive MIMO wireless system as shown in figure 1 with a base station equipped with 

m transmitting antenna elements and a terminal station equipped with p  receiving antenna elements, 

where in massive MIMO systems, m p .  

 
Figure 1. Massive MIMO system. 
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We assume that the channel is quasi-static. Training symbols known to both the transmitter and 

receiver are inserted at the start of each frame to assist with channel estimation. The receiver then 

applies this input-output data to the MOESP fractional-order subspace algorithm to estimate the 

massive MIMO channel. The following assumptions are necessary for system identification: The 

system is persistently excited by the training symbols. The system is stable, observable and 

controllable. The dimension of matrix A  as in (2) is known, and  rank nD , where n  is the order of 

the system. Lastly, the random noise is irrelevant to the input signal.  

 The received signal is expressed as: 

  y Hu n  (1) 

where y  is the 1p  received signal vector, u  is the 1m  transmitted signal vector, H  is the p m  

Rayleigh fading channel matrix and  00, pCN Nn I  is the 1p  additive white Gaussian noise 

vector at the receiver side, with 0N  being the noise power and pI  is the p p  identity matrix. We 

consider flat Rayleigh fading in which the fading coefficients are assumed to be independent and 

identically distributed (i.i.d.) and circularly symmetric Gaussian random variables with zero mean and 

unit variance,  0,1CN . 

3. System identification using the MOESP fractional-order model 

The dynamics of the massive multiple-input multiple-output linear-time invariant (MIMO LTI) system 

can be modelled using fractional-order state-space model and (1) can be expressed as [6]: 

 D (t) (t) (t)  x Ax Bu , (t) (t) (t) y Cx Du  (2) 

where (t)x  is the 1n  state vector, (t)u  is the 1m  input vector, (t)y  is the 1p  output vector, A  

is the n n  system matrix, B  is the n m  control matrix, C  is the p n  output matrix, D  is the 

p m  feed-forward matrix and   is the commensurate fractional-order. It is important to know if a 

fractional-order system is stable or not, and a fractional-order system is stable if 0 2   and 

 arg / 2k   and  arg k      where k  corresponds to the k-th eigenvalue of A [7]. 

 Taking the Laplace transform of (2) the transfer function of the system is written as: 

  
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Since the continuous-time state-space representation of commensurate fractional-order systems is 

similar to that of integer-order systems, the analysis of the MOESP fractional-order model will follow 

that of the classical MOESP model as proposed in [6]. For simplicity, we ignore the effects of the 

additive noise and after several  -order fractional derivatives of (2) we obtain: 
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 (4) 

which can be written as: 

      i i i it t t y x u   (5) 
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where ip n

i

  and ip im

i

  are the observability and controllability matrices respectively, and 

the dimensions of   ip

i t y  and   im

i t u . i  plays a great role in finding matrices A , B , C  

and D  from which the transfer function of the identified system is then derived.  

 Unlike integer-order systems where subspace methods can be directly used to find i  by 

employing simple mathematical tools such as singular value  decomposition (SVD), in fractional-order 

systems, (5) first has to be transformed after which the mathematical tools can then be applied to the 

transformed equation to find i . If we choose a sampling time of, sT  and setting    i i sk kTy y  and 

   i i sk kTu u , we can write: 

     , 1 2i M i i i M  Y = y y y ,      , 1 2i M i i i M  U = u u u ,      1 2 M  X = x x x  

 

From the above expressions, (5) can then be transformed into the following equation:  

 
, ,i M i i i M Y X U   (6) 

where (6) is the transformed equation of (5), to which the MOESP algorithm and SVD are then 

applied to determine an estimate of i from which the estimates of A , B , C  and D can then be 

obtained according to [6]. In the practical sense, transfer functions such as (3) are not easy to 

implement, and this has led to the rise in rational transfer functions that can be used to approximate 

these fractional-order transfer functions. This means that whenever we have a fractional-order transfer 

function in system identification there is need to replace it with an easier to handle approximate 

rational transfer function. The following section deals with the approximate rational transfer function.  

3.1. Fractional-order realisation 

In the current work an equivalent continuous-time rational model obtained from approximating a 

fractional-order differentiation operator by a rational one is used to get the fractional-order model 

output. The fractional behaviour of systems is usually limited within a specific frequency range, i.e. 

lower frequency and upper frequency denoted as  ,L H   [7]. The lower frequency is limited by the 

input data spectrum, whilst the upper frequency is limited by the sampling period. Thus fractional-

order systems must have the same dynamics as their approximated continuous-time rational 

counterparts within that specific frequency range. In this paper we consider the Oustaloup’s 

realisation.  

4. Results 

We present the simulation results to demonstrate the performance of the classical MOESP and the 

fractional-order MOESP algorithms in the identification of a massive MIMO system. The massive 

MIMO system was modelled to have the base station equipped with 100m   transmitting antenna 

elements and the terminal to have 1p   receiving antenna element. A chirp signal with frequency 

ranging from 0  to 20Hz , sampling frequency 1kHz  is used for training. The channel is a Rayleigh 

fading channel. The classical MOESP algorithm is applied to the input-output data to obtain the 

integer-order transfer functions for different system orders. Figure 2 compares the actual system and 

MOESP estimated system outputs for (a) 1n  , (b) 2n  , (c) 3n   and (d) 4n  . It can be seen that 

their performance improves as the system order increases up to order three, but then the performance 

reverts to being poor at the fourth order. This is to show that integer-order MOESP algorithms may not 

be able to sufficiently model the dynamics of the massive MIMO system. We again modelled the same 

massive MIMO system but this time using the fractional-order MOESP algorithm. Figure 2 (e) 

compares the actual system and fractional-order MOESP estimated system outputs after applying the 
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Oustaloup’s realisation. It can be seen that there is improvement in the performance of the fractional-

order MOESP estimated model compared to the integer-order MOESP estimated model. 

 

Figure 2. Massive MIMO actual system output and MOESP estimated system output for integer- 

order (a) 1n  , (b) 2n  , (c) 3n   and (d) 4n  . (e) Massive MIMO actual system output and 

fractional-order MOESP estimated system output for fractional-order 0.1   within the frequency 

range    , 20,1000L H    and system initialised with order 1n  . 

5. Conclusion 

We were able to perform massive MIMO system identification using the classical MOESP and 

fractional-order MOESP algorithms. The classical MOESP algorithm showed some improvement with 

increase in system order but then the performance degraded on the fourth order. We then extended the 

identification algorithm to the fractional-order MOESP algorithm, where it was shown to outperform 

the classical MOESP algorithm. These set of results show that the fractional-order MOESP algorithm 

can be one of the techniques used for channel estimation in massive MIMO systems. 
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