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Abstract. In wireless communications using massive multiple-input multiple-output (MIMO)
channel modalities as would be required for communications with distributed sensing
modalities to enable Internet of Things (IoT) connectivity, channel equalization must be
performed following channel estimation using system identification tools. This contribution
shows the necessity for extending existing subspace multiple output-error state space (MOESP)
algorithms with their fractional-order equivalents to perform channel identification.

1. Introduction

Massive multiple-input multiple-output (MIMO) is a technology that uses hundreds of antenna
elements at the base station to service tens of terminals in the same time-frequency resource [1]. This
technology is being proposed for fifth generation (5G) wireless communications, and is said to achieve
the benefits of multiuser MIMO such as increased capacity, increased data rate, enhanced reliability,
reduced latency, improved energy efficiency, improved spectrum efficiency and reduced interference
but at a greater extend [2] and with simple linear processing. But one of the limiting factors in
achieving these benefits in massive MIMO systems is the channel estimation accuracy. In this paper
we propose the use of state-space models to estimate the channel, i.e. system identification. Subspace
system identification (SSI) algorithms namely the MOESP fractional-order algorithm will be used to
identify the system. Works using subspace identification in communications can be found in [3 — 5].

2. System model
We consider a massive MIMO wireless system as shown in figure 1 with a base station equipped with
m transmitting antenna elements and a terminal station equipped with p receiving antenna elements,

where in massive MIMO systems, m>> p.
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Figure 1. Massive MIMO system.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1


http://creativecommons.org/licenses/by/3.0

XXI1I' World Congress of the International Measurement Confederation (IMEKO 2018) I0P Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1065 (2018) 212016 ~ doi:10.1088/1742-6596/1065/21/212016

We assume that the channel is quasi-static. Training symbols known to both the transmitter and
receiver are inserted at the start of each frame to assist with channel estimation. The receiver then
applies this input-output data to the MOESP fractional-order subspace algorithm to estimate the
massive MIMO channel. The following assumptions are necessary for system identification: The
system is persistently excited by the training symbols. The system is stable, observable and

controllable. The dimension of matrix 4 as in (2) is known, and rank(D) =n, where n is the order of

the system. Lastly, the random noise is irrelevant to the input signal.
The received signal is expressed as:
y=Hu+n (1)

where y is the px1 received signal vector, u is the m x1 transmitted signal vector, H isthe pxm
Rayleigh fading channel matrix and n~CN (O,NOI p) is the px1 additive white Gaussian noise

vector at the receiver side, with N, being the noise power and I, is the px p identity matrix. We
consider flat Rayleigh fading in which the fading coefficients are assumed to be independent and
identically distributed (i.i.d.) and circularly symmetric Gaussian random variables with zero mean and
unit variance, CN(0,1).

3. System identification using the MOESP fractional-order model
The dynamics of the massive multiple-input multiple-output linear-time invariant (MIMO LTI) system
can be modelled using fractional-order state-space model and (1) can be expressed as [6]:

D x(t) = Ax(1) + Bu(1) , y()=Cx(1)+ Du() 2

where x(#) is the nx1 state vector, u(z) is the mx1 input vector, y(?) is the px1 output vector, 4
is the nxn system matrix, B is the nxm control matrix, C is the pxn output matrix, D is the
pxm feed-forward matrix and o is the commensurate fractional-order. It is important to know if a
fractional-order system is stable or not, and a fractional-order system is stable if 0<a <2 and
|arg(/1k )|>a7r/ 2 and —-7w<arg(4, )<z where 4, corresponds to the k-th eigenvalue of A [7].

Taking the Laplace transform of (2) the transfer function of the system is written as:

G(s):II;LS;=C(s“1—A)IB+D 3)

(s

Since the continuous-time state-space representation of commensurate fractional-order systems is
similar to that of integer-order systems, the analysis of the MOESP fractional-order model will follow
that of the classical MOESP model as proposed in [6]. For simplicity, we ignore the effects of the
additive noise and after several « -order fractional derivatives of (2) we obtain:

@ Cc D 0 0 u(1)
D y(t CcA CB D e 0| Dt
YO A s S ()
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which can be written as:
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where T', e R”" and Q e R”™ are the observability and controllability matrices respectively, and
the dimensions of y,(¢)eR” and u,(t)eR™. T, plays a great role in finding matrices 4, B, C
and D from which the transfer function of the identified system is then derived.

Unlike integer-order systems where subspace methods can be directly used to find I', by

employing simple mathematical tools such as singular value decomposition (SVD), in fractional-order
systems, (5) first has to be transformed after which the mathematical tools can then be applied to the

transformed equation to find T',. If we choose a sampling time of, 7, and setting y, (k)2 y,(kT,) and

)

u, (k)2 u,(kT,), we can write:

Y[,M=[yi(1) yi(z) y[(M):l7l]i,M=|:ui(1) ui(2) ui(M)]’X=|:x(1) x(2) x(M)]
From the above expressions, (5) can then be transformed into the following equation:
Yi,M =X+ QUIM (6)

where (6) is the transformed equation of (5), to which the MOESP algorithm and SVD are then
applied to determine an estimate of I', from which the estimates of 4, B, C and D can then be

obtained according to [6]. In the practical sense, transfer functions such as (3) are not easy to
implement, and this has led to the rise in rational transfer functions that can be used to approximate
these fractional-order transfer functions. This means that whenever we have a fractional-order transfer
function in system identification there is need to replace it with an easier to handle approximate
rational transfer function. The following section deals with the approximate rational transfer function.

3.1. Fractional-order realisation

In the current work an equivalent continuous-time rational model obtained from approximating a
fractional-order differentiation operator by a rational one is used to get the fractional-order model
output. The fractional behaviour of systems is usually limited within a specific frequency range, i.e.
lower frequency and upper frequency denoted as (a)L,wH) [7]. The lower frequency is limited by the

input data spectrum, whilst the upper frequency is limited by the sampling period. Thus fractional-
order systems must have the same dynamics as their approximated continuous-time rational
counterparts within that specific frequency range. In this paper we consider the Oustaloup’s
realisation.

4. Results

We present the simulation results to demonstrate the performance of the classical MOESP and the
fractional-order MOESP algorithms in the identification of a massive MIMO system. The massive
MIMO system was modelled to have the base station equipped with m =100 transmitting antenna
elements and the terminal to have p =1 receiving antenna element. A chirp signal with frequency

ranging from 0 to 20Hz, sampling frequency 1kHz is used for training. The channel is a Rayleigh
fading channel. The classical MOESP algorithm is applied to the input-output data to obtain the
integer-order transfer functions for different system orders. Figure 2 compares the actual system and
MOESP estimated system outputs for (a) n=1, (b) n=2,(c) n=3 and (d) n=4. It can be seen that
their performance improves as the system order increases up to order three, but then the performance
reverts to being poor at the fourth order. This is to show that integer-order MOESP algorithms may not
be able to sufficiently model the dynamics of the massive MIMO system. We again modelled the same
massive MIMO system but this time using the fractional-order MOESP algorithm. Figure 2 (e)
compares the actual system and fractional-order MOESP estimated system outputs after applying the
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Oustaloup’s realisation. It can be seen that there is improvement in the performance of the fractional-
order MOESP estimated model compared to the integer-order MOESP estimated model.
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Figure 2. Massive MIMO actual system output and MOESP estimated system output for integer-
order (a) n=1, (b) n=2, (c) n=3 and (d) n=4. (¢) Massive MIMO actual system output and
fractional-order MOESP estimated system output for fractional-order o =0.1 within the frequency
range (@, ,w, )=(20,1000) and system initialised with order n=1.

5. Conclusion

We were able to perform massive MIMO system identification using the classical MOESP and
fractional-order MOESP algorithms. The classical MOESP algorithm showed some improvement with
increase in system order but then the performance degraded on the fourth order. We then extended the
identification algorithm to the fractional-order MOESP algorithm, where it was shown to outperform
the classical MOESP algorithm. These set of results show that the fractional-order MOESP algorithm
can be one of the techniques used for channel estimation in massive MIMO systems.
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