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Abstract 20 

We may be able to estimate indirectly the role of insects in ecological processes, but without a good 21 

knowledge of the identity and life history of the species involved, our conclusions may be rather 22 

subjective. In this essay, we explore the implications of ignoring the identity and traits of insects in the 23 

context of the mechanistic drivers of the Janzen-Connell hypothesis (JCH). Research inspired by the JCH 24 

represents a significant body of ecological literature and proposes an explanation for the coexistence of 25 

tree species in diverse tropical forests. Studies that have assessed the role of specific insect species in 26 

causing patterns consistent with the predictions of the JCH tend to be biased towards the Neotropics, open 27 

forests, palms or leguminous trees, bruchine beetles and leaf-chewing insects. Scrutiny of other study 28 

systems is urgently needed before we can make sweeping conclusions about the generality of Janzen-29 

Connell effects induced specifically by insects. Potential engineers of Janzen-Connell effects may include 30 

pre and post-dispersal seed predators, ants removing seeds, vectors of phytopathogens such as sap-31 

sucking insects, and insects able to damage meristems or to completely defoliate seedlings. We conclude 32 

that Janzen-Connell effects mediated by insects in tropical rainforests appear to be less likely to be driven 33 

by contagion of host-specific species from parent trees to seedlings, but more likely via a combination of 34 

escape of seeds from pre-dispersal attack, and attack of seedlings by generalist herbivores in the forest 35 

understorey, possibly aggravated by transmission of diseases by insect vectors. 36 

Key words: insect-plant interactions, rainforest, seed, seed predator, seedling. 37 

 38 

In 1987, in the first issue of Conservation Biology, Edward O. Wilson wrote about the “little things that 39 

run the world” – the importance and conservation of insects (Wilson, 1987). Readers of Insect 40 

Conservation and Diversity will no doubt be very familiar with the concept. Sadly, however, this 41 

perception is not as widely shared among the rest of the scientific community as it should be, and insects 42 

are still comparatively neglected as a prime focus of scientific investigations. 43 
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For instance, if we look at the Thompson-Reuter impact factors (IF) of specialized scientific journals for 44 

2017 (http://jcr.incites.thomsonreuters.com/JCRJournalHomeAction.action?year=&edition=&journal=#), 45 

the highest ranked journal dedicated to entomology, Annual Review of Entomology (IF=13.860), is ranked 46 

139th out of 122,271 journals. In comparison, our botanical colleagues fare somewhat better, with the 47 

highest ranked journal in plant sciences, Annual Review of Plant Biology (IF=18.172), ranked 83rd 48 

overall. Insect Conservation and Diversity continues to be among the top journals in entomology 49 

(IF=2.091; ranked 14th), but overall is ranked 4,549th among the journals evaluated by Thompson-Reuter. 50 

There is certainly room for improvement, of course, but in general this reflects the large difference in the 51 

scale of endeavour across different scientific disciplines. Part of this challenge may be related to an 52 

imbalance in the ratio of funding afforded to invertebrate studies (Leather, 2009). 53 

We entomologists are acutely aware of inherent biases in conservation research. Vertebrate studies 54 

dominate the field (69% of papers versus 3% of described species) while invertebrate studies lag far 55 

behind (11% of papers versus 79% of species: Clark & May, 2002). This taxonomic chauvinism has been 56 

commented on and lamented upon many times (e.g. Leather, 2009 and references therein), including in 57 

one of our previous editorials (Leather et al., 2008). Moreover, current trends show no signs of 58 

improvement (Titley et al., 2017), and the imbalance against insect studies is becoming even more 59 

pronounced in tropical countries (Titley et al., 2017), where recent estimates suggest over 25,000 60 

arthropod species occurring in just a few hectares of tropical rainforest (Basset et al., 2012). 61 

But these issues may not even be the most serious cause for concern. We argue here that the neglect of 62 

insects as study organisms has led to serious bias in our understanding of the functional ecology of 63 

ecosystems. In other words, ignorance of the identity and role of insects in ecosystems may seriously 64 

impede conclusions related to the true contribution that insects make to ecosystem functionality (Weisser 65 

& Siemann, 2008). We may be able to estimate indirectly the role of insects in ecological processes, but 66 

without a good knowledge of the identity and life history of the species responsible for these processes, 67 

http://jcr.incites.thomsonreuters.com/JCRJournalHomeAction.action?year=&edition=&journal=
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our conclusions may be rather subjective. “Knowing the players” is therefore crucial for sound studies of 68 

the effects of insects on ecosystem functioning (Schmitz, 2008). 69 

This situation is particularly obvious in studies of insect-plant interactions (or should we say in this 70 

instance “plant-insect interactions”?), which represents a significant field of ecological research in its own 71 

right (Calatayud et al., 2018). Many plant science researchers in this field simply seem to ignore the 72 

identity and diversity of the types of insect species doing the work. For instance, given the difficulty in 73 

evaluating damage caused by sap-sucking insects, most studies of herbivory (leaf damage) only focus on 74 

the action of leaf-chewing insects. This is very evident in studies on herbivory carried out in tropical 75 

forests (e.g. Coley & Barone, 1996). Nevertheless, detailed studies have shown that the occurrence of sap-76 

sucking insects on rainforest plants is by no means trivial (Novotny & Basset, 1998; Dem et al., 2013). 77 

Since these insects can be vectors of important plant diseases (Denno & Perfect, 2012), they could have a 78 

significant effect on rates of mortality of their hosts. In addition, most of the “plant-insect” literature has 79 

focused on insects feeding on leaves. Much less is known about the identities and roles of insects 80 

attacking other plant parts (e.g., flowers, fruits, roots, stems). 81 

Another important issue is the estimation of herbivory caused by leaf-chewing insects in tropical 82 

rainforests. Botanists have been keen to measure the area of holes in leaves (review in Coley & Barone, 83 

1996) but few, if any, discuss the interpretation of their findings with regard to the identities and life 84 

histories of the main species responsible for leaf damage. Total leaf damage rates are often assumed to be 85 

correlated with insect species richness, abundance or biomass (e.g., Coley, 1983, discussing the spatial 86 

distribution of herbivory). The handful of studies that have, however, considered insect identity and 87 

associated variables (abundance, species richness, biomass) all concluded that leaf damage is likely to 88 

depend on the feeding behaviour of a few dominant leaf-chewing species and this may complicate the 89 

interpretation of results obtained in herbivory studies focusing on community-level patterns (e.g., 90 

Marquis, 1991; Basset & Höft, 1994). We know that the major impact of herbivores on plants, 91 

particularly in rainforests, is driven by relatively few insect species, because most of the rest are relatively 92 
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rare and their action restricted in time (Owen, 1983; Bernays & Graham, 1988). Thus, while overall 93 

herbivory rates may be an important correlate of plant fitness, it gives us few clues about the distribution 94 

and feeding preferences of the species responsible for the leaf damage. 95 

In this essay, we briefly explore the implications of ignoring the identity and traits of insects in the 96 

context of another research topic popular among our botanical colleagues, the Janzen-Connell hypothesis, 97 

JCH (Janzen, 1970; Connell, 1971). The JCH proposes an explanation for the coexistence of tree species 98 

in diverse tropical forests. Seeds are most likely to disperse to sites close to their parent trees, but this is 99 

also where they are likely to be most frequently attacked by host-specific enemies such as insects and 100 

pathogens that might aggregate near the parent trees. By contrast, seeds and seedlings that do manage to 101 

disperse further away from the parent tree are more likely to survive due to escape from enemies. In other 102 

words, conspecific negative density-dependent survival results from the proliferation of species-specific 103 

herbivores and pathogens on hosts in areas of high conspecific plant densities, giving a negative 104 

correlation between relative pest attack rate and distance from parent trees to their nearby offspring 105 

(Janzen, 1970; Connell, 1971; Comita et al., 2010; Bagchi et al., 2014).  106 

In the seminal paper by Janzen (1970), few examples of insect species responsible for negative density-107 

dependence among rainforest plants are provided, but this information may be gathered from subsequent 108 

papers, along with more recent studies (Table 1). Most of the studies concerned with Janzen-Connell 109 

effects pay little attention to the identity of insects potentially able to induce such effects (reviews in 110 

Clark & Clark, 1984; Hammond & Brown, 1998; Carson et al., 2008; Comita et al., 2014: 63 studies 111 

considered). The compilation in Table 1 indicates that most studies that have assessed the role of specific 112 

insect species in causing patterns consistent with the predictions of the JCH were performed in the 113 

Neotropics (only one study originated from the Old World tropics), in rather open forests, savanna or 114 

even open pastures, targeted seeds over seedlings, often included palm or leguminous trees (64 % of 115 

cases) and the main species responsible for Janzen-Connell effects were often bruchine beetles. One 116 

might be tempted to think that many of these study systems were perhaps selected for the ease of studying 117 
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large seed crops attacked by noticeable seed predators. What is clear, is that more studies targeting closed 118 

tall forests, and trees from other plant families and their seedlings are urgently needed before we can 119 

make sweeping conclusions about the generality of Janzen-Connell effects induced specifically by 120 

insects. 121 

Another bias that is obvious from the studies listed in Table 1 is the almost exclusive focus on chewing 122 

insects attacking either seeds or seedlings. The only exception is an influential paper by Janzen in which 123 

he reports on the effects of an external-feeding sap-sucking bug on seeds of Sterculia apetala (Janzen, 124 

1972a). Seed bugs (Lygaeidae and related families) are renowned as potentially important seed predators 125 

in the tropics (Slater, 1972 and references therein). Hence, it is also clear that if we are serious about 126 

evaluating potential Janzen-Connell effects induced by insects, it is imperative to pay more attention to 127 

the guild of externally seed- and fruit-sucking insects in rainforests. Janzen’s study on seed mortality by 128 

seed-sucking bugs on Sterculia apetala also illustrates another potentially important point. Since the 129 

externally sap-sucking bug studied by Janzen may transmit a pathogenic fungus to the host tree (Janzen, 130 

1972a), the ultimate cause of seed mortality might appear to be caused by a seed pathogen rather than by 131 

an insect. This illustrates the need to consider the synergy between insects and pathogens. 132 

As discussed by Carson et al. (2008), the JCH is ultimately a plant community-level hypothesis, but all 133 

the studies reported in Table 1 targeted a single plant species. While research within the framework of the 134 

JCH has mostly been conducted on enemies that attack seeds and seedlings that have already dispersed 135 

from the mother plant, Janzen (1970) also suggested that coexistence of plant species in tropical forests 136 

could also be promoted by pre-dispersal seed enemies (i.e., enemies attacking developing or mature seeds 137 

in the canopy). Gripenberg (2018), in stressing the need to pay attention to attack by pre-dispersal seed 138 

enemies, reviewed the studies that have assessed the pattern of insect seed predation in tropical forest 139 

plant communities. To date, this includes only 15 studies world-wide, from which just two thirds provide 140 

hard data about insects. Again, currently available data are so limited that we lack the necessary insect 141 
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background to discuss adequately the contribution of insects to Janzen-Connell effects in tropical 142 

rainforests. 143 

What can we gain from knowing the identity and ecology of insects in studies of negative-density 144 

dependence in tropical rainforests? Primarily this includes information on patterns of host use 145 

(specificity) by specific insect species; information on whether the same insect species tend to feed on 146 

adult foliage and seedlings; and spatial patterns of foraging by insects. To address some of these issues 147 

briefly, we need to consider the separate effects of insects feeding on seeds versus seedlings. 148 

We know that most insects attacking seeds in rainforests are highly host specific (Janzen, 1980; Ctvrtecka 149 

et al., 2014; Gripenberg, 2018), in accordance with the expectations of the JCH. What is less well known 150 

is the degree of spatial contagion of seed predators near parent trees, which may depend on the ecology of 151 

species considered. For example, Janzen (1975b) reported that two species of bruchine beetles are host 152 

specific to the seeds of Guazuma ulmifolia in Costa Rica, with one being a pre-dispersal seed predator 153 

attacking the seeds on the tree, while the other exclusively attacks the mature seeds after they have fallen 154 

to the ground. Hence, the identity and ecology of insect species is crucial to fully understand patterns of 155 

pre- and post-dispersal seed attack and any resulting effects on plant fitness and patterns of recruitment. 156 

Even if the assumptions of host specificity and contagion near the parent trees are met, this does not 157 

imply that Janzen-Connell effects related to seeds may be pervasive. Insects need to subsist at minimum 158 

densities on their hosts in order to induce significant plant mortality. For example, in the forests of New 159 

Guinea 95% of the woody plant species sampled for seed-eating weevil and lepidopteran assemblages had 160 

low rates of seed infestation (Ctvrtecka et al., 2014; Sam et al., 2017). Here, a recognition of the main 161 

insect species and estimation of their infestation rates in seeds is needed before assessing possible Janzen-162 

Connell effects induced by insects. 163 

Overlooking even the higher taxa of insects responsible for seed damage may lead to ambiguous 164 

interpretation of results. For example, Bruchinae are often host-specific on seeds of Fabaceae in the 165 
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Neotropics (Janzen, 1980), whereas they are almost totally replaced by several less host-specific weevil 166 

subfamilies in the Old World (Ctvrtecka et al., 2014; Basset et al, 2018). The potential for Bruchinae to 167 

induce Janzen-Connell on their fabaceaous hosts is thus much higher than for weevils of the Old World, 168 

as suggested by Table 1. Furthermore, botanists pay considerable attention to plant phylogeny in studies 169 

of JCH, but they should also take note of plant traits that may explain oviposition patterns of insects 170 

attacking seeds, which are not necessarily related to plant phylogeny. One of the most important traits in 171 

this regard may be the degree of fleshiness of the fruit (Sam et al., 2017; Basset et al., 2018; C. Dahl et 172 

al., unpublished data). When assessing the contributions of insects to Janzen-Connell effects, it is also 173 

important to have good insights into the feeding ecology of different taxa. Even in relatively well-known 174 

Lepidoptera, it can be difficult to separate the seed predator species from pulp eaters or scavengers. 175 

Several taxa that are often considered to be scavengers also contain lineages with other life history 176 

strategies, such as in the Tineidae (Robinson, 2009), so precise identification of insects reared from seeds 177 

or fruits is crucial. 178 

If we now turn our attention to seedlings, there are very few community-wide studies of insect herbivores 179 

attacking seedlings in tropical rainforests. Twenty years ago, one study in Guyana concluded that free 180 

living species attacking seedlings persisted at very low densities, were often generalists, and that Janzen-181 

Connell effects mediated by insects feeding on seedlings were, consequently, unlikely to exist in the 182 

system studied (Basset, 1999). We now know that the lack of host specificity (particularly for insects 183 

feeding on seedlings) does not necessarily invalidate their potential contribution to plant species 184 

coexistence, as negative density dependence may also be generated by the action of generalist herbivores 185 

if they tend to be attracted to areas of high conspecific plant density (Lewis & Gripenberg, 2008). 186 

Regarding contagion from parent trees, we have noted that insect species responsible for Janzen-Connell 187 

effects were often studied in rather open forest or pastures (Table 1), and less so in closed tall forests. In 188 

fact, in these forests, where presumably Janzen-Connell effects induce high local diversity of trees 189 

(Janzen, 1970; Connell, 1971), contagion of insect herbivores from the parent trees to seedlings has rarely 190 
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been demonstrated. This may be because the biotic and abiotic conditions experienced in the canopy 191 

versus understorey of forests are strikingly different, resulting in different suites of free-living herbivores 192 

attacking plants in these two strata. These differences have been observed both at the level of host plant 193 

species (e.g., Basset, 2001) and the plant community as a whole (Basset et al., 2015). 194 

There may of course be exceptions and they are more likely to involve endophagous insects (stem borers, 195 

gallers, miners) than ectophagous insects, because external conditions induced by the forest strata may be 196 

buffered to some extent by microclimatic conditions inside the host tissues. Nevertheless, the proportion 197 

of host tree species studied that supported the same insect species of either gallers or miners in both the 198 

canopy and understorey in one Panamanian wet forest was low and amounted to only 6% (out of 18 199 

species: Medianero et al., 2003). Under these conditions, contagion of insect herbivores from parent trees 200 

to seedlings is likely to be rather uncommon in closed tall rainforests. 201 

Despite claims that in some instances signs of leaf damage can be unequivocally assigned to particular 202 

insect species (Barone, 2000; Downey et al., 2018), in our experience it is nearly impossible to do so for 203 

the vast majority of the diverse insect species feeding on the leaves of tropical trees and seedlings, 204 

particularly in the case of generalist species. This greatly impedes our ability to investigate the causal 205 

mechanisms of negative density dependence in seedlings of tropical rainforests. Moreover, one recent 206 

study suggested that the amount and categories of herbivore damage on rainforest seedlings may even 207 

differ between continents. For example, the percentage of damage on seedlings that could be assigned to 208 

insects represented 56%, 78% and 85% of observations in rainforests in Panama, Thailand and Papua 209 

New Guinea, respectively (Y. Basset et al., unpubl. data). Identifying the main herbivore species 210 

responsible for such variation in herbivory (at least leaf-chewing herbivory) is crucial. And, of course, the 211 

degree to which seedlings of different plant species can tolerate differing levels of herbivory before 212 

Janzen-Connell effects are triggered is an open question. 213 
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If we do entertain the idea that at least some insect species are responsible for some examples of negative 214 

density-dependence observed in rainforests (review in Comita et al., 2010), then which taxa are most 215 

likely to be responsible for these effects? If we consider post-dispersal attack of seeds fallen on the 216 

ground, then highly host-specific Bruchinae (Janzen, 1980) and perhaps certain Curculionidae (Pinzón-217 

Navarro et al., 2010) may fit the bill, although many species may only be involved in pre-dispersal attack. 218 

We should also not underestimate ants as seed removers in rainforests (Ruzi et al., 2017), and therefore as 219 

possible engineers of Janzen-Connell effects. Insect herbivores attacking seedlings in rainforests involve 220 

many taxa (Basset & Charles, 2000). Leaf-chewing insects are often represented by Chrysomelidae, leaf-221 

feeding weevils (Entiminae), but Lepidoptera larvae are relatively rare on seedlings (e.g., 6% of the total 222 

insect individuals collected in Basset & Charles, 2000). Orthoptera and Phasmatodea are also rather 223 

infrequent, at least during day-time censuses (Basset & Charles, 2000). The low incidence of most of 224 

these insects on seedlings (Basset, 1999) makes them unlikely candidates to successfully induce Janzen-225 

Connell effects, but exceptions may exist. Further cases of insects notoriously dangerous for the survival 226 

of seedlings are worth discussing briefly. 227 

First, the action of potential vectors of phytopathogens needs to be quantified and understood. This 228 

includes, for example, xylem-feeding and generalist Cicadellinae, which are common as nymphs and 229 

adults in the understorey of tropical rainforests, and are able to transmit phytopathogenic viruses (Nielson, 230 

1986). Additionally, this may involve adult weevils (for example Conotrachelus spp.) or bark beetles, 231 

which attack seeds at the larval stage and perform maturation feeding on seedlings as adults (Basset & 232 

Charles, 2000). In this situation, they may transmit pathogenic fungi, as for example in the case of Dutch 233 

elm disease (Martin et al., 2018). Second, insects damaging meristems may be particularly threatening, 234 

such as one erebid moth decapitating seedlings in Costa Rica (Janzen, 1971b). In Panama, this category of 235 

damage represents nearly 20% of all observations of seedlings damaged in a community study (Y. Basset 236 

et al., unpubl. data). Lepidopterous stem borers may also damage meristems but this group is far less 237 

diverse than free-feeding caterpillars, so it may be relatively easy to quantify their effects on particular 238 
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host species (e.g., Sullivan, 2003). Last, insects able to completely defoliate seedlings are also of concern. 239 

This may include outbreaks of host-specific Lepidoptera (Barone, 2000), but this situation is rather rare in 240 

tropical rainforests. Large generalist caterpillars such as Saturniidae (Hartnett et al., 2012) may be worth 241 

investigating in this context. 242 

In conclusion, Janzen-Connell effects mediated by insects in tropical rainforests appear to be less likely 243 

by contagion of host-specific species from parent trees to seedlings, but more likely via a combination of 244 

escape of seeds from pre-dispersal attack (Lawson et al., 2012), and attack of seedlings by generalist 245 

herbivores in the forest understorey, possibly aggravated by transmission of diseases by insect vectors. To 246 

collect and identify the culprits of damage is challenging, particularly on seedlings, because generalists 247 

may subsist at low densities (Basset, 1999) or specialists may have elusive behaviours. For example, 248 

Janzen (1971b), estimated that on average just 10 minutes were necessary for an erebid moth to decapitate 249 

one seedling before walking off, rendering any direct census of caterpillars in this study system very 250 

difficult. Elegant experiments with insecticide or exclusion of insect herbivores may help us to quantify 251 

the action of insect herbivores more effectively (e.g., Bagchi et al., 2014) and those results should be 252 

coupled with good old-fashioned natural history observations, or with observations acquired with new 253 

technologies. For example, the metabarcoding of the gut of potential insect herbivores (e.g., García-254 

Robledo et al., 2013) or automatic detection of insect activity (e.g., Reynolds & Riley, 2002) on 255 

seedlings, particularly at night, appear to be promising opportunities in this context. Further, such studies 256 

may be performed at locations where extensive vegetation data, including the basal area, spatial location 257 

and seed production of parent trees, may be available, such as in the ForestGEO network of permanent 258 

forest plots (Anderson‐Teixeira et al., 2015; Basset et al., 2018). New tools, such as DNA barcoding, are 259 

now available to assist with rapid and accurate identification of insect species (Miller, 2014), including 260 

the BIN clustering algorithm and interim nomenclature system, which facilitates forming putative species 261 

concepts and communicating about them (Schindel & Miller, 2010; Ratnasingham & Hebert, 2013). 262 



12 
 

We hope that we may have convinced our non-entomologist readers, perhaps curious about the title of 263 

this essay, of the value of paying attention to the identity of insects potentially responsible for Janzen-264 

Connell effects in rainforests, and, to this effect, to collaborate with entomologists. Hopefully, some of 265 

our regular readers may also see better scope for collaboration with botanists or forest ecologists 266 

regarding this fascinating topic. 267 
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Table 1. Studies (listed in chronological order) in tropical rainforests that linked specific insect species to Janzen-Connell effects. 

Plant species Plant family Insect species Insect taxa Part attacked Reference 

Cassia grandis L. f. Fabaceae Pygiopachymerus lineola 

(Chevrolat, 1871) 

Zabrotes interstitialis 

(Chevrolat, 1871) 

Bruchinae 

 

Bruchinae 

Seeds 

 

Seeds 

Janzen, 1971a 

 

Janzen, 1971a 

Dioclea megacarpa 

Rolfe 

Fabaceae Caryedes brasiliensis 

(Thunberg, 1816) 

Bruchinae Seeds Janzen, 1971b 

  Unidentified Erebidae Seedlings Janzen, 1971b 

Sterculia apetala 

(Jacq.) H. Karst. 

Sterculiaceae Dysdercus fasciatus 

Signoret, 1861 

Pyrrhocoridae Seeds Janzen, 1972a 

Euterpe globosa 

C.F. Gaertn. 

Arecaceae Cocotrypes carpophagus 

(Hornung, 1842) 

Scolytinae Seeds Janzen, 1972b 

Attalea rostrata 

Oerst. 

Arecaceae Caryobruchus buscki 

Bridwell 1929 

Pachymerus sp. 

Bruchinae 

 

Bruchinae 

Seeds 

 

Seeds 

Wilson & Janzen, 1972 

 

Wilson & Janzen, 1972 

Spondias mombin L. Anacardiaceae Amblycerus sp. Bruchinae Seeds Janzen, 1975a 

Andira inermis 

(W. Wright) Kunth ex 

DC. 

Fabaceae Cleogonus spp. Curculionidae Seeds Janzen et al., 1976 

Attalea butyracea 

(Mutis ex L.f.) 

Wess.Boer 

Arecaceae Speciomerus giganteus 

(Chevrolat, 1877) 

Pachymerus cardo 

(Fåhraeus, 1839) 

Bruchinae 

 

Bruchinae 

Seeds 

 

Seeds 

Wright, 1983; Visser et al., 2011 

 

Wright, 1983; Visser et al., 2011 

Virola surinamensis 

(Rol. ex Rottb.) Warb. 

Myristicaceae Conotrachelus sp. Curculionidae Seeds Howe et al., 1985 

Copaifera pubiflora 

Benth. 

 

 

Fabaceae Apion sp. 

Rhinochenus brevicollis 

Chevrolat, 1871 

Unidentified 

Spermologus copaiferae 

Marshall, 1938 

Tricorynus herbarius 

(Gorham, 1883) 

Curculionidae 

Curculionidae 

 

Microlepidoptera 

Curculionidae 

 

Anobiidae 

Seeds 

Seeds 

 

Seeds 

Seeds 

 

Seeds 

Ramirez & Arroyo, 1987 

Ramirez & Arroyo, 1987 

 

Ramirez & Arroyo, 1987 

Ramirez & Arroyo, 1987 

 

Ramirez & Arroyo, 1987 

Acacia farnesiana Fabaceae Stator vachelliae Bruchinae Seeds Traveset, 1990 
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(L.) Willd. Bottimer, 1973 

Normanbya normanbyi 

(W. Hill) L.H. Bailey 

Arecaceae Coccotrypes sp. 

Unidentified (two spp.) 

Scolytinae 

Anisolabididae 

Seeds 

Seeds 

Lott et al., 1995 

Lott et al., 1995 

Chlorocardium rodiei 

(R.H. Schomb.) 

Rohwer, H.G. Richt. & 

van der Werff 

Lauraceae Stenoma catenifer 

Walsingham, 1912 

Sternobothrus sp. 

Stenomatidae 

Scolytinae 

Seeds 

Seeds+Seedlings 

Hammond et al., 1999 

Hammond et al., 1999 

Tabebuia ochracea 

(Cham.) Standl. 

Bignoniaceae Cromarcha stroudagnesia 

Solis, 2003 

Pyralidae Saplings Sullivan, 2003 

Cordia alliodora 

(Ruiz & Pav.) Oken 

Boraginaceae Ischnocodia annulus 

Fabricius, 1781 

Cassidinae Seedlings Downey et al., 2018 

      
 


