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Abstract 

Pollen Dispersal and Deposition (PDD) modelling has been instrumental in reconstructing 

historical vegetation in temperate regions but its application has been limited in the tropics 

where there is greatest uncertainty in past land cover change. Here, we apply PDD modelling 

to Amazonian savanna and forested ecosystems. Empirical pollen data from lakes situated in 

Southwestern Amazonia were used to calibrate the PDD model for a two-component 

landscape of forest and non-forest. The PDD model was then used to simulate pollen 

assemblages for different combinations of landscape arrangements (the Multiple Scenario 

Approach) that reflect possible anthropogenic and climate driven forest cover change in the 

late Holocene. We show that pollen records from large Amazonian lakes vary greatly in their 

sensitivity to forest loss depending on the baseline forest cover. Lakes in landscapes 

containing >80% forest will detect small reductions (5% of total cover), but this sensitivity 

degrades rapidly with forest cover loss. There are a wide range of uncertainties in pollen 

reconstructions from mosaic and ecotonal landscapes. In forest-savanna mosaics, large 

reductions of forest cover could be undetectable through the pollen record. In ecotonal 

landscapes, the relationship between forest cover and its representation in the pollen record 

rapidly weakens with increasing distance from the forest boundary. Further application of 

PDD modelling in combination with the Multiple Scenario Approach can address the 

uncertainties in pollen-based reconstructions of past land cover in the tropics, but require 

further investment and development. 

 

Keywords: Amazonia, Forest clearance, Multiple Scenario Approach, Palaeoecology, 

Pollen Dispersal and Deposition Models, Pre-Columbian Impact 
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Introduction 

Pollen analysis is perhaps the most effective tool available to reconstruct past vegetation 

cover and it is applied globally.  From vegetation reconstructions based on fossil pollen 

assemblages, researchers have determined historical biogeography and the climatic and 

human drivers of vegetation turnover in biomes from the tropics to the poles (e.g., Jackson et 

al., 1997; Brubaker et al., 2005; Gaillard et al., 2010; Flantua et al., 2016). Conventionally, 

pollen results are interpreted qualitatively and narratively, but in recent decades advances in 

modelling techniques have enabled palaeoecologists to derive spatially explicit 

reconstructions of land cover from relative abundances of different pollen types retrieved 

from peats and sediments (Gaillard et al., 2010; Trondman et al., 2015).  In particular, Pollen 

Dispersal and Deposition (PDD) models, linking vegetation cover and pollen influx in lakes, 

have been instrumental in quantifying past land cover from European pollen records (Sugita, 

2007; Gaillard et al., 2008b, 2008a; Trondman et al., 2015), including prehistoric human-

modified landscapes (Brostrom et al., 2008; Gaillard et al., 2008a; Tipping et al., 2009). The 

enormous potential of these quantitative reconstruction methods have been harnessed by a 

wide group of users, such as the international working groups PAGES Landcover6k (Gaillard 

& LandCover6k Steering Group Members, 2015), which aims to develop historical land 

cover maps using these methods for the entire globe. Used in conjunction with the Multiple 

Scenario Approach (MSA) (Bunting & Middleton, 2009), where pollen deposition in a lake is 

simulated for a variety of synthetic landscapes that represent a range of possible 

configurations (Tipping et al., 2009), PDD models can provide powerful insights into how 

fossil pollen records might vary as a result of both changes in relative forest cover and 

patterning of vegetation mosaics of landscapes.  

 

PDD reconstruction and simulation methods, however, are undeveloped in most tropical 

regions, where we also have fewest pollen records and consequently the biggest knowledge 

gaps around relative forest cover change due to human and climatic drivers.  Pollen trap data 

have been derived for a variety of tropical ecosystems and these have greatly improved our 

understanding of pollen-plant relationships (Bonnefille et al., 1999; Gosling et al., 2005, 

2009; Burn et al., 2010; Correa-Metrio et al., 2011; Julier et al., 2017). However, these 

studies rarely incorporate the spatially explicit plant distribution data that are required to 

calibrate the model for each vegetation type (e.g., Bunting et al., 2013), with a limited 

exception in Africa (Duffin & Bunting, 2008). Also, the PDD modelling approach differs in 

that it can be used to simulate pollen assemblages from vegetation communities, whereas 

pollen trap data studies use statistical methods to link empirical pollen data to the 

surrounding vegetation.  
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Many of the challenges facing palaeoecologists in applying PDD modelling to tropical 

regions are simply historical artefacts of limited calibration data.  Palaeoecologists and 

vegetation mappers have been gathering datasets in northern temperate regions for nearly a 

century, whereas vast tropical regions lack this legacy of intensive research endeavour. These 

challenges, however, need to be met to address some of the most pressing questions in 

tropical biogeography.  In Amazonia, in particular, discoveries of archaeological sites 

revealed because of recent deforestation (Mann, 2008; Pärssinen et al., 2009; Schaan, 2012; 

de Souza et al. 2018) have raised the possibility that pre-Columbian people once cleared large 

tracts of rainforest to build these features, although this model of land clearance is disputed in 

recent studies (McMichael et al., 2014; Watling et al., 2017).  Most of these insights into 

anthropogenic impacts on Amazonian forest have been gained through pollen analyses which 

have been narrative and qualitative in their interpretation (Bush et al., 2007, 2016; Urrego et 

al., 2013; Carson et al., 2014, 2015; Whitney et al., 2014; Brugger et al., 2016). Many of 

these sediment cores were extracted from large lakes (> 1 km radius), which are known in 

temperate regions to reflect a regional vegetation (ca. 104 - 105 km2) source, although this has 

not been confirmed for tropical ecosystems. The sensitivity of these records to forest 

clearance is uncertain, which has exacerbated the debate over the extent of pre-Columbian 

impact on Amazonian ecosystems (McMichael et al., 2012; Clement et al., 2015; Piperno et 

al., 2015).  

 

Here, we employ PDD modelling combined with the MSA to simulate pollen assemblages 

for a variety of landscape arrangements to link forest pollen percentages to changing forest 

cover in Amazonian landscapes.  The aims of this study are: (i) to determine the sensitivity of 

Amazonian pollen records from lake sediments to detecting change in forest cover; (ii) 

discuss the implications of the results for the interpretation of pollen records covering the 

archaeologically rich prehistoric period in Amazonia (ca. the last 2,000 years); and (iii) 

highlight the technical developments required to improve PDD modelling in tropical South 

America. 

 

Methods 

 

Geographical setting 

Southwestern Amazonia is a geo-ecologically diverse region, the landscapes of which are 

characterized by sharply delimited forest-savanna mosaics (Fig. 1) (Pouilly & Beck, 2004; 

Langstroth, 2011), including the Llanos de Moxos, an Amazonian sub-basin defined by 

poorly drained compacted sediments. The Llanos de Moxos is seasonally flooded, therefore 

forest occupies local areas of higher micro-relief and well-drained soils such as the outcrops 

of the Precambrian Shield and river levees, and savanna occupies lower areas. This 
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geomorphology creates a diverse mosaic landscape with sharply defined forest-savanna 

boundaries (Pouilly & Beck, 2004; Langstroth, 2011).  

 

The Llanos de Moxos and the wider southwestern Amazon region is immensely rich in 

archaeology, containing a diversity of Pre-Columbian earthwork structures (Erickson, 2006; 

Mann, 2008; Lombardo & Prümers, 2010; Schaan, 2012). Multiple palaeovegetation 

reconstructions in this region have been derived from sediment cores from large lakes (> 1 

km) (e.g., Mayle et al., 2000; Whitney et al., 2013; Carson et al., 2014) from which human- 

and climatically-driven vegetation change have been inferred, but the sensitivity of these 

records to detecting changes in forest cover is uncertain. Reconstructing past anthropogenic 

forest clearance in this region is further complicated by a backdrop of increasing precipitation 

that began in the mid to late Holocene (Mayle et al., 2000; Baker et al., 2001; Flantua et al., 

2016), which promoted the southward shift of the rainforest ecotone, the magnitude of which 

is unknown. Thus, disentangling what is climatic versus anthropogenically driven vegetation 

change is an unresolved question in the region (Maezumi et al., 2017).  PDD modelling using 

synthetic landscapes that represent a variety of possible forest versus open ground scenarios 

can constrain the range of pollen signals that would be expected from human (e.g., Tipping et 

al., 2009) and climatically driven climate change. 

 

Approach 

We calibrated a Pollen Dispersal and Deposition (PDD) model using a two-component 

(forest and non-forest) landscape in southwestern Amazonia, including the Llanos de Moxos 

(forest-savanna mosaic), and used this PDD model to constrain the range of uncertainty in 

pollen signals derived from large lakes. The Multiple Scenario Approach was employed to 

create synthetic landscapes to test the range of potential forest cover arrangements, reflecting 

both climate-driven ecotonal movement and past forest clearance. The following steps were 

undertaken to implement PDD modelling combined with the MSA in these landscapes: 

1. Reconfiguration of the PDD model in R to enable the application of the Multiple Scenario 

Approach using a two-component landscape. 

2. Selection of parameters suitable for Amazonian pollen and vegetation, based upon a 

review of existing literature on pollen-plant relationships. 

3. Configuration of modern pollen and vegetation cover calibration datasets to fit a two-

component landscape. 

4. Determination of the ‘Relative Pollen Productivity’ for each landscape component (model 

calibration) using a Maximum Likelihood Approach. 

5. Application of the calibrated PDD model to simulate pollen assemblages for lakes in a 

variety of synthetic landscapes arrangements. 

 

Step 1. Model configuration and assumptions 
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The model is well described elsewhere (Sugita, 1994; Bunting et al., 2004), but here we 

summarise briefly. Pollen loading (yik) of plant group (i) at a deposition site (or lake) (k) is 

modelled as  

 

yik = ∑ αi ψik   (Equation 1) 

 

where ψik is the distance-weighted land cover of plant group i calculated using a taxon-

specific weighting term incorporating parameters for atmospheric transport and for fall speed 

of pollen types and αi is the Relative Pollen Productivity of plant group i (Prentice, 1985; 

Sugita, 1994). PDD models simulate the pollen assemblage for a depositional environment, 

such as a lake surface or peat core, by summing the distance-weighted pollen production of 

pollen sources (i.e., the surrounding vegetation) in each landscape. We used the Sugita-

Prentice model (Prentice, 1985; Sugita, 1993, 1994) which simulates pollen influx in lakes 

without substantial inflowing streams, and is a derivation of the widely-used Gaussian plume 

particle deposition model (Sutton, 1953; Prentice, 1985).  It assumes neutral conditions for 

atmospheric mixing (Sugita, 2007) and assumes that most pollen is transported to the coring 

point by air flow above the plant canopy (Prentice, 1985), that the rate at which pollen grains 

settle out from the air is proportional to their sedimentation velocity (Prentice, 1985; Sugita, 

1994), and that there is total mixing of pollen within the water body (Sugita, 1993), all of 

which can reasonably be assumed in our study systems. The PDD models, at present, assume 

a single release height for pollen, but they have been successfully applied to reconstructing 

openness of vegetation elsewhere (Nielsen, 2004). Pollen deposition was simulated for every 

pixel assigned to ‘water’ within the lake body and the results were summed (after Bunting & 

Middleton, 2005).   

 

In many studies, the right hand term is divided into two components based on the distance of 

vegetation from the point where the pollen assemblage is forming, a local component from 

the basin edge to a defined distance, and a background component sourced from beyond that 

distance (Sugita, 1994, 2007). This was a computational necessity when work using this 

approach began, since the background component can be treated as a single constant term and 

therefore reduces the amount of calculations needed, but increases in available computing 

power allow us to simulate pollen loading from all relevant distances. We incorporated this 

regional background signal by using as large a landscape as was computationally feasible to 

ensure that the entire potential pollen source was included in the calibration. The maximum 

distance of 60 km from the lake centre encompasses the point at which the rate of change in 

pollen deposition approaches an asymptote (Fig. S1), beyond which changes in vegetation 

composition are not clearly registered in the pollen influx. Given that the ‘pollen source’ is an 

emergent property of the distance-weighting model chosen and the structure of the vegetation 
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mosaic modelled (Bunting et al., 2004), the use of large landscapes is a conservative 

approach because it does not assume a specific origin of the pollen. 

 

Step 2. Model Parameters 

Parameters required for PDD models include pollen fall speeds and wind speed.  Each 

component was represented in the simulated pollen loadings by a single taxon (forest = 

Moraceae; savanna/non-forest = Poaceae).  Wind-pollinated Moraceae dominates rainforest 

communities in SW Amazonia (ter Steege et al., 2013), reflected in the abundance of the 

Moraceae/Urticaceae morphotype in pollen rain records (>60%) (Gosling et al., 2005). This 

morphotype was therefore used as an appropriate surrogate for Amazonian rainforest.  The 

second component, non-forest or savanna, is represented by seasonally flooded savannas in 

the real landscape (Poaceae). The mean diameter of Moraceae/Urticaceae pollen as 

determined through morphological investigations of this pollen type (Burn & Mayle, 2008) 

was used to calculate a fall speed of 0.014 m/s using Stoke’s Law (Gregory, 1973). This 

value approximates the reported fall speed for Urtica (Jackson & Lyford, 1999), a 

morphologically similar pollen grain of the same taxonomic order (Urticales). Similarly, 

given that grasses dominate the savanna herbaceous layer, we have chosen to use the fall 

speed estimated for grass to represent our non-forest component (Gaillard et al., 2008b) 

(0.035 m/s).   

 

Different wind speeds were used for the calibration and experimental simulations. Wind 

speeds were extracted from the University of East Anglia's Climate Research Unit (CRU) 

dataset (New et al., 2000). The CRU dataset provides estimates of averaged wind speed 

between 1961 and 1990, which approximates the temporal resolution of the topmost 1-cm 

lake sediment analyzed for modern pollen. Most PDD modelling experiments use values of 

3-4 m/s (Sugita et al., 1999; Bunting et al., 2004; Brostrom et al., 2008; Hellman et al., 2008). 

Model calibration was achieved using site (lake) specific modern wind speeds. For the 

simulation experiments, we used the mean Amazonian wind speed of 4.03 m/s and compared 

those findings to those using mean global wind speed (3.23 m/s). Given the wide range in 

pollen grain sizes, wind speed may have a marked effect on the findings.  

 

Step 3. Calibration datasets 

Input pollen data were derived from surface pollen assemblages of nine published lake sites 

located in southwestern Amazonia (Table 1) with the pollen summed into ‘forest’ or ‘non-

forest’ types.  Total forest pollen spans a wide range of values in the calibration lake surface 

pollen assemblages (14 – 80%). A large proportion of all forest pollen types in the forest 

calibration signal (54 - 87%) belong to the order Urticales (Cannabaceae, Urticaceae, 

Moraceae, Ulmaceae). Therefore, the two-component landscape approach that necessitated a 

single pollen morphotype being assigned to forest pollen was appropriate for these ecosystem 
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types. The few additional forest pollen types that were recovered from the calibration datasets 

were predominantly Alchornea, Gallesia and Acalypha, which have a similar size to Urticales 

(Roubik & Moreno, 1991). 

 

The mosaic landscape of SW Amazonia was classified into a two-component vegetation 

system (forest and non-forest). A similar highly simplified approach has been applied 

successfully to reconstruct past landscapes using PDDs in Denmark (Nielsen, 2004). This 

simplification of the landscape is appropriate for three reasons: (i) our questions concern 

relative cover of forest, not composition of different forest types; (ii) the most abundantly 

produced and well dispersed pollen types cannot be assigned to one forest type due to the 

ecological range of the contributing plant species, and the indicators of specific forest types 

occur in comparatively low abundance; and (iii) the two-class division captures the nature of 

the landscape in southwestern Amazonia in which the calibration sites are located when 

considered on a scale of ≥1 km2, with its sharp community boundaries and clearly delineated 

savanna (non-forest) and forest mosaic. Regional vegetation data were derived from the 

Hansen et al. (2013) global forest cover dataset (a 30 m resolution tree canopy cover map for 

the year 2000). A 30 m resolution was prohibitively computationally expensive; therefore, we 

averaged all pixels to a 200 m grid. Finally, we classified all pixels containing water bodies 

as non-pollen producing pixels.  

 

Step 4. Model Calibration 

PDD models require a measure of pollen productivity of the source plant(s) or vegetation 

type relative to base value, the ‘Relative Pollen Productivity’ (RPP).  A Maximum 

Likelihood approach was used to estimate the RPP of non-forest (savanna) relative to forest. 

Most empirical estimates of RPP are derived using the Extended R-value (ERV) approach 

(Parsons & Prentice, 1981; Prentice & Parsons, 1983), an iterative approach to parameter 

estimation developed for pollen-vegetation datasets with at least three taxa present. For our 

two-component system, a simpler approach could be used.   

 

For the Maximum Likelihood calculations, we fixed forest RPP at 1 and varied the value for 

non-forest RPP. Potential pollen productivity values of non-forest relative to forest (hereafter 

RPPf(s)) were varied through a geometric series (0.125 to 16) and compared to the calibration 

datasets. RPPs have been shown to vary greatly through space and time (Brostrom et al., 

2008; Duffin & Bunting, 2008; Mazier et al., 2012), even within a single study region. 

Therefore, providing a more precise measurement of RPP is unlikely to be ecologically 

meaningful (Andersen, 1970; Bunting et al., 2013). The pollen loadings for each lake pixel 

were then calculated for each potential RPPf(s) value using the approach described above and 

averaged across the lake to get a well mixed estimate of pollen deposition. Wind speeds 

specific to each lake site were used (New et al., 2000). The source vegetation was weighted 
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by the Sutton-Prentice model relative to the depositional site (Sugita, 1994). This approach 

provides a simple but robust means of calibration when only two taxa are considered, and 

allows us to include pollen count uncertainties, as determined using Maher’s method in 

Psimpoll 4.27 (Bennett, 2007) in the estimation of RPP. The likelihoods calculated for each 

calibration lake were summed for each potential RPPf(s) value. The maximum likelihood was 

obtained where RPPf(s) = 4; therefore, this value was then used for the landscape simulations 

(Fig. S2).  

 

Step 5. Simulation of Pollen Assemblages using MSA 

We created an ensemble of possible forest versus non-forest scenarios by generating 

clearances in synthetic landscapes that were designed to replicate potential landscape 

configurations in southwestern Amazonia. Forest pollen percentages were simulated in each 

synthetic landscape using the calibrated PDD model. To determine whether alterations in 

forest cover were detectable for a given scenario, changes in simulated forest pollen 

percentages needed to have exceeded the 95% confidence intervals on standard pollen counts 

from the calibration lakes in southwestern Amazonia (± 5 % Forest Pollen, calculated 

according to (Maher, 1972)).  The simulation experiments are as follows: Simulation I: Two 

landscape parameters were varied: (i) the total proportion of forest and (ii) the size of the 

forest ‘clearance’ (e.g. patch size) relative to the lake (Fig. 2 a,b). Simulation II: Two 

landscape parameters were varied: (i) the total proportion of forest and (ii) the position of the 

lake relative to the forest boundary (Fig. 2 c,d).  

 

The PDD model has been coded into R for this study (R v3.1.0, R Core Team, 2014). The R 

source code, GEORDIE-POLL (Generating Estimates Of Regional Deforestation In 

Ecosystems using POLLen), is available at https://github.com/lsmallma/GeordiePol.  

 

Results  

Model parameters and uncertainties 

The Relative Pollen Productivity (RPP) of savanna was determined to be approximately four 

times that of forest. The high RPP of savanna is unexpected given that modern pollen rain 

studies from traps situated in nearby rainforest and savanna ecosystems (Gosling et al., 2009; 

Burn et al., 2010; Jones et al., 2011) have demonstrated that forest pollen, specifically 

Moraceae, is over-represented in Amazonian pollen assemblages as determined through 

pollen representation factors (ratio of percent abundance of pollen taxon to abundance of 

source plant relative to total individuals in the sample plot, after Davis (1963)). Pollen traps 

set within forest capture a large proportion of trunk space pollen (Jackson & Lyford, 1999), 

and will record gravity-deposited and insect-carried pollen, whilst the model used assumes 

only above-canopy pollen transport. In savanna, Moraceae stems are rare, but given that the 

vegetation canopy is open, and trap placement is above the herb layer, the trapped pollen will 
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contain less of the local component but more pollen transported originating from the closest 

forest canopies where Moraceae is abundant. Large lakes without substantial inflowing rivers 

are expected to receive pollen almost entirely from the above-canopy air transport route, and 

therefore do not behave like either of the trap situations considered. Pollen signatures differ 

depending on vegetation structure and depositional environment (e.g. Bunting 2008), and 

given that our research questions are concerned with the representation of forest pollen in 

large lakes, parameterising and using a model of above-canopy transport is the most 

appropriate option for our modelling approach.  

 

The influence of wind speed on Pollen Dispersal and Deposition (PDD) model outputs is 

shown in Fig. 3, where there is a significant difference in modelled pollen loading using 

mean Amazonian (4.03 m/s) and global (3.23 m/s) wind speeds for most clearance scenarios. 

The sensitivity of PDD modelling to this parameter, which is compounded by the broad range 

in grain size of Amazonian pollen, shows that wind speed can provide a considerable source 

of uncertainty in PDD modelling. Wind speed is difficult to estimate, especially in 

palaeoenvironmental contexts when climate systems were different to modern, but the trend 

is broadly similar for different wind speeds, showing that percent forest pollen is most under-

represented for mid-range forest cover, thus overall trends are useful for understanding the 

relationship between varying landscape composition and the pollen signal.  The results 

presented here provide minimum estimates of the uncertainties resulting from the ability of 

fossil pollen records to detect forest cover change; the true range of uncertainty is likely 

higher than that which is captured by these simulations (Fig. 3). 

 

Experimental results 

Simulation Experiment I (Fig. 3) shows that small changes in forest cover (ca. 5%) are more 

sensitively registered in a densely forested landscape (> 80% forest cover) than a partially 

forest covered one, thus large lakes (> 1 km diameter) in closed-canopy rainforest can detect 

low levels (> 5%) of forest clearance. The sensitivity to a small change degrades rapidly as 

overall forest cover levels decrease, resulting in a narrower range of simulated pollen 

assemblages, indicating that landscape patterning (spatial arrangement of forest versus non-

forest) at the scales modelled is not detected by large lakes in the model outputs in mosaic 

landscapes or partially cleared landscapes.  

 

Strikingly, almost half the arboreal cover in mosaic forest-savanna landscapes can be 

removed without influencing the pollen signal beyond the pollen count error. The highest 

variability in percent forest pollen among simulated pollen assemblages occurs for larger 

patch sizes (r = 2400 m) in landscape scenarios with mid-range forest cover (i.e., mosaic), yet 

percent forest pollen variability (ca. 8%) in these simulations is less than the count error of 
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the fossil pollen data (±5 %) (Maher, 1972) from large lake sites, thus the signal-to-noise 

ratio of the fossil pollen data is too low to detect these landscape changes.  

 

In the ecotone movement Simulation Experiment II (Fig. 4), the relationship between percent 

forest cover and percent forest pollen rapidly weakens with increasing distance of the lake 

from the forest boundary. For example, to achieve a 10% drop in forest pollen, a 30% 

reduction of closed-canopy rainforest is required when the lake is located at the boundary, but 

40% when the lake is 5 km away from the forest boundary. More importantly, however, 

simulation experiment II shows that various combinations of ecologically-distinct landscape 

arrangements can produce identical percentages of forest pollen, which highlights the 

problem of equifinality in the application of landscape reconstruction algorithms (e.g. Sugita, 

2007; Bunting & Middleton, 2009). For example, 5% clearance of closed-canopy rainforest 

where the lake is positioned at the forest boundary produces the same pollen signal as 40% 

clearance where the lake is located 20 km distant.  

 

Discussion 

The lack of quantitative pollen-based reconstructions of past vegetation cover has served to 

fuel the debate over the extent of Pre-Columbian impact in the Amazon (Clement et al., 2015; 

Piperno et al., 2015). Our simulation experiments show that pollen records from large lakes 

(> 1 km diameter) in closed-canopy rainforest are more sensitive to detecting forest clearance 

than similar sized lakes in forest-savannah mosaics. For these rainforest lakes, where there is 

palaeoecological evidence of crop cultivation (maize, manioc) and/or charcoal but no 

significant decline in percent forest pollen, forest clearance in the catchment will most likely 

have been minimal (< 5%), probably reflecting agroforestry practices and crop cultivation 

that maintains canopy structure (Clement et al., 2015), such as is demonstrated by Maezumi 

et al., (2017). We demonstrate that, although pollen records from these large rainforest lakes 

are, by and large, insensitive to detecting patterning (i.e., size of forest clearings) within the 

landscape, they are sensitive to detecting small changes (> 5%) in the overall proportion of 

forest vs non-forest, as long as the baseline catchment was predominantly forested. At 

present, the PDD modelling reflects the relative proportion of forest cover only; its use to 

determine potential human impact on forest composition, such as promotion of economically 

useful taxa, requires further calibration data and model development.  

 

The modelled outputs are corroborated by studies based on palaeobotanical and charcoal data 

that demonstrate human impact on relative forest cover was low in interfluve regions of 

western Amazonia (McMichael et al., 2012; Watling et al., 2017). Even where large 

Amazonian lake records have registered a substantial reduction in forest pollen (ca. 30%) 

associated with maize cultivation, such as at Lake Sauce in lowland Peru (Bush et al., 2016), 

the corresponding change in relative forest cover as determined through PDD modelling is 
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much lower (10 – 15%) than the pollen percentages alone would suggest. Our simulations, 

therefore, demonstrate that not only do palaeoecological records in western Amazonia point 

towards low impact on forest cover in prehistoric times (Bush et al., 2007, 2016; Urrego et 

al., 2013), pollen-based reconstructions in dense rainforest also provide the lowest 

uncertainty. 

 

By contrast, the simulations show that pollen records situated in mosaic and ecotonal regions 

can represent a broad range of scenarios in terms of relative cover of forest versus non-forest 

with similar percent forest pollen values. Given this high uncertainty associated with pollen 

records in these mosaic landscapes, we can only describe potential forest clearance, but 

equally, the forest could have been left intact, as argued for the Monumental Mound Region 

of the Llanos de Moxos by Whitney et al., (2013). Whilst our discussion of human impact in 

mosaic and ecotonal areas gives the impression of minor ‘edge effects’ on Amazonian 

rainforest, these regions represent a large portion of land surface. The forest-savanna mosaics 

of the Llanos de Moxos, Pantanal, and Gran Sabana cover a combined 400,000 km2, and are 

known major regions of past human habitation and landscape modification.  

 

Additionally, palaeoecological and palaeoclimatological evidence shows the extent of mosaic 

regions was likely far greater in the mid Holocene, as lower and more seasonal rainfall 

restricted the extent of rainforest in the southern margin of the Amazon catchment (Mayle et 

al., 2000; Baker et al., 2001; Carson et al., 2014) and may have promoted a greater extent of 

forest-savanna mosaic. The seasonal environments of southern Amazon coincide with 

archaeological evidence of large, complex prehistoric societies across the region (de Souza et 

al., 2018), and it is here that drier conditions during the mid Holocene are likely to have 

resulted in wider expanses of savanna and mosaic vegetation compared to modern (Mayle & 

Power, 2008). Our modelling results imply that as precipitation increased in southern 

Amazonia in the late Holocene, the sensitivity of pollen records to clearances would have 

increased as rainforest became established. Future investigations of human impacts on forest 

cover must consider how the sensitivity of lake pollen records varies with climatically-driven 

shifts in regional vegetation. The spatial extent of the changing position of the rainforest 

ecotone in the late Holocene, however, is poorly defined and considerably more 

palaeoenvironmental research is required to define both the natural and anthropogenic 

forcings of vegetation change in this vast region. PDD modelling can help to disentangle the 

climatic and anthropogenic influences on land cover, but a higher density of local-scale (ca. 

100 m radius) lake sites to pinpoint ecotone position and speed of movement is also required. 

 

The Sugita-Prentice model applied here reflects changes in the relative proportion of forest 

cover in a regional landscape. Alternative PDD models, such as Lagrangian Stochastic 

modelling, may have greater accuracy than the Sugita-Prentice model on regional scales 
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(Kuparinen et al., 2007; Theuerkauf et al., 2016), but requires specification of a greater 

number of atmospheric parameters which are likely to add more uncertainty in the outputs, 

especially for the South American tropics. Although this study describes a positive step 

forward in applying PDD modelling to tropical landscapes, greater efforts of collaboration, 

model development and modern vegetation-pollen data collection will be required to bring 

PDD modelling to lesser studied regions of the globe, such as Amazonia, to address some of 

the biggest questions in historical biogeography.  

 

Conclusions 

We have made many assumptions in our experimental design, such as simplifying the 

landscape to forest versus non-forest and creating all-or-nothing clearances in forest. Despite 

these simplifications, Pollen Dispersal and Deposition (PDD) modelling and the Multiple 

Scenario Approach (MSA) have shown they are potentially enormously powerful tools that 

can be used to identify and mitigate the uncertainties in pollen-based reconstructions and to 

make the best use of the records from cores from remote regions where their retrieval is time-

consuming and expensive. The MSA allows for the use of a priori landscape information 

generated through other proxy investigations to provide further constraints on the number of 

possible landscape scenarios (e.g., Tipping et al., 2009). Analysts can make use of 

environmental (e.g., soil fertility, water access, topography) and archaeological data (e.g., 

agricultural practice, population density) to constrain the range of possible landscape 

scenarios. The use of PDD modelling in advance of fieldwork allows palaeoecologists to test 

the sensitivity of target lake sites to hypothesized land cover change with the aim of assessing 

whether a record from the site can address the research questions of interest, thereby 

increasing the effectiveness of resource allocation. PDD modelling in Amazonia and other 

tropical regions, however, is a nascent field and requires investment and further collaboration 

in collecting calibration data, testing model outputs and further development for the particular 

characteristics of tropical ecosystems and landscapes. The combination of empirical pollen 

data, geographical information, and the Multiple Scenario Approach, shown here, can 

provide a very powerful tool to support collaboration between archaeologists and 

palaeoecologists for quantifying past human impact on rainforest across the little explored 

expanses of Amazonia. 
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Table 1. Locations and parameters of lakes used for calibrating the PDD model 
 

Lake 
 

Latitude 
(S) 

Longitude 
(W) 

Area 
(km2) 

Forest 
(%AP) 

lower 
95%  

upper 
95%  

Publication 

Laguna Azul 14°59'27" 64°48'45" 1.4 14.2 10.7 18.6 Jones et al., 2011 

Laguna Belen 14°27'28" 64°51'30" 3.4 14.2 10.7 18.6 Jones et al., 2011 

Laguna Suarez 14°52'51" 64°51'59" 6.7 23.1 18.7 28.2 Jones et al., 2011 

Laguna Cernandez 14°41'18" 64°45'55" 15.5 26.8 22.1 32.1 Jones et al., 2011 

Laguna Coitarama 14°30'10" 64°51'39" 5.8 25.1 20.5 30.3 Jones et al., 2011 

Laguna Isireri 14°59'27" 65°40'21" 18.9 71 65.6 75.8 Burn et al., 2010 

Laguna San Jose 14°56'28" 64°28'37" 16.0 28 23.2 33.3 Whitney et al., 2013 

Laguna Oricore 13°20’46” 63°31’30" 11.5 67 61.5 72.1 Carson et al., 2014 

Laguna Chaplin 14°28'30" 61°03'42" 8.1 80 75.1 84.1 Mayle et al., 2000; 
Burbridge et al., 
2004 

 

 

Figures 
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Figure 1: (a) Regional map of southwestern Amazonia, showing the southern limit of the 

Amazonian rainforest and the savanna-forest mosaic of the Llanos de Moxos. Forest cover 

dataset was derived from Hansen et al., (2013). Pixels were aggregated to 200m resolution 

and assigned to the forest category where they exceeded 30% cover, as is standard forest 

definition (Sexton et al., 2016).  
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Figure 2:  Examples of synthetic landscapes used for PDD modelling. For Simulation 

Experiment I, the proportion of forest cleared was varied for each landscape scenario. 

Example synthetic landscapes shown: (a) 20% landscape clearance and (b) 5% landscape 

clearance. For Simulation Experiment II, the position of the forest boundary relative to the 

lake was moved in 5 km increments, and for each ecotone position, proportion of forest 

cleared was also varied. (c) 50% clearance at 5 km and (d) 5% clearance at 10 km distance 

from forest boundary. In all simulations, clearances were made within forest in a two-

component landscape and pollen loading was simulated in a round large lake (r = 1200 m) 

positioned at the centre of each landscape. 
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Figure 3: Results of Simulation Experiment I for mean Amazonian (4.03 m/s) and Global 

(3.23 m/s) wind speeds. Clearance patches were randomly generated and repeated 1000 times 

to estimate uncertainty. Clearance patch size areas were varied relative to the lake surface 

area; (black) half lake size; (grey) equal to lake size; (light grey) twice lake size.  

 

Figure 4: Results of Simulation Experiment II. Lake position relative to the ecotone was 

varied for each series. Line shading reflects distance from the forest boundary where the 

black line represents lake position at the ecotone boundary and lighter shades show 

simulations results with increasing distance from the forest boundary in 5 km increments. 

Dashed lines highlight the example discussed in the text, where equal reductions in forest 

pollen (10%) at the forest boundary (0 km) and 5 km distant reflect 30% and 40% reductions 

in forest cover, respectively. Simulations were performed with mean Amazonian wind speed 

(4.03 m/s) and clearance patch sizes were equal to the lake area. 
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