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Time-Window Approaches to Space-Weather Forecast Metrics:
A Solar Wind Case Study
Mathew J. Owens1

1Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Reading, UK

Abstract Metrics are an objective, quantitative assessment of forecast (or model) agreement with
observations. They are essential for assessing forecast accuracy and reliability and consequently act as a
diagnostic for forecast development. Partly as a result of limited spatial sampling of observations, much of
space-weather forecasting is focused on the time domain rather than inherent spatial variability. Thus,
metrics are primarily point-by-point approaches, in which observed conditions at time t are compared directly
(and only) with the forecast conditions at time t. Such metrics are undoubtedly useful. But in lacking an
explicit consideration of timing uncertainties, they have limitations as diagnostic tools and can, under certain
conditions, be misleading. Using a near-Earth solar wind speed forecast as an illustrative example, this study
briefly reviews the most commonly used point-by-point metrics and advocates for complementary time
window approaches. In particular, a scale-selective approach, originally developed in numerical weather
prediction for validation of spatially patchy rainfall forecasts, is adapted to the time domain for space-
weather purposes. This simple approach readily determines the time scales over which a forecast is and is not
valuable, allowing the results of point-by-point metrics to be put in greater context.

1. Introduction

When determining how well a space-weather forecast performs, human assessment can rapidly scrutinize a
large number of facets: simply looking over the observations and forecast gives an immediate feel for what
features are reproduced and missed, how the general structure differs, over what temporal/spatial scales
the forecast is applicable, whether the forecast exhibits any obvious bias, performs better within certain para-
meter regimes, etc. (Throughout this study, metrics are discussed with regard to forecasting, though the same
issues and principles apply for general model diagnostics. Consequently, anywhere the term forecast appears,
the term model could be directly substituted.) But this is inherently subjective, qualitative, lacking in repeat-
ability, and simply infeasible for large volumes of data. Metrics are an automated, objective quantification of
forecast performance relative to observations. As such, metrics are vitally important not just for validation of
space-weather forecasts (e.g., Spence et al., 2004) but also as a diagnostic tool to inform future forecast devel-
opment. (As in the majority of the space-weather literature, the term validation is here used to refer to the
process of comparing forecasts and observations to establish accuracy and truth of the forecast. This is often
referred to as verification in meteorology.) Different metrics quantify different, specific qualities of a forecast.
Thus, while there are no right or wrong metrics per se, it is nevertheless essential to select a metric which
actually measures the features of interest. This, as will be seen in the subsequent examples, is not always
as straightforward as it seems. Changes to a forecast scheme made on the basis of a poorly chosen metric
can potentially reduce its usefulness for an end-user, though of course the chosen metric will measure
an improvement.

The space-weather community is in the process of adopting both more sophisticated forecast approaches
and metrics with enhanced diagnostic capability (e.g., Jian et al., 2016; Murray, 2018; Murray et al., 2017).
Many of these approaches have been adapted from numerical weather prediction (NWP; Siscoe, 2007). In
NWP, there is extensive coverage by the observation network, allowing both spatial and temporal agreement
to be explicitly treated. Extremely sparse observational sampling of the Sun-Earth system, however, means
that space-weather forecast validation is often primarily concerned with the time domain (though errors in
the time domain may well result from spatial variations). For example, while forecasts of the solar wind (such
as the example of near-Earth solar wind shown in section 2.1) cover the largest spatial domain within the
Sun-Earth system, they are typically validated solely against single-point in situ observations made in
near-Earth space (e.g., MacNeice, 2009; MacNeice et al., 2018; Owens et al., 2008). Consequently, validation
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is primarily focused on a point-by-point analysis: The observed conditions at time t are compared directly
(and only) with the forecast conditions at time t. As is illustrated in sections 2.2 and 2.3, such approaches
inflict a double penalty for timing offsets in forecast events, due to both missing the event and generating
a false alarm. On the one hand, this is a legitimate assessment of the forecast. On the other hand, it does
not always provide a useful diagnostic of the forecast, and many operators will tolerate relatively small errors
in event timing if the general outlook is correct. One solution is for forecasts to include ameasure of their own
uncertainty, as illustrated in section 2.5. However, this is not always practical. Thus, in addition to point-by-
point metrics, it may be advantageous to also employ time-windowmetrics. One useful approach, outlined in
section 3.1, is to specify criteria for discrete features within forecast and observation time series and to com-
pare feature correspondence, including the timing. However, such feature specification requires a priori
knowledge of the properties of interest, as well as repeatable signatures in said features, both from event
to event and across forecast and observation data. Thus, in section 3.2 a more feature-agnostic approach is
proposed, based upon NWP validation of rain forecasts. It compares forecasts and observations at a range
of different spatial scales and is here adapted to the time domain as a space-weather forecast metric. It is
shown that this analysis provides a useful assessment of the time scales over which a forecast is and is not
valuable.

2. Point-By-Point Metrics
2.1. Example Forecast

In order to illustrate the strengths and limitations of different metrics, an example forecast is considered. The
black line in Figure 1a shows hourly near-Earth solar wind speed (V) for Carrington rotation (CR) 2049, span-
ningmid-October to mid-November 2006. Data are from the Omni data set of near-Earth spacecraft measure-
ments (King & Papitashvili, 2005). CR 2049 was chosen as there are three distinct high-speed enhancements
(HSEs) on 20 October, 28 October, and 9 November.

An illustrative forecast was produced using the Magnetohydrodynamics Around a Sphere (MAS; Linker et al.,
1999; Riley et al., 2012) global coronal model. The inner boundary conditions are set by the observed photo-
spheric magnetic field for CR 2049. Model output is available from http://www.predsci.com/mhdweb/.
Typically, the MAS solution would be propagated to near-Earth space with a numerical magnetohydrody-
namic solar wind model and the forecast V extracted from the model grid point closest to Earth. Here, how-
ever, for the purposes of demonstration, the solution was perturbed to (retrospectively) produce a closer
match to the observations. Specifically, the model solar wind at 30 solar radii was sampled 5° above the
sub-Earth point, as this was found to improve the representation of the HSE on 28 October. The solar wind
speed was then propagated from 30 solar radii to Earth using a simple upwind technique (Owens & Riley,
2017) to produce the time series shown in red in Figure 1a.

2.2. Error Functions

Forecasts are commonly assessed using simple error functions (otherwise called cost or loss functions). The
results for CR2049 are summarized in Table 1. For solar wind speed, the mean-square error (MSE) is given by

MSE ¼ 1
T

∑
T

t¼1
VF tð Þ � V tð Þ½ �2

where VF(t) and V(t) are the forecast and observed solar wind speeds at time t, respectively, and T is the total
number of time points considered. Smaller MSE values indicate better agreement, with 0 being a perfect fore-
cast. For the forecast shown in Figure 1a, the MSE is 1.30 × 104 km2/s2. This is usually converted to root-mean-
square (RMS) error:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

∑
T

t¼1
VF tð Þ � V tð Þ½ �2

s

RMS has the advantage of being a linear measure of the magnitude of the errors with the same units as the
parameter of interest. The RMS error for the forecast is 114 km/s.
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In isolation, these values say relatively little about the quality of the forecast. Metrics are most useful as a com-
parative tool. Thus, it is instructive to also consider a second solar wind speed prediction. The blue line shows
the average V for CR 2049, 432 km/s. For validation purposes, this climatological mean would be a poor
choice of comparison prediction, as it has zero variability. In practice, it would be preferable to use another
simple forecast, such as 27-day recurrence (Owens et al., 2013). But for the purposes of illustrating certain
issues, the climatological mean is useful here. The MSE between the observed V for CR 2049 and the clima-
tological mean is 0.98 × 104 km2/s2, while the RMS 98.9 km/s, both smaller than the forecast values.

An alternative measure of a similar property is the mean absolute error (MAE):

MAE ¼ 1
T

∑
T

t¼1
∣VF tð Þ � V tð Þ∣

Figure 1. An example of a deterministic solar wind speed forecast and associated point-by-pointmetrics. (a) Time series of
hourly means of near-Earth solar wind speed, V, for Carrington rotation 2049, spanning mid-October to mid-November
2006, as observed (black) and forecast (red). The climatological mean for this interval (blue) is also shown. (b) Solar wind
speed events defined using a threshold of V> 500 km/s. (c) The receiver operator characteristic that plots the true positive
rate against the false positive rate for a range of solar wind speed event definitions. (d) The potential economic value of the
forecast at various V thresholds and cost/loss ratios. See text for more detail.
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For the V, MAE is essentially the same for the forecast (84.6 km/s) and the
climatological mean (85.0 km/s).

In order to further put error functions in perspective, the skill of a forecast is
calculated as

Skill ¼ 1� MSE
MSEREF

where MSEREF is the MSE of a reference baselinemodel, such as the clima-
tological mean. Skill is negative when the forecast is worse than the base-
line, 0 when they are equal, and 1 for a perfect forecast. (Sometimes skill is
further multiplied by 100 to express it as a percentage of a perfect fore-
cast.) By comparing directly with a baseline model, skill potentially allows
disambiguation between bad forecasts and periods/situations that are

inherently difficult to forecast. For the forecast shown in Figure 1a, using the climatological mean as the refer-
ence, the forecast skill is�0.32. Thus, the forecast is deemed to be worse than assuming that the solar wind is
always a constant 432 km/s.

The general conclusion from these error functions for this example period is that the climatological mean is at
least as good as the forecast for CR 2049. This is, of course, an entirely correct and fair assessment. But it is
obvious that it does not tell the whole story; the climatological mean lacks sharpness and discrimination,
in that it does not reconstruct any of the features of the solar wind structure. It would be useless as a predic-
tive tool for almost all applications and thus could be said to lack value. In contrast, the forecast appears to
work quite well for this interval: By eye, it can be seen that the forecast produces three HSEs, as observed,
and they are of comparable magnitudes and durations to the observations. By inspection of the time series,
it can be seen that the error functions for the forecast are relatively high due to the approximately 1- to 2-day
errors in the timings of the HSEs that result in the double penalty of first overpredicting V, closely followed by

underpredicting V. But, depending on the application, the forecast may
well still be regarded as valuable in that it enables users to make decisions
that lead to beneficial outcomes (Murphy, 1993).

In this particular example, other forms of point-by-point comparisons are
able to discriminate between the predictive value of the forecast and cli-
matological mean (see section 3.3 for an example where this is not the
case). While not strictly an error function, Pearson (or linear) correlation,
rL, is often used in a similar manner to RMS and MAE to quantify forecast
and observation agreement, where

rL ¼
∑Tt¼1 VF tð Þ � VF

� �
V tð Þ � V
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Tt¼1 VF tð Þ � VF

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Tt¼1 V tð Þ � V

� �2q

It is weakly positive for the forecast (rL = 0.28). Spearman correlation, rS,
replaces the observed and forecast values at time t with their ranks within
their respective distributions. As a result, rS is less susceptible to outliers
than rL. It is effectively 0 (rS = 0.06) for the forecast. The zero variance of
the climatological mean results in both rL = 0 and rS = 0. Figure 2 sum-
marizes these results in the form of a Taylor diagram (Riley, Linker, &
Mikić, 2013; Taylor, 2001). It displays the RMS (centered by themean values
to remove forecast bias) and linear correlation between forecast and obser-
vation, along with the standard deviation of the time series under consid-
eration. In short, the closer the forecast (red point) to the observation
(black circle), the better. Thus, while the Taylor diagram does not strictly
conclude that the forecast is superior to the climatological mean (blue
point), the issues with the latter as predictive tool are immediately obvious.
For a more realistic baseline forecast, this may not always be the case.

Figure 2. A Taylor diagram of the solar wind speed time series shown in
Figure 1. The radial distance from the origin shows the standard deviation
of the time series, while the azimuthal angle about the origin shows the lin-
ear correlation coefficient (note nonlinear scale) with the observed time
series. The green dashed circles show contours of constant root-mean-
square error (with forecast and observationmean subtracted). The black, red,
and blue points show the observed, forecast, and climatological V,
respectively.

Table 1
Point-By-Point Metrics for the Solar Wind Speed Forecasts Shown in Figure 1

MSEa

(km2/s2)
RMSb

(km/s)
MAEc

(km/s) rL
d rS

e

ROC area
under
curvef

Forecast 1.30 × 104 114.0 84.6 0.28 0.06 0.68
Climatological
mean

0.98 × 104 98.9 85.0 0.00 0.00 0.50

aMean-square error. bRoot-mean-square error. cMean absolute
error. dPearson (linear) correlation coefficient. eSpearman (rank-order)
correlation coefficient. fReceiver operator characteristic area under
curve.
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In addition to potentially misleading forecast assessment, error functions
can also have unintended consequences for model development. Riley,
Linker, and Mikić (2013) note that changes to their coronal model that
wipe out all solar wind speed variability (and thus value of the resulting
forecast), are not reflected in RMS, which is essentially unchanged.
Similarly, any forecast scheme trained to minimize RMS or MAE may tend
preferentially toward a conservative, climatological-mean-like prediction,
rather than a valuable forecast.

2.3. Binary Metrics

As error functions quantify the magnitude of forecast deviation from
observations at every time step, they can have limitations as diagnostic
tools. First, by considering every time step equally, rather than focusing
on specific times or parameter ranges of interest, these metrics can be

skewed toward measuring properties that are inconsequential to an operator. For example, whether the fore-
cast correctly reproduces the details of the slow-speed wind may be unimportant, but is given equal weight-
ing to the times of high speeds, which are important. Second, large outliers can have a relatively strong
influence on error functions and especially on linear correlation. In some circumstances, this will be appropri-
ate, as the magnitude of the extremes is of interest. In other circumstances, this may be less critical, as what
matters is whether or not a given threshold is exceeded, not by how much. To address these issues, an alter-
native approach is to consider each time step as a binary yes/no state and compare observations and fore-
casts on this basis. For probabilistic forecasts, discussed further in section 2.5, this also involves setting a
probability threshold, in addition to an event-definition threshold.

The black dashed line in Figure 1a shows a threshold of V > 500 km/s used to define hourly events in the
forecast and observed time series. Figure 1b displays the timing of the subsequent forecast and observed
events, sorting them into one of four categories; true positives (TP, or hits; hours for which both observed
and forecast events are present), false positives (FP or false alarms; hours for which an event is forecast but
not observed), false negatives (FN, ormisses; hours for which an event is observed but not forecast), and true
negatives (TN; hours for which both observation and forecast have no event). The occurrence of these
classifications is summarized in a contingency table (e.g., Finley, 1884; Murphy, 1996), shown as Table 2 for
the forecast and Table 3 for the climatological mean. The forecast produces approximately the correct
number of events (PF = 177 versus P = 192 observed) and nonevents (NF = 478, versus N = 463 observed);
meaning, it has little bias, whereas the climatological mean produces zero events and overestimates the
nonevents (NF = 655). The double penalty effect on the forecast is apparent: Because of the timing offset
in the HSEs, the forecast produces both FN and FP, whereas the null prediction of the climatological mean
only produces FN. For the forecast, the total number of false predictions, FP + FN, is 233, while for the
climatological mean it is only 192.

From the contingency tables alone, it is not immediately clear whether the forecast is better than the clima-
tological mean. It will depend on how FP and FN are weighed relative both to each other and to TP (and to a
lesser extent, TN). There are a variety of ways to combine these four numbers, to emphasize different forecast
aspects. The full range of combinations is not discussed here (see Thornes & Stephenson, 2001, and Reiss

et al., 2016, as well as the World Meteorological Organization guide:
http://www.cawcr.gov.au/projects/verification/). Two of the most useful
combinations are the true positive rate (TPR = TP/P) and the false positive
rate (FPR = FP/N), as together they provide a reasonable overview of a fore-
cast. A perfect forecast would have TPR = 1 and FPR = 0. For the forecast of
CR 2049, TPR = 0.35 and FPR = 0.24.

For events defined by V > 500 km/s, the climatological mean results in no
true or false positives and so TPR = 0 and FPR = 0. If events were defined
using a V threshold lower than the climatological mean (e.g.,
V > 400 km/s), it would produce a prediction of events at all times, giving
TPR = 1 and FPR = 1. Thus, for any event threshold, the climatological mean
over the period under consideration gives TPR = FPR. When a forecast

Table 2
A Contingency Table for the Forecast of Solar Wind Speed Events in CR 2049
Defined by a Threshold of V > 500 km/s

Event in forecast?
(i.e., VF > 500 km/s)

Yes No Total

Observed event?
(i.e., V > 500 km/s)

Yes TP = 68 FN = 124 P = 192
No FP = 109 TN = 354 N = 463
Total PF = 177 NF = 478 655

Note. TP, FP, TN, and FN are the numbers of true positive, false positive, true
negative, and false negative intervals, respectively. P and PF are the num-
ber of observed and forecast events, while N and NF are the number of
observed and forecast nonevents.

Table 3
The Same as Table 2 but for the Climatological Mean of Solar Wind Speed for
CR 2049

Event in climatological mean?
(i.e., VF > 500 km/s)

Yes No Total

Observed event?
(i.e., V > 500 km/s)

Yes TP = 0 FN = 192 P = 192
No FP = 0 TN = 463 N = 463
Total PF = 0 NF = 655 655
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results in TPR> FPR, it is superior to the climatological mean in being able to predict the occurrence of events
and nonevents.

2.4. Forecast Summaries

Binary metrics depend on the choice of both event and probability thresholds, and thus, ways to summarize
parameter space are necessary. The (often complex) relation between FPR and TPR for a range of event
thresholds is captured by the receiver operator characteristic (ROC; Peterson et al., 1954; Mason, 1982) curve
in Figure 1c. This technique is commonly used for validation of probabilistic forecasts at a range of probability
thresholds (see section 2.5), including solar flare forecasts (McCloskey et al., 2018; Murray et al., 2017).
However, it can also be used to summarize the deterministic V forecast. In this example, all event thresholds
result in TPR> FPR (i.e., are above the y = x line in Figure 1c) except V> 600 km/s, where the double penalty is
strongest. The ROC can be further distilled down to the area under the curve, integrated along the horizontal
axis (AUC; Mason & Graham, 2002). AUC represents a forecast’s ability to correctly anticipate events and
nonevents (1 being a perfect forecast, 0.5 being equal to the climatological mean). For the V forecast, the
AUC is 0.68.

An alternative summary can be provided by the Cost-Loss analysis (Murphy, 1977; Richardson, 2000), which
determines the benefit an operator would gain from acting on a forecast. The real strength of Cost-Loss
analysis is in the evaluation of probabilistic forecasts (see section 2.5), as it explicitly accounts for the fact that
different operational users will act on the same forecast in a different manner. For example, if a forecast gives
a low probability of a space-weather event, an operator may still choose to takemitigating action if the cost of
doing so (e.g., from lost revenue), C, is small relative to L, the cost of being caught unprepared by a damaging
event. In such situations, forecasts that minimize missed events, even if this means increased false alarms, are
more desirable. Conversely, if C is a significant fraction of L, an operator is unlikely to act on the basis of a low
forecast probability. In such circumstances, forecasts that minimize false alarms are more desirable. This ana-
lysis has recently been applied to validation of probabilistic solar wind forecasts (Owens et al., 2014; Owens
et al., 2017).

Figure 1d shows the potential economic benefit of acting on the deterministic forecast of V for a range of C/L
values and for events defined by a range of V thresholds. Potential economic benefit is measured relative to
the climatological probability of an event, so that values below 0% indicate that the forecast is less useful
than climatology and 100% indicates a perfect (deterministic) forecast. As shown by the ROC curve, most
benefit is gained at intermediate solar wind speeds (400 to 500 km/s) and for low C/L scenarios. When false
alarms become costly, the forecast ceases to add value, as the double penalty effect comes into play. Despite
the insight gained from binary metrics such as ROC and Cost/Loss analysis, they nevertheless operate on a
strictly point-by-point comparison basis and do not account for timing errors/uncertainty. As illustrated in
section 3.3, the resulting double penalty issue is even stronger for BZ forecasts, which are critical for space
weather (Dungey, 1961), as large-scale BZ variations tend to be bipolar in nature.

2.5. Validating Probabilistic Forecasts

Ideally, a forecast would include an assessment of forecast uncertainty. Figure 3a shows an example of a
probabilistic forecast of solar wind speed for CR2049. It was generated using a perturbed initial condition
ensemble (Owens & Riley, 2017). The RMS and MAE of the forecast ensemble median are comparable to
the deterministic V forecast shown in Figure 1a. But what is of most interest here is the uncertainty estimate.
Figure 3b shows the probability of V> 500 km/s as a function of time. For the observations, this is either 0 or
1; for the climatological mean, it is always 0; for the forecast ensemble the probability is the fraction of
ensemble members for which V > 500 km/s at each time step (e.g., Slingo & Palmer, 2011 and references
therein). For the 21 October HSE, the onset timing uncertainty is reasonable, but the forecast is too confident
of no event after 22 October. For the 29 October HSE, the forecast clearly underestimates the uncertainty in
the HSE arrival time and duration, as the probability peaks more than a day early and remains high (≈0.75) for
around a day too long. For the 10 November HSE, there is a 3-day spread in the HSE arrival time in the
probabilistic forecast, with the peak probability on the 11 November, approximately the time of the
observed peak.

In order to produce the ROC curve (Figure 3c), a probability threshold is required to define events at each V
threshold. In general for CR 2049, higher probability thresholds produce better forecasts as given by AUC
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(though it is not a simple linear relation). On this basis alone, it may be tempting to conclude that the
probabilistic forecast is most beneficial in operational situations where few false alarms are present (i.e.,
high C/L ratios). However, that is not generally the case (as shown in Figure 3c and discussed below). What
the ROC is actually revealing is simply that higher probability thresholds reduce the total number of
forecast events and, in the presence of timing errors, minimize the double penalties described in the
previous section. Thus again, even with probabilistic forecasts, point-by-point metrics can favor overly
conservative forecasts.

From Figure 3b, it can be seen that for V> 500 km/s, there are no periods where the forecast probability of an
event exceeds around 0.75. This means that operational settings in which forecast certainty is critical (i.e.,
where false alarms are costly), the forecast will not be useful. This is demonstrated in the cost-loss analysis in
Figure 3d, where for V > 500 km/s, there is no economic benefit to acting on the forecast when C/L> 0.5. At
lower speed thresholds, for example, 400 km/s, there are times when the forecast correctly predicts 0 prob-
ability of an event (6 to 8 November) and 1 probability of an event (22 October). This results in a valuable fore-
cast for higher C/L values, unlike the similar deterministic forecast.

Figure 3. An example of a probabilistic solar wind speed forecast and associated point-by-point metrics. (a) The time series
of hourly means of near-Earth solar wind speed for CR2049, mid-October to mid-November 2006, as observed (black) and
forecast by the ensemble median (red), with pink-shaded areas showing 68, 90, 95, and 99.8 percentiles of the forecast
ensemble. The climatological mean for this interval (blue) is also shown. (b) A threshold of V> 500 km/s is to define events
in the time series (black dashed line), which are represented as a probability of occurrence. (c) The receiver operator
characteristic for three different probability thresholds. (d) The cost-loss curves for the forecast at various action thresholds
of V.
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Clearly, forecasts should intrinsically account for uncertainty, including the
timing of features. However, forecasts often do a poor job in this respect
(as shown in the example above), and uncertainty can be costly to esti-
mate. For example, estimating the timing uncertainty in a coronal mass
ejection (CME) forecast through a numerical model ensemble (Mays
et al., 2015; Riley, Linker, & Mikić, 2013; Riley, Linker, Mikič, Zank, et al.,
2013) will require a minimum of an order-of-magnitude more computing
resources. Additionally, an operator may tolerate a greater timing error
than the estimated forecast timing uncertainty. Thus, it is also desirable
to use metrics that explicitly allow for timing uncertainty.

3. Time-Window Metrics
3.1. Feature-Based Metrics

One approach to dealing with timing uncertainty is to define discrete fea-
tures (also known as objects or events) on the basis of extended spatial

information or time history (rather just using a simple threshold on a point-by point basis, as in the case of
binary metrics) and compare their properties, including timing (e.g., Ebert & Gallus, 2009). For example,
Owens et al. (2005) defined a HSE as a net 100 km/s increase in V over a 2-day interval in 8-hr smoothed data
(computed as the mean in a rolling 8-hr window). The smoothing allows the analysis to be readily applied to
both observations and numerical solar wind model output. The HSE lasts as long as these criteria are met,
with the characteristic time of the HSE being the time of maximum V gradient. Reiss et al. (2016) and
MacNeice (2009) used similar definitions. Figure 4 shows the analysis applied to the CR2049 observations
and forecast. In practice, when applying the analysis to years of data, observed and forecast HSEs are paired
up algorithmically. In this instance, there are three observed and forecast HSEs, with forecast/observed pairs
overlapping in time, so the pairing is trivial. Results are summarized in Table 4.

During this short interval of comparison, the forecast produces approximately the correct magnitude of HSE
(in 8-hr smoothed data), but the timing of HSEs is systematically biased early. Clearly, this approach provides
quantitative diagnostic information about why the RMS and MAE are high for this forecast relative to the
climatological mean. The limitation in this kind of analysis is that features of interest have to be rigorously
defined a priori. For solar wind speed, this is reasonable, but for BZ, it may be more difficult, particularly
regarding time scale and magnitude, as further discussed in section 3.3.

An alternate approach to timing uncertainties is to consider the peak value within a fixed time window (e.g.,
maximum V in a 24-hr window of 1-hr data). This can provide useful information if, again, tailored to the
specific needs of the operational setting. But there are a number of considerations with applying this
approach more generally. First, different time windows will, of course, be more or less appropriate for
different forecast applications. Second, for a fixed time window, the same peak value can result from a single
data spike, multiple peaks, or the whole window being elevated. Third, changing the time resolution of the
data can affect the peak values in different ways: The peak value of the single data spike will be dramatically
reduced, whereas broader peaks will be less affected. A method to effectively summarize this parameter
space for a binary forecast is described in the next section.

Figure 4. High-speed enhancement (HSE) analysis applied to the solar wind
speed observed (black) and forecast (red) for CR2049, mid-October to mid-
November 2006. All data have been 8-hr smoothed. The black- and red-
shaded intervals show times when observed and forecast Vmeet the criteria
for a HSE, respectively. The dashed vertical lines show the times of maximum
V gradient.

Table 4
Results of the High-Speed Enhancement Analysis Applied to the Observed and Forecast Solar Wind Speed for CR 2049, Mid-October to mid-November 2006

HSE Observed Forecast ΔT (days) |ΔT| (days) VMAX obs (km/s) VMAX for (km/s) ΔVMAX (km/s) |ΔVMAX| (km/s)

1 20 October 2006 19 October 2006 1.79 1.79 630 547 82.9 82.9
T21:00 T02:00

2 28 October 2006 26 October 2006 2.17 2.17 580 612 �32.1 32.1
T16:00 T12:00

3 9 November 2006 9 November 2006 0.71 0.71 633 638 �5.1 5.1
T23:00 T6:00

Mean – – 1.56 1.56 614 599 15.2 40.1

Note. In both case, three HSEs were identified. The symbol Δ indicates the (observed-forecast) value.
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3.2. Scale-Selective Metrics

In validation of forecasts from NWP, double penalties are also a ubiquitous issue, resulting from both spatial
and temporal offsets between forecast and observation. A particularly apposite example is convective rain,
which is inherently patchy on the spatial scales measureable by radar and forecastable by NWP. This can lead
to misdiagnosis of forecasts if performed on a point-by-point basis at the grid-cell level. Hypothetical rain
observations and forecast for a 10 × 10 grid are shown in Figure 5. The forecast has little bias over the whole
domain (forecast and observation predict 18%, and 19% of grid points, respectively, will contain rain) and
captures much of the large-scale structure, with a front of rain in the bottom-right corner of the domain.
There is, however, little correspondence at the individual grid-point level. Making a simple point-by-point
comparison of the forecast and observations reveals FPR> TPR; meaning, it performs worse than climatology.
In fact, even a completely null prediction, where rain is never predicted anywhere, is found to be superior in
this instance.

Roberts and Lean (2008) and Roberts (2008) suggest a scale-selective approach to address this issue. This con-
siders how well the forecast captures the observed rain on increasing larger spatial scales, or neighborhood
sizes, n (Theis et al., 2005). In the example shown in Figure 5, the available neighborhood sizes would be
n = 1 (where each neighborhood is one grid point, resulting in the original distribution of observed and

Figure 5. Spatial distributions of hypothetical (a) observed and (b) forecast rain. Red is a positive observation/forecast at a
given position; blue is negative. (c) A null forecast predicts no rain anywhere. (d) The fraction skill score for different spatial
scales (or neighborhood sizes).
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forecast rain), to n = 2 (where each neighborhood contains 2 × 2 grid points), n = 5 (25 grid points), and n = 10
(100 grid points, the entire domain). At each n, the fraction, f, of grid points within each neighborhood that
contains rain is computed. For n = 1, each f will be either exactly 0 or exactly 1. For higher values of n, f will
take a value between 0 and 1. For the example shown, at n = 10 the observed f = 0.19, while the forecast
fF = 0.18. For each n, the fraction MSE, fMSE, can be computed:

fMSE nð Þ ¼ 1
NxNy

∑
Nx

x¼1
∑
Ny

y¼1
f x; yð Þ � f F x; yð Þ½ �2

where x and y are the neighborhood number in the x and y directions and NX and NY are the total number of
neighborhoods in the x and y directions, respectively. Thus, for the example shown, NX = NY = 10/n. The frac-
tion skill score (FSS) is computed by comparing the forecast fMSE with the fMSE of a reference (or baseline)
forecast, in this case the null rain forecast:

FSS nð Þ ¼ 1� fMSE nð Þ
fMSEREF nð Þ

Figure 5d shows how the FSS varies with n. As discussed above, at n = 1, FSS is negative as the total number of
false grid points (i.e., FN + FP) is higher for the forecast than for the null prediction. But as neighborhood size
increases, FSS becomes increasingly positive, as the forecast captures the large-scale spatial structure of the
observed rainfall. At n = 10, FSS approaches 1 as the forecast bias is very low, whereas the null prediction bias
is high. The overall conclusion is that if an operator is interested in spatial scales greater than those repre-
sented by single grid points, the forecast is valuable (relative to a null forecast).

This same scale-selective approach can be adapted to the time domain for space-weather purposes. For the V
time series, the fMSE for neighborhood size n becomes

fMSE nð Þ ¼ n
T

∑
T=n

t¼1
f tð Þ � f F tð Þ½ �2

where f(t) and fF(t) are the fraction of observed and forecast hours in time bin t for which V > 500 km/s. The
first panel of Figure 6 shows the observed and forecast f as a function of time for the CR 2049 solar wind
speed, with events (red) and nonevents (blue) defined using V > 500 km/s. At this 1-hr neighborhood size,
this is equivalent to the original point-by-point analysis (i.e., the same as Figure 1b) and f is either exactly 0
or 1. The fMSE of the forecast is 0.370, whereas for the climatological mean, fMSE = 0.3048. Thus, for n = 1,
FSS = �0.21.

The second panel of Figure 6 shows a neighborhood size of 45 hr. There are still neighborhoods with f = 0 and
f = 1, but there are now also intermediate values. By eye, the agreement is still far from perfect, but the smear-
ing of events in time means that there are fewer intervals that are so starkly wrong, that is, where |f � fF| = 1.
The fMSE of both the forecast and climatological mean have dropped (to 0.184 and 0.230, respectively) and
the FSS is now weakly positive (0.2). The third and fourth panels show neighbor sizes of 105 and 210 hr,
respectively. The agreement between forecast and observation has been greatly enhanced, though at these
long temporal scales, a lot of information has also been lost.

Figure 7a shows how the FSS varies with n and V thresholds. In order to avoid aliasing between features in the
V time series and the neighborhood boundaries, the boundaries are slid across the time series to consider all
possible neighborhood combinations for a given value of n. The mean FSS for a given n is shown. For the
CR2049, the V forecast is generally most valuable for lower V thresholds. However, at the very lowest
threshold, V > 350 km/s, the forecast has little value as it fails to capture the lowest observed solar wind
speeds during this interval. Across V thresholds, forecast skill increases very gradually from n = 1 hr to
n = 20–30 hr, when it rises more sharply. For V > 500 km/s, the forecast becomes more valuable than the
climatological mean at neighborhood sizes of around 20 hr or longer. This time scale is roughly comparable
the average timing error for HSEs (see Table 4) and indicates where the false alarm and missed events begin
to cancel out, removing the double penalty effect. The fact that most V thresholds converge to FSS ≈ 1 at the
maximum neighborhood size (n = 630 hr) shows that there is little bias in the occurrence of such events. For
V> 600 km/s, FSS converges to values less than 1, highlighting an occurrence bias in the forecast for such an
event definition (with the forecast slightly overpredicting occurrence of V > 600 km/s).
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Figure 7. Fraction skill score for the forecast solar wind speed for mid-October to mid-November 2006 for a range of speed
thresholds and neighbor sizes. The climatological mean is used as the baseline forecast. (a) The deterministic forecast of V;
(b) the probabilistic forecast of V.

Figure 6. Scale-selective metrics applies the observed and forecast solar wind speed for CR2049, mid-October to mid-
November 2006. The color scale shows the fraction of individual hours within a neighborhood that exceed a speed
threshold of 500 km/s, from 0 (blue) to 1 (red). The first panel shows a neighbor size of 1 hr and thus is simply the threshold
applied to the original observations and forecast (i.e., the same as Figure 1b). The second, third, and fourth panels show
neighbor sizes of 45, 105, and 210 hr.
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The same basic approach can also be applied to a probabilistic forecast. However, in the fMSE calculation the
forecast fraction of hours above the threshold V, fF, is replaced by pF, the average probability of V above the
threshold in a given neighborhood. Thus, the uncertainty information is preserved, without the need to
investigate different probability thresholds. Figure 7b shows how the FSS varies with neighborhood size
and V threshold for the probabilistic forecast of CR 2049. The general trends are similar to the deterministic
forecast. But it is clear that the probabilistic forecast provides significantly higher FSS at lower n, particularly
for V thresholds below 500 km/s. This is because it intrinsically involves an (imperfect) estimate of timing error
and thus some reduction of the double penalty. The rapid rise in FSS with n is consequently less apparent. As
the probabilistic forecast includes an increased occurrence of low speed solar wind compared to the deter-
ministic forecast, albeit at low probability, the probabilistic forecast at V > 350 km/s is now valuable relative
to the climatological mean. At the very highest event thresholds, V > 550 km/s and V > 600 km/s, there are
insufficient events of high probability in this short interval, resulting in low FSS and a high bias for

Figure 8. Point-by-point metrics for a hypothetical forecast of the out-of-ecliptic heliospheric magnetic field component,
BZ. (a) Time series of observed BZ (black) for 15 days around the Bastille Day coronal mass ejection of July 2000. A
hypothetical forecast (black) has been produced by smoothing and shifting the observations by 18 hr. The blue line shows
the mean BZ for this period. (b) The receiver operator characteristic for the forecast and climatological mean. (c) Cost-loss
analysis for different BZ thresholds.
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V > 600 km/s occurrence. Thus, a great deal of diagnostic information can
be obtained from the simple FSS analysis, which is complementary to
point-by-point approaches.

3.3. BZ Forecasts

Thus far, these issues have been illustrated exclusively with an example of
a solar wind speed forecast. V is one of the more accurately forecast solar
wind parameters (e.g., MacNeice, 2009; Owens et al., 2008) and is always
positive in value. Perhaps the solar wind parameter of greatest importance
for space weather is the out-of-ecliptic component of the heliospheric
magnetic field, BZ, which is fundamentally less predictable than V
(Lockwood et al., 2016), both due to its stochastic nature and the difficulty
in making remote observations of this parameter (DeForest et al., 2017).
Validation of BZ forecasts is complicated by the bipolar variations asso-
ciated with geoeffective coronal mass ejections, which will be particularly
susceptible to double penalties. This is illustrated in Figure 8, where a
hypothetical forecast of BZ for the Bastille Day interplanetary coronal mass
ejection (ICME), in July 2000, has been produced by smoothing and shift-
ing the observed time series by 18 hr, representative of current ICME fore-
cast timing errors (Riley et al., 2018; Tucker-Hood et al., 2015). By accurately

reproducing the magnitude and direction of the magnetic field within the ICME and sheath region, such a
forecast is a far more accurate than any current capability (e.g., Savani et al., 2015). Yet all the point-by-point
metrics, whether they be error functions (even rL = �0.1) or binary metrics, show the forecast to be signifi-
cantly worse than assuming that BZ is approximately 0 at all times. (The total area under the ROC curve is
slightly larger than 0.5, but the sampling of BZ space is uneven. For negative BZ thresholds, the conditions
of interest for space weather, the forecast lies below the y = x line and hence is deemed worse than the
climatological mean.)

A features-based metric, equivalent to the HSEs, would clearly work well in this instance. But the difficultly is
in rigorously defining a useable definition: Time scales that would pick out a feature in the body of this
ICME may exclude negative BZ intervals in other ICMEs or in the ICME sheath, which involve higher frequency
variations. The more feature-agnostic approach of the scale-selective FSS is preferable. Figure 9 shows the
FSS of the BZ forecast over a range of time scales (or neighborhood sizes) and for a range of BZ thresholds.
For neighborhoods smaller than 10 hr, the forecast is worse than assuming BZ ≈ 0 at all times, as the point-
by-point analyses concluded. But as the time scale is increased to around 10–30 hr, the forecast is shown
to be skilful relative to the climatological mean, as one would likely conclude by eye.

4. Summary

This study briefly reviewed some of the commonly used metrics for space-weather forecast and model vali-
dation. Simple error functions, like RMS and MAE, are the mainstay of forecast validation. They compare fore-
casts and observations on a strictly point-by-point basis. They are undoubtedly a valuable tool for forecast
comparison. But there are limitations in their use as forecast diagnostics and they can, in some circumstances,
give misleading results about the value or usefulness of a forecast. In particular, by treating each time point
entirely independently, timing uncertainties are not explicitly accounted for. Thus, when timing errors are
present in the forecasts, they can be hit with double penalties, for both missing the observed event and issu-
ing a false alarm. While there is nothing inherently wrong with this form of assessment, it can systematically
favor overly conservative forecasts, which may not be beneficial. Binary metrics, in which a forecast is con-
verted to series of yes/no predictions, reduce the emphasis on event magnitude and hence somewhat
reduce the effect of double penalties for timing errors. These kinds of approaches are summarized by the
ROC and the Cost-Loss analysis. These can provide useful insight into the operational circumstances in which
a particular forecast is most useful (e.g., in settings where false alarms are not a major issue).

A neat, simple, solution to the double penalty problem is for all forecasts to include an accurate assessment of
uncertainty. As shown here, even relatively coarse estimates of uncertainty can add value to existing

Figure 9. Fraction skill score for the BZ forecast for 15 days around the
Bastille Day coronal mass ejection of July 2000, for a range of BZ thresholds
and neighbor sizes. The climatological mean is used as the baseline forecast.
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forecasts. But there are a number of reasons why this is not always practical. Instead, this study has advocated
a more pragmatic solution of time-window metrics alongside the more traditional point-by-point
approaches. Defining discrete, extended features in the observed and forecast time series allows direct com-
parison of their timing and magnitude. This is a powerful analytical tool but requires a rigorous a prior defini-
tion of an event, which is robust to event-to-event variability, and between observations and forecast. An
alternative is to use a scale-selective approach, wherein agreement between forecast and observation is con-
sidered at a range of time scales. As the time scales become increasingly coarse, false alarms and missed
events increasingly cancel out, reducing the double penalty effect. This allows an assessment of the time
scales at which the forecast provides an acceptable level of accuracy.

Part of the job of a metric is to summarize a complex parameter space: different parameter and forecast prob-
ability thresholds, different spatial and temporal scales, and different operational sensitivities. The examples
shown here consider only the simplest case of solar wind time series. Validation in other domains of the
space-weather system also has to deal with intrinsically higher dimensionality. For example, in radiation belt
forecasting, in addition to temporal variations, there is a great deal of spatially variability in all three directions
(radially from the Earth, and in geomagnetic latitude and magnetic local time), as well as in particle energy
space (e.g., Shprits et al., 2015). Often this dimensionality is reduced by averaging over particle drift and
bouncemotions, but the situation nevertheless remainsmore complex than a single time series. But the same
fundamental issues are still present, just in a more multifarious way.

Finally, it is worth reiterating that these more sophisticated methods of forecast and model validation are
intended to complement, not replace, existing metrics. Error functions should undoubtedly continue to be
a standard space-weather metric. In additional to continuing the legacy, they are simple to implement and
interpret, as well as enabling easy intercomparison of different forecasts and models. But a more diagnostic
picture of why a forecast is accurate or fails is invaluable too.
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