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A LIE SYMMETRY ANALYSIS AND EXPLICIT SOLUTIONS OF THE TWO
DIMENSIONAL co-POLYLAPLACIAN

GEORGIOS PAPAMIKOS AND TRISTAN PRYER

ABSTRACT. In this work we consider the Lie point symmetry analysis of a strongly nonlinear partial dif-
ferential equation of third order, the co-Polylaplacian, in two spatial dimensions. This equation is a higher
order generalisation of the oo-Laplacian, also known as Aronsson’s equation, and arises as the analogue of
the Euler-Lagrange equations of a second order variational principle in L°°. We obtain its full symmetry
group, one dimensional Lie sub-algebras and the corresponding symmetry reductions to ordinary differential
equations. Finally, we use the Lie symmetries to construct new invariant co-Polyharmonic functions.

1. INTRODUCTION

In recent years many partial differential equations (PDEs) that appear as Euler-Lagrange equations in
L°° variational problems have drawn considerable attention, see [BEJ08, Bar99, EY05, Kat15] and references
therein. These equations are strongly nonlinear elliptic PDEs and appear in many important applications
such as modes for travelling waves in suspension bridges [GM10, L.M90], the modelling of granular matter
[T[gh12], image processing [ETT15] and game theory [BEJ0S].

In this work we study the co-Polylaplacian equation

(1'1) Hgou = Z f[u}ﬂlzf[u]%uﬂizxj =0,
ij=1
where u = u(z1,...,2,) € R and f[u] is given by

n

(1'2) f[u] = Z (ulil‘j)27

ij=1

from a Lie-algebraic and computational point of view. As usual the lower index denotes partial differentiation
with respect to the corresponding variable. It is surprising that equation (1.1) is a third order PDE since it
is the formal limit of the p-Polylaplacian

(1.3) > (P tuas,) =0

as p — oo which is a fourth order PDE. Moreover, the oo-Polylaplacian (1.1) has a connection to an
equation that can be seen as a higher order generalisation of the well known Eikonal equation. Indeed, given
the structure of the operator (1.1), it is clear that solutions to the second order Eikonal-type equation

(1.4) flul = ¢,

where c is a constant, are also solutions to the co-Polylaplacian.
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Equation (1.1) can be seen as a higher order generalisation of the co-Laplacian equation [Aro65]

n
(1.5) Asou = Z Ug, Uy Uz, = 0,
i,j=1

also known as Aronsson’s equation. The symmetries of equation (1.5) with n = 2 were recently studied and
exact solutions were constructed in [FF'11], see also [Ayal8]. Aronsson’s equation minimises the Dirichlet
energy functional in LP as p — oo, see also [KP16, Pry17] for a modern review of the derivation. There
are many difficulties typically encountered in these variational problems and the study of the associated
Euler-Lagrange equations obtained in this way are notoriously challenging [Kat15]. Usually solutions are
non-classical and need to be made sense of weakly. The correct notion of weak solutions in this context is
that of wviscosity solutions [BDMS&9, Jen93]. In the context of the co-Polylaplacian the notion of viscosity
solutions is no longer applicable since we do not have access to a maximum principle for 3rd order PDEs,
from which the solution concept stems. It is also difficult, due to their complicated form, to construct exact
and physically interesting solutions. In [KP17] equations of this type and the structure of their solutions
were studied using appropriate numerical schemes. One of the goals of this paper is to construct new closed
form solutions complementing these results.

For equations that appear in L*° variational problems, while their analytic properties are thoroughly
investigated by many authors, the construction and study of exact solutions is not thoroughly treated.
There are many successful methods of constructing exact solutions for nonlinear PDEs. More often than
not, these methods rely on some special algebro-geometric or analytic properties of the PDE, Darboux-
Bécklund transformations, inverse scattering transform, Painleve property, etc. see [For90] for a review.
These are connected to the integrable character of the equation. On the other hand, Lie group theory
is general and makes little assumptions on the form of the PDE and hence it can be applied to strongly
nonlinear and nonevolution equations such equation (1.1). There are many modern generalisations of Lie’s
classical approach. Examples of such generalisations are the nonclassical symmetries [BCG69, CM94] and
approximate symmetries [BGI89], to name a few. A detailed exposition of the classical theory can be found
in the books [BA0S, Hyd00, Olv93, Ovs82, Ste89] and the review papers [Olil0, Win93] and in references
given therein. See also [Yag88] for a historic account and [DT06, DT04, Her97] for the implementation of
these ideas using computer packages of symbolic algebra. Group theoretic methods in the study of differential
equations have been applied successfully to problems arising from geometry, general theory of relativity, gas
dynamics, hydrodynamics and many more, see [Ibr93].

In this work we restrict our attention to the case n = 2. We use = and y for the independent variables
and so (1.1) simplifies to

(1.6) (f[u]x)Q Ugg + Qf[u]xf[u]yuxy +(f[u]y)2 Uyy =0
where now

The aim of this paper is the construction of explicit oco-Polyharmonic functions, i.e. solutions of equation
(1.6). Towards this end we obtain the full Lie symmetry group for both equations (1.4) and (1.6) and we
obtain one dimensional Lie subalgebras which we use to define appropriate canonical variables and reduce
our PDEs to ordinary differential equations (ODEs). Studying the reduced ODEs we construct several new
interesting invariant solutions. We also propose a conjecture for the symmetry structure of the general
oo—Polylaplacian in n dimensions. With this work we aim to promote group theoretic ideas in the study of
these strongly nonlinear problems and their exact solutions, i.e. the co—Polyharmonic functions [KP18] and
find potential minimizers for problems arising in the L°° variational calculus.

The paper is organised as follows: In the following section we study the reduced oco-Polylaplacian and
consider some of its algebraic properties. In Section 3 we briefly introduce some basics of Lie symmetries
of differential equations and we fix the notation. Moreover, we derive the infinitesimal invariance conditions
for both the co—Polylaplacian and its reduced version. We solve the determining equations in Section 4 and
thus obtain the Lie algebras of the full symmetry groups of both equations. We also present some of the
algebraic properties of the Lie algebras and we obtain the corresponding Lie symmetries. We also present a
conjecture about the Lie symmetries of equations (1.1) and (1.4) for arbitrary n. In Section 5 we present a
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partial classification of inequivalent generators under the action of the adjoint representation, i.e. the action
of the symmetry group to its Lie algebra for both equations. We perform the corresponding reductions to
ODEs and we construct new invariant solutions. We conclude in Section 6 with a summary and a discussion
of our results.

2. THE REDUCED 00—POLYLAPLACIAN EQUATION

In this section we introduce the reduced co—Polylaplacian equation over R, describe some of its properties,
and discuss some possible extensions of this work over algebraically closed fields of characteristic zero.

From the form of equation (1.6) it follows that the equation flu] = ¢, where ¢ is constant, defines a
submanifold in the space of solutions of equation (1.6). One can observe that the real valued solutions of
f[u] = ¢ which are not affine polynomials in 2 and y can always be rescaled to real solutions of the following
equation

— .2 2 2
(2.1) flu] = ugy + 2uzy, +uy, =1

and vice versa. We call equation (2.1) the reduced oo-Polylaplacian. Alternatively, one can study the
equation f[u] = ¢ for any constant ¢ € C over C-valued functions. For example, let A = C|x,y] be the ring
of polynomials in variables z and y with coefficients in C and with the usual gradation

[oe]
A=PAr, Ai-A;C Ay,

k=0
where A is the homogeneous component of all polynomials in A of degree k. Then, for simplicity, we
can search for solutions of f[u] = ¢ in each subspace Ag. We observe that Ay @ A; C ker f and that
i Ag — Agg_y4 for all k > 2. Specifically, for & = 2 we have that f[As] = Ay = C and thus it follows that
for any ¢ € C the equation f[u] = ¢ admits the solution u = az? + Bzy + vy? if and only if the parameters
(a, B,7) € C3 are elements of the 1—parametric family of affine varieties V (4a? + 252 + 442 —¢). For k > 2
and since f[Ag] C Agk—4 it follows that necessarily ¢ = 0 and thus we only have to consider the equation
flu] = 0. Moreover, the parameter space associated to a solution u € Ay has dimension dim Ax = k + 1
while the image has dimension dim Agi_4 = 2k — 3. It follows that f maps

u= Z i jz'y = flu] = Z Fon(a)x™y"

i+j=k m+n=2k—4

where F,, ,, are homogeneous quadratic polynomials of «; ; and thus w will satisfy equation f[u] = 0 if and
only if @ = (ak,0,k-1,1,--.,0%) € CFT! is an element of the variety V(I) C CF*!  where I is the ideal
generated by all F,,,,. Effectively, to find solutions of f[u] = 0 in A; one has to solve 2k — 3 quadratic
equations for k + 1 variables (the parameter space) and thus for k& > 5 the system is overdetermined. In
principle these equations can be investigated using Groébuner basis, see [CT.O92] and references therein, or
numerical schemes. To investigate the existence and the form of solutions in Ay for all k is an open problem.
More generally, the problem of characterising and classifying the solutions of f[u] = ¢ over the ring Fz, 3],
where F is an algebraically closed field of characteristic zero, is of particular mathematical interest and under
current investigation by the authors. In this paper we will not pursuit these ideas any further, instead we
assume that u(z,y) € R and focus only on the Lie symmetries of the equation (2.1).

3. INFINITESIMAL INVARIANCE AND DETERMINING EQUATIONS

In this section we derive the determining equations of the generators of the symmetry group for both the
oo-Polylaplacian (1.6) and it’s reduction (2.1).
A Lie point symmetry of equation (1.6) is a flow

(3.1) (Z,7,0) = (eXx, ey, eXu)

generated by a vector field

0 0 0
(3.2) X —fl(m,t,u)% —l—ﬁg(x,t,u)a—y +n(m,t,u)%,
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such that u(Z,9) is a solution of (1.6) whenever u(x,y) is a solution of (1.6). As usual, we denote by e¢X
the Lie series Y peq %Xk with X% = X X*~1 and X0 = 1.

To find the symmetries of equation (1.6) (resp. equation (2.1)) we have to solve the infinitesimal invariance
condition for the vector field (3.2). In the case of equation (1.6) (resp. (2.1)) we have to use the third
prolongation of X [BA08, O1v93, Ste89], namely xX®) (resp. the second prolonged vector field X(Q)). The
calculations become extremely cumbersome and this is why we use a Mathematica based algebraic package
called SYM [DT06, DT04] in order to obtain the infinitesimal symmetry conditions. The original infinitesimal
symmetry condition for equation (1.6) reads

(3.3) XOM2u=0 mod (M2 u = 0)

and decomposes to a large overdetermined system of linear PDEs for &1, & and 1 known as determining
equations. Using computer algebra and algorithms from computational differential algebra [Rei90, Sch07],
we can prove that the infinitesimal invariance condition (3.3) is equivalent to the following system of 16
equations:

(3'4) Siv = Ciza = fzmy = fiyy =0, i=1,2
(3'5) Nez = Ney = Myy = Nzu = Myu = Tuu = 0,
(36) gly + §2x = glx - €2y =0.
Similarly, the infinitesimal invariance condition for equation (2.1)

(3.7) X® (flu] =1) =0 mod (flu] = 1)
is equivalent to the following system of 12 equations:

(38) €2xm = £2u = gly + £2x = glx - £2y =0,
(3-9) Nex = Nazy = Nyy = T — 261, =0,
(3'10) flﬁw = glwy = glwu = flu =0.

Solutions of the overdetermined system of linear PDEs (3.4)-(3.6) (resp. (3.8)-(3.10)) will result to the
algebra of the symmetry generators (3.2) of equation (1.6) (reps. (2.1)).

4. LIE SYMMETRIES OF THE 0co-POLYLAPLACIAN

In this section we focus our attention to the systems of equations (3.4)-(3.6) and (3.8)-(3.10). These
equations form an overdetermined system of linear partial differential equations and thus it is possible that
they only admit the trivial solution & = £ = 1 = 0. This implies that the only Lie symmetry of equation
(1.6) is the identity transformation. In what follows we will see that this is not the case. In this way we
obtain the Lie algebra for the symmetry generators for both equations (1.6), (2.1) and thus, using the Lie
series, derive the full groups of Lie point symmetries for both equations. At the end of this section we discuss
about the discrete symmetries of the equations (1.6), and (2.1).

The general solution of the determining equations (3.4)-(3.6) is given by

(4.1) L=crx+aytc, S=-—-cr+cytc, n=csT+cey+crutcs,

where ¢;, i = 1,...,8 are arbitrary real constants. It follows that the solution (4.1) defines an eight dimen-
sional Lie algebra of generators where the obvious basis is formed by the following vector fields

(4.2) Xi=g Xo=4, Xs=—yg +od, Xa =1 +yg,

(4.3) Xs=ul, Xe=a22, Xi=y2, X¢g=2.

Similarly, for equation (2.1), we have that the general solution of the determining equations (3.8)-(3.10) is
given by
(4.4) Si=cax—cytc, &=crt+caytc, n=csx+cgy+2ciu+ cr,

where ¢;, i = 1,...,7 are arbitrary real constants. The Lie algebra of vector fields defined by the solution
(4.4) is similar to the algebra spanned by the vector fields (4.2)-(4.3). It is a seven dimensional Lie algebra
4



spanned by the vector fields

(46) }/}):x%7 Y6:y%7 Y7:%

The reason for this symmetry breaking is because the reduced equation (2.1) is not homogeneous and hence
the equation only admits the scaling that makes each individual term, uzs, Uzy and u,, invariant, i.e. the
symmetry generated by Yj.

We denote the eight dimensional real Lie algebra by g and the seven dimensional real Lie algebra by b,
viz.

(4.7) g =Span{X;, i=1,...,8}, , T}

Then it follows that equation (1.6) admits the symmetry group generated by g while the symmetries of
equation (2.1) are generated by h. Moreover, since for both equations &, = &2, = 0, it follows that the
symmetry transformations of both (1.6) and (2.1) are fibre preserving transformations.

Both Lie algebras g and b are solvable. Indeed, we have that for both algebras the derived series

g = [gn=D) g =D)]

terminate to the trivial Lie algebra o = {0} for a positive integer n. As usual [-, -] denotes the commutator
of vector fields which is the Lie bracket of g and h. The first derived algebra, which is an ideal of g, is

gV = [g, 9] = Span{X;, X2, X¢, X7, Xg}

h=Span{y;, i=1,...

g =g

and
b = Span{¥1, Y2, Y, Yo, Y7}
as can be verified by inspecting Table 1 and Table 2.

Similarly, we have that

and thus g® =B =o.

g(g) = Span{Xs},

h(z) = Span{Y7}

(X, X5 | X X X3 Xy X5 Xe Xr X3
X, 0 0 Xo Xy 0 Xs 0 0
X5 0 0 -Xi Xy 0 0 X3z 0
X3 X X3 0 0 0 —-X; Xs 0
X4 X7 -Xy 0 0 0 X Xy 0
X5 0 0 0 0 0 —X¢ —X7 —Xg
X6 —Xsg 0 X; —X¢ X¢ O 0 0
X7 0 —Xs —X¢ —X7 X; O 0 0
Xg 0 0 0 0 Xs O 0 0
TABLE 1. Commutation relations of the Lie algebra g.

Y3, Y;] Yo Y3 Yy, Y5 Y Y7
Y, Y, Y1 Y: 0 0
Y, -1 Y2 0 Y 0
Yo |-Y, Y7 0 0 -Ys Y5 0
Y, |-V, -Ya 0 0 -YVy -Y5 —2V;
Ys -Y Y¢ Y 0 0 0
Ys -Y: Y5 Y 0 0 0
Y, 0 27 O 0 0
TABLE 2.  Commutation relations of the Lie algebra §.

Since the Lie algebra g is solvable it admits a unique maximal ideal which is nilpotent and is called

nilradical.

5
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Span(X1, Xs, Xg, X7, X3) is its nilradical, go = Span(X3, X4, X5) is the three dimensional abelian subalgebra,
and thus the following relations hold

(4.8) [91,01] C g1, [92,92] =0, [g1,92] C g1

The nilradical g; has appeared in a classification of five dimensional nilpotent Lie algebras. Indeed, g; is
isomorphic to the Lie algebra ns 3, see page 231 in [SW14]. Similarly, the Lie algebra b can be decomposed as a
semi-direct sum of its nilradical h; = Span(Y7, Ya, Y5, Y5, Y7) and of the abelian subalgebra ho = Span(Ys, Yy).

It is important to mention that the Lie subalgebra Span{X;, Xo, X3} is the Euclidean Lie algebra e(2)
formed by the Killing vector fields of R?. Thus equation (1.6) inherits the symmetries of the metric
structure of R? as it was also pointed out for the Aronsson’s equation (1.5) in [FF'11]. The extension
g = Span{ X1, Xs, X3, X4, X5} of the Lie algebra e(2) is still a Lie subalgebra of g. Finally, as can be seen by
the Table 1, the Lie subalgebra Span{Xg, X7, X5} forms an abelian ideal of g. Similar things can be said for
the Lie algebra bh. Here E = Span{Y7, Y5, Y5, Ys} and Span{Y;, Ys, Y7} is also abelian ideal. We will use the
subalgebras g and H in the next section in the construction of invariant solutions. The identification of the
structural properties of the symmetry Lie algebras is important since they can be used for deciding whether
or not another PDE can be mapped to the equation at hand. Additionally, depending on the structural
properties of the Lie algebra (simple, semi-simple, etc.) there are methods for the complete classification
of its subalgebras. For example, it is possible to use the decomposition of g (4.8) in order to fully classify
all its one-dimensional subalgebras into conjugation classes using algorithms presented in [PWZ75], see also
[Win90] for a review.

Using the Lie series we find that the full group of Lie point symmetries of (1.6) is generated by:

Gy : (z,y,u) —
Gy :
Gs:
Gy :
Gs:
Gs :
Gr:
Gs: (z,y,u

Using the Lie symmetries G; we can construct new solutions from known solutions. It follows that if
u = g(z,y) is a solution of equation (1.6) then the following:

u:g(xy)—l—ea? u:g(:c—ey)

u=g(wy)+€y, u=g(r,y—e),

u=g(z,y)+ u=g(x coae—&—y sine, —x sine 4 y cose),
u:eeg( ,y) u=g(e “w,e"y)

are also solutions for all ¢ € R. We obtain a similar symmetry structure for the reduced co—Polylaplacian
equation (2.1) with the only difference being a breaking of the scaling symmetries, resulting in one fewer.
More precisely, G; — G3 and Gg — Gg are also Lie symmetries of (2.1) but G4 and G5 are not. Instead,
equation (2.1) admits the following scaling symmetry

H: (z,y,u) = (Z,5,0) = (e, ey, e*u)
which implies that if u = g(x,y) is a solution of (2.1) then so is

w= eXg(e ™z, e y),
for all € € R. The scaling H can be seen as the composition of the scaling transformations G4 and G5 making
each differential monomial on the left hand side of equation (2.1) invariant under the action of H.
Equations (1.6) and (2.1) also admit discrete symmetries. In particular, both equations (1.6) and (2.1)
are invariant under the permutation o of the independent variables z and y, as well as the z-reflection
p : x — —x. Obviously, the y-reflection is also a symmetry of both equations and can be expressed as
6



oo poo. These are also symmetries of the general oo-Polylaplacian (1.1) in any dimension n. Moreover,
(2.1), while not scaling invariant in the u-direction, remains invariant under the reflection u — —u.

The study of the Lie symmetry structure of the oo-Polylaplacian for dimensions n > 3 and its corre-
sponding reduction (2.1) is an open problem which is left for future work. Nevertheless, we formulate the
following:

Congecture: The Lie algebra of the symmetry generators of co—Polylaplacian equation (1.1) in n independent
variables has dimension 3 + n(n + 3)/2 and it is spanned by the vector fields related to translations in the
independent variables, scalings and affine linear translations in the dependent variable

0 0 0 - 0 0
4.9 a0 a > a0 i . 10 .:17"'7 )
(4.9) Oz;" Ou “ou j;xj Ox;j Touw " "
as well as rotation symmetries generated by

(4.10) L 1<i<j<n.

! 8$j J 6$i
Similarly, the symmetry algebra of the reduced co—Polylaplacian equation (1.4) in n independent variables
has dimension 2 4+ n(n + 3)/2 and is spanned by the same generators for translation, rotations and affine
linear translations in the dependent variable but with a scaling symmetry generated by

n
(4.11) iji+2u£.
1
The above conjecture has been verified by the authors for n = 3.

5. SYMMETRY REDUCTIONS AND INVARIANT SOLUTIONS

In this section we are concerned with the symmetry reductions and the construction of group invariant
solutions of equations (1.6) and (2.1). We construct solutions that are invariant under one dimensional
subgroups acting non-trivially on the independent variables. More specifically, we focus on the symmetry
subalgebras g and H and we classify their one dimensional Lie subalgebras into equivalence classes under the
action of the corresponding group. As already mentioned in section 4 by focussing on these subalgebras we
will not obtain a full classification, however the problem is tractable and we are focussing on symmetries
that have a physical meaning. In particular, some of the explicit solutions of the corresponding reduced
ODEs are related to the results of numerical experimentation in [[(P17]. The complete classification is left
as a future work.

We first consider the reductions of equation (1.6) using one dimensional subalgebras of g spanned by
X;, ¢ = 1,...,5. To classify all the one dimensional subalgebras of g = Span{Xj,..., X5} we need to
consider the action of the adjoint representation of the symmetry group of equation (1.6) on g. The adjoint
representation of a Lie group to its algebra is a group action and is defined by conjugacy as follows

€2
2!

where X and Y are elements of the Lie algebra and adx(Y) = [X,Y], see for example [O1v93]. For the
sake of completeness we present the adjoint representation of the symmetry group of (1.6) on its whole Lie
algebra g in Table 3 and of the symmetry group of (2.1) to b in Table 4.

Adexp eX(Y) — eeXYe—eX — eeadx(Y) =Y + Gadx(Y) + ad%( (Y) o

Ad X1 Xo X3 X4 X5 X X7 Xg
X1 X1 Xa X3 +eXo Xy+eXy X5 X6 + €Xg X7 X3g
Xo X1 Xo X3 —eX1 X4+ eXo X5 X6 X7+ eXg X8
X coseX sine X x X x coseXg sineXg x

3 —sineXo +coseXo 3 4 5 —sineX7 +coseX7 8
X4 e X1 e Xy X3 X4 X5 e Xg e X7 Xs
X5 X1 Xo X3 X4 X5 e  “Xg e X7 e “Xg
X6 | X1 —eXg Xo X3 +eX7 X4 —eXg X5+ €eXg X6 X7 X3
X7 X1 Xo —eXg X3 —€eXg Xq4—eX7 Xs5+eXry X6 X7 X3
Xs X1 X2 X3 X4 X5 +eXg X6 X7 Xs

TABLE 3. The Adexpex, X, is shown in the (4, j) entry of the table.



Ad Y1 Yo Y3 Yy Ys Ys Y7
Y1 Y1 Yo Yz + €Yy Yy +eYy Y5 + €Y7 Ye Y7
Yo Y1 Y2 Y3 — €Y1 Yy 4+ €Yo Ys Ye + €Y7 Y7
coseYq sineYy coseYs sineYs
Y3 —sineYy +coseYy Y3 Ya —sineYg +coseYg Y7
Yy e~ Y, e Yy Y3 Yy e~ Y5 e Yg e~ 2y,
Ys Y1 — €Yy Y2 Y3 + €Y Yy 4+ €Ys Ys Ys Y7
Ys Y1 Yo — €Yy Y3 —€eYs Y4+ eYg Ys Ys Y7
Y7 Y Yo Y3 Yy 4 2€Yy Ys Ys Y7

TABLE 4. The Adexpey,Y; is shown in the (7, 7) entry of the table.

Any one dimensional subalgebra of g is equivalent, under the adjoint representation, to one of the following
cases:

(41) X, (A5) aXs+ X,

(AQ) X3, (A6) aX4 + X5,

(A3) Xy, (A7) X1 + aXs + Xy,

(A4) X1+ X5 (A8) X1+ aX3+ Xy + X,

where v € {0,1} and «, 8 € R\{0}. Starting with a general element of g of the form
X = Oéle + OLQXQ + Oéng + OL4X4 + OL5X5

we can use all Adexpex, in order to simplify as much as possible and effectively classify all different one
dimensional subalgebras of g§. The adjoint action Ad induces an action on the coefficients oy, i.e. on R®.
We observe that ag, ay and ap are invariants of the induced action. This implies that we can classify all
inequivalent vector fields according to whether these invariants are zero or not. Moreover, we can rescale
the vector field X, use the permutation symmetry o and the reflection symmetries p and oo poo to identify
some subcases and thus simplify our clafsvsiﬁcation list. For example, in the case where az = a4 = a5 = 0 we
act with Adexpex, to X and we obtain X = (ay cos (€) 4+ g sin (€)) X1 + (a2 cos (€) — a1 sin (€)) X2. Choosing
€= arctan(agafl) and multiplying by a constant factor we obtain X;. The other cases are obtained in a
similar manner but the calculations are omitted for simplicity. The interested reader can find more details
on such constructions as well as simpler examples in [Hyd00, Olv93, Ovs82].

Similar considerations hold for the symmetry algebra of equation (2.1) H = Span{Y7,...,Y,}. In this case
any one dimensional subalgebra of H is equivalent to one of the following cases:

(Bl) Y1, (B3) Y,
(B2) Y3, (B4) AY1+aYs+ Yy,

where v € {0,1} and a € R\{0}. To prove this we use similar arguments. Beginning with a general element
of h of the form

Y = B81Y1 + BoYo + B3Ys + BiYs

we classify all inequivalent cases. In this case the invariants of the induced action are 83 and (4.

5.1. Invariant solutions via symmetry reductions. We proceed by first considering the symmetry
reductions to ODEs and then continue constructing new solutions, of equation (1.6), which are invariant
under the symmetry transformations corresponding to the vector fields A1-A8. We do the same for equation
(2.1). We first consider the reductions and solutions of equation (1.6).

1. Solutions of (1.6) which are invariant under the symmetry generated by X are of the form u = g(y). This
implies that g is a solution of the trivial ODE ¢”(y)3¢"”(y)? = 0 and thus it follows that u = c;y? + coy + c3
satisfies the co—Polylaplacian. Since equation (1.6) admits the permutation ¢ and also contains derivatives
of at least second order it is easy to verify that the general quadratic polynomial in z and y

(5.1) u = Z cijr'y’
0<i+;<2

is also a solution.



2. Rotationally invariant solutions are of the form u = g(s) where s = 22 + 2. The reduced equation is the
following ODE for f(s)

(5.2) (25Gss + gs) [5(25Gss + gs)gsss + (359ss + 295)gss])” = 0.

The factorisation of the reduced equation implies that

(5.3) u=z?+y?
is a solution of equation (1.6), which we obtain by solving the linear equation
25935 +9s = 0

and then changing to the original =, y—variables. Note that this solution is also the most general rotationally
invariant solution of Aronsson’s equation (1.5) in two independent variables [FF'11]. However, equation (1.6)
may admit more solutions of this type that correspond to the equation defined by the second factor in (5.2),
i.e. a third order nonlinear ODE.

3. The quantities v and s = xy~' are algebraic invariants of the Lie group generated by X,. We assume

that v = g(s) and we obtain a reduced differential equation for g(s) which, similarly to the previous case can
be decomposed to a product of two factors. One of these factors is too complicated to include it, however,
the other factor is simpler and defines the differential equation

(14 5%)gss + 2595 = 0

from which we can obtain the solution
(5.4) u = arctan <£> ,
Yy

of equation (1.6). Using the permutation symmetry of the independent variable it follows that arctan (y/x)
is also a solution. It can be easily verified that any linear combination of these two solutions is again a
solution.

4. In the case of the generator vX; + X5 we have two subcases depending on the value of 7. If v = 0 the
only invariant solution is the trivial solution v = 0. If v = 1 we have two invariants of the corresponding Lie
group, namely e~ ®u and y. This implies that the most general form of an invariant solution is u = e*h(y).
Substituting the ansatz for u in (1.6) we obtain the following equation for h(y)

4hg® 4 4hygg, + hyy(9,)* =0, glh] := h% 4+ 2(hy)* + (hy,)>.

This equation is difficult to solve and it does not admit any obvious factorisations as in the previous cases.
It is important to note at this point that g[h] = 0 defines a subset of solutions. Obviously, if h(y) is a real
function then the only such solution is h(y) = 0. However, over the complex numbers equation g[h] = 0
might be tractable and have nontrivial solutions.

5. In the case of the generator a X3 + X5 the invariants are s = 22 + y2 and r = arctan (%) + aln(u). The
most general solution invariant under the symmetry generated by aXs + X5 is of the form

1 1 x
u = exp ag(s) - aarctan 7))

The resulting reduced ODE for g(s) is too complicated to handle or even write down. For specific values
of o it might be possible to simplify the expressions, due to cancellations or factorisations, and thus find
explicit solutions.



6. The quantities s = zy~! and r = uz~= are invariants under the action of the Lie symmetry generated

by aX3 + X5. In the limit o — oo we reduce to the generator X3. For o # 0, the most general invariant
solution of (1.6) is of the form u = z= g(s). For a general a # 0 the reduced ODE it is complicated and
we will not present it here. However, it is interesting to note that in the special case o = 1/2 the reduced
equation factorises as follows
Ei[g)° Ba[g]* = 0
where
Erlg] := s%(1 + 5%)%gqs + 25(1 4 5%)(2 + 52)gs + 29
and
Es[g] := 89sss + 65gss + 69s.
Equations Ej[g] = 0 and Es[g] = 0 are both linear and can be solved exactly. Solving the first equation we
obtain the following solutions for (1.6)

(5.5) u=(z°+y?) {ClCOS <\/§arctan (§)> + cosin (\/iarctan <§)>}

Y
for ¢; € R. The general solution of equation Es[g] = 0 can also be find and implies the solution

u = clx2 + coxy + ng2

with ¢; € R. It would be very interesting to find a method or some criteria which will detect possible
values of the parameter in which such factorisations occur. Perhaps such suitable necessary conditions for
the parameter o can be obtained using a Painlevé type analysis, see Chapter 7 of [AC91] and [Conl2] for
reviews and detailed references. It is interesting to notice that while the scaling (z,y,u) — (e*x, e*¢y, e“u)
is a symmetry for every «, each of the differential monomials of equation (1.6) has the same weight, i.e.,

2 5—12 2
fwuwx '_> e( a)efwuww

and similarly for the other terms. This observation implies that for the special value o = 12/5 all three terms
of equation (1.6) are individually invariant under the scaling symmetry. This observation further implies
that
H2 "~ x5'r712
o0
and because of symmetry the same will hold for y”. Putting all these together it can be verified that
Hgo(a(ET + byr) ~ (15(E5T_12 + b5y5r—12

from where we obtain, for » = 12/5, a scaling invariant solution, also known as similarity solution, of equation
(1.6) if and only if (a,b) satisfies

a® +b°=0.
The only real solution is given by b = —a and in this way we recover the solution
(56) u = JU12/5 _ y12/5’

which was first constructed in [KP18]. The same arguments are valid in the case of the general co—Polylaplacian
in n independent variables. In this case we obtain that
(5.7) u = C1$}2/5 + o+ cnx}f/s
is a solution if and only if (c1, ..., ¢,) lies on the affine variety V(¢§ +---+¢2). This is an invariant solution
under the scaling symmetry generated by the vector field
0 0 12 9
X=—— 4.4 2 422
0x1 Tt oz, + 5 Ou

Indeed, it can be written in the following form

IO = 61[112/5 + -+ Cn71I71127/15 + cn
where
Iy :ux;12/5, I; :x]—xgl, j=1--,n-1

are invariants of the scaling symmetry generated by X.
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7. For the generator vX; + aXs + X4 we have to consider the two subcases v =0 and v = 1. When v =0
the generator is a X3 + X5 with o € R\{0} and we can verify that u and

x «
— t 21— 2 2
S = arc an(y) B) H($ +y)

are invariants under the action of the corresponding Lie group. The ansatz u = g(s) leads to an ODE that
is too complicated to include it here. Nevertheless, the reduced ODE admits a factorisation where one of
the factors is given by

Ey [g] =(1+ az)gss + ags.

The linear ODE Ej[g] = 0 can be integrated for every a and gives the following solution of the oo-
Polylaplacian

2

(22 + y?) T
exp (ﬁarctan (%))

(5.8) u=

Similarly, when v = 1 the invariants are u and

or +y

T ay) +2aln [0 + 20°z — 2a%y + o*(1 + o) (2* + )]

z = —4arctan (
and the reduced ODE for h(z) contains the following linear factor
By [h] :==4(1 + a?)h,. — ah,.

Solving the linear ODE Es[h] = 0 for all o we finally obtain the following solution

o2
[a2 +2a%x — 203y + o?(1 + o?)(2? + y2)] 2(1+a?2)

axr+
exp (ﬁarctan ( 1+1;fo!¢y ))

(5.9) u=

of the oo-Polylaplacian. It is interesting to notice that solution (5.8) can be seen as the dominant part of
solution (5.9) as @ — oo.

Unfortunately the reductions that correspond to the generator A8 are too complicated to handle. We now
focus on the reductions of the reduced co—Polylaplacian (2.1) that give additional information. Solutions
of equation (2.1) that are invariant under translation in the z-direction are of the form v = g(y) where f
satisfies

0= g;y —-1= (gyy + 1)(9743/ —1).

The solutions of these equations are just quadratic polynomials in y and thus add nothing new. Solutions
invariant under rotations are of the form u = g(s) where s = 22 + y? and g¢(s) satisfies the following ODE

1682952’5 + 16393953 + 893 —1=0.

The general solution of this ODE is not known, nevertheless a simple polynomial ansatz can lead to the
special solution s/2v/2. The corresponding solution of the (2.1) and hence of (1.6) is contained in the family
of polynomial solutions. Finally, the ansatz u = x2g(s) where s = xy~! leads to solutions that are invariant
under the Lie symmetry generated by Y;. In this case the reduced ODE for g is given by

sU 1+ 8%)2g2, + 457 (g + 5(2 + 35° + 5)g.)gss + 257 (8 4 95” + 25")g2 + 16599, + 49 = 1.

As before a Laurent polynomial ansatz leads to the special solutions (\/58)_1 and (2s2?)~!. The corresponding
solutions of the co—Polylaplacian are contained in the polynomial family. Due to the complexity of the
expressions we didn’t manage to obtain something meaningful in the final case (B4).
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6. CONCLUSIONS AND DISCUSSION

In this paper we studied the co-Polylaplacian equation (1.6) and the reduced oo-Polylaplacian equation
(2.1) in two dimensions (n = 2) from an algebraic point of view. The latter can be seen as a second order
analogue of the Eikonal equation. For both equations we found the complete group of Lie point symmetries
and we classified all the non-equivalent, under the adjoint action, one dimensional Lie subalgebras of g
and H that correspond to translations, rotations and scalings. For each generator in our list we constructed
canonical invariant coordinates and used them to perform the corresponding symmetry reduction. We studied
the obtained reduced ODEs and constructed many new self-similar special solutions (5.1), (5.3), (5.4), (5.5),
(5.6), (5.8), (5.9). The family of functions (5.7), parametrised by an affine variety, is a solution of (1.1)
for every n. The complete classification of one dimensional subalgebras of the full symmetry algebras g
and b together with a more in depth analysis of all of their invariant solutions is still an open problem and
is left for future work. It is also interesting to investigate the structure of the solutions for n > 3. As a
first step towards this direction we presented a conjecture on the full group of Lie point symmetries of the
oo-Polylaplacian and its reduced version in n-dimensions.

We believe that for this type of strongly nonlinear PDE that arise in calculus of variations in L*° deep
intuition can be gained by studying the structure of their Lie symmetries. There are also many related open
problems. For example, currently, to the best of the author’s knowledge, a Noether-like theorem for these
problems is not known. A topic of ongoing work is to investigate whether Noether’s classical theorem applied
in variational problems in L? survives the limit p — co.
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