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Technical Brief

A heterologous expression system for bovine lens transmembrane
Main Intrinsic Protein (MIP) in Nicotiana tabacum plants

Oliver S. de Peyer,*Andrew C. Wetten,2James M. Dunwell,2M . James C. Crabbe!
!Division of Cell and Molecular Biology, School of Animal and Microbial Sciences and 2School of Plant Sciences, The University of

Reading, Whiteknights, Reading, Berkshire RG6 6AJ, UK

We have developed a heterologous expression system for transmembrane lens main intrinsic protein (MIP) in Nicotiana
tabacum plant tissue. A native bovine MI1P26 amplicon was subcloned into an expression cassette under the control of a
constitutive Cauliflower Mosaic Virus promoter, also containing a neomycin phosphotransferase operon. This cassette
was transformed into Agrobacterium tumefaciens by triparental mating and used to infect plant tissue grown in culture.
Recombinant plants were selected by their ability to grow and root on kanamycin-containing media. The presence of MIP
in the plant tissues was confirmed by PCR, RT-PCR and immunohistochemistry. A number of benefits of this system for
the study of MIP will be discussed, and also its application as atool for the study of heterologously expressed proteinsin

general.

Alterations to the structure and function of the vertebrate
lens transmembrane 26 Kd main intrinsic protein (MIP) have
been implicated in the development of cataract, the leading
cause of blindness in the world human population. MIP ac-
countsfor over 60% of lensfiber cell membraneintrinsic pro-
tein. Hypotheses for its function have included gap junction,
adhesin-like and channel roles, and as a nexus for interaction
with other lens proteins such as crystallins. Moreover, MIPis
arepresentative of animportant family of membrane proteins,
which includes the aquaporins, and which has been largely
conserved throughout evolution [1].

However, afirm elucidation of MIP function remains re-
calcitrant. MIP is only found in the final stages of lens fiber
cell differentiation. Maturefiber cells, which make up the great
bulk of thelensno longer contain organellesand have no aero-
bic respirative or genetic activity. Therefore, they cannot be
cultured in vitro and so MIP cannot be studied in its main
cellular environment. Therefore, a variety of heterologous
expression systems have been devel oped for the study of MIP.
To date, MIP has been expressed in E. coli [2], Xenopus oo-
cytes[3], Spodoptera frugiperda (SF) cells[4,5], and recently
mammalian erythroid leukemia (melC) cell lines (Drake and
Crabbe, unpublished).

However, a number of characteristics of the heterolo-
gously expressed MIP differ between the different systems:
MIP is non-glycosylated in E. coli and Xenopus oocytes, but
significantly glycosylated in SF cells. MIP may not be phos-
phorylated in SF21 cells (de Peyer and Crabbe, unpublished),
even though phosphorylation of MIP is known to be an im-
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portant regulatory mechanism in vivo. MIP appears to be a
weak glycerol channel in Xenopus oocytes [6], but not in E.
coli (de Peyer and Crabbe, unpublished). E. coli studiesindi-
cate a 7 transmembrane region topology, whilst SF21 cells
and MelC cellsindicate 6 transmembrane topol ogies. Clearly,
additional heterologous expression systems need to be devel-
oped so that a consensus can be reached for the structure and
function of MIP.

Heterol ogous expression of mammalian proteinsin plant
tissue is a promising candidate since expression is stable and
permanent (not transient asin E. coli or insect cells) and shows
post-trangl ational modifications similar to mammalian tissues.
Transgenic plants have already been successfully engineered
to heterologously express members of the MIP family from
other plant species [7]. We have now extended this to mam-
malian lens MIP itself.

METHODS

Expression constructs: A bovine MIPamplicon bound by a5'
Kpn | restriction endonuclease site and a 3' Sma | site was
produced by PCR using appropriate primers. Thiswasligated
into the relevant sites of an expression cassette consisting of
thebovine MIP cDNA under the control of aconstitutive Cau-
liflower Mosaic Virus promoter [8] and a kanamycin resis-
tance operon [8], flanked by L eft and Right Border sequences
from the Agrobacteriumtumefaciens Ti plasmid [8]. Thiscas-
sette can be seen in Figure 1.

Sequence of MIP N-terminal primer: The dinucleotide
marked with green is a nonsense sequence. The seguence
marked in red is the engineered Kpn | sequence. The slash
indicates the restriction enzyme cut site. The rest of the se-
guence codes for ageneric MIP N-terminal sequence.

5-ACGGTAC/ICATGTGGGAACTGCGGTCAGCC-3

Sequence of MIP C-terminal primer: The dinucleotide
marked with green is a nonsense sequence. The seguence
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marked in red is the engineered Sma | sequence. The slash

indicates the restriction enzyme cut site. The rest of the se-

guence codes for ageneric MIP C-terminal sequence.
5'-ACCCC/GGGTTACAGGGCCTGGGTCTT-3'

PCRcycle parameters. Melting step: 94 °Cfor 1.5min,
annealing step: 60 °C for 2 min, elongation step: 72 °C for 2
min. At termination of 30 cycles, there was a further, fina
elongation step of 72 °C for 10 min.

Transformation: Transformation of A. tumefaciens and
thence plant tissue with this expression cassette was essen-
tially as per reference[8]. The expression cassette was cloned
into the disabled A. tumefaciensL BA4404 strain by triparental
mating (Hel per plasmid pRK2013; Helper strain IM 101). The
resultant recombinant strain was used to infect Nicotiana
tabacum (cultivar Wisconsin) leaf disks. Transgenic diskspro-
duced calli on kanamycin (250 pg/ml) selective medium.
Shoots from calli were excised and transferred to fresh selec-
tive medium.

RNA and DNA extraction and amplification: Plant ge-
nomic DNA was extracted using the Qiagen(Crawley, West
Sussex, UK) “DNAeasy” kit and accompanying proprietary
protocol (Qiagen, catalogue number 69103). Plant MRNA was
extracted using the Dynal (Bromborough, Wirral, Meseyside,
UK) Dynabeads mRNA DIRECT kit and accompanying pro-
prietary protocol (Dynal, catalogue number 610.11). Plant
genomic DNA, and cDNA generated from plant mRNA after
reverse transcription, were both used astemplatesin PCR with
the primers described above, followed by agarose gel electro-
phoresis analysis [9]. Reverse transcription was carried out

pVBE-MIP
¢.13300 bps

P Ao Borer, RS

P Len Booer, LB

B isperngus ADPRY promoer
NPT i (Kanamyon seleckon)

W NOS 3" tarking sequence
CaMVa5S promoter
WIP26

§ Kanamydn resictence

Figure 1. Cloning strategy for ligation of MIP26 into pSIN and thence
into pVB6. Both MIP and the kanamycin resistance factor Neomy-
cin phosphotransferase (NPTII) are flanked at their 3' end by
Nopamine Synthase (NOS) flanking sequence [8], part of the wild-
type A. tumefaciens Ti plasmid [8]. Genes appended with this se-
quence have been demonstrated to be transferred to plant tissue more
efficiently [8]. Since MIP receivesits own Cauliflower Mosaic Vi-
rus (CMV) promoter from the pSIN vector, it is does not matter in
which direction it ligatesinto the final pV B6 vector.

© Molecular Vision

using the Promega (Southampton, UK) Access RT-PCR kit
and accompanying proprietary protocol (Promega, catalogue
number A1250).

Immunohistochemistry: Immunohistochemical analysis
of tissue samples from two different plant organs (young
leaves, and roots) was carried out according to a proprietary
protocol developed at Oxford Brookes University, UK (This
protocol proved unsuitable for other tissues).

Examination of proteinsin plant cellsiscomplicated, since
even minor disruption of plant tissues releases vacuolar pro-

Figure 2. Transgenic plant morphology. A. The expression cassette
shown in Figure 1 was cloned into the disabled A. tumefaciens
LBA4404 strain by triparental mating. The resultant recombinant
strain was used to infect Nicotiana tabacum leaf disks. Transgenic
disks produced calli on kanamycin-selective medium. Shoots from
calli were excised and transferred to fresh selective medium and al-
lowed to develop into full plants as shown here. B. Detail of roots.
Note rooted and non-rooted phenotypes; the latter is non-recombi-
nant.
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teases which rapidly degrade cellular proteins. Therefore, no
sample could be obtained for simple analyses such as SDS-
PAGE or Western blotting. Instead, samples were explored
immunohistochemically, after fixing and sectioning in Butyl-
Methyl Methacrylate resin, according to the following proto-
col:

Fixation: Rootsand young |eaveswere dissected, and were
fixed in 4% paraformaldehyde in 50 mM Pipes (Piperazine-
N,N’ big[2-ethanesulfonic acid]) buffer plus 1 mM CaCl,, pH
6.9 for 2 h at room temperature, followed by 3 washes of 10
min each in 50 mM Pipes plus1 mM DTT (pH 6.9). Root
samples were then dyed with Fast Green to make them easier
to seein subsequent manipulations.

Dehydration: Sampleswere dehydrated by transfer using
tweezers to the following solutions. Each step had a duration
of 30 min at the temperature indicated:

© Molecular Vision

2:1 Ethanol:Resin+ 1 mM DTT overnight
1:1 Ethanol:Resin+ 1 mM DTT 2h
1:2 Ethanol:Resin+ 1 mM DTT 2h
100% Resin + 10 mM DTT, 3 h or overnight
Polymerization: The infiltrated samples were then de-
gassed with dry Nitrogen gas for 30 min. Samples were then
transferred to aluminium dishes of fresh resin and polymer-
ized at 0 °C under UV light (360 nm) overnight. A Nitrogen
atmosphere (gasflow of 450 ml/min) was maintai ned through-
out the polymerization. The resulting blocks of polymerized
resin were then stored with dessication until sectioning.
Sectioning and mounting: The methacrylate resin-encased
sample blocks were sectioned on a glass knife microtome at
2-4 um. Individual sections were then transferred to drops of
water on wells of multiwell Polylysine-coated slides, and al-
lowed to dry at 37 °C overnight.

10% Ethanol + 1 mM DTT, 4 °C, rotated on “windmill”

25% Ethanol + 1 mM DTT, 4 °C, rotated on “windmill”

50% Ethanol + 1 mM DTT, 4 °C, rotated on “windmill”

70% Ethanol + 1 mM DTT in cryostat at -20 °C

90% Ethanol + 1 mM DTT in cryostat at -20 °C

100% Ethanol + 1 mM DTT in cryostat at -20 °C

Infiltration: Butyl-Methyl Methacrylateresinwasthenin-

filtrated into the samples by transfer using tweezers into the
following solutions, al at -20 °C:

Washing, application of antibodies, and examination: The
resin was dissolved by standing the slidesin acetone for 5-10
min, without agitation. The samples on the dides were then
rehydrated by standing in PBST (phosphate buffered saline
[PBS] plus 0.05% Tween 20) for 10 min and blocked for 15
min in PBSBT (PBS plus 0.1% Tween 20, 1% BSA, and
0.002% Sodium Azide). Slides were then dried between the
wells, and primary anti-MIP antibody was added to each well
at the appropriate dilutionin PBS. These dideswereplacedin

A Size Size
Scale Scale
Genomic
DMA
4000 bp 4000 bp
3000 bp R 3000 bp
2000bp
2000 b
1600bp [l i
1600 bp
1000 bp
MIP26 1o0obp
MIP26
500 bp
500 bp
Positive
Control
Primers

Figure 3. Analysis of transgenic plants for the presence of MIP using PCR and RT PCR. A. MIP26 PCR product from plant genomic DNA.
Plant genomic DNA was extracted using the Qiagen “DNAeasy” kit. Plant genomic DNA was used as the template in PCR, followed by
agarose gel electrophoresisanalysis. Lane 1, DNA sizemarkers; lane 2, PCR without template; lane 3, wild-type plant DNA alone (theselanes
show that PCR contamination precautions were adequate to prevent aerosol contamination and false positive bands); lane 4, lack of PCR
products from wild-type plant DNA; lanes 5, 7 and 9, DNA from transgenic plants; lanes 6, 8, and 10, PCR products from DNA from
transgenic plants. Lanes 6, 8, and 10 contained aband of about 800 bp in size, which was excised, sequenced, and confirmed as bovine M1P26.
B. MIP26 RT PCR product from plant mRNA. Plant mRNA was extracted using the Dynal Dynabeads mRNA DIRECT kit. Plant cDNA
generated from plant mMRNA after reverse transcription was both used asatemplatesin PCR, followed by agarose gel electrophoresisanalysis.
Reverse transcription was carried out using the PromegaAccess RT-PCR kit. Lanes 1 and 14, DNA size markers; lanes 2 and 3, RT-PCR with
no template; lanes 4 and 5, positive control RT-PCR with known mRNA; lanes 6 and 7, wild-type plant mRNA (these lanes show that the
primers employed were be specific enough to not inadvertently amplify native plant cDNAS); lanes 8, 9,10,11,12 and 13, mRNA from
tansgenic plants. These reactions gave a band of about 800 bp in size, which was excised and sequenced, and confirmed as bovine M1 P26.
The positive control (lanes 4 and 5) was as supplied with the PromegaAccess RT-PCR kit (mMRNA for the E. coli kanamycin resistance gene),
giving rise to a 323 bp amplimer using the primers supplied with the kit.



Molecular Vision 1999; 5:23 <http://www.molvis.org/molvis/v5/p23>

amoist sealed container at 4 °C overnight, followed by incu-
bation at room temperature for 2 h the following day. The
slideswere then washed in PBST threetimesfor 10 min each.
The PBST was individually pipetted and removed from each
well. Secondary antibody (anti-Rabbit FITC
[Fluoroisothiocyanate] conjugate) was then added at 1:40 di-
[utionfor 2 h at room temperature. Thewellswerethen washed
in PBSthreetimesfor 10 min each. Propidium iodide nuclear
stain (3 pg/ml) wasthen briefly applied to each well followed
by two washes in PBS and one wash with water. Coverdips
were then mounted on the slides with Citifluor antifadeant
and sealed with nail varnish. Slides could be examined imme-
diately using fluorescence microscopy or stored at 4 °C.

RESULTS

Putative transgenic plants showed consistent root growth on
kanamycin selective medium. Rooting is an excellent indica-
tor of the presence of the expression cassette in plant tissue
(Figure 2A,B). Beyond the ability to root in kanamycin selec-
tive medium, there was no difference in phenotype between
transgenic plants and control plants grown on non-selective
medium.

Rooted plants screened by PCR and RT-PCR exhibited a
single PCR product of ~800 nucleotides (Figure 3A) which
sequencing confirmed as bovine MIP. The presence of this
band from mRNA (Figure 3B) confirms transcription of the
cassette (MRNA yields from the plants were low, ~10 ng/ul,
precluding quantitation). Control plantsexhibited neither root
growth nor PCR product.

Cédl membranes from young transgenic leaves exhibited
significantly enhanced immunofluorescence (Figure 4A,B)
versus control plants (Figure 4C). Sinceimmunofluorescence
islocalized to cell membranes, this suggeststhat M1 P hasbeen
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correctly targetted to young transgenic leaf cells within the
plants.

DISCUSSION
We have succeeded in generating transgenic plants express-
ing bovine lens MIP. The phenotype of the plants did not dif-
fer from control plants, in contrast to a previous example of
heterologous expression of an MIP family member [7] in N.
tabacum where morphology was significantly affected.

We observed one sample of increased immunofluores-
cenceinayoungroot. Itispossiblethat MIPisonly expressed
in juvenile transgenic roots, although this would be hard to
explore further since juvenile specimens would be very close
to the main mass of roots and so hard to excise (only the out-
ermost root hairs can be conveniently dissected away for analy-
sis). Likewise, the distribution of MIP protein in other
transgenic plant tissues is not known at present, due to their
unsuitability for immunohistochemistry.

Currently, it is not possible to usefully quantify levels of
transcription and trand ation of the MIP transgene. Recombi-
nant genesin transgenic plants are not necessarily stable from
one generation to the next. For instance, the introduced gene
might liewithin amethylationisland in the plant genome, and
becomeitself methylated and inactive with continued sub-cul -
turing of the plant line. For this reason, in ongoing work the
transgenic plant lines expressing M1P26 are being grownin a
glasshouse environment to sexual maturity. Backcrossing of
plant lines should result in astable plant line; also the level of
MIP expression can be maximized by crossbreeding different
high-expressing lines.

Thisexpression system has potential in the elucidation of
MIP structure and function. Protoplasts can be isolated from
plant tissues [10] and subjected to electrophysiological analy-

A

C

Figure 4. Immunohistochemical analysis of young leaf and root tissues. Some slides showed irregular cell structure since adhesion of the
microtomed samplesto the lides was poor; they had atendency to lift off partially and present adistorted or corrugated appearance. Thisisan
inherent drawback of plant tissues and we are aware of no superior plant immunohistochemical protocol for light microscopy. The magnifica
tion was x200 for all figures. The longest dimension of each image is approximately 180 pm. All our controls, including those with primary
and secondary antibodies alone, were negative and showed no fluorescence. A. Young transgenic |eaf section showing enhanced immunofluo-
rescence at cell peripheries. Young leaves were dissected, and fixed in 4% paraformaldehyde. Slides were dried, and primary anti-MIP
antibody was added. Secondary antibody (anti-Rabbit FITC conjugate) was then added. Propidium iodide nuclear stain (3 pg/ml) was then
briefly applied, coverslips were mounted on the slides and sealed with nail varnish. B. Young transgenic leaf section showing enhanced
immunofluorescence at cell peripheries. Young leaves were dissected, and fixed in 4% paraformal dehyde. Slidesweredried, and primary anti-
MIP antibody was added. Secondary antibody (anti-Rabbit FITC conjugate) was then added. Propidium iodide nuclear stain (3 pg/ml) was
then briefly applied, coverdips were mounted on the slides and sealed with nail varnish. C. Young leaf section from control plant showing
background immunofluorescence. Young leaves were dissected, and fixed in 4% paraformaldehyde. Slides were dried, and primary anti-MIP
antibody was added. Secondary antibody (anti-Rabbit FITC conjugate) was then added. Propidium iodide nuclear stain (3 pg/ml) was then
briefly applied, coverdlips were mounted on the slides and sealed with nail varnish. From our numerous plant (and indeed root) cell sections,
we have always seen some background immunofluorescence localized to cell membranes.



Molecular Vision 1999; 5:23 <http://www.molvis.org/molvis/v5/p23>

sissuch as patch clamping [11,12]. Transmembrane topology
can be immunolocalized using antibodies raised to discrete
peptide sequences from the MIP26 polypeptide. However,
immunolocalization of cytoplasmically exposed domains of
MIP has been carried out in E. coli and SF21 cells through
inverting spheroplasts or disruption of cell membranes with
agents such as acetone to allow antibodies access to the cyto-
plasmic side of the membrane[2,4]. These techniques are not
applicable to plant cells due to the presence of a cell wall.
Therefore, techniques such as gold-labelled antibodies used
in conjunction with transmission el ectron microscopy may be
required.

Although low resolution structures have been proposed
for some MIP family members through cryoelectron micros-
copy studies [13-16], this has not been sufficient to distin-
guish between the different topological models proposed.
Moreover, heterologous expression systems devel oped so far
have not provided enough correctly folded recombinant pro-
tein to permit crystallisation trials. By contrast, a N. tabacum
system can effectively be scaled up agriculturally and is not
limited by available fermenter technol ogy. Purification of pro-
teinsfrom plant cellsis problematic dueto vacuol ar proteases,
to counter this, we have constructed an N terminal
oligohistidine-tagged MIP clone for the purposes of Nickel-
chelating affinity chromatography, which should aid in the
optimisation of M1P26 recovery from avariety of tissuesbased
on existing N. tabacummembrane preparation protocols[7].

Plant systems have previously been used for the heter-
ologous expression of avariety of substances on anindustrial
scale [17-19], including the production of recombinant light-
harvesting complexes for crystallisation [20]; here we pro-
mote the use of transgenic plants on a laboratory scale, with
an inherent and considerable potential for scale-up.
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