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ABSTRACT

Cloud trails are primarily thermally forced bands of cloud that extend down-
wind of small islands. A novel algorithm to classify conventional geostation-
ary visible-channel satellite images as Cloud Trail (CT), Non-Trail (NT), or
Obscured (OB) is defined. The algorithm is then applied to the warm season
months of five years at Bermuda comprising 16,400 images. Bermuda’s low
elevation and location make this island ideal for isolating the role of the island
thermal contrast on CT formation.

CT are found to occur at Bermuda with an annual cycle, peaking in July, and a
diurnal cycle that peaks in mid-afternoon. Composites of radiosonde observa-
tions and ERA-interim data suggest that a warm and humid low-level environ-
ment is conducive for CT development. From a Lagrangian perspective, wind
direction modulates CT formation by maximizing low-level heating on local
scales when winds are parallel to the long axis of the island. On larger scales,

low-level wind direction also controls low-level humidity through advection.



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1. Introduction

Bermuda is a small, flat island in the western North Atlantic Ocean with a total land area of
about 54 km? and topography not rising more than 76 m above sea level (CIA 2017). Bermuda is
also isolated, more than 1000 km away from the nearest land in North America to the west and the
Caribbean to the south. This situation, somewhat unique to Bermuda, helps to isolate the influence
of the island on the impinging flow.

Cloud trails are bands of cloud that extend downwind of small heated islands. This heating re-
sults in a thermal perturbation over and downwind of an island in the form of a turbulent plume
with associated thermally forced circulations that organize convection into one or more cloud
bands. These bands appear anchored to their parent island in animations of visible-channel satel-
lite imagery. Cloud trails are found to occur on ‘flat’ islands such as Nantucket (e.g. Malkus and
Bunker 1952; Malkus and Stern 1953); Anegada, British Virgin Islands (Malkus 1963); the Ba-
hamas Islands (Bhumralkar 1973); and Nauru (e.g. Nordeen et al. 2001; McFarlane et al. 2005;
Matthews et al. 2007). This phenomenon offers a somewhat simplified real-world setting to study
the behavior of convection associated with surface heterogeneities.

A similar phenomenon is also observed downwind of heated islands with significant topography:
for example, in The Lesser Antilles Islands (peaks near 1500 m) (e.g Garstang et al. 1975; Smith
et al. 2007; Kirshbaum and Fairman 2015); the Eastern Pacific Island of Guadalupe (1300 m)
(Dorman 1994); and Hawaii (over 4000 m) (e.g. Smolarkiewicz et al. 1988; Yang and Chen 2008;
Yang et al. 2008b,a). Such studies suggest that the topography plays a significant role in generating
flow perturbations. These perturbations are shown to be of greater magnitude but often with the
same sign as the thermal perturbations that result from solar heating (Crook and Tucker 2005;

Kirshbaum and Wang 2014). The topography also results in added downstream effects that can
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interfere with or disrupt cloud trails. Drying due to downstream wave breaking was mentioned by
Kirshbaum and Fairman (2015), while vortex shedding could overwhelm any cloud trail signal.
These studies highlight the complicating role of topography, and motivates the focus on flat island
cases.

In addition to elevation, island size is important in determining the nature of convection that
develops in a heated flow. Williams et al. (2004) showed that the island signal in lightning flash
rates (a proxy for convective intensity) becomes indistinguishable from the background oceanic
regime for islands with an area less than 100 km? (small islands). Similar results were found for
the pattern of precipitation over tropical islands by Robinson et al. (2011) and Sobel et al. (2011).

One mechanism for the increase in convective intensity over larger islands is the convergence of
sea breeze fronts (e.g. Crook 2001). However, under no background flow and for a given heating
rate, two-dimensional simulations show that the strength of a sea breeze circulation decreases with
island/peninsula size (Savijarvi and Matthews 2004). Savijarvi and Matthews (2004) also found
that with some background flow, the windward cell of the weaker sea breezes for smaller islands
can be displaced and tilted downwind of the island - transforming the circulation into that of a
steady heat island like that in Estoque and Bhumralkar (1969).

Analysis of intensive field campaign observations on Nauru (as part of the Nauru Island Effect
Study - NIES (McFarlane et al. 2005)) revealed potential mechanisms for the initiation and main-
tenance of cloud trails there (Savijarvi and Matthews 2004; Matthews et al. 2007). These authors
propose that a thermal internal boundary layer forms and grows as oceanic air advects across the
heated island. This turbulent thermal layer then evolves into a warmer, cloud-topped plume down-
wind of the island. This idea of a warm plume is consistent with the observations at Barbados

discussed by Garstang et al. (1975). Matthews et al. (2007) also suggested that the warm plume
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drives a thermal circulation that may be responsible for the maintenance of the cloud trails that
were found to extend on average 125 km downwind of Nauru (Nordeen et al. 2001) .

Cloud trail climatologies at Nauru and in the Lesser Antilles Islands were made using visible-
channel satellite imagery (Nordeen et al. 2001; Kirshbaum and Fairman 2015). Each hourly image
was manually classified by Nordeen et al. (2001) as either ‘Cloud Plume’ - a line of cloud is seen
extending downwind of and anchored to the island; ‘Non-plume’ - there is no evident band of
anchored cloud; or ‘Obscured’ - the island is obscured from view by larger scale cloud phenomena.
The current study will follow this definition, but referring to ‘Cloud Trail’ (CT), ‘Non-trail’ (NT),
and ‘Obscured’ (OB) scenes respectively.

Both Nordeen et al. (2001) and Kirshbaum and Fairman (2015) showed that strong surface
heating during the day was important for CT development. CT occurrence was seen to peak in
mid-afternoon both at Nauru and the Lesser Antilles Islands. At Nauru, this diurnal cycle in
CT occurrence combined with the low elevation of Nauru (only rising to 30 m above sea level)
reinforces the idea that cloud trails are primarily thermally driven by the difference in low-level
heating between the island and surrounding ocean (Nordeen et al. 2001).

In the following sections, a simple automated method for classifying visible-channel satellite
imagery at Bermuda as ‘Cloud Trail’, ‘Non-trail’, or ‘Obscured’ is outlined. The choice of an
automated classification scheme has the benefits of reproducibility, objectivity, and expedience
over manual classifications. Further, it has the potential to be quickly adapted for other locations
or similar problems.

This is applied to 16,400 images over five years to construct a climatology. We then use these
classifications in conjunction with radiosonde observations and European Re-Analysis Interim

(ERA-interim) data to describe the environments that coincide with each classification. Finally,
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we discuss some cloud trail behaviour at Bermuda and why some environments appear more

favourable for CT formation.

2. Methods

a. Data

Imagery from the visible (0.64um) channel of the Geostationary Operational Environmental
Satellite (GOES-13) is used to identify CT and thereby construct a climatology of their occur-
rence. GOES-13 is operated by the U.S. National Oceanographic and Atmospheric Administration
(NOAA) and National Aeronautics and Space Administration (NASA). Data with a nominal reso-
lution of 1 km and 30 mins used in this study is accessed through the Comprehensive Large Array-
Data Stewardship System (CLASS) archives at NOAA’s National Climate Data Center (NCDC)
(NOAA Office of Satellite and Product Operations and NOAA Center for Satellite Applications
and Research 1994).

Radiosonde observations taken at Bermuda, near 32.3 °N, 64.8 °W, are sourced from version
two of the Integrated Global Radiosonde Archive (IGRAv2). This dataset replaces the previous
version of IGRA (e.g. Durre et al. 2006, 2008). At Bermuda, radiosondes are regularly launched
once per day at 0900 LT (UTC - 0300). In this study, to compare radiosondes on different days, the
temperature, pressure, and relative humidity measurements are linearly interpolated to regularly
spaced pressure levels from 1000-hPa to 100-hPa with 5-hPa increments. After interpolation, the

potential temperature is calculated as follows:

ezT(@)C’J (1)
p
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where 0 is the potential temperature in Kelvin, T is the temperature in Kelvin, p is a reference
pressure set to 1000-hPa, p is the pressure in hPa, R; is the gas constant for dry air taken to be 287
Jkg=! K~!, and Cp is the specific heat capacity of dry air at constant pressure, taken to be 1004 J
kg ! K1

Surface data at Bermuda are provided by the Bermuda Weather Service. Wind speed and direc-
tion measurements used in this study are 10 minute averages measured at 10 m above ground level
with observations every 10 minutes. These measurements are taken at Bermuda’s L. F. Wade Inter-
national Airport, on runway 12 (at the northwest end of the airfield). Air temperature and relative
humidity at 1.5 m are also provided by the Bermuda Weather Service in hourly observations.

Finally, ERA-interim data (Dee et al. 2011) are used to investigate the large-scale environment.
Temperature, specific humidity, three dimensional wind components and mean sea level pressure
are used.

The period of interest for this study is May through October in the years 2012 through 2016.
May through October is referred to as the ‘warm season’ in this study. At Bermuda’s latitude,
there is a stronger annual cycle in the large-scale environment than at Nauru or in the Caribbean
Sea. Further, the solar zenith angle is higher and therefore the diurnal surface heating is weaker
during the remaining months (November through April, or the ‘cool season’).

Reanalysis data shows that the North Atlantic Subtropical High (Bermuda-Azores High) is most
intense and extensive during the warm season - peaking in July. The cool season marks the period
where the Bermuda-Azores High is less influential or absent and so mid-latitude cyclones and
their fronts play a larger role in the local weather. It maintains largely settled weather across the
Western Atlantic. This is consistent with findings by Davis et al. (1997) on the variability of the

North Atlantic anticyclone. Given that large-scale disturbances can both obscure the island in
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cloud and disrupt cloud trail formation with precipitation and sudden wind shifts, only the warm

season is considered for its more settled regime.

b. Manual Classification Method

Initially, a manual classification of the first warm season (May through October, 2012) is per-
formed to both aid in the design of an automated method for classification, and validate the auto-
mated classifications. Scenes are classified using the three categories (CT, NT, and OB) outlined
above. Here, a scene refers to a visible-channel satellite image cropped to a 4 x 4° domain cen-
tered on Bermuda. The surface wind direction is used to determine where the downwind side of
the island is in each scene.

Scenes are classified as CT if the area around the island is not covered in cloud and a band or
bands of cloud are seen downwind of and apparently anchored to Bermuda (e.g. Fig. 1a). If the
area around the island is not covered in cloud, but no band of cloud is seen anchored downwind
of the island, the scene is classified as NT (e.g. Fig. 1b). Finally, if the scene is mostly cloudy,
particularly in such a way that covers much of the island from view, it is classified as OB (e.g. Fig
1c).

While this exercise is somewhat subjective, the majority of scenes were straightforward to clas-
sify. The biggest challenge was in distinguishing between downwind cloud bands that are CT
against those that are associated with other phenomena such as low-level convergence not linked
to the island, cold pools, etc. It is suspected that these features may be misclassified by an inten-

tionally simplistic automated approach.
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c. Algorithm for Automated Classification

From our manual classification and the previous work discussed above, we know that (i) CT
are either absent or hidden from view by other large-scale cloud in OB scenes, and (ii) CT are
characterized by more cloud downwind of the island than upwind. These two ideas are used to
design an algorithm to automate the classification of scenes into our three categories.

First, cloudy and cloud-free pixels must be identified. Each pixel is nominally 1x1 km. The
albedo from the visible-channel satellite data is used to identify cloudy pixels. For simplicity we
create a binary cloud mask based on an albedo threshold. Pixels are called ‘cloudy’ and given
a value of ‘1’ if the albedo is greater than the albedo threshold. Remaining pixels with albedo
less than this threshold are given a value of ‘0’. Figure 2 shows an example of a visible-channel
satellite image in (a) and the cloud mask that results from this method in (b).

Sensitivity tests (not shown) on the choice of albedo threshold for a mostly cloud free day with
a cloud trail in the afternoon hours (according to observations from the L. F. Wade International
Airport (TXKF) and the manual classification) indicate that if the albedo threshold is lower than
0.10, the land area of Bermuda and the shallow water surrounding Bermuda is falsely masked as
cloud (e.g. Fig. 1b). Conversely, if the threshold is greater than 0.20, pixels containing smaller
cloud elements, or pixels that are part of regions of thin cloud might be falsely masked as not
cloudy. The albedo threshold is taken to be 0.15, as a compromise between these two limits and
the same value used in Yang and Chen (2008) and Kirshbaum and Fairman (2015).

A known issue with this simple masking method is that cloud cover over land and coastal regions
remains somewhat ambiguous. Land provides a higher background albedo than the ocean. Land
pixels may therefore still erroneously be masked as cloudy. Pixels over land, and one pixel away

from the coastline are therefore excluded from calculations to account for this issue.
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Furthermore, for high solar zenith angles, spurious regions of high or low albedo can appear
depending on the cloud cover. For instance, individual towering clouds might cast shadows on
other cloudy regions - these shadowed areas are then falsely masked as cloud-free. Similarly, at
sunrise and sunset (when the solar zenith angle is 90°) there can be a very bright line through the
scene. Scenes must then be rejected if the maximum solar zenith angle is too high. To accomplish
this, five sample scenes that were obviously impacted by the above mentioned effects were chosen.
All scenes with solar zenith angle less than some threshold are then discarded. This threshold is
determined by taking a first guess of 90° and decreasing the threshold by 5° increments until
the five sample scenes are discounted. We find that scenes with a solar zenith angle < 75° are
sufficiently illuminated to avoid these high solar zenith angle issues.

Once a scene is subjected to this solar zenith angle test and converted to a cloud mask, it is then
assessed for the presence of a CT. In the algorithm, a scene is first classified as OB, or non-OB (i.e.
including both the CT and NT classifications). Then, the non-OB scenes are further subdivided
into CT or NT categories.

A circular region of interest with radius 0.25° (about 25 km) centered on Bermuda is considered.
This circle contains the entire island and the edges of this circle are at least 0.10° (10 km) away
from any land points (Fig. 2c). To determine how cloudy the scene is and therefore whether or not
to classify it as OB, the cloud fraction in that circular area is calculated. Here, the cloud fraction
is defined as the spatial mean of the cloud mask over a given area. Scenes with a cloud fraction
in the circular region greater than a threshold, o, are classified as OB. If the cloud fraction is less
than o, then the scene is non-OB and tested further.

The non-OB scenes are further sorted into NT and CT classifications. As seen in loops of
visible-channel satellite imagery and reported in the literature above, CT initiate at the island and

extend downwind, forming a band of cloud anchored to the island. Nordeen et al. (2001) used

10



198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

cloud level (the mean over the 950 - 850-hPa layer) wind directions from once daily radiosondes
to manually identify CT at Nauru. However, while it may be reasonable to assume that there is
no significant change in wind direction during the day at Nauru because it is well embedded in
the tropical Pacific trade wind region, Bermuda is near the axis of the Bermuda-Azores high and
small changes in the position of this ridge axis could mean a reversal in the wind direction.

McFarlane et al. (2005) showed that at Nauru, the surface wind direction compares well with
the heading of identified CT. We have found that the 0900 LT pressure-weighted cloud level (950 -
850-hPa mean) wind direction from radiosonde ascents at Bermuda compare well with the surface
winds measured at the same time at Bermuda (not shown). For the purposes of this study, it there-
fore appears reasonable to use the half-hourly surface wind direction from TXKF to determine
where upwind and downwind directions are relative to Bermuda.

The same circular 0.25° area used to test for OB scenes is now divided into 10° sectors, thirty-
six in all (Fig. 2d). The first sector is centered on North. We expect the CT signal to be strongest
nearer to the island because of the anchoring described above. From sensitivity tests, if the radius
of the circle is too large, the sectors start to become broader than the CT and so the signal in sector
cloud fraction becomes damped (not shown). At distances of 0.25°, a sector is roughly 4.4 km
wide.

As a result of Bermuda’s geometry, some sectors contain more non-land pixels than others.
Sensitivity to the number of pixels used for cloud fraction computations was tested by using sectors
of different lengths and shapes to make them contain more similar number of pixels. The results
are found to be generally insensitive to having a more equal pixel count in each sector.

Half-hourly 10 m wind direction observations are used to locate the upwind and downwind
sectors. To account for fluctuations in the wind direction, differences between wind direction and

CT heading, and CT occurring across two sectors, nine sectors centered on the wind direction are

11
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considered. Next, the cloud fraction is calculated for each of nine sectors and the maximum cloud
fraction of those sectors is taken to represent the upwind or downwind cloud fraction (marked as
‘U’ and ‘D’ respectively in Fig. 2d).

The difference between the downwind and upwind sector maximum cloud fractions (8F) is
taken. Since CT are characterized by organized cloudiness downwind of islands, it follows that
there should be a higher downwind cloud fraction than upwind cloud fraction. 6 F must be > 0 to
satisfy this condition. However, we also wish to exclude small differences which may be due to
random sampling of an undisturbed cloud field. Hence, 0 F must be compared to a threshold ()
based on cloud fraction statistics for the chosen definition of upwind and downwind sectors.

Values chosen in our algorithm for @ and B are discussed in Section 2d.

d. Algorithm Parameters

Assuming the manual classification is the ‘truth’, it is used to estimate optimal values for o
(the cloud fraction threshold above which a scene is classified as OB) and 8 (the 6 F difference
threshold above which a scene is classified as CT). For «, the cloud fraction is computed for
each manually classified scene as described in the above section for discriminating between OB
and non-OB scenes. We then consider the cumulative distribution of this cloud fraction for the
OB scenes, and the inverse cumulative distribution for the non-OB scenes. The cloud fraction at
which these two distributions intersect is taken to be the optimal value for . With our manual
classifications, we find @ to be 0.33.

To determine the value of B we again refer to the manual classification. We apply our above
method for discriminating between NT and CT scenes to all non-OB scenes. We then consider the

cumulative distribution of 8 F for CT scenes, and the inverse cumulative distribution of 6 F for the

12
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NT scenes. Again, the 6 F where these two distributions intersect, 0.08, is taken as the value for
B. For more information on this process, please refer to the appendix.

Sensitivity tests (not shown) suggest that the overall patterns of the annual and diurnal cycle are
not very sensitive to the choice of @ and . We remark that o = 0.33 is of a similar magnitude
to the mean cloud fraction for all days across the period of interest (0.342). A more conservative
(higher) value for 3 yields a more confident CT classification at the expense of rejecting the cases

with more complex background cloud.

3. Results and Discussion

a. Algorithm Validation

In effect, by our definitions for o and 3, we are maximizing the Peirce Skill Score (PSS). This
score ranges from -1 to 1 where 1 indicates a perfect classification, and O indicates no skill in

classifying scenes. Peirce (1884) defines it as follows:

H F
PSS = (m) - (F—+c> @

where PSS is the Peirce Skill Score, H is the number of hits, M is the number of misses, F is
the number of false alarms, and C is the number of correct negatives. This score describes the
match when there are two possible outcomes, ‘a’ (event occurs) or ‘b’ (event does not occur).
The corresponding algorithm-manual pairs are ‘aa’ for hit, ‘ba’ for miss, ‘ab’ for false alarm,
and ‘bb’ for correct negative. For o, ‘a’ refers to an OB classification, and ‘b’ refers to non-
OB classification. At this stage the algorithm has only made OB and non-OB classifications, the

manual NT and CT classifications both count toward non-OB. For 8, we ask what classification

13
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would the algorithm assign to the scenes that are manually classified as non-OB. In this case, ‘a’
refers to a CT classification and ‘b’ refers to an NT classification.

The PSS can then be appled to the individual categories. Following the ‘a’ and ‘b’ framework
above for CT classifications, ‘a’ refers to a CT classification, and ‘b’ refers to either NT or OB
classification. In these cases a correct negative (‘bb’) can be any combination of the two non-event
scenes (e.g. NT-NT, NT-OB, OB-NT, or OB-OB).

For CT, the PSS is 0.51. It is 0.46 for NT classifications, and 0.82 for OB classifications. Over-
all, the algorithm has a score of 0.60. The reader must be reminded that the manual classification
process is subjective, so while we take it to be the truth in determining our algorithm parameters
in the previous section, and for validation purposes here, it should be understood that it is sub-
ject to human error and interpretation differences. Despite this, the manual classification is still
instructive for building intution for what to expect from the algorithm classifications.

However, the PSS does not describe every aspect of algorithm performance. Contingency tables
have been produced to further aid in quantifying the algorithm’s performance. Shown in Table 1(a)
are the contingency table results for the CT classification. Included in the table are the number
of ‘hits’, ‘misses’, ‘false alarms’, and ‘correct negatives’ as described above. The same four
categories are shown for NT and OB classifications in Table 1b and c.

In all cases, there are more hits than either false alarms or misses. Commonly used metrics

derived from such contingency tables are the ‘Hit Rate’ and ‘False Alarm Rate’ given by:

HR =100 x (3a)
H+M
F
FAR =100 x (3b)
F+C

respectively, and H, M, F', and C are as explained above.

14
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Compared to the manual classification of the 2012 warm season, we find that the Hit Rate (Eq.
3a) is much higher than the False Alarm Rate (Eq. 3b) for each classification. These are 67.0% vs
15.6% for CT, 59.5% vs 13.1% for NT, and 91.0% vs 9.1% for OB.

Finally, we consider the bias score for each of our algorithm classifications. The bias score is

defined as:

H+F
H+M

BIAS = “4)

this quantity can range from O to oo, where a score of 1 represents a perfect classification, values
less than 1 indicates the algorithm is biased against making a classification, and values greater
than 1 indicate that the algorithm is biased toward making a given classification. Using the data
provided in Table 1 we find the bias to be 1.05 for cloud trail classifications, 0.82 for non-trail
classifications, 1.07 for obscured classifications, and 0.97 overall.

Taken all together, these scores suggest that the algorithm is skillful in making classifications as
compared to our subjective manual classification. Furthermore, it is not strongly biased toward or
against making any particular classification. We therefore apply the algorithm to subsequent data
to extend our analysis period to include May through October of 2012 through 2016.

We have repeated much of the following analysis for the manual classifications and the algorithm
classifications for 2012 only to provide further confidence in our conclusions. See Appendix A for

details.

b. Cloud Trail Climatology

We have shown that for May through October of 2012, the algorithm compares well with the
manual classification. We can therefore confidently apply the algorithm to automate the clas-

sification of longer periods of satellite imagery and explore a longer climatology than previously

15
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investigated in literature. From this climatology, it will then be possible to study the environmental
differences between days predominately in each classification.

The algorithm is used to classify visible-channel satellite imagery for May through October
of 2012-2016. These classifications are then sorted by time of day and by month. This aids in
exploring the annual and diurnal cycles (Fig. 3). As part of the annual cycle, the percentage of
OB scenes decreases to a local minimum in July - the same month in which the percentage of CT
scenes increases to a maximum. For all times of day, the percentage of CT scenes nearly doubles
from 24% in May to 44% in July, while OB scenes decrease from 45% to 22%. Meanwhile, the
percentage of NT scenes is steadier at between 29 and 35% (on the higher end in July and August).

Similarly, a diurnal cycle is evident when considering rows in Figure 3. The morning is char-
acterized by a higher percentage of NT than CT scenes, and this reverses in the afternoon and
evening. As a seasonal average, the percentage of NT scenes declines from near 38% in the morn-
ing to near 28% in the afternoon. Concurrently, CT scenes increase from near 24% in the morning,
to near 36% in the afternoon - offsetting the majority of the change in NT percentage. The percent-
age of OB scenes varies less through the day; between 40% in the early morning and late evening,
and 34% around 1100 LT. This local minimum in OB scenes occurs around the same time as the
decrease in the percentage of NT scenes and the increase in the percentage of CT scenes.

For days with CT scenes, the median first such scene is identified at 0945 LT and median final
scene at 1745 LT. The first CT scenes are identified earliest in the day in June and the last scene
is latest in the day in August. The first CT scene occurs later and the last occurs earlier in May
and October. In this part of the analysis, only days with two or more consecutive CT scenes
are considered. Cases in which CT occurred outside of the range of times with sufficiently low
solar zenith angles are expected, and such scenes cannot be classified by the algorithm. This

would result in a real start time that is earlier than detected in the algorithm. However, there is
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a counteracting tendency for the algorithm to make more early morning CT classifications than
what was manually classified (see Appendix B).

More than one period of consecutive CT scenes may be classified on a given day. This is seen in
both the manual classification of just May through October 2012, and the algorithm classification
for the same period. Comparing the manual classification to just the algorithm classification for
months in 2012, we see that 59% of days have just one period in the manual classification, and
up to three periods occur per day. However, in the algorithm classification for 2012, only 23% of
days have one continuous period of CT scenes (an additional 31% have two periods, and there were
four days on which six periods were identified by the algorithm). Physically, we can explain more
than one CT period as occurring when the environment is marginal for CT formation. Changes
in the wind direction might then alter the strength of the island thermally driven lift by no longer
paralleling the long axis of the island, or a decrease in low-level humidity might make cloud
formation unobtainable by lift of the same strength. Either change, or some combination of both
might cause the CT to temporarily dissipate before conditions return to allow the CT to redevelop.
However, these may also be explained as artifacts of the algorithm. If the large scale cloudiness
is near the threshold for distinguishing between OB and non-OB scenes () a small increase in
cloud cover might fool the algorithm into classifying real CT as OB scenes. Similarly, if there is
an increase in the ambient upwind cloud (e.g. due to an advancing front), the algorithm might be
fooled into making an NT classification as the downwind-upwind cloud fraction difference is no
longer greater than our threshold 3.

This climatology reveals that during the period of peak CT occurrence in July, there is also a
peak in their duration. The mean duration increases from 01:58 hours in May to a peak of 03:17
hours in July before decreasing to 01:34 hours in October when our period of study ends (not

shown). CT that persist for just one scene are taken to have a duration of half an hour here, and
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those that persist for two or more consecutive scenes are considered to have one hour duration.
Each additional consecutive scene is counted as a further half hour of duration. On days in which
more than one period occurs, the longest duration is taken as the value for that day. Comparing
the manual and algorithm classifications for just 2012, we find that the manually classified CT last
roughly twice as long because of the increased intermittency in the algorithm classification.

For scenes that were manually classified as having CT (May through October of 2012), we
manually estimated the length of the CT in that scene by finding its end-point in the visible-
channel satellite imagery and calculating the distance between that point and the center-point of
the island (assuming that this is where the CT originated). This follows the methodology outlined
by Nordeen et al. (2001).

We then consider the half-hourly mean CT length estimated for the manually classified imagery.
First, there is a local maximum in CT length (78 km) at 0815 LT, and this then decreases to a
local minimum (41 km) by 0915 LT (not shown). This early morning CT is consistent with the
discussion above on the one or more short-lived CT.

Our second observation is that the CT length tends to increase through the remainder of the day.
CT on average grow from the local minimum length at 0915 LT,until 1515 LT when they are about
90 km in length. The mean length remains near 90-95 km through sunset. Using the 10 m wind
speed and the estimated length, we predict the length half an hour later (the time of the next scene)
assuming advection is the only factor controlling changes in length. We find these predictions to be
in generally good agreement with the manually estimated lengths with a correlation coefficient of
0.75 (R? = 0.55) on 109 length predictions (not shown). Additional factors, such as precipitation
or evaporation of cloud liquid due to entrainment of drier surrounding air might act against the

increase due to advection.
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c. Environmental Characteristics

One goal of this study is to describe and highlight differences between CT, NT, and OB domi-
nated environments. To do this, we composite radiosonde data and ERA-interim reanalysis data
by classification. As there is an annual cycle at Bermuda in both the classifications and the envi-
ronmental conditions, we only consider the peak of the CT season June through August (JJA) to
avoid reproducing the signal of the annual cycle in our composites.

Most days are not completely in one single classification. However, the radiosonde data is
available once per day at 0900 LT. This presents the challenge of assigning a single classification
to a day made of several classifications.

To do this, the fraction of each day in each classification is calculated for all days in the period
May through October 2012-2016. Next, we evaluate the 75th percentile of these fractions for
each classification. If the fraction of a given day in a given classification is greater than its 75th
percentile, that day is assigned to that classification and included in that classification’s composite.

For example, the 75th percentile for the fraction of day classified as CT is found to be 59%. If
at least 59% of the day’s classified scenes are CT, then the data for that day is included in the CT
composite. The 75th percentiles for NT and OB are 50% and 59% respectively. The same day
cannot be assigned to more than one classification by this method since any two of the three 75th
percentile thresholds will always sum to greater than 100%.

The interpolated IGRAvV2 data are used to consider the anomalies from the 0900 LT JJA 2012-
2016 mean potential temperature and relative humidity profiles. Radiosonde ascents that are in-
complete below 700-hPa are not included in the composites. The resulting radiosonde composites
for each classification are shown in Figure 4. The mean profile of potential temperature and com-

posite anomalies (top) and the mean profile of relative humidity and composite anomalies (bottom)
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are shown for the layer between the surface and 700-hPa. With this method, about 25% of the JJA
days are assigned to each classification’s composite - leaving about 25% of the days to be dis-
carded.

For each composite, we assume that the mean anomaly is the center of a normal distribution of
anomaly profiles. We then estimate this uncertainty as the standard error: \/LN , where N is the
number of observations in a given composite.

CT-dominated days (dark grey dash-dot profiles in Fig. 4) have the highest surface potential
temperature of the three classifications. Potential temperature anomalies (Fig. 4b) decrease in
magnitude to near-zero above 950-hPa, indicating a less stable than normal boundary layer. The
anomalies then increase to become positive again by 700-hPa, indicating that the layer aloft is
slightly more stable than climatology for this period. These conditions have long been regarded as
favorable for shallow convection (e.g. Malkus 1952).

The composite profile of potential temperature anomalies for NT-dominated days (medium grey
dashed profiles in Fig. 4) has a similar shape to that for the CT-dominated days indicating a similar
pattern of stability anomalies. However, the NT anomalies are smaller than the CT anomalies
throughout the entire lower troposphere shown, and feature potential temperatures below normal
between 1000 and 850-hPa (Fig. 4b).

A very different potential temperature regime occurs for the OB-dominated days (the light grey,
dotted profiles in Fig. 4). The lowest 100-hPa is more stable than normal, while the profile
is less stable than normal aloft. This pattern is consistent with the idea that the OB days are
associated with large-scale cloudiness. Lower than normal near-surface potential temperatures are
an expected consequence of cloud-shading and possible evaporative cooling from precipitation.

Similarly, a clear separation between the classifications is evident in the relative humidity

anomaly composites (Fig. 4d). The OB-dominated days have the highest surface relative hu-
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midity, but the OB- and CT-dominated days have similar, near normal relative humidity between
1000 and 950-hPa. Above 950-hPa, the CT profile remains near normal, becoming slightly drier
than normal while the OB profile becomes much more humid than normal. The NT profile again
has a similar shape to the CT profile, but is drier than normal throughout this layer.

Overall, CT-dominated days are warmer than normal below 700-hPa with near normal relative
humidity, while NT-dominated days are cooler and drier than normal below 700-hPa. The higher
low-level relative humidity on CT-dominated days implies a lower lifting condensation level (LCL)
than for NT-dominated days. However, the warmer low-levels on CT-dominated days implies a
higher LCL than for the NT case. We therefore calculate the height of the LCL to further examine

this relationship. We use Bolton (1980)’s formula for the temperature of the LCL:

Ticr = + 56, 5

| In(7£)
Tp—56 ' 800
where Tp is the surface dew point temperature and Tk is the surface temperature (both temperatures

are in Kelvin). This can then be used to find the pressure of the LCL as follows:

p

PLCL = Ps (T;—IC{L) K ; (0)

where p;cy is the pressure of the LCL, py is the surface pressure, and c;, and R, are as defined in
the previous section.

The composite LCL pressure for each classification and the climatology are marked on Figure

4c. We find that the mean composite LCL pressure for CT-dominated days is 955-hPa. This

corresponds to a lower height than both climatology (949-hPa) and NT-dominated days (941-hPa).

Lower LCL heights suggest cloud formation is more readily achievable and these results provide

a plausible explanation for why cloud trail formation is sensitive to low-level humidity.
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In addition to thermodynamic profiles, wind speed is expected to influence the types of circu-
lation that result from island surface heating by contributing to the organization of any cloud that
forms. In dry idealized two- and three- dimensional simulations, Savijarvi and Matthews (2004),
Kirshbaum (2013), and Kirshbaum and Wang (2014) show that for light or calm background wind
regimes, thermally induced circulations form over a surface heat source (reminiscent of pure sea
breezes). For stronger background winds, thermally induced circulations form a band of ascent
downwind of the heat source (reminiscent of CT).

The mean wind speed for each classified scene is shown in Table 2a. NT scenes are associated
with lighter winds and OB scenes are associated with stronger winds than both CT scenes and all
scenes. While lighter winds on NT days are possibly related to the turbulent generation of cloud
over the island, or instances of cloud related to sea breeze convergence rather than CT formation,
stronger winds associated with OB scenes are likely related to large-scale disturbances.

Furthermore, Bermuda is oriented such that its long axis runs approximately southwest-
northeast. From a Lagrangian perspective, surface heating is maximized for low-level flow par-
allel to the long axis of an island as an air parcel remains over the island heat source longer. For
southwesterly and westerly winds, more non-OB scenes are classified as CT (36-39%) than NT
(23-28%) (Table 2b). For all other wind directions, including northeasterly flow which is also
parallel to the long axis of the island, a greater proportion of non-OB scenes are classified as NT
than CT.

Examining the larger scale fields aids in explaining this result. We have already established
that low-level moisture is a dominant control on cloud trail formation. ERA-interim composites
of the 0900 LT 1000-hPa specific humidity for JJA in Figures 5a, c, and e show that Bermuda
lies in a moisture gradient pointing from northeast to southwest for all classifications. Given

this background moisture pattern, northeasterly flow results in advection of drier low-level air on
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average. Such a flow therefore tends to make the environment less favorable for CT on average
despite maximizing low-level heating by maintaining a direction parallel to the long axis of the
island.

Indeed, these composites are consistent with the radiosonde and surface composites in Fig. 4.
They indicate that CT and OB days have similarly high low-level specific humidity while NT-
days have lower specific humidity. Additionally, the western part of the Bermuda-Azores High
(indicated by the 1020-hPa contour) is shown to extend its control on this region for much of JJA,
and it retreats to the east on OB days. This pressure pattern implies a wind field dominated by
westerlies and southwesterlies at Bermuda with lightest winds on NT days.

Finally, the composites show 500-hPa vertical motion between 0.00 and 0.01 Pa s~! near
Bermuda on CT-dominated days (Fig. 5b), about 0.01 Pa s~! on NT-dominated days (Fig. 5d), and
about -0.11 Pa s~! on OB-dominated days (Fig. 5f). Weak 500-hPa vertical motions or subsidence
seen on CT- and NT-dominated days is consistent with the expected lack of large-scale cloudiness
and favors shallow convection. This subsidence may also help to explain the drier and more stable

than normal layer seen in the sounding composites for NT-dominated days.

4. Conclusions

This study presents an algorithm to automate the classification of conventional visible-channel
satellite imagery into Cloud Trail, Non-Trail, and Obscured categories at Bermuda. The algorithm
first filters out morning and evening images with high solar zenith angles. It then masks cloudy
pixels using a simple binary threshold method. Next, the algorithm determines whether a scene is
obscured by cloud by considering the cloud fraction within 0.25° of the island. For non-obscured
scenes, the observed 10 m wind direction at the time of the satellite image is then used to define

an upwind and downwind region with respect to the island. A scene is then determined to include
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a cloud trail by considering the difference between downwind and upwind cloud fractions.dd The
resulting classification is found to be consistent with a manual classification of a subset of the data
from May through October 2012.

The resulting classifications for the May through October 2012-2016 period from this algorithm
show both an annual and diurnal cycle in cloud trail occurrence at Bermuda. CT occurrence is
found to peak in July and between 1300 and 1500 LT. Between May and July CT occurrence
increases while OB occurrence decreases. This corresponds to the period in which the Bermuda-
Azores High enforces increasingly settled weather across Bermuda into July. From July to Octo-
ber, the fraction of OB scenes increases and the fraction of CT scenes decreases.

Similarly, CT occurrence increases during the day while the fraction of NT classifications de-
creases. This is likely in response to the stronger solar heating present in the afternoon, and
therefore stronger thermal forcing for the development of CT on otherwise non-OB days.

These classifications are then used to explore the characteristics of the environments present in
the morning of days in JJA on days predominately in each classification. Radiosonde compos-
ites show that CT-dominated days are characterized by conditions that are near the mean potential
temperature and relative humidity for the JJA period in 2012-2016. Surface observations and ERA-
interim data show that lower than normal low-level potential temperature and relative humidity,
lighter than normal 10 m winds, and 500-hPa subsidence are associated with NT-dominated days.
Lower than normal low-level potential temperature, higher than normal low-level relative humid-
ity, stronger than normal 10 m winds, and 500-hPa ascent are associated with OB-dominated days.

Differences in low-level humidity appear to be the most important factor in determining whether
or not a non-OB day will have a CT. Days with higher low-level humidity result in lower LCL and
therefore the level to which turbulent mixing must reach in order for condensation and cloud

formation is lower. Also of importance is the role of the low-level wind speed and direction which
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controls the low-level heating following air across the island. Wind speed controls whether or not
the buoyant production of turbulence and the induced circulation is confined to the island in light
wind regimes, or whether thermally generated circulations are formed downwind of the island
in regimes with some background wind. Particularly for non-circular islands, wind speed and
direction control the residence time of air as it crosses the heated island and therefore the strength
of the thermally induced circulation.

Some additional insight into the behavior of cloud trails through the day is gained. We find
that more than one cloud trail can form per day, each lasting a few hours. Other times, a single
continuous cloud trail is observed. In an environment that is only marginally conducive for cloud
trail formation, this transient behavior might be explained by subtle changes in wind direction,
low-level humidity, or large-scale vertical motion through the day that periodically cut off activity
before allowing it to resume later in the day.

Composites based on days predominantly in each classification, and theory from past literature,

suggest that non-obscured days are likely to have cloud trails given the following:

1. Sufficient low-level humidity and therefore relatively low LCL to support cloud formation

2. Maximised low-level heating from a Lagrangian perspective. This is achieved via long-axis

parallel low-level flow and low solar zenith angles.

3. Sufficiently strong low-level flow such that a pure sea breeze circulation isn’t favoured over

a steady heat island circulation.

This study takes a step closer to fully characterizing the environments that are conducive for CT
formation, however, it presents further questions about their behavior. A future study might be able
to use multispectral satellite imagery to extend this analysis through the nighttime hours and this

could further our understanding of what happens to cloud trails after sunset. For instance, imagery
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from the newly operational GOES-16 satellite includes a 3.9 um channel at 2 km resolution that
might be appropriate for this purpose (Schmitt et al. 2017).

As operational numerical weather prediction systems are approaching the ability to resolve phe-
nomena on these scales, it is increasingly important to present a complete characterization of their
behavior. For instance, thermally driven circulations may still be present downwind of islands in
NT cases and incorrectly simulating the strength of this circulation might result in cloud forma-
tion where it should not exist. Therefore, future investigation is required to fully understand the
initiation, persistence/transience, and any potential transition from a shallow to deep convective
state. However, conventional observations like those presented are likely insufficient to describe

these characteristics, and high-resolution idealized simulations are therefore planned.
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APPENDIX

a. Choice of Algorithm Parameters

The choice of o and 8 as described in section 2d is expanded upon here. Figure Al shows the
cumulative distribution functions for the cloud fraction for scenes that were manually classified
as OB, and the inverse cumulative distribution function for the cloud fraction for scenes that were
manually classified as either NT or CT (i.e. non-OB). Similarly, Figure A2 shows the cumulative

distribution function for the difference between the sector with maximum cloud fraction in the
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downwind quadrant and the sector with the maximum cloud fraction in the upwind quadrant for
scenes that were manually classified as CT, and the inverse cumulative distribution function for
scenes that were manually classified as NT.

In Figures A1 and A2, the point of intersection is taken to be the optimal value for distinguishing
between the two classifications - either OB or non-OB in the case of &, and either CT or NT in the

case of . This maximizes the Peirce Skill Score and yields o = 0.33 and 8 = 0.08.

b. Algorithm vs Manual Classification for 2012 Warm Season

In addition to the verification metrics presented in the text, and the contingency table in Table 1,
we also reproduce part of the analysis on the manually classified data from May through October
2012, and compare that to the analysis performed on the algorithm classifications for the same
period.

Figure A3 shows the variation of the percentage of classifications with time of day and month
of year. It is found that there is generally good agreement between the manual and algorithm
classifications, however, the biggest differences are between the CT and NT classifications in
Figure A3(a) and A3(b). In the algorithm, there are too many morning CT classifications and too
few morning NT classifications when compared to the manual classification. This is particularly
the case in the July through October timeframe. However, the algorithm reproduces both the
annual and diurnal cycles reasonably well, although the amplitude of the diurnal cycle is somewhat
lower in algorithm classifications compared to the manual classification because there are more
morning algorithm CT.

Similarly, the frequency of each classification by month also shows a high level of agreement
(Fig. A4). 51 more scenes were classified as CT by the algorithm than manually, 231 fewer scenes

were classified as NT by the algorithm, and 82 more scenes were classified as OB. As a percentage
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of the corresponding manual classifications, this amounts to 5% more CT scenes in the algorithm,
18% fewer NT scenes in the algorithm, and 7% more OB scenes in the algorithm. Qualitative
characteristics (e.g. the timing of peak occurrence) of the annual cycle are largely preserved by
the algorithm.

Finally, Figure AS shows the composite profiles on CT, NT, and OB days in JJA 2012. We
show that, again, the algorithm classification is able to adequately reproduce the results from
the manual classification. The composite sounding anomalies from the analysis performed using
the algorithm classifications is within the uncertainty ranges of the analysis performed using the
manual classifications for both the relative humidity and potential temperature anomalies. The two
classification methods are consistent in terms of the relationship between classifications and the
LCL - obscured days have the lowest LCL, followed by CT, and then NT days with the highest

LCL.
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Table 1.

Table 2.

Contingency tables for (a) CT classifications, (b) NT classifications, and (c)
OB classifications. Using the CT classification as an example: top left are‘hits’
where the algorithm and the manual classifications are both CT; top right are
“false alarms* where the algorithm classification is CT but the manual classifi-
cation is not CT; bottom right are ‘Correct Negatives’ where the algorithm and
the manual classifications are both not CT; and bottom left are ‘misses’ where
the algorithm classification is not CT but the manual classification is CT. .

(a) Mean 10 m wind speed (m/s) at Bermuda’s L. F. Wade International Airport
by algorithm classification. The number of observations in each classification
is included in brackets. (b) The percent of scenes in each classification and the
total number of classified scenes by wind direction.
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TABLE 1. Contingency tables for (a) CT classifications, (b) NT classifications, and (¢) OB classifications.
Using the CT classification as an example: top left are‘hits” where the algorithm and the manual classifications
are both CT; top right are ‘false alarms* where the algorithm classification is CT but the manual classification
is not CT; bottom right are ‘Correct Negatives’ where the algorithm and the manual classifications are both not

CT; and bottom left are ‘misses’ where the algorithm classification is not CT but the manual classification is CT.

Class (a) CT (b) NT (c) OB
hits false 649 371 743 275 1117 193
alarms
misses correct 320 2008 506 1824 111 1927
nega-
tives
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680 TABLE 2. (a) Mean 10 m wind speed (m/s) at Bermuda’s L. F. Wade International Airport by algorithm
e classification. The number of observations in each classification is included in brackets. (b) The percent of

sz scenes in each classification and the total number of classified scenes by wind direction.

(a) Mean Speed CT NT OB All
5.27 (5191) 4.83 (5196) 6.18 (6013) 5.46 (16400)

(b)Wind DIR CT NT OB All

N 27% 44% 29% 1197
NE 26% 39% 35% 1318
E 23% 31% 46% 1578
SE 27% 32% 41% 2000
S 33% 33% 34% 2747
SW 36% 23% 41% 2861
w 39% 28% 33% 3399
NW 29% 40% 31% 1300
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

GOES-13 visible-channel satellite imagery showing example scenes. (a) CT scene where
clouds organize into a band downwind of Bermuda as indicated by a southwest-northeast
oriented band of higher albedo. (b) NT scene in which there are few clouds and some of
the higher albedo near and over the island might be shallow water and land showing up
rather than cloud. (c) OB scene where the island (and much of the surroundings) is obscured
from view by widespread cloud as indicated by high albedo throughout the scene. In each
example, a wind barb is plotted showing 10 m wind direction and speed in knots at TXKF
provided by the Bermuda Weather Service. .

A walkthrough of the steps taken to classify each scene. (a) GOES-13 visible-channel satel-
lite imagery. (b) Cloud mask applied to (a), cloudy pixels are shown in grey. (c) The cloud
fraction in the circular area centered on 32.3°N, 64.8°W with a radius of 0.25° (dark grey
shaded region) is used to determine if the scene is OB. In this example, the cloud fraction is
0.071 which is less than &¢ = 0.33 and so the scene is non-OB. (d) Since the scene is non-OB,
the same circular area from (c) is split into 10° wide sectors, thirty-six in total. The 10 m
wind direction at TXKF is used to find the upwind and downwind quadrant (i.e. nine sectors
in each direction). The cloud fraction is calculated for each sector of the upwind quadrant
(light grey) and the downwind quadrant (dark grey). The difference between the maximum
downwind cloud fraction (arrow marked with ‘D’) and the maximum upwind cloud fraction
(arrow marked ‘U’) has to be greater than = 0.08 for the scene to be classified as CT.

The fraction of total scenes in each classification arranged by local time and month for the
(a) CT, (b) NT, and (c) OB categories. For example the top left cell of the panel (a) represents
the percent of all scenes in May between 0800 and 0900 local time that are classified as CT.
The three panels sum to 100%. The diurnal cycle progresses from left (morning) to right
(evening), and the annual cycle progresses from top (May) to bottom (October) on each
panel. The cells with an ‘X’ in them represent times when all images are rejected due to
high solar zenith angles. .

(a) The climatological potential temperature (6) profile. The mean surface 0 is marked with
a black dot. (b) The composite 6 anomalies for CT (dash-dot line with dark grey shading),
NT (dashed line with grey shading), and OB (dotted line with light grey shading). The
shaded region represents the uncertainty about the mean anomaly: j:%. The surface 6 for
each classification is shown by dots with the corresponding shade of grey. The range on the
surface values is again i\%. (c) The mean climatological relative humidity profile as in (a).
The mean LCL for each classification, and for the climatology are shown as horizontal line
segments with corresponding line styles. (d) The composite relative humidity anomalies.
Composites are for the 0900 LT radiosondes for JJA in 2012-2016. In each case, only
data between the surface and 700-hPa are shown. LCL pressures are calculated using the

temperature and dew point of the lowest altitude reported by the radiosonde and equations 5
and 6.

JJIA, 2012-2016 ERA-interim reanalysis composites centered on Bermuda. (a) and (b) are
composites for Cloud Trails, (c) and (d) are composites for Non-Trails, and (e) and (f) are
composites for Obscured. The left-hand column shows the mean sea-level pressure in hPa
(solid black contours), 1000-hPa temperature in °C (dashed grey contours), and 1000-hPa
specific humidity in g kg ~! (shading). The right-hand column shows the 500-hPa vertical
velocity in Pa s~!, ascent and subsidence are shown in dashed and solid contours respec-
tively.
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Fig. AL

Fig. A2.

Fig. A3.

Fig. Ad.

Fig. AS5.

Cumulative distribution function of the cloud fraction for OB scenes and the inverse cumu-
lative distribution function of the cloud fraction for non-OB scenes. The cloud fraction value
at the intersection of these two distributions, 0.33, is taken as the value of our parameter .

Cumulative distribution function of the difference in maximum downwind and upwind cloud
fraction, 6 F, for CT scenes compared to 6 F for NT scenes. The difference at the intersection
of these two distributions, 0.08, is taken as the value of our parameter 3. .

As in Figure 3, but for the classifications from May through October 2012. Algorithm
classifications are on the left, to be compared with the manual classifications on the right.

The percentage of all scenes in each month from May through October 2012 that are clas-
sified as cloud trail (solid line), non-trail (dotted line), and obscured (dashed line). This
analysis is done for the algorithm classification on the left, and the manual classifications
on the right.

As in Figure 4, but for the classifications for May through October 2012. Note that these are

anomalies with respect to the 2012-2016 JJA climatology. These profiles are made for the
algorithm classifications on the left and the manual classifications on the right.
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F1G. 1. GOES-13 visible-channel satellite imagery showing example scenes. (a) CT scene where clouds
organize into a band downwind of Bermuda as indicated by a southwest-northeast oriented band of higher
albedo. (b) NT scene in which there are few clouds and some of the higher albedo near and over the island
might be shallow water and land showing up rather than cloud. (c) OB scene where the island (and much of the
surroundings) is obscured from view by widespread cloud as indicated by high albedo throughout the scene. In
each example, a wind barb is plotted showing 10 m wind direction and speed in knots at TXKF provided by the

Bermuda Weather Service.
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FI1G. 2. A walkthrough of the steps taken to classify each scene. (a) GOES-13 visible-channel satellite
imagery. (b) Cloud mask applied to (a), cloudy pixels are shown in grey. (c) The cloud fraction in the circular
area centered on 32.3°N, 64.8°W with a radius of 0.25° (dark grey shaded region) is used to determine if the
scene is OB. In this example, the cloud fraction is 0.071 which is less than & = 0.33 and so the scene is non-OB.
(d) Since the scene is non-OB, the same circular area from (c) is split into 10° wide sectors, thirty-six in total.
The 10 m wind direction at TXKF is used to find the upwind and downwind quadrant (i.e. nine sectors in each
direction). The cloud fraction is calculated for each sector of the upwind quadrant (light grey) and the downwind
quadrant (dark grey). The difference between the maximum downwind cloud fraction (arrow marked with ‘D”)
and the maximum upwind cloud fraction (arrow marked ‘U’) has to be greater than 3 = 0.08 for the scene to be

classified as CT.
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F1G. 3. The fraction of total scenes in each classification arranged by local time and month for the (a) CT, (b)
NT, and (c) OB categories. For example the top left cell of the panel (a) represents the percent of all scenes in
May between 0800 and 0900 local time that are classified as CT. The three panels sum to 100%. The diurnal
cycle progresses from left (morning) to right (evening), and the annual cycle progresses from top (May) to
bottom (October) on each panel. The cells with an ‘X’ in them represent times when all images are rejected due
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FIG. 4. (a) The climatological potential temperature (0) profile. The mean surface 6 is marked with a black
dot. (b) The composite 8 anomalies for CT (dash-dot line with dark grey shading), NT (dashed line with grey
shading), and OB (dotted line with light grey shading). The shaded region represents the uncertainty about the
mean anomaly: i%. The surface 0 for each classification is shown by dots with the corresponding shade of
grey. The range on the surface values is again =-7-. (c) The mean climatological relative humidity profile as
in (a). The mean LCL for each classification, and for the climatology are shown as horizontal line segments
with corresponding line styles. (d) The composite relative humidity anomalies. Composites are for the 0900 LT
radiosondes for JJA in 2012-2016. In each case, only data between the surface and 700-hPa are shown. LCL
pressures are calculated using the temperature and de\Zd)oint of the lowest altitude reported by the radiosonde

and equations 5 and 6.
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FIG. 5. JJA, 2012-2016 ER A-interim reanalysis composites centered on Bermuda. (a) and (b) are composites
for Cloud Trails, (c) and (d) are composites for Non-Trails, and (e) and (f) are composites for Obscured. The
left-hand column shows the mean sea-level pressure in hPa (solid black contours), 1000-hPa temperature in °C
(dashed grey contours), and 1000-hPa specific humidity in g kg ~! (shading). The right-hand column shows the

500-hPa vertical velocity in Pa s~!, ascent and subsidence are shown in dashed and solid contours respectively.
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782 Fig. Al. Cumulative distribution function of the cloud fraction for OB scenes and the inverse cumulative
s distribution function of the cloud fraction for non-OB scenes. The cloud fraction value at the intersection of

7« these two distributions, 0.33, is taken as the value of our parameter .

42



Fraction of Scenes

1.0 —0.5 0.0 0.5 1.0

Difference between the maximum cloud fraction
in the downwind and upwind quadrants

1 Non-Trail M Cloud Trail - - Optimisation Point

785 Fig. A2. Cumulative distribution function of the difference in maximum downwind and upwind cloud fraction,
76 OF, for CT scenes compared to O F for NT scenes. The difference at the intersection of these two distributions,

77 0.08, is taken as the value of our parameter f3.
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788 Fig. A3. Asin Figure 3, but for the classifications from May through October 2012. Algorithm classifications

70  are on the left, to be compared with the manual classifications on the right.
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790 Fig. A4. The percentage of all scenes in each month from May through October 2012 that are classified as
701 cloud trail (solid line), non-trail (dotted line), and obscured (dashed line). This analysis is done for the algorithm

72 classification on the left, and the manual classifications on the right.
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793 Fig. AS. As in Figure 4, but for the classifications for May through October 2012. Note that these are anoma-

704 lies with respect to the 2012-2016 JJA climatology. These profiles are made for the algorithm classifications on

7 the left and the manual classifications on the right.
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