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Abstract

Polypseudorotaxanes are polymer chains threaded by molecular rings that are free to
unthread; these ‘pearl-necklace’ can self-assemble further, leading to higher order
supramolecular structures with interesting functionalities. In this work, the complexation
between a-cyclodextrin (a-CD), a cyclic oligosaccharide of glucopyranose units, and
polyethylene glycol (PEG) grafted to silica nanoparticles was studied. The threading of
a-CD onto the polymeric chains leads to their aggregation into bundles, followed by either
the precipitation of the inclusion complex, or the formation of a gel phase, in which silica

nanoparticles are incorporated.

The kinetics of threading, followed by turbidimetry, revealed a dependence of the rate of
complexation on the following parameters: the concentration of a-CD, temperature, PEG

length (750, 4,000 and 5,000 g-mol™?), whether the polymer is grafted or free in solution,
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and the density of grafting. Complexation is slower, and temperature has a higher impact
on PEG grafted on silica nanoparticles compared to PEG free in solution.
Thermodynamic parameters extracted from the transition state theory showed that
inclusion complex formation is favoured with grafted PEG compared to free PEG and
establish a ratio of complexation of 5-6 EO units per cyclodextrin. The complexation
yields, determined by gravimetry, revealed that much higher yields are obtained with
longer chains and higher grafting density. TGA analysis and FTIR spectroscopy on the
inclusion complex corroborate the number of macrocycles threaded on the chains. A sol-
gel transition was observed with the longer PEG chain (5k) at specific mixing ratios;
oscillatory shear rheology measurements confirmed a highly solid-like behaviour, with
an elastic modulus G’ of up to 25 kPa, higher than in the absence of silica. These results
thus provide the key parameters dictating inclusion complex formation between
cyclodextrin and PEG covalently attached to colloidal silica, and demonstrate a facile

route towards soft nanoparticle gels based on host-guest interactions.
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threading kinetics.

INTRODUCTION

Cyclodextrins (CDs), cyclic oligosaccharides consisting of six or more glucopyranose
units obtained from the enzymatic degradation of starch, ! form inclusion complexes with
water-soluble polymer chains through non-covalent interactions, as first reported by
Akira Harada 2. When poly(ethylene glycol) (PEG) and a-CD aqueous solutions are
mixed, a complex is spontaneously formed by the threading of a-CD molecules onto the
polymer chain *#. The driving forces include hydrophobic and van der Waals interactions
between the cavity of a-CD and the -CH2CH20- units of PEG, in addition to hydrogen
bonding between the hydroxyl groups of adjacent macrocycles threaded onto the polymer
chain #°. In these pearl necklace structures, referred to as pseudopolyrotaxanes (PPR), a
maximum of two ethylene glycol (EO) units are included within each a-CD cavity®®. The
kinetics of the complexation depends on temperature, solvent composition and the
molecular weight of the polymer ’. For instance, low temperatures and highly structured
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solvents (with a strong hydrogen bonding capacity) favour the threading process 2. In
addition, the threaded o-CD rings on adjacent polymer chains aggregate due to
hydrophobic interactions, causing an increase in solution turbidity, ultimately leading to

precipitation 489,

At appropriate compositions, these aggregates can act as physical cross-links and induce
the formation of self-supported gels ®’. Host-guest interactions, as a route towards
hierarchical, functional structures, have received increasing attention in the past decade
1011 A myriad of versatile soft materials have been reported based on the chemical
modification of polymers and nanoparticles with suitable macrocycles and
complementary guest molecules, for applications in drug delivery and tissue engineering,
12714 'some undergoing clinical trials 1. Many of these supramolecular constructs however
require expert chemistry and involved synthetic process; there is therefore a drive for
simpler routes, using minimal chemistry, in particular by exploiting the spontaneous
threading of cyclodextrins on polymer chains as the basis for organising matter. This
approach has already produced many functional biomaterials, either for injectable drug-
delivery matrices or as self-healing scaffolds for tissue engineering 4811619 some
showing promising results in the clinic, for instance polyrotaxanes of hydroxypropyl-p-

cyclodextrins for the treatment of Niemann-Pick C disease 2.

In this context, using the pearl-necklace structure as a starting point, our objective was to
improve functionality by incorporating nanoparticles within the supramolecular
aggregates or self-supported gels. Soft nanocomposite hydrogels, the combination of
polymer gel matrices with nanoparticles, have generated intense research in the
biomedical materials field 2?2, The ‘softness’ and hydrated environment characteristic of
hydrogels, which resemble natural tissues, can be modulated by the insertion of
nanoparticles in order to improve elasticity, biocompatibility, mechanical properties, or
to provide specific functionality such as diagnostic (e.g. detection through spectroscopic
properties) or therapeutic (e.g. antimicrobial properties of metallic nanoparticles). 23
Interestingly, previous studies have shown that a-CD can form inclusion complexes with
PEG chains that are physically adsorbed on the surface of silica nanoparticles >’, leading
to either precipitates, or, at appropriate CD/polymer compositions, self-supported gels.
The interaction between PEO chains chemically grafted onto polystyrene latex particles
and cyclodextrins has also been studied: small-angle neutron scattering measurements

revealed that the threading of a-CD led to an extension of the polymer chains into the
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bulk 24, The structure of inclusion complexes formed between a-CD and a PEG brush has
been recently examined using neutron reflectivity and grazing incidence wide-angle X-
ray scattering, examining specifically graft density and a-CD concentration 2°, Even more
recently, the formation of pseudopolyrotaxanes between a-CD and PEG was utilized to
form hybrid gels of silver nanoparticles stabilised by a random copolymer of PEG ether
methacrylate and polyacrylic acid; the constructs showed antimicrobial activity and were
proposed as injectable antibacterial materials 2. The inclusion complex between o-
cyclodextrin and an oxyethylene non-ionic ligand (thiol-functionalised Igepal) has also
been exploited to mediate the self-assembly of gold nanoparticles into hexagonal close-
packing %27, In another study, gold nanoparticles modified with PEG have been
incorporated in hydrogels formed by inclusion complexes with a-cyclodextrins for the

release of doxorubicin8,

Silica nanoparticles have numerous potential applications in drug delivery and diagnosis
due to their non-toxic nature and biodegradability, ease of synthesis and subsequent
surface functionalisation with targeting ligands or “stealth” polymers, and the possibility
2930 of preparing mesoporous systems with high drug loading®. Previously, a
methodology for the synthesis of thiolated organosilica nanoparticles have been
developed by Khutoryanskiy et al, wusing the self-condensation of 3-
mercaptopropyltrimethoxysilane in dimethylsulfoxide in the presence of air 312, Due to
the presence of thiol groups on their surface, these nanoparticles were demonstrated to be
an excellent model of mucoadhesive nanomedicines, 1% and were also a very good
substrate for further covalent surface functionalization with water-soluble polymers such

as PEG, using thiol-maleimide click reactions 33336,

In this work, we exploit the threading of a-CD on these PEGylated organosilica
nanoparticles (sub 100 nm), where the PEG chains are covalently grafted on the surface
of the nanoparticles **, and therefore cannot be displaced through complexation. The
kinetics of the aggregation process and the complexation yields with different
nanoparticles (NPs) are investigated and compared with those obtained for free PEG and
end-capped PEG, using UV-Vis spectroscopy and gravimetric experiments.
Thermodynamic parameters are extracted from the transition state theory, which is used
to describe the complexation process; this leads to an estimation of the number of
macrocycles threaded on the chains, which is compared to values obtained from

thermogravimetric methods. At specific compositions, the bundling of the pearl-necklace
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structures induces the formation of gels, where cyclodextrins act as crosslinks for the
network. Oscillatory shear measurements reveal a remarkable solid-like behaviour,
reminiscent of chemically cross-linked gels. These hybrid gels, to our knowledge, are the
first report of soft nanocomposites resulting from the aggregation of pseudopolyrotaxanes

covalently attached to silica nanoparticles.



MATERIALS AND METHODS
Materials

Organosilica nanoparticles were synthesized as reported previously 31333, Briefly, 0.75
mL (0.2 mol/L) of (3-mercaptopropyl)-trimethoxysilane (MPTS) was mixed with 20 mL
of DMSO and 0.5 mL of 0.5 mol/L NaOH aqueous solution. The reaction was conducted
with air bubbling and allowed to proceed for 24 h under continuous stirring at room
temperature protected from light. Nanoparticles were then purified by dialysis against
deionized water in the dark (5 L, 8 changes of dialysis solvent) using a 12-14 kDa
molecular weight cut-off dialysis membrane tube (Medicell Membranes Ltd, UK) and

were stored in the fridge for further use.

The PEGylation step was achieved by mixing 5 mL aqueous dispersions of thiolated-
silica nanoparticles (SiThio) with 100 mg of methoxypolyethylene glycol maleimide
(mPEGMa) of two molecular weights (750 and 5000 Da). The reaction mixture was
stirred for 16 h at room temperature protected from light. The free thiol groups react with
the maleimide groups, giving the final nanoparticle covalently modified with low or high
molecular weight PEG (SIPEG750 and SIiPEG5K, respectively). PEGylated
nanoparticles were purified by dialysis in the dark as above and stored in the fridge for

further use.

a-cyclodextrin (>98%) was purchased from Sigma-Aldrich or WackerChemie AG and
used without further purification. Additional experiments were performed with different
free PEG polymers: methoxy(polyethylene glycol) maleimide (MPEGMa5K, >90%
(NMR), 5000 g/mol) and poly(ethylene glycol) methyl ether (MPEG5K, 5000 g/mol)
were purchased from Sigma-Aldrich, and poly(ethylene glycol) (PEG4K, 4000 g/mol)

was from Acofarma. Structures are shown in Supporting Information (Figure S1).

The composition of the different nanoparticles (PEG approximate percentages) and the
concentrations of the stock solutions used in our experiments are shown in Table 1 (see
also Supporting information, Figures S2 and S3). Note that SIPEG750 and SIiPEG5K#1
have a significantly lower weight percentage of PEG covalently attached to the
nanoparticles than SIPEG5K from batches #2 and #3; however, in number density of PEG
chains per NP weight, the densities of these two batches are comparable to that of
SIPEG750.



Table 1.Concentration of SIPEG NPs initial stock solutions, PEG composition of NPs, number
densities, surface coverage (no. of chains and mass per surface area of NP)*, sizes,
polydispersity indices and {-potential values

SiPEG750 SiPEG5K SiThio
Solution batch #1 #1 #2 #3 -
Stock soln.* (% wt.) 1.33 137 100  1.10 -
% PEG/NP® (% wt.) =15 =22 58 53 -
PEG/SiThio® (mol/kg) 0.24 0.06 0.28 0.23 -
PEG Conc. (% wt.) 0.30° 0.332 0.58>  0.58° -
Diameter® (nm) 48.0 60.3 - 69.0 47.0
PDI 0.158 0.234 - 0.167 0.133
No. of PEG chains/nm? 1.66 0.39 1.95 1.59 -
mg PEG/m? 21 33 16.2 13.3 -
{-Potential (mV) -37.4 -38.0 - -45.0 -48.4
2Determined by dried mass. Calculated from %PEG/NP
bCalculated from TGA data. dDetermined by DLS.

* assuming a density of 1.5 g/mL for SiThio cores

As shown in Table 1, SiThio and SIiPEG750 have similar diameters whereas SIPEG5K
nanoparticles present a larger diameter, which is consistent with the fact that these
nanoparticles are modified with longer polymer chains. Polydispersity is low in these
samples, although SIPEG5K#1 shows a higher value. Regarding the {-potential values,
the nanoparticles present negative values between -37 mV and -49 mV, suggesting a fairly
good colloidal stability®’.

Methods
Kinetic analysis

Kinetic experiments were carried out to study the complexation between a-CD and PEG

by monitoring the evolution of the turbidity. For this purpose, a stock solution of a-CD

12% wi/w was prepared in H20. Samples (total volume of 2 mL) for UV analysis were:

6% a-CD with 0.5% SIPEG5K#2, 0.66% SiPEG750 or 0.33% w/w mPEGMa5K. In the

UV-Vis spectrometer (Lambda 35, Perkin Elmer), a small electronic cell-stirrer was
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placed under a quartz cuvette (set to medium-high speed, blanked with ultrapure water).
The measurements were recorded straight after the addition of 1 mL of each solution to
the cuvette. The UV-Vis spectrometer recorded absorbance over time using a wavelength
of 400 nm and scan time intervals of 30 s. The inflection points of the sigmoidal curves
were calculated with Origin 8.5.1 software by fitting the curves with a logistic function
(Supporting information, Figure S4). Additional experiments were performed with a
second set of samples using a UV-Vis spectrometer (Agilent 8453) equipped with
magnetic stirring and temperature-controlled. A wavelength of 400 nm, a stirring speed
of 1400 rpm, time interval of scans of 30 s and a fixed cell temperature between 10+0.1
°C and 40 £ 0.1 °C were selected. In the case of low and high temperature experiments,
sample solutions were thermostated separately. Stock solutions of 10% a-CD, 12% a-
CD, 0.6% PEG4K, 0.66% mPEGMa5K, 0.66% w/w mPEG5K were prepared in ultrapure

water.
Determination of the complexation yield

Three sets of samples were prepared by mixing stock solutions of 1.3% SIPEG750, 1.4%
SIPEG5K#1, 1.4% SIPEG5K#3, 0.33% mPEGMa5K, 0.33% mPEGS5K with varying
concentrations of a-CD. Microtubes were first weighed then increasing amounts of a-CD
added to the microtubes, followed by 1.5 mL of the NP solutions to obtain the following
target concentrations: 2%, 3%, 4%, 4.3%, 4.8%, 5.7% and 6.5% a-CD w/w (and 7.4%
wi/w for additional samples using SIPEG750). The samples were vortex-mixed for 1 min
and placed on a floating rack in an ultrasonic bath for 10 min at a frequency of 37 kHz
(Fisherbrand FB11203or Ultrasons-P, Selecta). The samples were left to equilibrate for 3
days and were then centrifuged for 10 min at 13000 rpm, followed by careful removal of
all the supernatant and then freeze-dried. All the lyophilised microtubes were weighed
and the weight of the complex formed, W, was determined by the mass difference. The

complexation yield was calculated using the following equations >':

W,
Y% = ——¢ 1
% WsipEGtWacD ( )
W,
Yo% = — ¢ 2
% WpectWachp ( )

Where We, Wsirec, Wree and W,cp are the weights of the complex obtained, PEGylated

organosilica nanoparticles, free PEG and a-CD, respectively. Equation [2] was used to



calculate the yields for the samples prepared with free polymers. The products obtained

were kept for further characterization.
Characterization of the nanoparticles and complexes

Dynamic light scattering (DLS) measurements were carried out using a Malvern Zetasizer
(Table 1 and Figure S3 in Supporting Information).

Thiolated nanoparticles (SiThio), PEGylated nanoparticles, a-CD and some of the
SIPEG/a-CD complexes were analysed by thermogravimetry at a heating rate of 10
°C/min under nitrogen atmosphere (Mettler TGA/SDTA 851e) between 25 and 1000 °C,
using platinum crucibles.

Infrared spectra of a-CD, mPEGMa5K, SIPEG5K and SIPEG/a-CD complexes were
recorded on a FTIR spectrometer (IRAffinity-1S,Shimadzu) using a diamond Attenuated
Total Reflectance (ATR) sampling accessory Golden Gate (Specac). The averaged

spectra (32 scans) were recorded between 600 cm™ and 4000 cm™.

Preparation of the gels and rheological measurements

Phase behaviour and gel formation was studied for SIPEG5K/a-CD mixtures. Solutions
of SIPEG5K with concentrations ranging between 0.2% and 1.4% were mixed with a-CD
solutions of 2% to 7.4% (w/w). First, solid a-CD was weighed in a microtube; this was
followed by the addition of SIPEG5K solution and of ultrapure water to complete. The
samples were vortex-mixed for 1 min and placed on a floating rack in an ultrasonic bath

for 10 min. The samples were left to react for 7 days.

For the rheological measurements, SIPEG5K solutions (0.5% w/w) or mPEGMa5K
(0.3% w/w) were mixed with a-CD (added as a solid) from 2% to 12% (w/w). The
samples were vortex-mixed until a-CD was completely dissolved, and they were left to

stand for at least 2 days.

Shear oscillatory rheology measurements were performed on the gels of a-CD and
SIPEG5K or mPEGMa5K using a strain-controlled rheometer (ARES, TA Instruments)
fitted with a plate-plate geometry (25 mm diameter). Dynamic strain sweep tests (AS)
were performed at a fixed frequency of 6.28 rad/s to establish the linear viscoelastic
region, followed by dynamic frequency sweep measurements (FS) (strain values varying
between 0.02% to 0.1% carried out at 25 °C).



Absorbance (a.u.)

RESULTS AND DISCUSSION
Kinetics of threading and thermodynamic parameters

The kinetics of complexation between SiPEG NPs or free PEG with a-CD was followed
by UV-vis spectroscopy (Figure 1). The turbidity of the solution increases when the
complex is formed and supramolecular aggregation takes place, which is detected as an
increase in absorbance with time due to scattering, producing a sigmoid-shaped curve, as
reported elsewhere. 8% The first phase of the complexation, where no increase in
absorbance is detected, corresponds to the threading phase, according to the multi-step
process described by Lo Nostro and co-workers, which involves: (1) the diffusion of the
polymer and cyclodextrins; (2) the initial threading of cyclodextrins; (3) the release of
solvating water from the polymer and the cavity of cyclodextrin; (4) the sliding of the
cyclodextrin along the polymer backbone and the threading of additional molecules; (5)
partial dethreading (once the CDs have complexed the polymer, this step in inhibited
because of hydrophobic interactions and neighbouring CDs acting as stoppers; (6) the
aggregation of the pseudopolyrotaxanes (PPRs) followed by their precipitation (which is
detected by an increase in turbidity).

4.0
(b)
]
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=
\9‘ 4 gk~
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Figure 1. UV-Vis absorbance readings at 400 nm over time for (a) 5% and 6% o-CD with 0.55%
SIPEG5K#3, (b) 6% a-CD with 0.33% mPEGMa5K, 0.5% SiPEG5K#2 (0.3% PEG equivalent),
0.66% SIPEG750 (0.15% PEG equivalent).

The first observation is that complexation between a-CD and PEG does take place even
when PEG is grafted onto the nanoparticles (Figure 1b). The Kinetics is very clearly

dependent on a number of parameters: the concentration of a-CD (Figure 1a), whether
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PEG is grafted or not on the silica NPs (MPEGMa5K vs SIPEG5K#2, Figure 1b), and the
length of the grafted PEG (SIPEG750 vs SIPEG5K#2, Figure 1b). The rate of
complexation markedly increases with the concentration of a-CD (Figure 1a): the
maximum turbidity is reached three times faster when a-CD concentration is increased
from 5% to 6%. On the other hand, at the highest a-CD concentration of 6%, no complex
is detected with the shorter PEG chains grafted on silica, SIPEG750 (Figure 1b). In
addition, a higher rate of complex formation is obtained with free chains of PEG
(mPEGMa5K), compared to the same chains grafted on silica nanoparticles
(SIPEG5K#2).

The effect of temperature on the reaction rate was studied at a fixed concentration of 5%
a-CD and four different PEG systems, all containing the same equivalent amount of PEG
(0.3%). Figure 2 shows the kinetics of complexation with PEG either grafted on the
nanoparticles (SIPEG5K, Figure 2a), or free PEG of three different types: with one
methoxy end group (mMPEGS5K, Figure 2d), with one methoxy end and a bulky maleimide
group (MPEGMa5K, Figure 2b) or a lower molecular weight (PEG4K, Figure 2c). For all
the systems studied, a rise in temperature leads to a decrease in the rate of complexation.
Following the model of reaction described by Lo Nostro &°, while diffusion (step 1) is
favoured by higher temperatures, the initial threading and sliding of CD are negatively
affected by higher temperature, because of the weakening of the interactions responsible

for the complexation, such as hydrogen bonds.
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Figure 2. UV-Vis absorbance monitoring the complexation process as a function of temperature

in four PEG systems at a constant concentration of 5% a-CD: (a) 0.55% SiPEG5K#3 (equivalent

0.3% PEG); (b) 0.33% mMPEGMa5K; (c) 0.3%PEG4K; and (d) 0.33% mPEG5K.

Given the sigmoid shape of the curves, the time corresponding to the inflection point
could be used to compare the kinetics of complexation as a function of temperature
(Figure S4). These inflection points correspond to the aggregation step, whose onset is
located after the threading “delay” time. If the aggregation curves were identical (or very
similar) then the inflection points would be a convenient method to compare the curves.
The other possibility is to use the onset of the sigmoidal aggregation curves as the
threading times (Figure 3). Both approaches give very similar results. Within the four
systems studied, two sets of pairs can be distinguished that share a very similar behaviour:
(i) on the one hand, SIPEG5K#3 and mPEGMa5K kinetics are similarly affected by
temperature. When the temperature increases, the rate of complexation is strongly
modified, and for both systems the inflection point increases, following an exponential
trend. Complexation is faster with free PEG (mMPEGMa5K) compared to grafted PEG
(SIPEG5K#3). (ii) On the other hand, unmodified free PEG (PEG4K and mPEG5K),
while displaying faster complexation kinetics with increasing temperature, are less
affected by temperature within this range. Both the 5k molecular weight PEG and the 4k
PEG show extremely similar kinetics. Harada and co-workers 28 determined that the
higher the molecular weight of the polymer (above 1000 g/mol), the slower the
complexation should be between a-CD and PEG at equivalent weight concentration. Our
experimental results, which show very similar kinetics for both molecular weights,
suggest that the end group of the polymers (MPEG5K with a methoxy end and PEG4K

with two hydroxyl groups) may impact the kinetics of threading, the less polar methoxy

12
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end favouring the threading kinetics. This is in agreement with previous studies which
have shown that increasing the hydrophobicity of the end group speeds up the
complexation rate 3, which has been proposed as a strategy to separate and purify linear
polymers with different terminal groups “°. Harada et al. have also reported that a higher

yield was obtained with methoxy-terminated PEG compared to unmodified PEG .

4000
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AMPEGMask
3000 -
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2500 A
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= 2000 -
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0 . | |
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Figure 3. Reaction times at “threading” for the curves obtained from the UV-vis analysis of the
complexation between o-CD and the PEG samples studied as a function of temperature (threading

times ty were considered when absorbances reached a value of 0.01).

Figure 3 clearly shows that the kinetics of complexation with the PEGylated nanoparticles
are much slower than with the equivalent free polymers. This may be explained both by
the presence of only one end accessible for threading of the cyclodextrins, combined to
the slower diffusion of the PEG-grafted silica nanoparticles. As mentioned above,
maleimide-modified PEG of the same molecular weight (MPEGMa5K) shows similar
kinetics to the NP-grafted PEG, suggesting that the maleimide end group presents steric
hindrance to the threading process of the a-CD, therefore leaving only one end accessible
for complexation (indeed, no reports have been found on the complexation between
maleimide and a-CD, while complexes are formed with the larger cavity - and y-CD

41y, Similarly, PEG carrying bulky substituents on both ends, such as 3,5-dinitrobenzoyl

13



or 2,4-dinitrophenyl groups, have been reported to be unable to form a complex with a-
CD “,

To determine the thermodynamic parameters of the threading, the transition state theory

43 can be used as a theoretical basis for the modelling #*:

PEG + m(aCD) 2 ¢~ — polypseudorotaxane )
Where ¢ is the formed activated complex (rate step). Within this framework, the
threading time ti depends on the temperature as follows8®:

]
In(T - t) = —In (32) = m - In[aCD] + =2 (4)

where m is the number of cyclodextrins threaded on each polymer chain, ti the threading
time (measured as the threshold when the turbidity starts to increase, marking the
aggregation of the threaded polymers), [aCD] the concentration of cyclodextrin in mol/L,
AGt*h the Gibbs free energy at the threading time, T the temperature and kg, h and R, are

the Boltzmann constant, the Planck constant and the universal gas constant.

This model was applied to the four systems studied (Figures 2 and 3). For each system,
the threading time was determined by assigning the aggregation onset to an absorbance
value of 0.01 and resulting In(T- tx) values were plotted as a function of 1/T (see Figure
S5 in Supporting Information). The Gibbs free energy of activation for the threading
process (AGt*h) and the number of cyclodextrins threaded on each PEG chain (m) were

obtained from the slope and the intercept, respectively (Table 2).

Table 2. Values for m, the number of cyclodextrins threaded per polymer chain,

corresponding molar ratio of EO and a-CD units, and Ath, the Gibbs energy involved in the

formation of the activated complex ¢

PEG system m EO/ a-CD AG?, (k] /mol)
SIPEG5K#3 23 4.9 -75.8
MPEGMa5K 23 4.8 =775
MPEG5K 18 6.3 -44.9
PEG4K 17 5.3 -41.0

14



The values of AGt*hobtained are within the range reported for polymer/CD complexes °
and reflect a spontaneous process. These values suggest that the threading process is
favoured when PEG is attached to the nanoparticles surface or bears a bulky end group
rather than being free in solution, despite the slower kinetics. The number of EO units
involved in a complex varies between 5 and 6, close to the value of 2 EO per CD for a
fully covered chain *°, which may have been reached by using higher concentrations of
CD.

In order to check the validity of the energy values obtained, a simpler Arrhenius-like
approach was also considered, and the activation enthalpies extrapolated to the onset of
the aggregation process (i.e. when the turbidity is extremely low). In this approach,
instead of selecting an arbitrary threshold value of the absorbance as the onset of
aggregation (such as a value of 0.01), a set of absorbances vs. time values are required.
Considering that the pseudo-first order rate constant of the overall reaction is inversely
proportional to time, In(1/ta) was plotted as a function of 1/T for each constant value of
the absorbance a. From these van’t Hoff-like linear equations, the value of the activation
enthalpy was calculated. The results corroborate those obtained following Lo Nostro’s
model: ° the energies at the onset of the aggregation process are ca. 72-74 kd/mol in the
case of organosilica nanoparticles and bulky end modified PEG, and are much lower for
the free PEG samples, ca. 43-45 kJ/mol (see Supporting Information, Figures S6 and S7).
We can also use the turbidity measurements (from Figure 2) to obtain an estimate of the
aggregation enthalpies by plotting this time In(1/(ta - tn)) vs. 1/T thereby correcting for
the threading step. The shift between the turbidity curves as a function of temperature
beyond the threading point, must be related to the enthalpy of aggregation. Thus, the
values we obtain from these new van’t Hoff plots correspond to the aggregation step (see

Supporting Information, Figure S7).

Characterization of the complexes
Yield of complexation: effect of grafting and polymer length

The complexes obtained after reaction between a-CD and SIPEG750, SIPEG5K#1 or
SIPEG5K#3 were analysed and compared. The mixtures of o-CD solutions with
SIPEG750 or SIPEG5K#1 were turbid at first, and, after three days, a separation into two

phases was observed and white precipitates produced. In contrast, samples of SIPEG5K#3

15



Yield %

100

90 -
80 -
20 |
60 -
50
40 -

30 -

10 A

with 4.5%, 5%, 6% and 7% a-CD formed gels. Figure S8 (Supporting Information) shows
the appearance of the solid products (after removal of the supernatant) for 1.3%
SIPEG750, 1.4% SIPEG5K#1, and 1.4% SIPEG5K#3 with increasing concentrations of
a-CD. For SIPEG5K#3, which has a higher grafting density in weight (Table 1), a set of
samples at a lower NP concentration (0.62%) was also tested to achieve an equivalent

PEG concentration, as in the lower PEG-density samples (SIPEG750 and SIPEG5K#1).

The complexation yields of a range of PEG samples, grafted and free in solution, are
shown in Figure 4. Higher yields were obtained for the higher molecular weight grafted
PEG, SIPEGHK#1, compared to SIPEG750 (see also Figure S9 in supporting
information). Complexation with SIPEG5K#3, which has a higher density of PEG grafted
on the surface (Table 1), led to even higher complexation yields at both concentrations
tested (1.4% and 0.62%). The yield was not measurable below 3% a-CD for most samples
(below 4% for SIPEG750): below these concentrations, the threading of macrocycles is

insufficient to induce the aggregation and bundling of the PPRs.
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Figure 4.(a) Complexation yields of 1.3% SIPEG750, 1.4% SIPEG5K#1 and 1.4% SIiPEG5K#3
with varying concentrations of a-CD. (b) Complexation yields of 0.33% mMPEG5K, 0.33%
MPEGMa5K and 1.4% SiPEG5K#1 (equiv. 0.3% PEG) with increasing amounts of a-CD. Values

shown are averages from two experiments.

To assess the effect of grafting on the extent of complexation, experiments were also
performed with free polymer in solution (Figure 4b), namely, mPEG5K and mPEGMa5K,
the latter bearing a bulky end group not accessible to CD (potentially a similar effect to

grafting one end onto the silica surface). The complexation yields for free mPEG5K and
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mPEGMa5K are higher than for SIPEG5K#1 nanoparticles with the same concentration
of PEG (eq. 0.3%). Focusing on the free PEG samples, the polymer with the maleimide
moiety gave lower complexation yields at low concentrations of a-CD. However, when
the concentration of cyclodextrin was increased, both PEGs reached similar yield values.
This could indicate that at high concentrations of a-CD the free polymers are saturated
and the presence of the bulky maleimide moiety becomes irrelevant. The lower
complexation vyields for the end-capped PEG obtained at intermediate o-CD
concentrations should then be attributed to kinetic effects: the gel network structure is
hindered when the CD concentration is low, and the threading process is only occurring
through one end. The slight decrease in the yield above a threshold CD concentration
suggests the existence of a saturation point for the PEG chains; above this threshold
concentration, the weight of the complex remains the same, but the excess of cyclodextrin

causes a decrease in the yield value calculated using equations (1) and (2).

In summary, these results show that the following factors affect the yield of complexation
negatively: (i) the grafting of PEG on nanoparticles; (ii) shorter chain length; and (iii)
lower grafting density. The combination of higher PEG coverage and longer chains led
to yields reaching practically 100%. (While it is not excluded that some CD molecules
could have remained trapped in the gel without being threaded onto PEG chains, this does

suggest a high extent of complexation.)

Figure 5 shows a proposed scheme for the structure of the supramolecular assembly
formed between SiPEG NPs and o-CD. The aggregation of a-CDs threaded on adjacent
chains act as physical cross-links, producing a supramolecular network, which is in turn
responsible for the formation of a white precipitate or a gel (which are studied in the final
section), depending on the concentrations of both components, polymer length and
grafting density. When the polymer chains are covalently attached to the surface of
nanoparticles, those become embedded into the network. Longer polymer chains and
higher grafting density favour complexation and the formation of a more extended
network, probably due to the increased local concentration of chain ends through which
the macrocycles can thread, and the higher connectivity of a network obtained with longer
chains. In a previous study by Sabadini et al. °, the PEG chains were physically adsorbed
on the surface of silica nanoparticles, rather than chemically bonded. In that scenario also,

higher molecular weight PEG induced higher complexation yields.
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Figure 5. Schematic structure proposed for the supramolecular assembly of SiPEG NPs and a-
CD, where the threaded o-CDs act as physical cross-links causing the self-aggregation of the

chains.

Characterization of the complexes by thermogravimetric analysis (TGA): EO/a-CD ratio

Figure 6 shows the TGA curve corresponding to the complex formed (i.e. the solid
obtained after the supernatant was removed) between SIPEG5K#3 and o-CD. The curve
presents two separate steps between 300 and 400 °C (which correspond to minima in the
derivative curves dm/dT at 310 °C and 388 °C). The first step, which is absent in the TGA
curves of the thiolated and PEGylated silica, is attributed to the degradation of the
cyclodextrin moieties, while the second corresponds to PEG decomposition. Upon
complexation, the temperature of degradation of the PEG shifts from 369 °C to 388 °C,
thus demonstrating a certain extent of protection from the threading of cyclodextrins on
PEG. From the knowledge of the percentage of PEG in SIPEG5K#3 (Table 1), the amount
of a-CD in the complex was determined (Table 3), considering that weight loss was due
to the decomposition of the organic content (mercaptopropyl groups, PEG and a-CD) and

that only silica (the inorganic component) remained in the crucible at 1000 °C.
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Figure 6. TGA (a) and DTGA (b) data for thiolated silica nanoparticles (SiThio), the PEGylated
silica particles SIPEG5K#3 and the complex formed by 1.4% SiPEG5K#3 with 5% of a-CD.

Table 3. Composition of the nanoparticles and their complexes with a-CD obtained from TGA.

Percentages (% w/w)
Substance Si02 R-SH PEG5K o-CD H20

SiThio 48 52 - - -
SIPEG5K#3 23 24 53 - -
SIPEG5K#3 6 7 15 69 3
+5% a-CD

The compositions of PEG and o-CD from Table 3 were used to establish the EO:a-CD
mole ratio in the complex as 5:1 (Supporting Information, section 3), in agreement with
the value obtained from thermodynamic analysis (Table 2). These calculations were
performed assuming that all the a-CD was part of the pseudopolyrotaxane; however,
some unthreaded macrocycles could have been trapped in the supramolecular aggregates.
The maximum possible ratio in these polyrotaxane structures is 2 EO units per a-CD 35,
suggesting that there is still scope for more extensive threading. It is possible however
that, with chains grafted on nanoparticles, threading close to the silica surfaces becomes

hindered at high surface coverages due to steric hindrance. TGA experiments with other
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PEGylated NPs (batch #1 and #3) and varying a-CD concentrations all show a similar
behaviour (Supporting Information, Figure S10).

Characterization of the complexes by FTIR spectroscopy

The surface functionalization of nanoparticles can be efficiently monitored using infrared
spectroscopy. The absorption from functional groups present on their surface can be
easily identified using this technique. FTIR-ATR spectra of a-CD, mPEGMa5K,
SiPEG5K#3 and the complex formed by SiPEG5K#3 with 5% a-CD are shown in Figure
7 (an expansion of the fingerprint region can be found in Figure S11, Supporting
Information). As can be seen, the spectra of mMPEGMa5K and SIPEG5K#3 are very
similar, with the exception of the additional band at 1026 cm™ in SIiPEG5K#3, which

corresponds to the Si-OH or Si-OR stretching vibration #°.
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—a-CD
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Figure 7. FTIR spectra of a-CD (b), mMPEGMa5K (c), SIPEG5K#3 (d) and SIPEG5K#3 with 5%
a-CD (a).

The a-CD spectrum presents a broad band at 3273 cm™, corresponding to the O-H
stretching, which is shifted to higher frequency (3325 cm™) in the complex, probably due
to hydrogen bonding between the cyclodextrin O-H groups and the ether oxygen atoms

in the threaded PEG “6. The bands corresponding to C-H stretching modes appear at 2904
20

600



cm? for o-CD and at lower frequency (2839-2862 cm™) for the SIPEG5K#3
nanoparticles. In the spectrum of the complex, both bands appear overlapped. At 1701
cm?, a band corresponding to C=0 stretching from the maleimide moiety *’ is present in
both the SIPEG5K#3 and mPEGMa5K spectra, so the small band in the complex at this
same wavenumber could be associated to this stretching mode (which is absent in the a-
CD spectrum). The most intense band in SIPEG5K#3 at 1095 cm™ corresponds to the C-
O stretching from the polymer chain “8. However, this band cannot be detected in the
complex spectrum. In contrast, the characteristic vibration mode of o-CD at 1020 cm™
(C-O stretching) clearly appears in the complex spectrum. Overall, the vibration modes
of a-CD are predominant in the complex spectrum, which agrees with the high CD/PEG
ratio found in the TGA experiments.

Phase behaviour and rheological properties of the hybrid gels

At relatively high CD and PEG concentrations, the complexation of SIPEG5K#3 with a-
CD induces the formation of gels, as has been reported for free PEG in solution, or other
copolymers 57181949 These gels are formed by the aggregation of the inclusion
complexes into microcrystalline regions, which act as physical crosslinks for the
networks. They are receiving increasing attention as biomaterials, mostly because of their
injectability and self-healing properties '81°. The gels reported here present the additional
attractive feature of embedding silica nanoparticles within their network. Nanoparticles
with lower grafting density (SIPEG5K#1) or lower molecular weight PEG (SiPEG750)
did not form gels over the range of a-CD concentrations studied, showing the importance
of both polymer length and surface coverage in producing self-supported gels.

The samples prepared by combining different concentrations of a-CD and nanoparticles
were visualised and classified according to their aspect (Figure 8): solutions (transparent,
no traces of precipitate); biphasic systems (turbid at first and separating in two phases
when left to stand); weak gels (supporting their own weight when inverted but easily
broken when shaken); and gels. Weak gels were obtained for concentrations above 0.2%
SIPEG5K#3 and a minimum of 4.5% o-CD, corresponding to a ratio of 4 EO for 1 CD
(or 0.25 CD/EO molar ratio).
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Figure 8. Phase diagram for mixtures of SiPE5SK#3 nanoparticles and a-CD in aqueous

solution: (o) solution, (+) biphasic system, (®) weak gel, (®) gel shown in two representations:
as a function of a-CD wt.% (top left) and a-CD/EO molar ratio (top right). Bottom: Pictures
showing the appearance of complexes of SIPEG5K#3 (0.8% w/w) with a-CD up to 7.4% w/w
after 7 days (left); samples with 4.8% (weak gel) and 5.7% (gel) a-CD after 7 days (right).

In addition, mixtures of mPEGMa5K with a-CD at a fixed PEG concentration (0.3%)
were produced to compare the results of the end-capped PEG with those of the PEGylated
nanoparticles. For low cyclodextrin concentrations (2-3%), neither turbidity nor
precipitation were observed. Samples with 4 - 5% o-CD yielded two phases. Increasing
cyclodextrin concentration further (between 6% and 10%) led to the formation of thick

gels.

Oscillatory rheology was performed on the supramolecular gels resulting from the
complexation of a-CD with either grafted PEG (SIPEG5K#2) (Figure 9a), or free end-
capped PEG (MPEGMa5K) (Figure 9b), with concentrations ranging between 6% and
12%. The elastic modulus (G ) of the nanocomposite gels (Figure 9a) is found to be highly
independent of frequency over the range measured, reflecting a highly structured,
predominantly solid-like material, reminiscent of chemically crosslinked gels. The
reproducibility of the measurements was relatively poor, and improved with the amount

of CD added. The limited reproducibility is not surprising, given the nature of these gels
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which are formed through the diffusion-controlled threading of CDs on the chains, and
their subsequent aggregation (akin to a phase separation process). This random process is
thus expected to lead to quite some variability in gel structure and thus in their rheological
properties, as previously observed in the diffusion-controlled crosslinking of gels
obtained by an enzymatic process >°. The precise preparation protocol (e.g. order of
mixing, concentration of stock solutions used, and stirring) was also seen to impact the
final rheological behaviour, in agreement with different formation pathways leading to
slightly different structures. The rheology data show a slight weakening of the gels with
increasing amount of cyclodextrins; this suggests that, once a threshold concentration of
cyclodextrins has been reached that provides connectivity to the network (cf phase
diagrams, Figure 8), additional cyclodextrins do not create additional elastically active

junctions and may even be detrimental to the rheological properties.
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Figure 9. (a) Dynamic frequency sweep measurements for 0.5% SIPEG5K#2 and SiIPEG5K#3
(0.3 % eq PEG) with increasing weight % of a-CD. The storage modulus G’ is shown by filled
symbols and the loss modulus G’ by empty symbols. (b) Dynamic frequency sweeps for free,
end-capped PEG (mPEGMa5K, 0.3%) with increasing weight % of a-CD. (Data are averages
corresponding to two or three measurements. Two set of samples were prepared with batch #2

and one set with batch #3.)

The gels obtained from the threading of free PEG (Figure 9b) reveal lower values of G’
than the gels obtained with silica-grafted PEG, reflecting weaker, more yielding gels. The

incorporation of inorganic silica within the connected network thus improves the elastic
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properties of the gels by one order of magnitude (Figure S12); this reinforcement with

nanoparticles has often been observed with nanocomposite gels 2422,
CONCLUSIONS

The complexation and formation of supramolecular assemblies between a-cyclodextrin
(a-CD) and PEGylated organosilica nanoparticles was studied. Nanoparticles with PEG
of different molecular weights (750 and 5000 g/mol) and different grafting density were
used, as well as three different free polymers: PEG4K, mPEG5K, and mPEGMa5K, the

latter bearing an end modified with a maleimide moiety.

Nanoparticles with a higher coverage of PEG and longer polymer chains (5k vs. 750)
showed faster kinetics of complexation and higher complexation yields at equilibrium,
indicating that both the length of the polymer and the grafting density are key parameters
that dictate the speed of threading and the final supramolecular structures. For all the
systems investigated, the complexation rate decreased upon increasing the temperature,
although the free unmodified PEGs were less affected by temperature, and mMPEGMa5K
(PEG with a bulky maleimide endgroup) showed kinetics of complexation quite similar
to the nanoparticles, as they present also one chain end through which CDs cannot enter.
Gravimetric experiments showed that the complexation yields were lower in the presence
of nanoparticles than with free polymer. Both thermodynamic analysis, using transition
state theory, and thermogravimetry suggested a complexation ratio of 1 macrocycle for
5-6 EO units, a comparable but lower coverage to the maximum of 1CD:2EO ratio

reported by Harada®.

Above a threshold concentration of a-CD and PEG, either grafted to nanoparticles or free
in solution, self-supporting gels were formed. Nanoparticles bearing a lower grafting
density of PEG, or with the lower molecular weight PEG, did not form gels. Oscillatory
rheology measurements performed on the gels showed a highly viscoelastic,
predominantly solid-like behaviour, with the elastic modulus (G°) broadly independent
of frequency. The networks with embedded silica nanoparticles presented superior elastic
properties compared to the equivalent free polymer gel samples, suggesting that the

presence of the nanoparticles reinforced the gels.

Overall, our results elucidate the key parameters that direct the kinetics of complexation
and the final equilibrium structures for a new type of soft hybrid materials based on host-
guest interactions. In the current context of the search for novel hydrogels for biomedical
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applications, either for delivery applications or tissue engineering, this work provides a
facile route towards supramolecular gels comprising soft nanoparticle gels, combining

organic and inorganic materials.

Supporting Information. S1: Structures of molecules. S2: TGA data on the organosilica
nanoparticles. S3: DLS data on the nanoparticles. S4: a. example of absorbance vs. time
curve, b. Reaction times at the inflection points ti of the curves obtained from UV-vis
analysis as a function of temperature (corresponding to Figure 3). S5: In(T:tn) as a
function of 1/T for the four systems studied. S6: van’t Hoff-like plots for mMPEGMa5K
and aCD. S7: Enthalpy plots from turbidity experiments as a function of the absorbance.
S8: pictures showing the appearance of the complexes and gels. S9: expansion of Figure
4. S10: TGA data on the complexes (and calculations to determine EO:CD ratios from
the plots). S11: FTIR spectra from the complexes. S12: Values of the elastic moduli at 1

rad/s for the gels with and without silica. Table S1: threading times from turbidity curves.
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