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Abstract

A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating
extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to
human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations
forced with observed Sea Surface Temperature of the 54 year period 1960-2013. These simulations,
together with dual simulations without human influence in the forcing, are intended to be used in
weather and climate event attribution. The analysis investigates the main processes leading to extreme
events, including atmospheric circulation patterns, their links with temperature extremes, land-
atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated

variability, trends and generalized extreme value theory parameters for temperature and precipitation.

One of the most striking findings is the ability of the model to capture North-Atlantic atmospheric
weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also
reproduces the main observed weather patterns responsible for temperature and precipitation
extreme events. However, biases are found in many physical processes. Slightly excessive drying may
be the cause of an overestimated summer interannual variability and too intense heat waves, especially
in central/northern Europe. However, this does not seem to hinder proper simulation of summer
temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency
and stratosphere-troposphere interactions . Extreme precipitation amounts are overestimated and too
variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region.
There, simulated weather conditions appear not to be leading to strong enough storm surges, but
winds were found in very good agreement with reanalyses. The performance in reproducing
atmospheric weather patterns indicates that biases mainly originate from local and regional physical

processes. This makes local bias adjustment meaningful for climate change attribution.
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1. Introduction

In recent years attribution of changing likelihood of weather events has motivated an outstanding
effort of the climate science community (Stott et al., 2016). While detecting trends in odds of extreme
events (eg. as characterized by the exceedance of a threshold) can draw solely on observational data,
formal attribution to human activities requires comparing statistics in a “current climate” world and in
a world where human activities have not occurred. This requires model simulations with different sets
of assumptions concerning external forcing. This also requires that the models used are able to
simulate the changes in likelihood of extremes by comparing with observations, which is often difficult
in practice due to the short length and lack of homogeneity of observational data sets. A simplification
is often made with the assumption that the anthropogenic effect is included in surface variables such
as SST, sea ice (Pall et al., 2011) or soil moisture (Hauser et al., 2016), and in atmospheric composition,
and that extreme events respond to this influence through processes linking surface and atmosphere.
In contrast, attribution of observed trends to causes relies on analysis of the observed change with the
help of climate models, hence is more directly anchored to the observed change (see NAS report, 2016;
Hegerl and Zwiers, 2011). In practice, anthropogenic forcing influence on temperature-related variables
is such that changes are found with a high consistency using both approaches for trends in mean and

extremes (Bindoff et al., 2013).

Attribution makes one unavoidable assumption: that dynamical and physical processes are correctly
represented in the climate model used for attribution. If all processes are well accounted for,
sensitivities to forcing changes should be realistic. Attribution of weather events therefore requires a
careful evaluation of processes involved in the build-up of the events. Evaluation also requires
examination of extreme events statistics, and if possible their change with increasing greenhouse gases
and other human-driven changes (Bellprat and Doblas-Reyes, 2016; Lott and Stott, 2016; Sippel et al.,

2016).
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This study examines how the newly upgraded Hadley Centre Global Environmental Model version 3-
Atmosphere (HadGEM3-A) atmospheric model performs in view of event attribution in Europe, with a
focus on processes leading to extreme events. The earlier, lower resolution, version of the model was
employed in several attribution studies of extreme events including consecutive cold winters in the UK,
the Moscow heatwave in July 2010 (Christidis et al., 2013a), the severe East African drought of 2011
(Lott et al., 2013), the Eastern Australia floods of 2011 (Christidis et al., 2013b) and the cold spring of
2013 in the UK (Christidis et al., 2014). These analyses quantified the effect of anthropogenic influence
on the likelihood of the events as well as the associated uncertainty from limited number of available
simulations. Moreover, simple evaluation assessments were carried out to demonstrate that the model
was fit for purpose and able to realistically represent the type of extremes under consideration in the
region of interest. Angelil et al. (2016) compared the simulated extreme events with reanalyses
datasets at relatively high resolution and found mismatches among all sets (models and reanalyses and
among reanalyses themselves). This highlights observational difficulties when comparing sub-regional
trends using reanalyses, and emphasizes the need to not only evaluate statistical properties but also

physical mechanisms involved in the trends.

Here, the new ensemble of simulations is evaluated through comparison with available observations.
These simulations are now used in several attribution studies (e.g. Eden et al, 2016; van Oldenborgh et
al., 2017, in preparation; Philip et al., 2017, Hauser et al, 2017, Klehmet et al, 2017, in preparation,
Eden et al, 2017, Christiansen et al, 2017, in preparation, Wilcox et al., 2017), where evaluation is
carried out for the local case study. However, an overall evaluation of the model for Europe is necessary

in order to assess confidence in attribution results derived from this model.

This article addresses three main questions: (i) are the simulations correctly representing the statistics
of events for the historical period 1960-2013? (ii) Are the simulations correctly representing long-term
changes in extreme events and dynamics along the reference period? (iii) Are the simulations correctly

representing the key processes driving to extreme events?
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The first and last issues are covered in detail in this document. The second one is a more difficult
question to address with 54-year long simulations. Trends, especially in extremes, have regional
patterns of response to human activities that are fairly uncertain due to long-term atmospheric
variability. Hence a single-realization observation is not expected to agree completely with model

simulations.

A last issue concerning the model ensemble is also whether the overall ensemble also captures the
natural variability well. This will however not be considered here to keep focus on processes. This
guestion was addressed in a theoretical framework to show that the consistency of the ensemble
spread can be measured by the notion of reliability (Bellprat and Doblas-Reyes, 2016; Lott and Stott,
2016). Ensemble reliability measures whether the probability to exceed a threshold (e.g. an extreme
event or a large model quantile) agrees with the frequencies of the same threshold in an observed
record. Correct reliability is therefore a necessary condition for the ensemble probabilities used in
event attribution studies not to be biased. A bias in ensemble reliability systematically affects the

fraction of attributable risk (Bellprat and Doblas-Reyes, 2016).

We focus here on a few types of events and processes to give an overview of the performance of the
HadGEM3-A system in Europe. The evaluation does not pretend to be exhaustive, as event-specific
evaluation will always be necessary. The selected events types are: heat waves, cold spells, droughts,
heavy precipitation events, and wind events leading to storm surges. These generally have a daily to
seasonal time scale. They were selected because the underlying weather variables have long

observational records.

In Section 2, we briefly describe the simulations. A more detailed description is given in a separate
article (Ciavarella et al., 2017, in preparation). We also describe the data sets used. Section 3 is devoted
to an overall assessment of the main biases in mean state, variability and extremes, as well as a
comparison between simulated and observed trends. In Section 4, an extreme value analysis is carried

out in order to investigate distribution tails. Section 5 is dedicated to an analysis of a few key processes
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driving the extreme events. A final conclusion and discussion follow (Section 6) where tentative

conclusions for attribution are given.

2. Simulations and observations

2.1 The HadGEM3-A simulations

The simulations used in this work were generated by the Hadley Centre event attribution system
(Christidis et al., 2013a) that has facilitated numerous studies of different types of high-impact extreme
events. A typical attribution study involves pairs of large ensemble experiments with and without
anthropogenic forcings, from which the changing likelihood of extreme events under climate change
can be determined (Stott et al., 2016). The Hadley Centre system is built on the HadGEM3-A model
that was recently upgraded within the EUropean CLimate Event Interpretation and Attribution
(EUCLEIA) project (http://eucleia.eu/) and now features one of the highest resolution global models
used in global event attribution research. The model runs at N216 horizontal resolution, equivalent to
about 60 km at mid-latitudes, and comprises 85 vertical levels. The upgraded model also benefits from
a new atmospheric science package with an improved dynamical core, which leads to better numerical

stability (Williams et al., 2015).

An ensemble of 15 atmospheric simulations of the historical climate during the period 1960-2013 was
produced with the new model and is the basis of the evaluation assessments discussed in this paper. A
second ensemble of model runs without the effect of anthropogenic forcings was also generated and
employed in attribution analyses (Christidis et al., 2016; Burke et al., 2016; Wilcox et al., 2017), but is
not used here. The historical forcings in the model simulations include anthropogenic greenhouse gas,
aerosols, tropospheric and stratospheric ozone emissions, changing land use, as well as natural changes
in the solar output and volcanic aerosols (Jones et al., 2011). Ensemble members are generated by
implementing random parameter perturbations as well as a stochastic kinetic energy backscatter
scheme that accounts for energy sources on sub-grid scales (Christidis et al., 2013a). Monthly

observations of the sea surface temperature (SST) and sea-ice from the Hadley Centre Sea Ice and Sea
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Surface Temperature (HadISST) vl dataset (Rayner et al., 2003) provide boundary conditions for the
simulations of the historical climate. Building on the multi-decadal simulations, an operational
attribution system is currently being developed by firstly extending the model runs and increasing the
ensemble size and then by continuing to extend the simulations on a seasonal timescale in a similar

fashion to seasonal forecasting systems.

2.2 Observations

In this paper we use a number of observational data sets for the model simulations evaluation. In
general, the NCEP/NCAR 20™" Century reanalysis 20CR re-analyses of sea level pressure have been used
for characterizing atmospheric circulations. Surface temperatures and precipitation are either taken
from CRUTS3.2 or from E-OBS data sets. Specific data sets have been used to study the land-

atmosphere interactions, described in Table 1.

3. Model climatology, trends and variability

3.1 Mean states and trends

In this section we review the main statistics of the model climate and compare it to observations. The
mean state, time evolution, and interannual variability of metrics of mean and daily extremes in the
15-member HadGEM3-A N216 ensemble are compared to a variety of observational datasets (primarily
CRUTS3.23 and E-OBS) for the June to August (JJA) and December to February (DJF) seasonal means.
Spatial patterns have been considered over the European domain, and time series have been
considered over three regions: Europe (35-70°N, 10°W—-40°E); Northern Europe (50-60°N,10°W-
25°E); and Southern Europe (35-45°N, 10°W-25°E). Where regional means are considered, they only

include model grid cells with a land fraction over 75%, as observations are only available over land.

In general, HadGEM3-A represents the spatial pattern of mean near-surface temperature well, but does
not reproduce the regional pattern of the trends. In summer, the model underestimates warming in

southern Europe (in line with coupled models, van Oldenborgh et al, 2009; Kirtman and Power, 2013,
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Box 11.2), and overestimates it in northern and eastern Europe (Figure 1la-b,e-f). Such trend
discrepancies are not due to atmospheric internal long-term variability as they are found in most
members (Figure 1f). However, when averaging over Europe, the model trend of 0.36+0.05K/decade is
compatible with the linear trends from CRUTS3.24 (0.33+0.08/decade), E-OBS v14.0
(0.35+0.08K/decade), and CRUTEMA4.5 (0.32+0.08/decade). In the above numbers, the 95% confidence
interval is provided. The histogram of the rank of the observations in the ensemble also shows an
overall reliability of simulated temperatures at the continental scale (Figure 1i, see van Oldenborgh et
al., 2013 for the reliability rank histograms calculations). When averaged over Northern Europe, the
model slightly overestimates the positive trend in near-surface temperature (0.36+0.05K/decade
compared to 0.28-0.31K/decade in observations), and underestimates the positive trend when
averaged over Southern Europe (0.36+0.06K/decade compared to 0.41-0.44K/decade in observations).
Similar findings are obtained for the trends in daily minimal and maximal temperatures (Tmin and Tpmax),
yearly maximum of daily maxima and minima (TXx and TNx) (not shown). Least squares linear trends,
as calculated above, were taken for the period 1960-2013, and should be interpreted with a degree of

caution, due to the nonlinear nature of the time series evolution (see also Figure 3).

HadGEM3-A also represents the spatial pattern of mean summer precipitation, and trend patterns
match the observed dipole, with some discrepancies (Figure 1c-d,g-h), and a general underestimation
of precipitation trend in the ensemble members (Figure 1h). Positive precipitation trends over
Scandinavia and negative trends over France and Eastern Europe are found. However, the model fails
to capture the observed increase in precipitation over the UK and drying over Spain, and does not
simulate drying over the full longitudinal extent of the Alps, as is seen in observations. The imbalance
toward systematic trend underestimation is also shown in the rank histograms when considering the
whole continent (Fig. 1j). The simulated trend over southern Europe is -0.023+0.021mm/day/decade,
while it is -0.042 and -0.034mm/day/decade in EOBS v14 and CRUTS3.23 respectively. In Northern
Europe, trends are found in observations (0.052 and 0.046 mm/day/decade) however they are not

significant. HadGEM3-A also shows no significant trend here (see also van Haren et al., 2013).
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In the winter season (Figure 2), mean states are again well simulated, but regional trend patterns are
not well reproduced either. Over Scandinavia, the pattern of the near-surface temperature mean state
is also well-represented by the model, but the model is too cold (Figure 2a-b). Observed temperature
trends show significant warming over most of Europe at the 5% or 10% level, with the greatest warming
over Scandinavia and the Baltics, but HadGEM3-A generally underestimates the magnitude and
significance of the trends (Fig. 2e-f). However these trends discrepancies can be due to long-term
atmospheric variability, as seen from Fig.2f and the rank histogram of Figure 2i, and no major
incompatibility with the observation is found. HadGEM3-A simulates the pattern of the mean states
and interannual variability in Tmin, Tmax, TNX, and TXx well, but it does not reproduce the observed

trends (not shown).

The pattern of the wintertime precipitation mean state is strongly tied to orography in both the model
and observations. However, the model overestimates precipitation over the Pyrenees, Massif Central,
Alps, and Greece, and underestimates it over the UK and Ireland (Figure 2c-d). Observed trends in
precipitation have a strong dipole pattern, with drying in southern Europe, and increasing precipitation
in the north resembling trends associated with a tendency towards positive NAO (see Deser et al.,
2016). There is a hint of this pattern in the ensemble mean model trend, but the magnitude is much
weaker than observed (Figure 3), and the ensemble fails to capture the main contrasts (Figure 2h and
2j). Patterns in the mean state and interannual variability in extreme precipitation values are well
represented in HadGEM3-A. Trends in these quantities are noisy in both the model output and

observations (not shown).

3.2 Variability

In general the interannual variability is reasonably well simulated, as seen in Figure 3 from time series
of individual members and superimposed observations. The model overestimates variability in

seasonal mean daily mean and maximal temperatures (Figure 3), for European average, but simulates
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the variability in daily minimal temperatures fairly well (not shown). The overestimation in daily

maxima is more marked in Northern Europe than in Southern Europe.

In winter, HadGEM3-A reproduces the inter-annual standard deviation of near-surface temperature
over Europe as a whole, but shows a larger standard deviation in Southern Europe (Figure 3), and
appears to underestimate it in Northern Europe. Interannual variability in Tmex and Tmin is well
represented by HadGEM3-A in Europe, despite underestimates in the north, as for near-surface
temperature. In southern Europe, the model overestimates variability in Tme (not shown), but
underestimates it in Tmin (Fig. 3). Variability in TNx and TXx is underestimated in all regions (not shown;
see also Section 4). Variability in seasonal precipitation amount, as well as in heavy precipitations (over
10 mm or 20 mm per day) is well represented by HadGEM3-A in general in both seasons (not shown).
However, it should be kept in mind that the model resolution does not allow a proper representation

of convective precipitation events.

3.3 In summary

HadGEM3-A generally shows reasonable performance in reproducing the observed mean-state,
variability, and trends in daily means and extremes when considering Europe as a whole. However
observed regional patterns of trends are not always well reproduced. For instance, the model fails to
reproduce the observed JJA and DJF drying in southern Europe. In JJA, the model also locates the
maximum in near-surface temperature trends too far east, so that the amplitude of warming over
southern Europe is underestimated. In winter, temperature variability is high making trends from
simulations and observations almost compatible despite a general tendency for the model to
underestimate warming. The model ensemble fails to reproduce positive trends in temperature
extremes (Tmin, Tmax, TNX, and TXx) throughout Europe, and also underestimates interannual variability
in TNx and TXx in winter. The amplitude of the dipole in precipitation trends in DJF is substantially

underestimated by HadGEM3-A in DJF, and to a lesser extent in JJA.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

The correct simulation of trends in summer implies that their attribution should not be hindered by
model’s climatological biases in this season. For temperature this means a realistic mean response to
external forcing and a potential for attributing temperature-related events. The differences in regional
patterns of trends are partly due to the relatively short length of observational data sets combined with
a chaotic atmosphere and weak SST dependence. It is also probably due to uncertainties in underlying
processes (see Section 5). In winter the too weak warming trend may potentially lead to
underestimation of likelihood reduction in winter cold spells. However, this discrepancy may also result
from the large interannual and variability in winter temperatures. Some of the 15 members do show

trends as observed in daily mean winter temperatures.

4. Extreme value analysis

A specific focus is given now on extremes of temperature and precipitation. The evaluation of the
model’s representation of extremes was undertaken using extreme value analysis, based on annual
maxima of the historical runs in precipitation (rxlday) and maximum (TXx) and minimum daily
temperature (TNn) discussed above. These were fitted to a stationary generalized extreme value (GEV)
distribution (Coles, 2001). The three parameters of the GEV distribution, namely the location
parameter W (representing the mean values), scale parameter o (representing the typical range of
values) and shape parameter ¢ (describing whether the distribution is heavy tailed or not), were
evaluated alongside distributions fitted to the same extremes from E-OBS. Non-parametric
bootstrapping (1000 replications) was used to estimate the uncertainty margins. Comparisons are
made using the 0.52 regular grid E-OBS product, which represents the resolution closest to that of the

model.

For extreme maximum daily temperature (TXx), the location parameter is significantly under-estimated
in Northern Europe and over-estimated in much of Southern and Eastern Europe. As illustrated in
Figure 4, the model exhibits warm biases in hot events across Central, Eastern and, to a lesser extent,

Southern Europe, explaining the bias in the location parameter. The scale parameter is overestimated
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somewhat across most of the continent, but underestimated in Britain, and the shape parameter is
overestimated somewhat over most of Northern Europe, indicating too heavy tail potentially related

to unrealistically high drying in summer in this model (see Section 5).

For extreme minimum daily temperature (TNn), regions of complex topography (including the Alps and
the western coastline of Scandinavia) are characterized by a clear under-estimation of the location
parameter. The cold bias to the south of the Alps is also apparent in the analysis of cold events in Figure
4, with similar spatial features evident in multiple ensemble members. The scale parameter is
reasonably well represented, but the shape parameter is much too large in Eastern Europe, where the
model simulates too extreme very cold events. By contrast, the shape parameter is too small in much

of Western Europe.

For extreme precipitation the broad coastal and topographical precipitation features are well-
reproduced by the model, but both the location and scale parameters are consistently larger than those
of observed extremes (Figure 5): the model generates too much rain in extremes with too much
variability. This is particularly the case in Mediterranean coastal regions and immediately south of the
Alps. This is the opposite of what one would intuitively expect: given the model’s coarse resolution,
extremes in the simulated precipitation field should typically be smaller in magnitude than those

events occupying the same point of likelihood in the observed distribution.

5. Process analysis

The ability of a model to simulate physical and dynamical processes leading to extremes is key for its
capacity to simulate their changes under human activities influence. Extreme events generally result
from an ensemble of processes involving atmospheric dynamics, large-scale drivers, as well as regional
to local-scale processes which interact with one another. Here, we evaluate whether the model
captures the most important processes leading to extreme events. For the five types of events under

study (heat and cold waves, heavy precipitation events, drought and storm surges) we examine in
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particular the role of large-scale circulation and a few key regional-to-local scale processes, such as

interaction with land surface.

In general, extreme weather events occur under specific types of weather patterns: heat waves,
droughts and cold spells relate to long persisting anticyclones sitting over a large area. In Europe, heavy
precipitation is associated either with summer convective episodes coming after a long warm period
with the arrival of frontal systems with cold air aloft destabilizing the troposphere, or in long-lasting
wintertime cyclonic episodes bringing in recurring storms. In each case typical atmospheric circulation
patterns are found. Then, extreme events also result from amplifying processes, which may dominate
in some cases, such as land-atmosphere interactions in particular in the case of heat waves and
droughts (Seneviratne et al. 2010), and also cold spells through the effect of snow cover (Orsolini et al.
2013). Stratosphere-troposphere interactions have also been shown to be important in the build-up of
cold spells (Baldwin and Dunkerton, 1999). Here we evaluate these processes in HadGEM3-A

simulations.

5.1. Atmospheric weather patterns

One way to evaluate whether the model correctly simulates the atmospheric circulation variability is
through the analysis of weather regimes. Weather regimes are usually defined as large typical clusters
of atmospheric flows that are observed. The concept of weather regimes is based on dynamical systems
theory analysis of atmospheric variability: certain phase-space areas may include slow-down of
trajectories, due to the vicinity of stationary solutions (Legras and Ghil, 1985), or quasi-stationary
solutions (Vautard and Legras 1988). Since then, a number of studies (e.g. Michelangeli et al., 1995;
Cassou et al. 2005) have characterized weather regimes using cluster analysis. Over the North-East
Atlantic and Europe, such an analysis usually finds four stable clusters from observations or reanalysis

of sea-level pressure or geopotential height.
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Here, we compare clusters obtained by a k-means algorithm applied to the NCEP/NCAR reanalysis and
the HadGEM3-A simulations carried out over the same period (1960-2013). The same North-Atlantic
domain is used both for model and observations [-80°W-50°E, 22.5°N-70°N]. A separate analysis is

done for winter (DJF) and summer (JJA) seasons using sea-level pressure fields.

The centroids of the obtained clusters for the NCEP/NCAR reanalysis and the HadGEM3-A model 15
member ensemble, are shown for winter in Figure 6a-h and for summer in figure 6i-p. The HadGEM3-
A model weather regimes centroids are quite similar to the observed ones with slight shifts. For
instance, the “blocking” (BLO) regime is well represented in winter and summer but the “Atlantic ridge”
(AR) regime has differences that can be seen mainly in winter. However, this should not be a major
issue for European extremes of temperature and rain as this latter regime is generally not associated
with extremes. Cold spells are usually characterized in winter by either the negative North Atlantic
oscillation (NAO-) regime, as was the case for the winter of 2009-2010 (Cattiaux et al., 2010), or by the
BLO regime. Mild winters with persistent rainfalls over Western Europe are characterized by the “Zonal

flow” (ZO) regime as shown by Schaller et al. (2016).

Another important aspect for extremes is the frequency of occurrence of regimes. One expects that to
correctly simulate the statistics of extreme events, a model must simulate correct frequencies in the
weather regimes. In order to compare similar clusters statistics, we used the NCEP/NCAR cluster
centroids SLP anomalies as reference and counted the number of SLP fields for which each centroid is
nearest, both for NCEP/NCAR and HadGEM3-A fields for a best comparison. HadGEM3-A weather
regime frequencies are well represented with respect to ones in NCEP/NCAR. BLO and NAO- regimes
are well represented in both seasons while ZO (winter) and AL (summer) have slight differences to

NCEP/NCAR (lower and higher frequencies of occurrence respectively).

Table 2 shows the frequencies of nearest neighbors calculated in this way. It is quite remarkable how

well the frequencies match between observations and the model. We conclude that the HadGEM3-A
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model simulates quite well the main weather patterns of the North East Atlantic with mean frequencies

that reproduce faithfully the observations.

5.2. Atmospheric circulations associated with hot and cold events

The previous analysis was made for weather patterns independently of extreme events. We now turn
to the evaluation of the capability of HadGEM3-A in representing the specific weather patterns
associated with hot and cold events in Central Europe (defined here as the average over 2°-15°E and
47°N-54°N). This analysis builds on Krueger et al. (2015) and is based on a composite analysis of
temperatures and circulation states (characterized by the geopotential heights at 500 hPa) for hot and
cold events. We show here results for hot extremes and cold events are shown in the supplement. The
temperature data was deseasonalized (using a 10-day filter for calculating the climatology); prior to
detecting hot and cold extremes the linear long-term trends over the analysis period were removed

from each gridpoint.

Hot and cold events with a time scale of five days were obtained as consecutive values above the 95
and below the 5™ daily temperature percentile for summer (JJA) and winter (DJF), respectively. These
moderate extremes should occur under broadly similar circulation conditions to stronger extremes, but
are well sampled (Krueger et al., 2015) and have been found useful (Alexander, 2016). Composites of
all such events were calculated for the 1960-2013 period which yields 143 heat waves and 137 cold
spells from the 20CR v2c in comparison to a range of 149-154 hot spells and 147-150 cold spells for the
model ensemble, respectively (note that the reanalysis shows slightly, but significantly, fewer hot and
cold spells). The associated circulation patterns are calculated as the composites of the 500 hhPa
geopotential height found for each occurrence of a cold- or hot temperature event, following Krueger
et al. (2015). In contrast to Krueger et al. (2015), the composite analysis was performed for land-only
temperatures. The analysis for the model was performed for each of the 15 ensemble members

separately, with resulting composites then averaged to provide an ensemble mean value.
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Figure 7 shows the temperature composites of hot events, and Figure 8 the circulation associated with
it. The differences between circulation composites are relatively large in both summer and winter even
though these are aggregated over events occurring over 54 years in each case. Larger differences
between the ensemble members are found for summer. For the circulation associated with extreme
hot events, there is high variability across the ensemble members while for the ensemble mean the
geopotential pattern resembles a classic omega blocking in 20CR with the eastern, negative center of
the blocking suppressed or moved in the average circulation of HadGEM3-A. The location of low
pressure anomalies and their magnitude varies across ensemble members for this 54 year average. The
spatial extent and intensity of heat waves varies across ensemble members consistent with the subtle
variations in circulation (for example, compare middle of the second to bottom left panel for figures 7

and 8). The observations lie within that large variability.

Results for cold events are similar (Supplementary Figure 1 and 2), with a strong pressure gradient
between a high and low in NW and SE Europe, respectively, causing cold spells, whose average intensity
and extent varies depending on the tilt of the pressure gradient, again exemplifying the important role

of atmospheric variability even on the long timescales averaged across here.

5.3 Land-atmosphere interactions

Land-atmosphere interactions are major processes in the development of many extremes and must
therefore be well represented in view of attribution studies. This is particularly important for heat
waves, which are expected to become more frequent with greenhouse gases increase (Seneviratne et
al. 2012), with potential severe impacts on society and economy (Rosenzweig et al. 2001, Corti et al.
2009, Blauhut et al. 2015, Zhao et al., 2016). The uncertainty of projections of future temperatures and
associated hot extremes is especially large in regions where a shift of the evapotranspiration regime is
expected, i.e. where evapotranspiration is radiation-limited in today’s climate but will become soil-
moisture-limited in future climate. This is due to a large uncertainty in the representation of the land-

atmosphere coupling across state-of-the-art Earth System Models (ESMs) in present and future climate
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(Seneviratne et al. 2016), and resulting fluxes (Stegehuis et al., 2013). This problem needs to be
addressed by validating and evaluating the involved modelled processes in present climate conditions
against observations. Thanks to recent advances in the development of reference datasets for land key
variables such as soil moisture (Orth and Seneviratne 2015) and evapotranspiration (Mueller et al.

2013), a comprehensive evaluation of the modelled land-atmosphere coupling became feasible.

We assess and evaluate the land-atmosphere coupling in the HadGEM3-A model in Europe by
considering all parts of the overall coupling separately (see Figure 9 of Seneviratne et al. 2010). In
particular we focus on (i) the coupling between soil moisture and evapotranspiration, (ii) the coupling
between evapotranspiration and temperature (extremes), and (iii) the (resulting) coupling between
precipitation and temperature (extremes). In terms of temperature we will focus on monthly mean

temperature, and to represent hot extremes we use TXx.

The relationship between the variables involved in each part modelled by HadGEM3-A is compared
with the corresponding observed interplay using state-of-the-art reference datasets of the
corresponding variables (Table 1). Here we focus on the time period 1960-2013, however, due to
limited availability of the reference datasets, the evaluation of evapotranspiration-related couplings is
constrained to 1989-2005, and the evaluation of soil moisture-related couplings is restricted to 1984-
2013. Note furthermore the different spatial resolutions between the employed reference datasets
(see Table 1), and of the HadGEM3-A output data. Model output has been masked whenever the

reference data was not available to ensure the same spatial and temporal basis of the analyses.

In order to focus on the highest coupling strengths, we perform all computations with monthly data
using only the hottest month of each year. In the case of soil moisture and precipitation we use the
previous month to capture their influence on subsequent temperature or evapotranspiration. For the
estimation of the considered coupling strengths we consider 3 European subregions, (i) Northern
Europe (NEU), (ii) Central Europe (CEU), and (iii) the Mediterranean (MED) as defined in Seneviratne et

al. (2012). For the Mediterranean region, however, we focus on latitudes between 35°N-45°N instead
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of 30°N-45°N as in Seneviratne et al (2012) due to limited spatial availability of the reference datasets
(region hence denoted as MED*). Coupling strengths are expressed as monthly correlations.
Furthermore, we compare modelled versus reference distributions of the considered variables in the

considered months.

Soil moisture - Evapotranspiration Coupling: The HadGEM3-A coupling between preceding soil
moisture and evapotranspiration in the hottest month is compared with reference data in Figure 9.
Apart from the apparent bias in evapotranspiration in NEU and CEU, HadGEM3-A captures the
observed coupling well. Overall strength and the spatial pattern of the correlation between soil
moisture and evapotranspiration are also well represented. With few exceptions the HadGEM3-A
ensemble captures the observed coupling strength in all European regions. Only over the Iberian
Peninsula (underestimation) and in Ireland (no coupling) the model results do not agree with the
correlations across the reference datasets. Note the large spread of correlations between the individual

ensemble members suggesting strong variability of the modelled coupling.

Evapotranspiration - Temperature Coupling: The HadGEM3-A coupling between evapotranspiration
and temperature in the hottest month is compared with reference data in Figures 10 and 11. While the
overall strength and the north-south gradient in the correlation are represented in the model, its
simulated spatial coupling pattern agrees only partially with the reference datasets. The transition zone
with zero coupling strength between the positive coupling in NEU and the negative coupling in MED*
is too wide in the model, and it is shifted northward as compared to the reference datasets. This
contributes to the overestimation of hot temperature extremes by the HadGEM3-A model found in
Section 4. The underestimation of the evapotranspiration-temperature coupling between 50°N-65N°
also explains why the observed correlation is not contained in the HadGEM3-A ensemble in large parts
of this region. This occurs even though the spread of correlations between the ensemble members of
HadGEM3-A is large, as for the previous coupling (Figure 9 of Seneviratne et al., 2010). Results also

show a Northward extension of coupling region, potentially creating too warm hot periods, in
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agreement with the extreme value analysis of Section 4. We find comparable results for mean and

extreme temperatures indicating almost no change of this coupling in heat waves.

We find a large spread of coupling strengths between the ensemble member simulations (not shown)
indicating large variability of the coupling. It remains unclear if this is a model-specific feature. This
could be tested by comparing the temporal variability of the coupling strength in the reference data
and in the model output using temporal subsets of the available data. However, this is beyond the
scope of this article. We note, however, that this variability could help to explain the offset in the spatial

patterns of coupling strengths between the reference datasets and the model.

Spring preconditioning of heat waves: We next investigate to what extent spring preconditioning of
soil matters for individual heat wave metrics (see e.g. Vautard et al., 2007; Hirschi et al., 2011). A metric
of European heat waves that targets impacts is used, based on maximum and minimum temperatures
exceeding the 90™ percentile threshold for at least 3 days and 2 nights (Pezza et al., 2012; Cowan et al.
2017). This approach should be considered analogous to approaches using Excess Heat Factor (e.g.
Perkins et al., 2012) or hottest daily maximum temperature of the year (Hauser et al., 2016) and hence
relates to the index considered above. We tested the sensitivity of summer heat waves to preceeding
wet and dry springs for different European sub-regions in E-OBS v14.0, and whether the HadGEM3-A
can capture this sensitivity. Heat wave composites were calculated over summers following the top
20% driest and wettest springs (i.e. for E-OBS this is equivalent to the 14 driest and 14 wettest springs,
for HadGEM3-A this corresponds to the 11 driest and 11 wettest springs per ensemble member) based
on 3-month Standardized Precipitation Index (SPI; McKee et al., 1993) for spring ending in May,
averaged over each region of interest (bounded regions in Figure 12). A non-parametric two-sample
Wilcoxon sign-ranked test (Hollander and Wolfe, 1999) us used in order to determine if the summer
heat wave metrics are distinguishably different between dry and wet spring cases at the 95%

confidence level (e.g. Cowan et al., 2017).



470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Figure 12 shows the composite patterns following the wet and dry springs for the heat wave duration
(HWD), which describes the longest seasonal heat wave. The model composites are based on 11 springs
each from the 15 historical ensemble members (165 springs in total). The patterns from E-OBS show
that dry springs across southern Europe are systemically followed by longer summer heat waves
compared to wet springs (Figure 12, left panels), with many Mediterranean regions exceeding 5.5 days
on average. This is consistent with the results for coupling strength shown above (Figure 10). Further
north into central and eastern continental Europe, this observed tendency becomes much weaker and
less significant. Across southern England and northern France, despite the lack of significance there is
a smallincrease in HWD following dry springs compared to wet springs. For western Scandinavia, longer
summer heat waves tend to emerge following wetter springs, consistent with a positive
evapotranspiration temperature coupling, which suggests that antecedent soil moisture conditions,

based on the SPI, are not a significant predictor of summer-time heat wave activity.

In general, HadGEM3-A shows a smaller effect of dry springs on HWDs across the western
Mediterranean, however, it captures the significant differences compared to the wet spring composites
(Figure 12; right panels). The model also appears to overestimate the dry-spring HWDs over the far
eastern Mediterranean including Romania. Further north, the model simulates a much weaker spring
SPI - summer HWD relationship, with strong positive biases over most of Scandinavia (compared to E-
OBS). Across southeastern England and northern France, the model suggests that spring drying has
significant control over heat wave activity (also seen in the simulated heat wave amplitude; not shown);
this signal is more pronounced in the model if upper layer soil moisture? is used instead of the SPI (not
shown). Despite model biases, the patterns across southern Europe imply that dry springs and winters
do exert a strong influence on summer heat wave activity, confirming earlier observational studies
(Quesada et al., 2012, Vautard et al., 2007) and consistent with results for coupling strength shown
above (Figure 10). For central Europe, Scandinavia and the Baltic states, there is only a weak association
to spring conditions in both model and observations, although the model captures the strong spring

pre-conditioning across Eastern Europe. This is in agreement with a northward shift of the negative
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coupling region as found above (Figure 10), and as such, the model appears to have a stronger response
to dry spring anomalies in Eastern Europe compared with observations. The results for both E-OBS and
HadGEM3-A are affected by sampling uncertainty, particularly for observations, and the fact that the
SPlis averaged over large domains with many different climates; thus care must be taken in interpreting
the spring-summer coupling. Furthermore, the SPI may not fully represent variations in the simulated
upper soil moisture over northern latitudes (e.g. Scandinavia), given low correlations (~0.1) in the

model, compared to 0.93 over western Mediterranean.

5.4 Stratosphere-troposphere interactions

A key process in cold spells development is the interaction between stratosphere and troposphere,
which must also be well represented in view of cold spell events attribution. In the extra-tropical NH
winter there is a tendency for anomalies to propagate from the stratosphere to the troposphere where
they disturb the NAO and the weather related to this dominating mode of variability. In particular, weak
stratospheric vortex events are followed by an increased probability of cold temperatures and cold
extremes in Europe. Although this coupling between the stratosphere and the troposphere on intra-
seasonal time-scales has been known for more than a decade (Baldwin and Dunkerton, 1999;
Christiansen, 2001) there still remain unanswered questions about how to represent the stratospheric
variability in order to optimally catch the coupling. Here, we evaluate the HadGEM3-A model's ability

to reproduce the observed connection between the stratosphere and the troposphere.

The downward propagation from the stratosphere to the troposphere can be demonstrated by lagged
correlations between zonal mean wind at 60°N, 10 hPa (a measure of the stratospheric vortex) and the

zonal mean wind at other vertical levels at 60°N.

Unfortunately, only monthly averaged stratospheric model data have been saved in the model
experiments while daily should be used. To partly overcome this we have interpolated the monthly
averages to daily values. To evaluate the soundness of this approach we compare them with

observations sub-sampled to monthly values and then interpolated back to daily values. In daily
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observations the downward propagation is clearly seen with maximum correlations at the surface
lagging those in the stratosphere with about 2 weeks. In the model there is a similar connection
between the stratosphere and the troposphere but it appears less lagged. This is at least partly due to

the smoothing effect of dealing with monthly data (as seen in the top left panel of Fig. 13).

The fact that the stratosphere is leading the troposphere also in the model is more clearly seen in Fig.
13 which shows the correlations between the stratospheric vortex (zonal mean wind at 60°N 10 hPa)
and the NAO. The effect of a weak NAO on European temperatures are well known (Hurrel et al., 2003),
thus Figure 14d shows the model skill to simulate a key connection between stratosphere and the

circulation pattern present during cold spells occurrences.

Finally, Figure 14 shows the correlation between the anomaly of the stratospheric vortex, defined as
above, and surface temperatures, for observations and five model ensemble members. For the
observations we find a pattern that is consistent with the impact of the NAO: positive correlations in
the middle and Northern Europe and negative correlations in Southern Europe (although these
correlations are not statistically significant). For the model we find that the ensemble members agree
on the general pattern, as revealed by ensemble mean correlations although there are considerable

differences between ensemble members.

5.5 Processes involved in storm surges

Storm surges can occur in numerous places in Europe and driving processes are essentially the
interaction between winds, low pressure systems, seas dynamics, and waves. It would be a tremendous
task, well beyond the scope of this article, to assess the model’s capacity to simulate weather
conditions conducive to storm surges everywhere in Europe. Only a case study is developed here as an
example, in the Baltic sea, a region that is known for witnessing severe surges due to the geometry of
the sea and weather conditions. These occur in particular when strong winds develop after the passage

of cyclones over the Baltic Sea, potentially inducing extreme variations in sea level resulting in storm
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surges e.g. along the German Coast in the southwestern Baltic Sea region (Sztobryn et al., 2005;

Hinicke et al., 2015). During strong onshore winds, the sea level rises due to wind set-up.

In this section we assess the ability of using HadGEM3-A as atmospheric forcing data to drive the
regional ocean model TRIM-NP (Kapitza, 2008) for calculating water level of the Baltic Sea in 12.8km
spatial resolution. Results are summarized here as a parallel study assesses the attribution of these
events to climate change (Klehmet et al., 2017, in preparation). Dynamical downscaling of HadGEM3-
A data has been done with 7 ensemble members only (due to computing costs) for 1971-2010. To
obtain a gridded reference data for the evaluation, one model reconstruction of water level of TRIM-
NP has been performed using the CoastDat2 data (Geyer, 2014) as atmospheric forcing. CoastDat2 is a
regional atmospheric hindcast simulation for the European continent for 1948 to 2012 obtained with
the regional climate model COSMO-CLM (Rockel et al., 2008) using the global reanalysis data of NCEP-
R1 (Kalnay et al., 1996; Kistler et al., 2001) as forcing data. We then first directly compare the outputs

of HadGEM3A-TRIM-data with those of CoastDat-TRIM.

Maximal November water level anomalies for selected grid boxes representing locations co-located to
cities along the German coast (here : Warnemiinde, Travemiinde) for 1971-2010 relative to the 1971-
2010 mean of the HadGEM3A-TRIM-data underestimate extreme water levels as compared with
CoastDat-TRIM (Figure 15). The high water levels of both storm surge events in 1995 and 2006 shown
by CoastDat-TRIM, used as reference data, are not found in the time series of historical HadGEM3A-

TRIM ensemble simulations that represent actual climate with anthropogenic forcing.

However, extreme winds in the area are properly reproduced by the model. We compared the
simulated distribution of three simple wind indicators with ERA-Interim surface winds: the wind speed
itself, the wind speed conditional on winds in the North-East Quadrant, and the North-Easterly
component of the daily wind field calculated as NEW =-U -V, U and V being respectively the zonal and
meridional wind components. All indices were averaged over the area (10°E-18°E; 54°N-56°N), which

encompasses the South-Western Baltic Sea. Distributions are fairly well represented as shown in Figure
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16, despite a minor wind underestimation by HadGEM3-A relative to ERA-Interim. This
underestimation is quite homogeneous irrespective of the wind speed, and reaches about 6% in the
extreme values, but cannot explain the too low water levels of storm surges in Figure 15. However,
ERA-Interim winds may themselves have biases and one should be prudent in the interpretation of
these results. Comparisons with winds over sea remains difficult as observation data are largely
missing. Therefore, at least for this Baltic Sea, we could not find any major HadGEM3-A simulation bias

hindering the attribution of storm surges.

6. Conclusion and discussion

In view of attribution of change of likelihood of extreme events to human activity, we have presented
a number of comparisons between an ensemble of 15 atmospheric simulations from the HadGEM3-A
model and various observations over Europe. We have presented an analysis of model mean and
extreme statistics, and an assessment of its capacity to simulate key processes involved in a few
extreme events development. Results presented here show that HadGEM3-A simulates the
atmospheric mean, variability and extremes in Europe fairly realistically. As for any climate model,
some biases are found but (i) the major regional patterns of the climatology of the main variables is
well simulated and (ii) dynamical weather patterns are faithfully simulated by the model. This provides
confidence in use for attribution. Concerning extreme values, too strong heat extremes and heavy
precipitation are found, but the parameters of distributions do not exhibit qualitatively different
behavior than in observations. However, simulations do not well capture the observed patterns and
amplitudes of trends in temperature and precipitation, which is partly due to a trend in circulation that
is different from the observed one and from other climate models. While for temperature our trend
analysis shows that these discrepancies can be due to internal atmospheric variability (especially in
winter), precipitation trends have slight, but systematic, biases across the ensemble, which remain

unexplained.
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We then have examined some key atmospheric processes but found no major deficiencies. The
variability of circulation types is well simulated, both in terms of spatial patterns and occurrence
frequencies. Physical processes behind these statistics consistently demonstrate the ability of the
model to simulate extreme events. Here are the main consequences that could be drawn for each of

the five types of extremes that we considered in this study.

Heat Waves

Simulated weather patterns associated with hot events compare favorably with those shown in the
reanalysis, however, with significant internal variability in the representation of events between model
ensemble members. However, heat build-up is also amplified by land-atmosphere feedbacks. We
found that HadGEM3-A captures land-atmosphere interactions in present-day climate reasonably well.
We assessed the different parts of this coupling and find that especially the soil moisture-
evapotranspiration coupling is well represented, while the evapotranspiration-temperature coupling is
underestimated in regions between 50°N-65N°. The overall coupling is investigated by correlating
preceding precipitation with temperature in the hottest month where the correlations of the model
output and between the reference datasets are similar, but the spatial patterns are not entirely
captured. Consistently, observed heat wave metrics following wet springs are significantly different
from those following dry springs, particularly in Southern Europe and this process is reasonably well

captured in the model.

Too strong drying is taking place in the model with exaggerated evapotranspiration, in central and
northern Europe in the hottest month, a probable reason for too many and strong heat waves.
Simulated summer temperatures actually exhibit a too large interannual variability in these regions.
Whether all these phenomena are linked remains to be confirmed with further analyses, however, our
results are suggestive of a bias towards a too fast transition towards a soil-moisture limited regime in
Central/ Northern areas as found in many other models (Fischer et al., 2012, Bellprat et al., 2014). This

may explain the biases found in the shape and location parameters for hot extremes. The role of spring
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preconditioning on heat wave metrics appears reasonably simulated, although findings are consistent

with the biases discussed above.

The consequences for attribution of these results remain difficult to evaluate. The overestimated
interannual variability, together with evapotranspiration overestimation in large parts of Europe
suggests that heat waves responses to atmospheric composition changes may be too large. However,
observed trends in summer temperatures themselves do not show evidence of such oversensitivity.
This indicates that biases may not have a major influence on the skill of the model to simulate the

overall change in odds of heat waves or that some of the model errors compensate for current climate.

Droughts

Droughts have not been investigated in detail. However, several remarks can be made. The above
results for temperatures and evapotranspiration should in principle translate in the model simulating
too strong summer droughts. In addition, interannual precipitation variability appears to be slightly
overestimated in summer, potentially leading to both drier and wetter summers. However a deeper
investigation is required to better understand biases of the model and whether these biases are
hindering attribution of drought in Europe. It should be noted that climate models have large

differences in trends in droughts in Central Europe.

Cold spells

The circulation associated with cold events in Central Europe is well captured by the model and
individual model ensemble members again show long-term variations in the extent and intensity of
average cold spells linked to atmospheric internal variability. Extreme value analysis of extreme cold
winter temperatures show a fairly good agreement between simulated and observed values. However,
the simulations are not free of biases in the frequency of cold spells. Weather regimes such as blocking
or negative NAO, which usually drive cold spells in Europe, are well simulated, although their trend
does not necessary match that in the model. Interactions and lagged correlations between the

stratospheric vortex and tropospheric NAO and European temperatures are similar in model and
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observations. Therefore, we did not find any major process hindering the representation of cold spells.
However, the trends in circulation and temperature are not well-simulated. Due to high natural

variability it cannot be assessed how this translates to trends in cold extremes.
Extreme precipitation

Extreme daily precipitation are in large parts of Europe due to convective phenomena and thus local
by nature. Global climate models usually have difficulties in simulating such phenomena given their
coarse spatial resolution. HadGEM3-A has a wet bias in these extremes, associated with a too-large
variability, especially around the Mediterranean sea. In this area we expect daily precipitation patterns
to have a smaller scale than the model resolution calling for prudence in attribution interpretation from
this model. However, it is noteworthy that the spatial pattern of extreme precipitation distributions is
quite similar to observed. Also, despite the biases, the simulations exhibit GEV parameters that are
quite consistent with observations, which could make the simulations eligible for attribution of

precipitation extremes once the bias has been corrected.
Storm surges

Results for storm surges indicate an underestimation of the events amplitude when a regional ocean
model is driven by HadGEM3-A as compared to a regional atmospheric hindcast obtained by
downscaling the NCEP-R1 reanalysis. Comparisons of simulated winds with ERA-Interim reanalysis
show a good performance of the model for strong winds or strong North-Easterlies in the South-
Western Baltic Sea region where storm surges occur in Northern Germany, indicating that winds in the
investigated domain are actually not the main factor of underestimation. Thus HadGEM3-A model

simulations can a priori be used for storm surge attribution.
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Figure Captions

Figure 1: JJA mean near-surface temperature: (a) mean state (1960-2013) from CRUTS3.23; (b) mean
state (1960-2013) from HadGEM3-A; (e) linear trends (1960-2013) from CRUTS3.23; (f) the number of
HadGEM3-A ensemble members simulating a trend smaller than observed; (i) rank histogram over all
land grid points counting the probability of the observations falling in each bin between the ranked
simulated values. (c), (d), (g), (h), (j) are the equivalent plots for precipitation. Hatching in panels (e)
and (g) indicates where trends are significant at the 10% level (p<0.1); cross-hatching indicates

significance at the 5% level (p<0.05).
Figure 2: Same as Figure 1 but for the winter season (DJF).

Figure 3: Left, middle and right panels: Evolution of seasonal mean daily mean temperatures in Europe,
Southern Europe and Northern Europe; First row: JJA daily mean temperatures; Second row: JIA daily

max temperatures; Third row: DJF daily mean temperatures; Fourth row: daily min temperatures.

Figure 4: Three left columns: parameters of the GEV distribution fitted to observations (left panels) and
the model simulations (center panels for the distribution of annual maxima in daily temperature (TXx).
W refers to the location parameter which is related to the mean value, o the scale parameter, related to
the range, and T the shape parameter, diagnosing if the distribution is heavy-tailed (large value of ).
The differences between the parameters of the observed and simulated GEV fits are shown in the right
column of panels. For p and ¢ the difference is expressed in absolute terms; o the difference is
expressed as a ratio. Stippling indicates areas where the observed-simulated difference is larger than
the 95% confidence intervals. Three right columns: same as left columns for the GEV distributions of

the minimal temperatures Tnn.

Figure 5: As Figure 4 but for the distribution of annual maxima in daily precipitation. The fourth row of
panel shows the ratio of the scale parameter ¢ and location parameter y, with the difference again

expressed as a ratio.
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Figure 6: Centroids of the four weather regimes sea-level pressure anomalies as obtained from the
NCEP/NCAR re-analyses (a-d for winter, i-l for summer) and HadGEM3-A (Ensemble of 15 members, e-
h for winter, m-p for summer). First column: Atlantic Ridge (AR) regime, second column: Blocking (BLO)
regime, third column: Negative NAO (NAO-) regime and fourth column: Zonal (ZO) regime for winter

(d, h) and Atlantic Low (AL) regime for summer (I, p).

Figure 7: JJA Composites of the standardized near-surface temperature for hot summer events over
Central Europe in Had-GEM3-N216 historical forcing ensemble members 1-15 ( lines 1-3), ensemble
mean (line 4, left) and and 20CR ensemble mean ( line 4, right). The composites have been derived
from all cases where the area-averaged and 5-day averaged temperature over Central Europe is larger

than its 95th seasonal percentile in JJA.

Figure 8: as figure 7, but showing composites of the standardized near-surface geopotential height at

500mb during hot summer events from Figure 7 over Central Europe.

Figure 9: Relationship between July evapotranspiration and June soil moisture averaged across
European subregions (left panels), in observations (gray) and HadGEM3-A (black). The considered time
period is 1989-2005.Correlation between July evapotranspiration and June soil moisture (right panels)
in observations (top) and HadGEM3-A ensemble median (middle). Bottom plot indicates whether or

not HadGEM3-A ensemble captures observed coupling strength. Considered time period is 1989-2005.

Figure 10: Relationship between temperature and evapotranspiration in July averaged across European
subregions, in observations (gray) and HadGEM3-A ensemble median (black). The considered time
period is 1989-2005. The range of correlations across HadGEM3-A ensemble members is shown in red

if the observed correlation is not contained.

Figure 11: Correlation between temperature and evapotranspiration in July in observations (top) and
HadGEM3-A ensemble median (middle). Bottom plot indicates whether or not HadGEM3-A ensemble

captures observed coupling strength. Considered time period is 1989-2005.
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Figure 12: Composite of average duration (HWD) of the longest summer heat wave following the (top)
20% driest, and (bottom) 20% wettest springs for (left) E-OBS (1950-2015) and for (right) fifteen
HadGEM3-A historical members (1960-2013), based on Standardised Precipitation Index (SPI) averaged
over each bounded region (i.e. each regions’ HWD pattern is composited based on its own wet and dry
spring ranking). Stippling indicates points that show a statistically significant difference at the 95% level
between dry and wet spring composites, based on a two sample Wilcoxon signed-rank test (Hollander
and Wolfe 1999). Significant differences are only marked on the dry-spring composite maps. HWD
values for regions without heat waves are set to zero. Each composite consists of 14 and 165 springs

for E-OBS and HadGEM3-A (i.e. 11 springs x 15 ensemble members), respectively.

Figure 13: Correlations of winter zonal mean zonal wind anomalies at 60N with that at 10 hPa as
function of pressure and time lag. Positive lags mean that the stratosphere leads. Light and dark
shading identify regions where the correlations are significantly different from zero at the 5% and 1%
levels as estimated with a Monte-Carlo method that takes serial correlations into account. Top left:
NCEP daily. Top right: NCEP monthly. Bottom left: A typical member from HadGEM3-A ensemble.
Bottom right: correlations between the stratospheric vortex (zonal mean wind at 60 N, 10 hPa) and the
NAO as function of lag (positive lags mean that the stratosphere leads). Annual cycle has been
removed. Winter (DJF). NCEP (green), a typical HadGEM-3A ensemble member (blue), NCEP
interpolated from monthly values (green, dashed). The NAO is calculated as the leading principal

component of sea-level pressure.

Figure 14: Correlations between the stratospheric vortex and surface temperatures. Annual cycle has
been removed. Winter months (DJF). Large dots indicate correlations that have been estimated to be
significantly different from zero (5 % level) as estimated with a Monte-Carlo method that takes serial
correlations into account. Upper left panel: Observations (E-Obs for surface temperature, NCEP for

stratospheric vortex). Other panels: Different members from HadGEM-3A ensemble.
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Figure 15. November anomalies of maximum water level [m] for 1971-2010 based on reconstructed
model data (Coastdat-TRIM) and historical HadGEM3-A-TRIM (hist) ensemble members 1-7. Selected
grid boxes represent locations co-located with German cities of Travemiinde (left) and Warnemiinde

(right).

Figure 16: Quantile-quantile plots of the distributions of the three ERA-Interim vs. HadGEM3-A derived
indices of wind in the South-West Baltic sea (see main text for definitions of the indicators). All wind

values or wind speeds are expressed as ms™.
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1028 Tables

1029
Dataset Time period Spatial Resolution
Temperature E-OBS v14.0 (Haylock et al. 2008) 1960-2013 0.5°x0.5°
CRUTS 3.23 (UEA 2015)
20CR reanalysis temperature data,
averaged from 6hrly values
Precipitation E-OBS v14.0 1960-2013 0.5°x0.5°
(Haylock et al. 2008)
Sea level pressure | NCAR/NCEP reanalyses 1948-2014 2.5°x2.5°
NOAA 20CR reanalysis, version 2c 2°x2°
10-m winds ERA-Interim reanalysis 1979-2013 0.7°x0.7°
Soil Moisture SWBM Dataset (Orth and | 1984-2013 0.5°x0.5°
Seneviratne 2015)
Evapotranspiration | LandFLux-EVAL Dataset (Mueller et | 1989-2005 1°x1°
al. 2013)
1030

1031  Table 1: Overview of employed reference datasets

1032
Regime Winter: | Winter: | Winter: | Winter: | Summer: |Summer: | Summer: | Summer:
AR BLO NAO- Z0 AL BLO NAO- AR
NCEP/NCAR 24.4% 27.2% 21.0% 27.4% 22.6% 30.1% 21.2% 28.6%
HadGEM3-A 23.8% 27.0% 22.5% 26.6% 18.5% 28.4% 24.6% 26.2%
(15 members)
1033

1034  Table 2: Weather regime occupancies (or frequencies) for each cluster, clusters being referenced from
1035 the NCEP/NCAR reanalyses, for each season.
1036

1037
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Supplementary Figure 1: DJF Composites of the standardized near-surface temperature for cold winter
events over Central Europe in Had-GEM3-N216 historical forcing ensemble members 1-15 (lines 1-3),
ensemble mean (line 4, left) and and 20CR ensemble mean (line 4, right). The composites have been
derived from all cases where the area-averaged temperature over Central Europe is smaller than its

5th seasonal percentile in DJF.
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Supplementary Figure 2: DJF Composites of the standardized geopotential height at 500mb for cold
winter events over Central Europe in Had-GEM3-N216 ensemble members 1-15 (lines 1-3), ensemble
mean (line 4, left) and and 20CR ensembile ( line 4, right). The composites have been derived from all
cases where the area-averaged temperature over Central Europe is lower than the 5th seasonal

percentile in DJF of the associated temperature.



