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Abstract

A combination of X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure
(NEXAFS) spectroscopy have been used to provide an experimental measure of nitrogen atomic charge in nine
ionic liquids (ILs). These experimental results are used to validate charges calculated with three computational
methods: charges from electrostatic potentials using a grid-based method (ChelpG), natural bond orbital (NBO)
population analysis and the atoms in molecules (AIM) approach. By combining these results with those from a
previous study on sulfur, we find that ChelpG charges provide the best description of charge distribution in ILs.
However, we find that ChelpG charges can lead to significant conformational dependence and therefore advise
that small differences in ChelpG charges (<0.3 e) should be interpreted with care. We use these validated

charges to provide physical insight into nitrogen atomic charges for the ILs probed.


mailto:k.r.j.lovelock@reading.ac.uk
mailto:p.hunt@imperial.ac.uk

1. Introduction

lonic liquids (ILs) are liquids composed solely of mobile cations and anions. ILs are promising materials for a
wide range of applications: solvents for catalysis;® electrolytes for electrodeposition, batteries and

5 materials for gas separation and storage;® 7 solvents for nuclear fuel reprocessing.®

supercapacitors;
However, the full potential of ILs is currently unrealised, partly owing to the lack of understanding between
how varying molecular properties (i.e. the chemical nature of the constituent ions) affects macroscopic

properties (i.e. viscosity). In this paper, we aim to gain a better understanding of how to represent the charge

distribution of individual ions in ILs.

Almost all ILs are composed of molecular (or atomic) ions with an overall formal charge of +1 (there are some
ILs formed from ions with £2 charge). Thus, the primary factor that differentiates ILs from each other is not the
overall charge of individual ions; differences between ILs must be dependent on the charge distribution. There
are two ways to describe variation in charge distribution for ILs: (i) differences in how the charge is distributed
within a particular ion and (ii) transfer of charge from the anion to the cation (i.e. non-integer values of total

ion charge).

Results from molecular dynamics (MD) simulations have shown that even quite subtle differences in the charge
distribution in an IL can strongly affect macroscopic properties of the IL.Y Varying the charge distribution
within each ion, while keeping a +1 e charge on each ion, can significantly affect dynamic properties. For
example, Li and Kobrak compared MD simulations using octahedral ions with either a symmetric (charge
spread equally over the ion) or non-symmetric (charge localised on one half of the ion) charge distribution.®

The symmetric, compared to non-symmetric, charge distribution led to significantly slower diffusion but faster

rotational dynamics.® Multiple other MD studies have found that varying charge distribution can lead to



significant changes in predicted structural, dynamic or energetic properties.'®'’ Therefore, understanding the

charge distribution within ILs is key to linking IL composition with macroscopic physical properties.

Charge distribution is often represented in terms of atomic charges. The atomic charge of atom A, g(A), is
defined as g(A) = Za — pa, Where Za is the atomic number of A and pa is the total electron density assigned to A.
The density at any point in space, p(r), is an observable property; however, there is no unambiguous way to
partition this density between atomic centres (i.e. pa cannot be determined unambiguously). As a result, a
range of methods exist for determining pa (and hence, g(A)). The majority of g(A) assighment methods fall into

one of three categories: density-, wavefunction- or electrostatic potential (ESP)-based methods.

The “Atoms in Molecules” (AIM) approach involves the direct analysis of the topology of the electron density.'®
1% Around each nucleus exists a surface for which the flux of the electron density gradient field is zero. These
surfaces are used to partition a system into a set of nuclear basins. AIM g(A) are obtained by assigning all
electron density in a nuclear basin to the relevant nucleus. AIM g(A) are known to be significantly larger in

magnitude than those produced by other methods, either wavefunction- or ESP-based.?* %!

Wavefunction (or population analysis methods) require the electron density to be expanded in terms of a basis
set; often the atomic orbitals (AOs) form the basis functions. The electron density is then divided among the
basis orbitals; the exact procedure varies between methods. Electron density is subsequently assigned to the
atom on which the basis orbital is centred, and summing over the density in each basis orbital enables g(A) to
be calculated. A problem is that some population analysis methods (e.g. Mulliken) can show a strong basis set
dependence.?? The population analysis method used in the current work, natural bond orbital (NBO) analysis,
reduces the basis-set dependence by expressing the density in terms of natural orbitals which are localised AOs
for a particular molecular environment.?*2* Wavefunction methods of this type are inherently local, tied to the

atomic centre and are not strongly influenced by charge distributions outside of the atomic region. We call



charges derived from NBO analysis “NBO charges” (NPA charges is an equivalent name); these charges are

known to overestimate the magnitude of the ESP,% but to a lesser extent when compared with AIM.

The first step in ESP methods is to calculate the ESP (using the total electron density and nuclear co-ordinates)
at a range of points — we will label this ESP.q. A second ESP (ESP,.) is then calculated at each point using solely
a set of point charges centred at each nucleus, g(A). g(A) are subsequently varied to minimise the difference
between ESP.q and ESP,.. Thus, the calculated g(A) are those which best reproduce the true ESP of the system.
Different ESP methods vary mainly in the selection of fitting points; for example, a rectangular grid of points is
used in the “charges from electrostatic potential using a grid based method” (ChelpG) that is used in the
current work.?® The fitting points for ESP methods are generally reasonably far from any nuclei (a distance of 1
to 1.4 times the van der Waals radius). This results in the problem of “buried charges” for ESP methods.?® 27
ESP,c is much less sensitive to varying g(A) for a buried atom than an exposed one; hence, g(A) on a buried

atom is said to be poorly determined, and care should be taken when interpreting such data.?®

g(A) are mathematical constructs, not inherent physical quantities; thus, g(A) cannot be directly experimentally
measured. The results of each g(A) assignment method are termed “charges”. However, each method
describes something slightly different. Thus, g(A) from each method should not be thought of as identical,
despite the common terminology generally used. Different g(A) assignment methods can lead to qualitatively
different charge distributions for ILs. For example, the nitrogen atomic charge, g(N), in [C4C1Im]Cl (1-butyl-3—
methylimidazolium chloride) was calculated as g(N) = —0.3 e using NBO and as g(N) = +0.1 e using ChelpG.% 28
The ChelpG g(N) suggests that the anion will be electrostatically attracted to the nitrogen atom in [C4CiIm]¥,
whereas NBO g(N) suggests that the anion will be repelled from the cationic nitrogen. The NBO g(N) is
consistent with nitrogen being an electronegative atom, whereas the ChelpG g(N) is not. The qualitatively
different conclusions that can be drawn from NBO and ESP methods demonstrate the importance of

understanding the kind of information each “charge” delivers. The qualitative differences are unsurprising,



given that electron density and wavefunction methods are based on the electron density (mostly) within the
van der Waals radii of atomic centres, whereas ESP methods are based on the ESP outside of this region, i.e.
not only are different quantities being examined, they are being evaluated in orthogonal spatial regions. No
g(A) method adequately addresses issues relating to anisotropic electron density or ESP distributions. A point
charge is a spherically isotropic entity; it cannot easily represent situations in which the charge density varies
rapidly or the ESP is better represented by a local dipole or quadrupole. There has now been substantial work
carried out to examine higher multipoles, both for ESP and density-derived charges.?®3! Nevertheless, g(A) are
frequently used in MD simulations, to interpret the electronic structure and to understand electrostatic
interactions. From this perspective, it is extremely valuable to find which g(A) assighment method best

correlates with experimental values that approximate g(A).

Both X-—ray photoelectron spectroscopy (XPS) and near edge X—ray absorption fine structure (NEXAFS)
spectroscopy can provide indirect yet separate measures of g(A). To obtain an indirect experimental measure
of g(N) the ground state of ILs need to be probed, i.e. initial state effects. However, experiments always
include some contribution from the excited state, i.e. final state effects. Therefore, the potential contributions
of initial and finals state effects to XPS and NEXAFS spectroscopy must be considered; these effects are
different for the two techniques, meaning that trends across the same sample set do not always match.?% 32 33
We have previously demonstrated that XPS and NEXAFS spectroscopy should be used as complimentary
techniques for probing g(A).2* XPS is best for detecting relatively large differences in g(A) between structurally
diverse systems, whereas NEXAFS spectroscopy is best for detecting relatively small differences in g(A)

between structurally very similar systems.?

Experimental core orbital electron binding energies, Ez, measured using XPS represent the energy required to
remove an electron from an orbital, i.e. the negative of the orbital energy; more stable orbitals have larger Eg.

Core orbital Eg values mainly depend on the element and type of orbital (e.g. C 1s orbitals have Eg ~280 eV), but



the local atomic environment can cause (relatively) small Eg shifts. For example, the C 1s Eg for the alkyl chain
carbon atoms of [CsCilm]* is Es = 285.0 eV compared with Eg = 292.9 eV for carbon in [NTf,]” (—~CFs group).3*
The Eg difference arises because the —CF; carbon has lower electron density near its nucleus than the alkyl
carbon (hence, the —CF; carbon can be thought of as more positively charged). In general, larger Es
corresponds to a more positively charged atom. This statement is supported by previous studies correlating Eg
values with calculated charges for carbon, boron, nitrogen and sulfur atoms.?" 3>4° Furthermore, Eg shifts
between ILs are routinely interpreted in terms of g(A).***° However, Ez also depends on the ability of the
system to stabilise the core—hole following electron removal; this effect is independent of ground state g(A)
and is termed a final state effect. We have previously suggested that, owing to final state effects, differences
in Es <0.5 eV should not be interpreted in terms of g(A) (based on final state effects measured with Auger

spectroscopy for sulfur atoms in ILs).?

NEXAFS spectroscopy involves measuring the energy required to excite a core electron into unoccupied
molecular orbitals (UMQOs). The lowest energy core — UMO transition observed (for a given atom) is labelled
the edge energy (Enexars). Enexars is commonly interpreted in terms of oxidation state, with a larger Enexars
corresponding to a higher oxidation state (hence, more positive g(A)).>>>> The electron is not removed from
the sample in NEXAFS spectroscopy (whereas the electron is removed from the sample in XPS). Therefore, final
state effects for NEXAFS spectroscopy are generally smaller than for XPS. Consequently, NEXAFS spectroscopy
can potentially provide a superior measure of initial state effects (i.e. g(A)) relative to XPS. However, Enexars
also depends on UMO energies (defined here as a final state effect). Therefore, NEXAFS spectroscopy is most
suitable to probe g(A) in two situations: (i) when the nature of core orbital > UMO transitions are similar

between samples or (ii) when differences in g(A) are sufficiently large so as to dominate Enexars differences.

Previous studies have attempted to find the most suitable g(A) assignment method for ILs.?" ¢ Rigby and

Izgorodina assessed the validity of different g(A) assighment methods using criteria such as basis-set



dependence, differences in g(A) assigned to symmetry—equivalent atoms and invariance of ring atom g(A) in
[C,Cilm]* (1—alkyl-3—methylimidazolium) for increasing n.>® ESP based methods and NBO g(A) both performed
well in these tests. We have previously assessed the validity of AIM, ChelpG and NBO methods by comparing
calculated sulfur charges, g(S), with results from XPS and NEXAFS spectroscopy.?! Both NBO and ChelpG g(S)
correlate well with the experimental data, whereas AIM g(S) did not. Furthermore, ChelpG g(S) was found to

exhibit a high conformational dependence.

A combination of N 1s NEXAFS spectroscopy and XPS has been used to provide an indirect experimental
measure of g(N) for a range of nine ILs (Figure 1). In our earlier study of g(S), S was present predominantly in
anionic species, whereas in this study N features in a more balanced range of cationic and anionic species. g(N)
has been computed for the same ILs using a g(A) assignment methods from each of the three different
categories: AIM (an electron density method), NBO (a wavefunction method) and ChelpG (an ESP method).
The validity of these g(A) assighment methods was assessed by comparing calculated g(N) with spectroscopic
results. Finally, based on a combination of experimental and computational results, the relative ordering of

g(N) for the ILs studied has been determined.
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Figure 1. Structures and abbreviations for all ions (except CI7) used in this study.



2. Methods

2.1. Experimental methods

[Ng11,0][HSO4] (octyl(dimethyllammonium hydrogensulfate), [N2210][TfO] (diethyl(methyl)ammonium
trifluoromethylsulfonate), [CsC:Im][SCN] (1-octyl-3-methylimidazolium thiocyanate) and [CsCilm][C(CN)s] (1-
octyl-3-methylimidazolium tricyanomethanide) were purchased from lolitec; [CsCilm][SCN] (1-butyl-3-
methylimidazolium thiocyanate) and [CsCilm][N(CN).] (1-butyl-3-methylimidazolium dicyanamide) were
purchased from Sigma-Aldrich; and [CeCiIm][B(CN)4] (1-hexyl-3-methylimidazolium tetracyanoborate) was
purchased from Merck. [Pes6,14][NO3s]  (tetradecyl(trihexyl)phosphonium nitrate), [Naz,1,0][HSO4]
(butyl(dimethyl)lammonium hydrogensulfate), [CsCiiIm]Cl (1-octyl-3-methylimidazolium chloride) and
[CsCaIM][NTF,] (1-octyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]limide) were synthesised using

established literature procedures.>’-°

The purities of all IL samples synthesised in our laboratories were
assessed using 'H NMR and *3C NMR spectroscopy. Sample purity was confirmed through XP survey and core—
level spectra (ESI Figures S2 to S9 for the XP spectra). Furthermore, all measurements were carried out under

ultra—high vacuum (pressure ~10° mbar) conditions under which volatile impurities (such as water) are

removed.

The dialkylimidazolium ILs were chosen as these all contain nitrogen atoms, and are the most important cations
for the IL community. A dialkylimidazolium cation was paired with an anion, CI-, that does not contain nitrogen
to allow the dialkylimidazolium cation to be recorded without any anionic nitrogen atom contributions to the N
1s NEXAFS spectrum. Dialkylimidazolium cations were paired with anions that do contain nitrogen ([C(CN)s]-,
[SCNT, [NTf,]7) so that the anions could be studied, and the cations too if possible. [Psges6,14][NOs] was chosen

to allow the N 1s NEXAFS spectrum of the [NOs]™ anion to be recorded without any cationic nitrogen atom



contributions to the N 1s NEXAFS spectrum. The same rationale was used to choose the ammonium—based ILs;

ILs were chosen that do contain nitrogen atoms in the anion.

XPS was carried out using a Thermo K-alpha spectrometer utilising Al Ka radiation (hv = 1486.6 eV) and a
quartz crystal monochromator set in a 250 mm Rowland circle. The X—ray spot was focussed at the sample to a
size of 400 um. The base pressure was 10~° mbar, and the analyser was a double focusing 180° hemisphere
with mean radius 125 mm which was run in constant analyser energy mode. The pass energy was set to 200 eV
for the survey scan, 20 eV for core level spectra and 50 eV for VB spectra. The detector was a 128 channel
position sensitive detector. The energy scale of the instrument was regularly calibrated using a three point (Cu,
Ag, Au) scale. A drop of IL was placed directly onto a stainless steel plate (using a spatula). This plate was
placed in a loadlock and the pressure reduced to 10”7 mbar by pumping down overnight. After attaining the
required pressure, the IL was transferred to the analysis chamber (~107° mbar). Etching was carried out using a
500 eV Ar* ion gun. Charge compensation was applied to all ILs studied here, and was achieved using a dual

beam flood gun which applies both electrons and low energy Ar* ions to the sample.

All XP spectra were fitted using CASAXPS™ software. Fitting was carried out using a Shirley background and
GL30 lineshapes (70% Gaussian, 30% Lorentzian). Peak constraints used are outlined in the ESI, Section 1.
Relative sensitivity factors from ref ® were used to ensure the experimental stoichiometries matched the
nominal stoichiometries. For the majority of ILs, charge referencing was carried out by shifting spectra so that
Caky 1s = 285.0 eV; this value was obtained from ref. 3* (see ESI Section 1 for more details on charge

referencing).

All NEXAFS spectra were recorded at MAX—lab on beamline 1311 on the MAX-Il storage ring.* A drop of IL was
deposited (with a spatula) onto a Molybdenum sample holder (ILs had to be liquid at room temperature for this

experimental set—up). Samples were pumped slowly to 107® mbar before being transferred to the ~10~° mbar



analysis chamber. The base pressure in the analysis chamber was in the range of 5 x 107 mbar. The end-
station was equipped with a Scienta SES200 hemispherical electron analyser; spectra were collected using
partial electron yield detection. Spectra were fitted with a smoothing spline, using the MATLAB™ curve fitting
toolbox, from which the first derivative spectrum was generated. Enexars Was then obtained as the energy of

the first peak in the first derivative spectrum (see ESI Figure S1 for an example).

2.2. Computational Methods

Calculations were carried out at the B3LYP/6—-311+G(d,p) level using the Gaussian 09 suite of programs.®?%®
Dispersion was accounted for using Grimme’s D3 dispersion correction with Becke—Johnson damping, D3(BJ).
[Ps,6,6,14][NOs] is an exception as only D3 was used, due to difficulties with low negative frequencies when using
D3(BJ) for these structures.t” %8 The self—consistent field convergence criteria were set to 10~ on the energy
matrix and 10~ on the density matrix. Numerical integration was carried out using a pruned grid with 99 radial

shells and 590 angular points per shell.

Optimisations were carried out under no symmetry constraints, and all structures were confirmed as minima
by frequency analysis. Initial optimisation was carried out in the gas phase (GP) followed by optimisation in a
generalised IL solvent environment using the SMD model®, labelled herein as IL(SMD). The SMD model
parameters for [C4CiIm][PF¢] from ref. 7° have been used. Differences between the solvation environment
provided by particular IL solvents are expected to be minimal unless strong H-bonding is present, in this respect

protic ILs may show a greater variation.

Systems were treated as ion pairs, i.e. one cation and one anion. For each ion pair, a range of potentially
accessible structures was generated by placing the anion in various positions (based on those isolated for

[C4C1IM]CI) around the lowest energy cation conformer and subsequently optimising the structures in the GP.

10



In particular, for [C4Cilm][A] ILs, “in-plane” structures facilitated by H-bonding, and “top” and “bottom”
structures facilitated by anion—pi interactions were explored. A similar strategy was used for the ammonium—
and phosphonium—based [Enmopl[A] ILs (Where the central atom E is nitrogen or phosphorus); anions were
placed on each of the unique “tetrahedral faces” or between the ligands and optimised. Subsequently, stable
GP structures were optimised within the IL solvent environment IL(SMD). Small rotations of the anion or of the
cation alkyl chains within cations are not expected to substantially affect the electrostatic potential or covalent
bonding within the ions; thus, an exhaustive search of all minor conformer variants was not carried out.
Emphasis was placed on surveying a good range of conformer variants, such as identifying all conformers in
which the anion took up substantially different positions around the cation. The number of major conformers
identified for each IL differs ranging from 4 to 11. In many cases the number of stable conformers is reduced
within the IL environment, as is the energy range of the conformers. The energies of the SMD optimised
conformers used in this study were all within 26 kJ mol™ of the lowest-energy conformer. Images of the
individual GP conformers are presented in the ESI Figures S14 to S22 (the SMD conformers are very similar) GP

and IL(SMD) AG, AE and g(A) are listed in accompanying ESI Tables S4 to S21.

AIM g(A) were calculated using AIMAIL”* NBO g(A) were calculated using NBO version 5.9, overriding the older
default version in Gaussian 09.”2 ChelpG g(A) were calculated in Gaussian 09 using default settings. The g(N)
reported for [C,Cilm][A] ILs are from calculations using the [C4Cilm]" cation; the average of both nitrogen
atoms is reported in all cases. The g(N) reported are based on an unweighted average of all the conformers
obtained. The accuracy of density functional theory (DFT) methods is =5 kJ mol™ to 10 kJ mol™; thus,
conformers with energies lower than 10 kJ mol™ should be treated as energetically equivalent. Slightly higher
energy conformers will be accessible at room temperatures. However, on using the IL(SMD) environment the
energy range of all conformers reduced to <26 kJ mol™. Thus, to remain consistent at both levels of calculation
(i.e. g(N) of GP and IL(SMD) computed using the same structures) the higher energy GP structures were

included in the averages. In MD simulations an average point charge model is required, as only a single charge

11



distribution is applied to all molecules; thus, the use of an average over all low-energy conformers is
advantageous. g(N) for all individual conformers both in the GP and IL(SMD) are reported in the ESI Tables S4

to S21 and can be individually interrogated.
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3. Results and Discussion

3.1. Experimental Results

Figure 2 shows N 1s XP spectra and N 1s NEXAFS spectra for the ILs studied. Each separate nitrogen electronic
environment gives a single peak in the XP spectra (Figure 2a). For example, the [C4Cilm][SCN] N 1s XP
spectrum contains two peaks in an intensity ratio of 2:1; the more intense peak is from the two nitrogen atoms
in [C4CiIm]* (which are indistinguishable by XPS*?), and the other peak’® is from the single nitrogen atom in
[SCN]~. Peaks in the NEXAFS spectra are identified using a combination of experiments (identifying peaks by a
process of elimination) and time-dependent DFT calculations; see ref. 7 for more details on peak identification

in NEXAFS spectra.

a) b)

Nanion
N_/\ [Ps5.6,141INO3] —/\
cation
N
[Nn.1.1,0][HSOA] cation
W\

N

Nanbon

N
[N2.2.1 U]I.TfO] cation

N

cation anion

[CBC1 |I’TI][NTf2] Ncamn

Ncahoh Nanion N
anion

[C6C1IM][B(CN),]
Ncahw Ncalion
[CeCHIMI[C(CN)3] | [ e’ e e
Nanion [C,C,Im]N(CN),] Nanion Neation
[C,C,ImIISCN]
Ncation —‘M
_____/\ GG

| ! I ! I ! 1 ! I ' ] ' ! I ! I ! | ! I ! ] ' I
408 406 404 402 400 398 396 396 398 400 402 404 406 408
Binding Energy / eV Photon Energy / eV

Figure 2. a) XPS N 1s core—level spectra and b) NEXAFS N 1s spectra for all ILs studied. The imidazolium peak
occurs between Eg = 401.6 eV and Ez = 402.1 eV for the XPS data and at hv = 401.9 eV for the NEXAFS
spectroscopy data. All XP spectra have been charge referenced, as described in ESI Section 1. The features at
hv <400 eV for [CsCilm][NTf,] are most likely owing to sample damage (see ref. * for more details on peak

identification in NEXAFS spectra). NEXAFS spectra have not been recorded for [CsCilm][B(CN)s] or

13



[C4Calm][N(CN),]. For [Nn1,1,0][HSO4] the XP spectrum is for n = 8 and the NEXAFS spectrum is for n = 4. By

convention, the binding energy and photon energy x axes are plotted in opposite directions.

The shape of the N 1s NEXAFS spectra (Figure 2b) varied significantly between the different nitrogen
environments. A single, sharp peak is observed for the majority of nitrogen environments probed (e.g. for
[CsCilm]*, [SCN]~ and [NOs]7), but a broad feature (with no clear peak) was observed for [N41,1,0]* and [N2,2,1,0]*
(see ref. 7* for more details on the shape of these features). No clear peak is observed for [NTf,]5; this
observation is consistent with previous studies that suggest N 1s peaks for [NTf;]” and [C4Cilm]* occur at similar
photon energies.”*”” Enexars values can vary owing to the identity of the UMOs that the electron from the core
N 1s orbital is excited into, i.e. by N 1s — UMO; this is a final state effect. Thus, interpreting Enexars in terms of
g(N) (i.e. an initial state effect) requires similar N 1s — UMO transitions, which is not the case for the wide
range of nitrogen covalent bonding environments studied here. Evidence of the differences in N 1s - UMO
can be found in the strongly varying edge shapes of N 1s NEXAFS spectra for the ILs studied here (e.g. compare
N 1s spectra for [N41,1,0][HSO4] and [CsCilm]Cl in Figure 2b). The differences in edge shape suggest that the
nature of probed excited states differ significantly between the ammonium- and imidazolium-based ILs.
However, for all four of the [C,C.im][A] ILs studied here the nitrogen atoms in the [C,Cilm]* cation gave a single
Gaussian-shaped peak (Figure 2b), as did time-dependent DFT calculations (see ref. 74). These results strongly
suggest that the UMOs of interest are the same for all four [C,CiIm][A] ILs. Consequently, the final state effect
contribution from the UMOs to Enexars are expected to be the same for all four [C,Cilm][A] ILs. For a more

detailed analysis of these NEXAFS spectra see ref. 74,

N 1s Eg and Enexars Values are shown in Table 1. A more positive g(A) is expected to lead to a larger value of
either Eg or Enexars. Both Eg and Enexars results suggest g(N) increases (becomes more positive) in the order
[X(CN),]” < [ChCalm]* < [NOs], but unfortunately trends in Ez and Enexars are inconsistent for the other ILs

(potential reasons for this will be discussed shortly in Section 3.3).
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Table 1. Calculated g(N) from ion pair (GP) calculations for the three different g(N) assignment methods, N 1s

binding energies (Es) and N 1s NEXAFS edge energies (Enexars) for a range of ILs @

g(N) from g(N) from  g(N) from
lonic Liquid Es(+0.1) / eV Enexars (£0.1) / eV

AlM /e ChelpG/e NBO/e
[CsCelm][NTF,] anion -1.6 -0.7 -1.2 399.5 NP@
[C4Cilm][SCN] anion -1.3 -0.7 -0.6 397.8t 399.3
[C4Calm][N*(CN)] anion -1.2 -0.7 -0.7 399.7 Xb
[C4Calm][N(CN*),] anion -1.2 -0.7 -0.6 398.4 Xt
[CsC1lm][C(CN)s] anion -1.2 -0.6 -0.4 398.8 398.8
[C6C1lm][B(CN)a] anion -1.2 -0.5 -0.4 399.8 Xt
[P6,6,6,14] [NOs] anion +0.8 +1.0 +0.7 406.1 404.8
[CsCilm]Cl cation -1.2 +0.1 -0.4 401.6 401.5
[C4Cilm][SCN] cation 1.2 +0.1 -0.4 4019t 401.5
[C4C2Im][N(CN),] cation -1.2 +0.1 -0.4 402.0 Xb
[CsC1IM][C(CN)s3] cation -1.2 +0.2 -0.4 402.1 401.4
[C6C1Im][B(CN)4] cation -1.2 +0.1 -0.4 402.1 Xb
[CsCilm][NTT;] cation -1.2 +0.1 -0.4 402.1 401.5
[N2,2,1,0][TfO] cation -0.9 +0.1 -0.5 402.4 404.8
[N4,1,1,0][HSO4] cation -1.0 +0.2 -0.5 402.2 Tt 404.9

9 NP in column 7 indicates that no clear peak was observed in the N 1s NEXAFS spectrum for this ion.

5X in column 7 indicates that the data have not been recorded.

* is used to differentiate the two anionic nitrogen atoms in [N(CN)]".
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T [CsC1Im][SCN] was used to obtain this Eg value.

T+ [Ns1,1,0][HSO4] was used to obtain this Eg value.

The N 1s Eg is larger for [C,Cilm]* than [X(CN),]” (Table 1), indicating that [C,Cilm]* has a more stable N 1s core
orbital than [X(CN),]~. The implication is that the more stable orbital experiences a more positive (or less
negative) charge. The sign of g(N) cannot be unambiguously determined; only the relative difference between
the environments can be determined. Crucially, the smallest experimental Eg difference between [C,C:im]* and
the cyano nitrogen atoms in [X(CN),]” is 1.9 eV. We have previously suggested that, owing to final state effects,
differences in Eg <0.5 eV should not be interpreted in terms of g(A).?* Therefore, the difference of 1.9 eV is

large enough to be assigned to differences in initial state effects, i.e. differences in g(N).

There are excellent matches between literature data and both our NEXAFS spectroscopy and XPS data. Our N
1s XP spectra have approximately the same shape as those published in the literature, where available, e.g.
[CAC1lm][N(CN)2],3* 7 7° [C,Calm][NTf,],3* *% 8 gnd [C,C1lm][SCN]’®. When the E; scales for the literature data
are charge referenced using the same method as here, the N 1s E values for both cationic and anionic atoms
matches our data, within experimental error, e.g. Es = 402.1 + 0.1 eV for Neation 15 for [C,Cailm][NTF,]*** and Es
=399.5 eV for Nanion 1 for [C,CiIm][NTF,]** #1. The only exception is the N 1s Eg value for [Pse,614][NO3], which
differs from the N 1s Ez value for [CsCiIm][NOs] by 0.3 eV;* such differences in Eg .values for anionic atoms due
to the identity of the cation have been rationalised in terms of differences in anion—to—cation charge transfer®.,
Our N 1s NEXAFS spectra have approximately the same shape as those published in the literature, where

available, e.g. [C,C1Im][NTf,]7>77 (further detail on comparison of NEXAFS spectra can be found in ref. 74).

3.2. Computational Results
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Calculated GP g(N) (averaged values) are provided in Table 1 and plotted in Figure 3 (g(N) for IL(SMD) are
similar; ESI Table S4 and Figure S12). For the [X(CN),]” anions, similar trends are found for all three g(N)
assignment methods (AIM, NBO and ChelpG) for the cyano nitrogen atoms: g(N) is consistently slightly more
negative for [SCN]~ and [N(CN)z]- compared with [C(CN)s]” and [B(CN)s]~ (both in the GP and IL(SMD)). A
smaller g(N) for the larger anions (with more cyano groups) can be rationalised as the overall anion charge

being spread over more cyano groups in [X(CN),]” as y increases fromy=1toy=4.

g(N) for nitrogen atoms in the cations show the greatest differences between the three g(N) assignment
methods (Figure 3). For example, for the cation in [C4C1Im][A] the range of g(N) values is ~1.3 eV (from AIM to
ChelpG), whereas for the anion in [C4C1Im][SCN] the range of g(N) values is 0.7 eV (from AIM to NBO, Table 1).
For all three cations studied computationally (i.e. [C4Cilm]*, [N22,10]* and [N41,1,0]*), g(N) are slightly positive for

ChelpG, but g(N) are negative for both AIM and NBO (Figure 3).

g(N) for nitrogen atoms in the cations are essentially constant for different [C4C.im][A] ILs, i.e. independent of
the anion, A (Table 1). This observation holds for all three g(N) assignment methods. For AIM g(N) =-1.2 ¢, for

NBO g(N) =-0.4 e and for ChelpG g(N) = +0.1 e.

For both AIM and NBO, the values of g(N) are the same for both the cation and the anion in the
[C4aCalm][X(CN),] ILs (g(N)am ~—1.2 £ 0.1 e and g(N)nso ~—0.5 + 0.2 e). For ChelpG, the values of g(N) for the
cation and anion in the [CsCiIm][X(CN),] ILs are very different: g(N)chepc ~—0.6 £ 0.1 e for the anion and

G(N)cheips ~+0.1 + 0.1 e for cation.

For all of the ILs studied (apart from [C4C1lm][NOs]) there is a clear difference in the magnitude of g(N) for the

three different charge assignment methods used here. Of these methods, AIM gives the largest magnitude
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g(N) (i.e. highest charge polarisation). Such a difference is significant, and could lead to very different

intermolecular interactions for ILs if AIM gq(N) were used for parameterising force fields for MD simulations.

1 +
®x AM
+  ChelpG #
0.5 ® NBO
+
0 + +
[«}]
=
T 05 * * * * *
+ % * 4
n x X
* b4 X X X X X
15 5
| | | | | | | | | |
INT,T INCNLT [SCN]  INCNJ  [CON)T  BEN)]  [C,Cim N, J N,  INOJ

Figure 3. Average g(N) values for all ions studied from ion pair (GP) calculations. * is used to distinguish
between the two non-equivalent nitrogen atoms in [N(CN),]~. For all anions, the counterion is [C4C1Im]*; the

[C4Cilm]* data point represents an average of all [C4Cilm][A] ILs studied.

The range of g(N) over the different conformers is shown for all systems in Figure 4. AIM and NBO g(N) differ
by <0.1 e over all conformers, whereas ChelpG g(N), as anticipated, exhibits a much larger conformational
dependence of up to 0.3 e in some cases. Therefore, conformational effects are negligible for AIM and NBO

g(N), but can be significant for ChelpG g(N).
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Figure 4. Range of calculated g(N) between different conformers (the difference between the maximum and
minimum g(N) values for each IL) for a) nitrogen atoms in the cations and b) nitrogen atoms in the anions. All

calculations were carried out on ion pair (GP) conformers. [Im]*is used as shorthand for [C4CiIm]*.

The computed ChelpG g(N) that show the largest range for the anion are [C4C1Im][NTf,] and [Pse,614][NO3], and
for the cation are [N22,10][TfO] and [N411,0][HSO4]. The standard deviation for respective averages (of all
conformers) are 0.10 e, 0.08 e, 0.13 e and 0.12 e (for [C4Cilm][NTf;], [Ps66,14][NOs], [N221,0][TfO] and

[Na,1,1,0][HSO4], respectively). These values are all in the region of 0.1 e.

The computed ChelpG g(N) that show the largest range for the cation is found in [N22,1,][TfO] and
[N4,1,1,0][HSO4]. Examining these structures, there are clear differences in the cation—anion association, which
lead to a change in charge polarisation and ESP (Figure 5). For example, in [N22,1,0][TfO], the higher-energy
conformer (g(N) = 0.1 e) has a “free” protic N-H, with the nitrogen exposed on the exterior of the ion pair.
By contrast, in the lowest-energy conformer (g(N) = +0.2 e) the protic N-H forms a H-bond with the oxygen

atoms of the [TfO]™ anion; in this case, the nitrogen atom is buried within the ion pair.
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A(Ncation)=-0.1e

Figure 5. Two conformers of [N2210][TfO] that show the largest variation in g(N) for ChelpG; the density

isosurface is computed at 0.004 au, and the ESP ranges from +0.1 e (red) through to —0.1 e (blue).

We tested the sensitivity of g(N) to the addition of a solvent continuum model IL(SMD) (see ESI Tables S4 to
S21). The difference in g(N) between GP and IL(SMD) is <0.1 e in most cases, and values had a maximum
difference of <0.2 e. The lack of change in g(N) on moving from the GP to an IL(SMD) solvent environment
suggests that the electronic structure and ESP are not changing significantly. These results suggest that
computational models that account for a greater degree of intermolecular interaction (i.e. clusters of ions) will

not significantly change the calculated g(N), consistent with our earlier study.?*

3.3. Computational-Experimental Correlations

Calculated g(N) data are plotted against N 1s Eg from XPS (Figure 6a) and N 1s Enexars from NEXAFS
spectroscopy (Figure 6b). In both Figure 6a and Figure 6b a single data point is used for the [C4C:Im]* cation.
The experimental data points were generated by averaging Eg values (and averaging Enexars Values) of all

[CaCilm][A] ILs studied.

Poor correlations are found between the calculated g(N) and Enexars (R* = 0.19, 0.30 and 0.71 for NBO, AIM and
ChelpgG, respectively). A comparison of Enexars and g(N) values for [NOs]~ and alkylammonium cations highlights

how poorly NEXAFS spectroscopy performs for our dataset. All three g(N) assignment methods used here give

20



very different g(N) values for [NOs]~ versus the two alkylammonium cations (see Table 1); for example,
q(N)cheips = +1.0 e for [C4C1Im][NOs] whereas g(N)cheips = +0.2 e for [Na1,10][HSO4]. However, Enexars for [NOs]™
and the two alkylammonium cations are the same (within experimental error). This poor performance is likely
due to the very different UMOs (i.e. very different final state effects) for [NOs]™ and the two alkylammonium
cations, which have a strong influence on the Enexars values. These poor correlations are anticipated based on
our findings for sulfur atoms in ILs?! and the very different UMOs (i.e. very different final state effects) that
occur for our structurally diverse nitrogen data set (for which we presented experimental evidence in Section
3.1). Therefore, the poor correlations are due to Enexars Values giving a poor measure of g(N) (i.e. initial state
effects) for our dataset of nine ILs. Consequently, we will not use Enexars values to draw conclusions on the
quality of the different g(N) assighnment methods for this IL dataset. However, NEXAFS spectroscopy can
provide excellent insight into g(A) when the IL dataset studied contains only structurally very similar ions, e.g.
when g(N) is probed for dialkylimidazolium-containing ILs (Enexars vValues for [C,Cilm][A] ILs, along with Enexars

for other ILs, will be considered in another publication).

Significantly better correlations are found between g(N) and Ez (R? = 0.58, 0.72 and 0.94 for NBO, AIM and
ChelpG, respectively) than between g(N) and Enexars. We believe this finding is because Eg values are not
influenced by the identity of the UMOs (unlike Enexars values). It is expected that the contribution of electron
relaxation to the overall final state effects will be larger for Eg than for Enexars. However, for this particular
dataset the final state effects are dominated by the identity of the UMOs. Overall, we believe that Eg values

(rather than Enexars values) provide a superior measure of g(N) for this set of ILs.

The correlation between Ez and calculated (average) g(N) is best for the ChelpG values. This finding is in
contrast to our earlier finding that NBO was the best method for calculating g(S).2 One possible reason why
ChelpG g(N) correlate better with nitrogen Eg than sulfur Eg values is the relatively exposed nature of the

nitrogen atoms in our current study, as opposed to the buried nature of sulfur atoms previously examined. The
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major drawback of using ChelpG g(N) is the non—physical conformational dependence observed for a small

number of ILs.

® AM ChelpG: R? = 0.94 x  AM -’I('
+  ChelpG \ +  ChelpG ChelpG: R? = 0.71 &*
o5f @ NBO o
a)  NBO:R?=058 -+ 4
+

0.5+

Calculated g(N) / e
Calculated g(N) / e

NBO: R% =0.19

1.5 ¢ 15+

308 399 400 401 402 403 404 405 406 388 400 401 402 405 404 405

N 1s Electron Binding Energy, £, / eV N 15 Eypyprs ! €V
Figure 6. Calculated g(N) data plotted against a) N 1s Eg from XPS and b) N 1s Enexars from NEXAFS
spectroscopy. In both cases, a single data point is used for the imidazolium cation, which was generated by
averaging values of all ILs studied (this value was Eg = 401.9 eV and Enexars = 401.5 eV). The slopes of linear

regression lines (i.e. min y = mx + ¢) are a) m = 0.22 (AIM), m = 0.22 (ChelpG), m = 0.14 (NBO) and b) m = 0.30

(AIM), m = 0.18 (ChelpG) and m = 0.07 (NBO).

A key difference between the computational methods (AIM, NBO and ChelpG) is the relative g(N) assigned to
nitrogen in the [C4CiIm]* cations versus the cyano nitrogen atoms in the [X(CN),]” anions. In Section 3.1, we
concluded from the XPS experiments that g(N) for [C,Ciim]* is significantly more positive than for the cyano
nitrogen atoms in [X(CN),]~. AIM gives g(N) for [CsCilm]* and [X(CN),]” to be identical (for all four anions). For
NBO g(N) is the same for [C4CiIm]*, [C(CN)s]” and [B(CN)4]". In contrast, ChelpG for all four ILs finds g(N) for
[X(CN),]” to be negative (—0.5 e to —0.7e) and g(N) in [C4C1lm]* to be positive (+0.1 e to +0.2 e). The difference
in g(N) between [X(CN),]” and [CsCilm]*, ~0.7 e, is significant, and agrees with the experimental Eg values

(unlike for g(N) from both AIM and NBO). Therefore, ChelpG was the only method to consistently assign a
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significantly more positive charge for [C4Cilm]* nitrogen atoms compared with the cyano nitrogen atoms in

[X(CN)y]~. Overall, ChelpG is the method with the best correlation to experiment.

Taking into account both the experimental (Es values) and computational data (ChelpG) for g(N), the relative
ordering of charge on the nitrogen atom for these cations and anions is found to be (from most to least
negatively charged) [SCN]™ = [N(CN);]™ = [NTf;]™ < [C(CN)s]™ = [B(CN)s]™ < [CoCilm]* = [Ngpeo]® < [NOs]™. These
values suggest that nitrogen carries significant negative charge in all the anions studied (except [NOs]7) and
slight positive charge in the cations studied. The effect of the counterion on g(N) was found to be negligible for
g(N) for [C,Cilm][A] ILs, based on both Enexars values and calculated g(N) for all methods. The lack of a
counterion effect is consistent with previous results, and shows that intramolecular covalent interactions are

the main factor determining g(N) for imidazolium—based ILs.?*
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4. Conclusions

The focus of this paper is on understanding atomic charge assignment methods for ILs. N 1s XP spectra and N
1s NEXAFS spectra have been presented for a range of nine ILs. Computational data on g(N) in the GP and
within a IL(SMD) environment employing AIM, NBO and ChelpG charge assignment methods have been

determined for these ILs.

We have demonstrated that XPS is a superior technique to NEXAFS spectroscopy for identifying initial state
effects, and therefore g(A), for a structurally diverse dataset of ILs. The final state effects observed using
NEXAFS spectroscopy for a structurally diverse dataset of ionic liquids precludes its use for drawing conclusions
on g(A). However, NEXAFS spectroscopy can provide excellent insight into g(A) when the IL dataset studied

contains only structurally very similar ions.

ChelpG was determined to be the most suitable method for determining g(A) in ILs, based on the good
agreement of g(A) with XPS Eg data for both nitrogen in the current study and sulfur in a previous study?!. The
excellent agreement between ChelpG g(A) and XPS experimental data justifies the physical interpretation we
make using ChelpG g(A). Both AIM and NBO g(A) assignment methods failed to correlate well with
experimental Eg. ChelpG showed more significant conformational differences of up to 0.3 e; therefore, we

advise that small differences in ChelpG charges (<0.3 e) should be interpreted with care.

The overall charge g(N) assigned to the two nitrogen atoms on the dialkylimidazolium cation are slightly
positive using the ChelpG method; in contrast, both the AIM and NBO methods give negative g(N). Based on
our matches to experimental data, we tentatively conclude that the nitrogen atoms in the dialkylimidazolium
cation are slightly positively charged. Furthermore, dialkylimidazolium g(N) do not depend on the counterion

identity, based on results from both g(N) and NEXAFS spectroscopy.
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5. Supplementary Material

See supplementary material for experimental methods and core-level X-ray photoelectron spectra,

computational methods and results for IL(SMD), and conformers.
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