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Scheme S1. Synthetic route to bisfunctionalised PEG 1.
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Figure S1. *H and **C NMR spectra of 1 in DMSO-ds
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Figure S2. H and *C NMR spectra of 2 in DMSO-ds
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Figure S3. H and *C NMR spectra in 3 DMSO-ds
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Figure S4. 'H and *C NMR spectra of tris(4-nitrophenyl carbamato)glycerol ethoxylate
(precursor to 2/3) in DMSO-ds
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Figure S5. 'H and *C NMR spectra of tris[(4-aminophenyl)-3-(3-nitrophenyl)urea]glycerol
ethoxylate (precursor to 2/3) in DMSO-ds
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Figure S6. *H and **C NMR spectra of 4 in DMSO-ds
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Figure S12. IR spectrum of tris(4-nitro phenyl carbamato)glycerol ethoxylate (precursor to 2/3)
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(precursor to 2/3)
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A)

B)

Figure S17. Computational simulation (molecular mechanics) of the interactions between A)
bisaromatic nitro gelator, showing the one dimensional growth caused by hydrogen bond
formation between the urea groups and the meta-nitro groups desirable for gelation, and B) para-

nitro analogue of the gelator shown in A.
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)

Figure S18. Crystal structure of 1-(4-aminophenyl)-3-(3-nitrophenyl)urea (7): a model
compound for the end group A) molecular formular of (1-(4-aminophenyl)-3-(3-
nitrophenyl)urea); B) asymmetric unit and numbering scheme; C) view showing hydrogen bonds
between the meta-nitro groups and the aniline units of 7; D) extended crystal structure of end
groups viewed along the b axis
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Table S1. Crystallographic data for 1-(4-aminophenyl)-3-(3-nitrophenyl)urea (7)

Formula

C1z3 H1i2 N2 O3

M

272.27

Crystal system

orthorhombic

Space group Pca2:
Z 4
alA 26.0654(8)
b/A 4.86749(15)
c/A 9.5612(2)
VA3 1213.06(6)
Deaic / g cm™ 1.491

Crystal habit

colourless plate

Crystal dimensions /mm

0.01 x 0.04 x 0.07

Radiation Mo K, (0.71073 A)
T/K 150
wu/mm? 0.917
R(F), Rw(F) 2.680, 3.096
CCDC cif deposition 1456760
number

18
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Figure S21. Vertically placed films where; A) 1 at time zero, B) unfunctionalised PEG 600 at
time zero, C) 1 at 10 minutes, D) unfunctionalised PEG 600 at 10 minutes, E) 1 at 4 months at
25 °C, F) 1 at 72 hours at 35 °C, on 1 x 1 mm grid backing paper (average film dimensions 5 x

9 x 1 mm)
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B
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Figure S22. Vertically placed blended film of 1 and 2 (at 1:1 % wt) after 72 hours at 25 °C, 72
hours at35 °C and 72 hours at 65 °C. The backing paper grid in the two left images is 1 x 1 mm

whereas for the right hand image it is 0.5 x 0.5 mm (average film dimensions 5 x 1 mm).
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Figure S23. Films of 1/3 (1:1 % wt) after 72 hours at 25 °C, 72 hours at 35 °C and 72 hours at
65 °C. The backing paper grid for these images is 1 x 1 mm.

A

20°C
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Figure S24. Vertically placed film casts of A) 4, B) 5, C) 6 after 6 days at 20 °C after casting
as a circle. The backing paper grid is 0.5 x 0.5 mm (average film dimensions 5 x 1 mm).
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Figure S25. DSC heating curves (second scan) for samples of 1 (top) and blends of 1/2 where
the percentage weight of 3 is; 25, 50, 60, 80, 100 (bottom) and heating rate is 10 °C/min. Tgs are
shown as midpoints.
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Figure S26. DSC heating curves (second scan) for samples of 1 (top) and blends of 1/3 where

the percentage weight of 4 is; 15, 40, 50, 65, 85, 100 (bottom) and heating rate is 10 °C/min. Tgs
are shown as midpoints.
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Figure S27. Optical micrographs of film of 1 after defect formation where; A) 0 minutes, B) 10
minutes, C), 20 minutes D) 60 minutes (20 °C) (film thickness = 1 mm).

Figure S28. Optical micrographs of film of 2 after defect formation where; A) 0 minutes (20
°C), B) 60 minutes (20 °C), C) heated to 100 °C, D) heated to 200 °C after defect formation,
(heating rate 2 °C /min) (film thickness = 1 mm).
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Figure S29. Optical micrographs of film of 3 after defect formation where; A) 0 minutes (20
°C), B) 60 minutes (20 °C), C) heated to 45 °C, D) heated to 50 °C after defect formation (heating
rate 2 °C /min) (film thickness = 1 mm).

Figure S30. Optical micrographs of film of 1/2 (1:1 % wt) after defect formation where; A) 0
minutes (20 °C), B) 60 minutes (20 °C), C) heated to 100 °C, D) heated to 200 °C after defect
formation (heating rate 2 °C /min) (film thickness = 1 mm).
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Figure S31. Film of 1/3 (1:1 by wt.) where; A) pristine cast film, B) damage (scratches) initiated
with scalpel, C) slide after 20 minutes, D) healed sample after 40 minutes (average film

dimensions 5 x 9 x 1 mm).
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Figure S32. Percentage weight loss (at varying temperatures) from a film of 1 as a function of
the time the film had been allowed to equilibrate with atmospheric moisture at ambient

temperature, monitored by TGA (heating rate 5 °C/ min).
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Figure S33. Percentage weight loss (at varying temperatures) from a film of 1/3 (1:1 by wt.) as

a function of the time the film had been allowed to equilibrate with atmospheric moisture at

ambient temperature, monitored by TGA (heating rate 5 °C/ min).
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Figure S34. Plot of percentage weight loss (at varying temperatures) from a film of 3 as a
function of the time the film had been allowed to equilibrate with atmospheric moisture at

ambient temperature, monitored by TGA (heating rate 5 °C/ min).
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Figure S35. A) Casts of 2/4 (1:1 by wt) between porous paper B) defect formation C) stirred cell

system set up for the study of puncture closure via swelling in water.
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Figure S36. Flow rate of water (under gravity) through a disk of 1 placed between two sheets of

porous paper after defects formed via puncture (equivalent to 0.3 % area removal).
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Figure S37. Flow rate of water (under gravity) through a disk 3 placed between two sheets of
no-woven PET after defects formed via puncture (equivalent to 0.3 % area removal).
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Figure S38. Flow rate of water (under gravity) through a disk of 1/3 (1:1 by wt.) placed between
two sheets of non-woven PET after defects formed via puncture (equivalent to 0.3 % area

removal).
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